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Abstract. A new theory of the class of dilute magnetic alloys. called the spin glasses. 
is proposed which offers a simple explanation of the cusp found experimentally in the 
susceptibility. The argument is that because the interaction between the spins dissolved 
in the matrix oscillates in sign according to distance. there will be no mean ferro- 
or antiferromagnetism, but there will be a ground state with the spins aligned in definite 
directions. even if these directions appear to be at random. At the critical temperature. 
the existence of these preferred directions affects the orientation of the spins. leading 
to a cusp in the susceptibility. This cusp is smoothed by an external field. If the potential 
between spins on sites i. j is Jijsi.sJ then it is shown that 

where e i j  is unity or zero according to whether sites i and j are occupied. Although the 
behaviour a t  low T needs a quantum mechanical treatment, it is interesting to complete 
the classical calculations down to 7 = 0. Classically the susceptibility tends to a constant 
value at T+O. and the specific heat to a constant value. 

1. Introduction 

A dilute solution of s a y  Mn in Cu can be modelled by an array of spins on the Mn 
arranged at  random in the matrix of Cu, interacting with a potential which oscillates as 
a function of the separation of the spins. To simplify our analysis we consider the spins 
as  classical dipoles pointing in direction si, so the interaction energy is J i j s i . s j .  Now 
if, when the probability of finding a pair at points i, j is e i j ,  it happens that 
X J i j q j  f 0 the system can show residual ferromagnetism or antiferromagnetism at 
sufficiently low temperatures. If X J i j g i j  = 0, for the whole alloy, but still has domains in 
which it is nonzero, one may still construct a theory in which there are thermodynamic 
consequences, in particular in the susceptibility, a kind of macroscopic antiferromagnet 
(Adkins and Rivier 1974). In this paper however we argue that there is a much simpler 
and overriding model, in which it can be assumed that X J i j  i j  = 0 on any scale, and 
that the mere existence of a ground state is sufficient to cause a transition and a 
consequent cusp in the susceptibility, which is found experimentally (Canella and 
Mydosh 1972). There are many such states each of which is a local minimum and 
inaccessible from each other. This question is irrelevant to our argument. 

t Present address: Science Research Council, State House, High Holborn. London WClR 4TA 
$ Present address: Bell Telephone Laboratories. Murray Hill. New Jersey. USA. 
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The argument is that there will be some orientation of the spins which gives the 
minimum of potential energy. This orientation is such that (si) = 0 so the system is 
neither ferro- nor antiferromagnetic on any scale, nor need it be unique. Nevertheless 
there comes a critical temperature T ,  at which the spins notice the existence of this 
state, and as T -+ 0 the system settles into the state. This physical picture is simple 
enough. but it requires some new formalism to express. The problem has a resemblance 
to problems of gellation in polymer science. When a solution of very long molecules 
becomes dense there comes a density at which the mobility ofa  molecule falls essentially 
to zero and the system gels. Such a molecule will still appear as a random coil, but if 
viewed later will be the same random coil. Thus what we must argue is that if on one 
observation a particular spin is s:” then if it is studied again a long time later, there is 
a nonvanishing probability that sl” will point in the same direction, ie 

q = (s:”.s:”) # 0 

Recent observations by A T Fiory and co-workers using p meson polarization have 
strikingly confirmed this qualitative change in behaviour. Above T, there appears 
to be no mean magnetic field at the site of a stopped p meson, below T,  there 
is. At T =  0 one expects 4 = 1, at T 3 T,, q = 0. The parameter q then takes the 
role of the mean field of the Curie-Weiss theory and we now construct the theory 
at  the level of accuracy of the Curie-Weiss theory. 

2. The mean correlation theory 

To illustrate the basis of the phase change we firstly consider a single spin. 
The probability of finding orientation si is 

P ( s i )  = exp [ ( F  - c J i j s i .  s j ) /kT] .  (2.1) 
The joint probability of finding s:l) at one time and sl2) at an infinitely remote time will 
be 

P ( S “ ’ . S ‘ ~ ) )  = exp ( [ 2 F  - ~ J i j s ~ . ’ ) . s ~ ’ )  + s { ’ ) . s l Z ) ) ] / k T ) .  (2.2) 
The fields that spins sl” and si” find themselves in are 

and 

If a spin, as a function of position. is completely random, 

(0 = 0 
and 

where E is the probability of finding a spin at z given that there is one at i. 
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However if 

(2.8) 

(2.9) 

(2.10) 

(2.1 1) 

= 45; .  (2.12) 

Now reconsider (2.2) from the point of view of one spin, sl, say. Suppose that 
all the other spins are bundled into the fields {, so that 

(2.13) 

where 9’ is the probability of finding the 5;s independently of any correlation caused 
by coupling to s(l), which we assume obeys equations (2.10)-(2.12), and JV a normal- 
ization. If there are a large number of s’s arranged at random the < variables can be 
expected to have a gaussian distribution so that 

p(s \ l ) s \2)<(1)<(2) )  = uv exp( -Et\l)s\l) 1 - 

p(s(l), ~ ( 2 ) )  = Jv* exp (s\1)2({\1)2) - s \ 1 ) 2 ( 4 \ 2 ) 3  - &\“*s\2’ 

1 

where 

25: p = -  
3(k T)’ ‘ 

Finally, therefore, 

4 = (s“”.s\2’> 

as usual. As T+ 0, p-+ x, 4 4  1 correctly. Expanding near q = 0 

1 1 1  1 3 3  4 = - - -  + 3 4 P - 4 5 4 P  
P4 P4 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) so that 4 = 0, or, writing i p 2  = (TJT)’ 
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(2.22) 

(2.23) 

The structure is similar to the standard Curie-Weiss theory, with the proviso that, 
as T+ 0, q+ + 1 not - 1, whereas either root is permitted in ferromagnetism. So far 
we have considered the life ofa  single spin, and find an abrupt change in its behaviour at  
a T,. Clearly if we considered the single spin on three separate occasions we would get 
correlation s(l). d2), d2 ) .  d3), and more complex correlations. So far we have not related 
these functions to thermodynamics, and it is not clear that the q above is directly related 
to the free energy. In the next section a development of disordered thermodynamics will 
be given following the method used in rubber elasticity (Edwards 1970, 1971) which 
permits the calculation of the free energy. A new definition of q will be given which will 
be directly related to the thermodynamic functions. 

3. The formulation of the thermodynamic functions 

Consider a particular spin glass specified by a set of occupation numbers. We can 
absorb these into the definition of J i j  so that there is a probability of finding a particular 
interaction operative, ie let 

P(#) is then the probability of finding a 3. 
8.. 11 = J . . E . . .  IJ I J  (3.1) 

A particular spin glass will have a free energy S($) defined by 

exp[-9(#)/kT] = exp[+ ~ i j s i . s j ]n(ds i )  (3.2) r 
where the integration allows for the probability of occupation. The ensemble free energy 
is then 

(3.3) 

In order to be able to perform the integrals over 3 and s it appears to be essential 
to be able to alter the order of the integration. A way to do this is to consider m systems 
and define an F(m) by 

= !” exp [ - f l ( f ) / k T I  P(A  d f  

We consider that (3.6) can truly be evaluated for all 
small m value and expand it 

mF 
kT 

exp [ -F(m)/kT] = 1 - - + O(m2).  

(3.5) 
/ 

(3.6) 

m and continue the integral to a 

(3.7) 
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If, then, one can evaluate the 3mN dimensional integral (3.5) one can obtain the free 
energy of the system. The integral can be evaluated by the method of the previous 
section. Firstly, we note that whereas in the s(*), s(’) discussion above one had 
si1)’ = sj2)’ = 1, (sj’) . ~ 1 ’ ) )  = 4 and the argument works at the level of approximation 
in which s i .  s j  = 0. We now will have 

s y  = 1 (sl“.s”) = q . # P  

P($ij) = ~ X P  (-2ijPJ’~;) (3.9) 

when we now employ the same symbol 4, but it will follow a different definition. 
We take the simplest possible probability distribution for the ie 

where J 2  = 

Then 

5; and po is the density of occupation. 
ij 

where 
p = ~ J ’ p ~ / ( k T ) ’ .  (3.1 1) 

To do the integral over the s we have to resort to a variational principle of the 
Feynman type, replacing the quartic form by a best quadratic. The replacement is 
then to write 

(1 + [as above]). 

So one chooses C so that 

E ss - C - i ( p / p o )  

(3.12) 

(3.13) 

(3.14) 

Thereupon one performs the final integral over s; and minimizes 

l ldsexp  - + E q s s  + C , U 1 
to determine q. 

Note that a term in s: .s4 is not required since it is unity, and terms in si .sj  need not 
be included to the order of accuracy of this paper and without, of course, violating the 
extrema1 property of the solution. To evaluate we note that 

z # / J  s:.sy = (zs+(z.:) - m (3.15) 

and that 

exp[(Ls:)’q/2] =h2 /exp[q112(1s~.r)  - ;r2]d2r. (3.16) 
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Thus 

(3.17) 

Likewise 

x ( x s : . s j . s f . s g  ) e-'*' d3rn(ds) .  (3.18) 

Let 

Then 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

If q is now defined to be (s?). sj'") then 

m(n7 - l ) q  = (2,'8)(88/dy) (3.25) 

and 

1 (Si.SiSj.Sj> = f [ 1  - q2(1 - m)]. (3.26) 

Collecting the terms together 

q 28 F 
kT 6 f - T  

= log B - - 7 + +p/po[  1 - q2(1 - m)]. (3.27) - _  

P will be a minimum with respect to variations in q and since q is defined solely in 
terms of q. it follows that 

(3.28) 

or 

(3.29) 
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where higher order terms in m have now been neglected. The definition of q in terms of 
q now yields (again keeping only terms in m) 

d3r 
-(P/po)q(l - q )  + &p/po)(l - q 2 )  = log(as above)e-I' 2 ~ I (243 2 

+ - - (1 - 2q + . . . )  
2 Y P )  Po 

(3.31) 

(3.32) 

(3.33) 

Note that aF/aq = 0 from the definition of q, and in accordance with the variational 
property of F.  

The equation for q and hence for F is not simple but we can solve it in the limits 
T+ T, and T-0 .  For T +  T , ,  one has since 

firstly the identity at  q = 0 of 

and then 

ie T, is where p o  = i p ,  T,' = 2J$9k2 as before. Near T = T,, for T < T, 

[l - (TC/7J2]  + 24 = 0. 

Near T = 0, putting q = 1 - E 

From these results we'can now calculate the specific heat and susceptibility. 

4. The specific heat 

The free energy has the form F = - Tfl so the internal energy is 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

af E = T ' - - .  dT 
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Since F is stationary with respect to < ie q. only po need be differentiated i n f t o  yield 

Putting 

(PTPO) = ;. 
we have 

2;. S 
t T  Si. 

C, = - ( I  - q')>. - T - -[[.(1 - q 2 ) ]  

S 
?/. 

= -i.(l - q') + 2i"Y[>.(l - 471 

(4.4) 

(4.7) 

(4.8) 
Q = + i ( l  - q 2 )  - 4i.'q,. 
Cl. 

This implies a cusp in C,. There is a little experimental data which neither excludes 
nor entirely supports this (de Nobel and du Chatenier 1959, Zimmerman and Hoare 
1960. Zimmerman and Crane 1961). 

We are specially interested near T - 0 where 

(4.9) 

Using this form one gets 

1 ( 1  - q)3 + (1  + 3q2)/2i.q 
3q - 1 + 1/2i.q 

(4.10) 

which tends to a constant as T+O. This is of course a classical result. 
We are grateful to Dr K Fischer for pointing out an error in the first calculation 

of (4.10). 
Dynamics near T = 0 always are of the utmost importance and this region cannot 

really be properly discussed in the present theory. A possible description is given 
by Anderson (1973). 

5. The susceptibility 

Theargument isagain straightforward, and i f Z c  is the normal paramagnetic susceptibility, 
one finds by adding the magnetic field to the energy and differentiating F in the usual 
way: 

Z = Z c ( l  - Y). 
Thus = zc above T = T,. Below T = T, one finds, since 

q = - I[ 2 1 - (;I2] 
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and 

a 
Y c  = - * T  

a = usual Curie constant 

that 

973 

(5.3) 

= 5 [ 1 - ( y)] {i + T, 
[ 1 - 1 + 2 (q)] + O(T, - T)' 

a 
T, 

= - - O(T, - T)' ( 5 . 5 )  

The cusp is thus linear on one side but quadratic on the lower T side. From 
one's experience with the Bragg-Williams theory one can expect this lack of symmetry 
on either side of the cusp to be an artifact of the molecular field approximation 
employed here. The true structure will probably be more symmetric. 

At  low temperatures one has from (3.38) 

so 

and is therefore independent of T as T -, 0. 
Note that the cusp at  T = T, is destroyed by an external magnetic field. This has 

the effect of altering r in sinhr[(p/p,)q]' ' [(p/pO)4]' ' r ] -  ' to lrq + pB where p = 
dipole moment/kT. This ensures that q > 0 for all T ,  being of order B2/T2 as T -+ x. 
However since the cusp has a strong theory dependent shape we do not pursue the 
algebra of the cusp form as B increases. 

It will be noted that the cusp as calculated here is not symmetric unlike the 
experimental finding. This situation is analogous to the use of the mean field theory 
with thermodynamics of ordering in alloys (or the Ising model) after Bragg and 
Williams. The simple 'on or off theories give an asymmetry. Improvements like the 
Bethe-Peierls or Rushbrooke expansions redress the asymmetry to a certain extent, 
but exact theories find exact symmetry at  the critical point. The purpose of this paper is 
simply to uncover the effect however and we do not attempt to apply the well known 
improvements to the mean field type of theory. 

6. Conclusion 

In this paper we have applied the simplest theory available to elucidate a new effect 
in disordered system physics. There are, apart from the obvious improvements required 
and possible in the present treatment of the phase change, several new avenues of study 
opened up. Firstly the methods should be made quantum mechanical in order to give a 
reliable treatment near T = 0. Also, just as the mean field theory has many applications 
in ordered physics, the present theory will have many other applications in disordered 
state physics. One ha5 already been mentioned, that of rubber elasticity which antedates 
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the present work. But more generally the present approach permits the use of second 
quantization methods in problems which have hitherto been studied only as first 
quantization problems. It is hoped to return to these questions in later papers. 
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