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Abstract

We consider the continuous model of log-infinitely divigilphultifractal random mea-
sures (MRM) introduced in[1]. IfM is a non degenerate multifractal measure with
associated metrip(x,y) = M ([z,y]) and structure functioq, we show that we have
the following relation between the (Euclidian) Hausdoriiménsiondimy of a mea-
surable setx” and the Hausdorff dimensiodim?, with respect top of the same set:
¢(dim?;(K)) = dimp (K). Our results can be extended to higher dimensions in the log
normal case: inspired by quantum gravity in dimenslpwe consider the dimensional
case.
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1 Introduction

Multiplicative cascades are random measures that weredinted by Mandelbrot in_[16]
to model the energy dissipation of a turbulent flow. This mod#ich arises as the limit of
discrete random multipliers, has been the object of nunsstudies in probability theory (see


http://arxiv.org/abs/0807.1036v2

for instancel[[14] for an account on the achieved resultstheérbeautiful note [4], inspired by
the work of [7], the authors related the Hausdorff dimensionyg of a measurable sét to
the Hausdorff dimension of the same set in the random meitdiecded by the multiplicative
cascade: this gave the so called KPZ formula in analogy wihmalar formula in quantum
gravity ([12]).

In this work, we derive a similar formula in the context of {oginitely divisible multi-
fractal random measures (MRM) introduced by the authordinjIRM are scale invariant
generalisations of the log normal model introduced in [Bbd rigorously defined mathemat-
ically by Kahane in[[111]) and the log Poisson model studie{Bin MRM have been used
as models of the energy dissipation in a turbulent flow (sPeai®d of the volatility of a fi-
nancial asset (seel[2],/[6]); as such, MRM are much morestgatnodels than multiplicative
cascades whose construction relies on a discrete dyadwrgesition of the unit interval.
In particular, this dyadic dependent construction entaég multiplicative cascades have non
stationary increments which is not the case of MRM.

The following note is organized as follows: section 2 remsirtide definition and main
properties of MRM. Section 3 reminds the background on Haxdisdimensions needed in the
proof of the main theorem. In section 4, we state the mainrmaon dimension 1: theorem
4.1. In section 5, we give the 2-dimensional analog for MRM #me Gaussian free field
(inspired by quantum gravity). In section 6, we give the tietaproof of theoreni 4]1: our
proof follows tightly the one given ir_[4] for multiplicatevcascades. Nevertheless, the main
estimates needed to carry out the proof are more difficuMi@M (the use of scale invariance
is crucial: see item 4. in proposition 2.5 below). In secfipwe prove the theorems of section
5.

Remark 1.1. At the time we write this article, we have not seen the workugléntier and
Sheffield ([7]) which inspired the notel[4]: we are therefarglirectly indebted to them. It
seems that in 7] the authors prove a result similar to ourdtean[5.4 (see below) using the
theory of large deviations for Gaussian processes: it wdaddnteresting to compare their
result with our theoreri 5l4. In this article, we do not usegladeviation theory; we prove
theoreni 5.4 by a straightforward adaptation of the proothafdreni 4.1 (valid in dimension 1
for log infinitely divisible measures and in particular farg Gaussian measures).

2 Introductory background about MRM

The reader is referred tol[1] for all the proofs of the ressitged in this section.

Independently scattered infinitely divisible random measee. Let S* be the half-plane

ST={(t,y);teRyeR:}



with which we associate the measure (on the Boralgebra3(S™))
0(dt, dy) = y2dt dy.

The characteristic function of an infinitely divisible raond variableX can be written as
E[e!X] = ¢¥(@), wherey is characterized by the Lévy-Khintchine formula

pla) =imq ~ 3%+ [ (€~ 1 igsin(a) v(do)
R*

andv(dz) is the so-called Lévy measure. It satisfigs min(1, 2°) v(dx) < 4oc.

Following [1], we consider an independently scattered itgin divisible random measure
w associated tdp, #) and distributed on the half-plang™ (see [17]). More preciselyy
satisfies:

1) For every sequence of disjoint sét§,),, in B(S™), the random variableg:(A,,)), are

independent and
/~L( U An) = Z M(An) a.s,

2) for any measurable set in B(S™), u(A) is an infinitely divisible random variable
whose characteristic function is

E(eiqu(A)) — ¥(@)0(A)

We stress the fact thatis not necessarily a random signed measure. Let us additignn
mention that there exists a convex functiomlefined orR such that for all non empty subset
Aof ST

-1h(q) = +oo, if E(e™W) = +o0,

-E(et4)) = e¥(@94) otherwise.

Let ¢. be defined ag. = sup{q > 0;¢(¢q) < +o0}. For anyq € [0, q.[, ¥(q) < +oc and
¥(q) = (—iq).

Multifractal Random Measures (MRM). We consider an independently scattered in-
finitely divisible random measupeassociated t6y, §) such that,. > 1, namely that:

de > 0, ¥(1+4¢€) < +oo,
andy (1) = 0.

Definition 2.1. Filtration /. Let () be the probability space on whighis defined. F; is
defined as the-algebra generated by (A); A C ST, dist(A4,R?\ S*) > I}.



Let us now define the functiofi: R, — R by

I, ifl<T
f@:{T it1> T
The cone-like subset,(¢) of ST is defined by

Aty ={(s,y) € STy =1L —fly)/2<s—t < fy)/2}.

For forthcoming computations, we stress that,(t)) = [ f(y)y~2dy < +oc and, for
I <T,0(A(t) = In(T/l) + 1.

Definition 2.2. w,(t) process.The processy(t) is defined asu;(t) = (A (t)).

Definition 2.3. M;(t) measure. For any! > 0, we define the measurd,(dt) = e“1® dt,
that is

My(I) = / e ") dr
I
for any Lebesgue measurable subket R.

Definition 2.4. Multifractal Random Measure (MRM). With probability one, there exists a
limit measure (in the sense of weak convergence of measures)

M(dt) = lim M(dt).

I—0+

This limit is called the Multifractal Random Measure. Thalsty exponent of\/ is defined
by
Vg =0, ((g)=q—v(q)

Proposition 2.5. Main properties of the MRM.
1. the measurd/ has no atoms in the sense thdt{¢}) = 0 for anyt € R.

2. The measuré/ is different fron0 if and only if there exists > 0 such that/ (1+¢) > 1;
in that caseE(M ([0,t])) = t.

3. if{(q) > 1 thenE[M ([0, ])?] < +o0.

4. For any fixed\ €]0,1] and! < T, the two processefuy;(At))o<i<r and (2, +
wi(t))o<t<r have the same law, whefp, is an infinitely divisible random variable inde-
pendent from the process;(t))o<;<r and its law is characterized B¢’ ] = A=),



5. For any A €]0,1], the law of the processM ([0, At]))o<i<7 iS equal to the law of
(WM ([0,1]))o<i<T, WhereWy = Xe™> and Q, is an infinitely divisible random vari-
able (independent @fV/ ([0, ¢]))o<:<7) and its characteristic function is

E[eiqm] — )\

6. If ((¢) # —oo then
E[M([0,])?] = (t/T)"PE[M ([0, T])"].

Proposition 2.6. Main properties of the scaling exponent.If there ise > 0 such that
¢(1+¢€) > 1, the functiony € [0, 1] — ((q) is continuous, strictly monotone increasing and
maps|0, 1] onto |0, 1].

3 Hausdorff dimension

In this section, we just set out the minimal required backgrbabout the Hausdorff dimen-
sion to understand our main result and its proof. We refe8}ddr an account on Hausdorff
dimensions.

Definition 3.1. Let (X, d) be a metric space. IK' C X ands € [0, 4+o0[, thes-dimensional
Hausdorff content o is defined by

C}(K) = inf {Z r;there is a cover of K by balls with radii > 0} .
Using the standard conventianf () = +oo, the Hausdorff dimension df is defined by

dimg(K) =inf {s > 0; C}(K) = 0}.

Lemma 3.2. (Frostman)Let (X, d) be a metric space.Thecapacity of a Borelian sek” C
X

Cap,(K) = inf { (/ ly — x\‘sy(dx)y(dy))_l; ~ is a Borel measure such thatK) = 1}
KxK

is linked to the Hausdorff dimension &f by the relation

dimy(K) = sup {s > 0; Cap,(K) > 0} .



4 KPZ formula in one dimension

If we define forz,y € R, p(z,y) = M([z,y]), thenP a.s. p is a random metric ofR. The
interval [0, T'] can be seen as a metric space when it is equipped either weitBublidean
metric | - | or with the random metrip. The main purpose of this paper is to establish a
relation between the Hausdorff dimension of a measuraltlése- [0, 7] equipped with
the Euclidean metric and its Hausdorff dimension with respe the (random) metric space

([0, 77, p)-

Theorem 4.1. Assume there is > 0 such that((1 + ¢) > 1 and that for allg € [0,1] we
havey(—q) < co. LetK C [0, T] be some deterministic and measurable nonempty sef;and
its Hausdorff dimension with respect to the Euclidian neetiihen the Hausdorff dimension
dim’, (K') of K with respect to the random metriccoincidesP a.s. with the unique solution
d in [0, 1] of the equatiord, = ((J).

Remark 4.2. We can seg as a strictly increasing function ofo, 7']: * — p(0,z). By
definition ofdim/, , we haveP a.s.:

VK € B(p([0,T])),  dimf(p~" (K)) = dimp (K)

Applying the above equality to K'), we get an equivalent formulation to theoreml 4.1Kif
is some deterministic measurable set, welyats.:

¢(dimp (p(K))) = dimp (K)

5 KPZ formulain 2 dimensions

In this section, inspired by the KPZ formula in continuum qiuen gravity ([12]), we consider
the natural extension in dimensi@rof the results of the previous section in the log normal
case (the results of section 5.1 have analogs in all dimeg}gio

5.1 The log normal MRM measure in dimension 2

The log normal MRM in dimension 2 is the random measurén R? defined formally by:
VA € B(R?), M(A) = / X @)~ EX (@] g,
A

where(X (x)).cr2 is a "Gaussian field" whose covariance is given by:




where~? and R are two positive parameters. To give a rigorous meaniniy fmne can use
the theory of Gaussian multiplicative chaos introduced lah&he in[[11] or it's extension
defined in [18]. In this framework, the measuYé is the multiplicative chaos associated to
the functionln™ I?RI and it can be defined almost surely (see example 2[3'in [18)eabmit

(in the space of Radon measuresj gses ta) of the random measuréd, (dz) defined by:
VA € B(R?), M(A)= / Xi(0) - SEX ()] g
A

where(X;(z)).cr2 is as centered Gaussian field whose covariance is given by:

E[Xi(2) Xi(y)] = {”2 #2920/l it o <,

¥ Tzl if |y—ax|>L

One can note the following scale invariance property(ff(z)),.cgz: if A €]0,1] andl < R,
the two fields( X (Az) )z <r and(Q2x+ X;(2)) .| <r have the same law, whefg, is a centered
Gaussian random variable independent fro¥ia(z)),cx> and of variance/? In ;. By taking
the limit asl goes ta), we get the following scale invariance fof: if A €]0, 1], we have the
following identity in law:

(1) (MOAA)) acso.m = A2eB=T X (M(A)) acso.n)-
Taking the expectation if(1) to the powee [0, 1], we get:
EIM(B0, V)] = ()" OED(BO, R))]

with:
2

Cla) = 2+77)a - 54"

Finally, it is possible to extend naturally the notion of iddorff content (and Hausdorff
dimension) on a metric spac¢&’, d) to a measurable spac¢éequipped with a measuyeby :

C}(K) = inf {ZM(B(% r;))%; there is a cover of K by ball®(x;, r;)with radiir; > 0} .

With these extensions, we can state the followdrdjmensional analog to theorédm W.1:

Theorem 5.2. Assume that? < 4. Let K C B(0, R) be some deterministic and measurable
nonempty set andl, its Hausdorff dimension with respect to the Euclidian neetiihen the
Hausdorff dimensiodim?}/ (K) of K with respect to the random measur& coincidesP a.s.
with the unique solution in [0, 1] of the equatiord, = ((J).



Proof. Just note that, in this setting, the Frostman lemma is urgdthif we define the ca-
pacity of M by the following formula:

Cap,(K) = inf { ( /K K(M(x, ly — x|))_37(dx)7(dy))_l; ~ is a Borel measure such thatk') = 1}

The proof is then a straightforward adaptation of the prdaheoreni4.1L.
[

5.3 The exponential of the Gaussian Free Field

In this subsection, as an application of the previous suimsgave prove the KPZ formula for
the exponential of the Gaussian Free Field (GFFER{0, R): this corresponds i3 (0, R) to
the gravity measure considered on a 2 dimensional surfaf&.imhe GFF is an important
object in Conformal Field theory since it has the conformabriance property and a spatial
Markovian property (seé [19]). Formally, the GFF (or Euicdiibosonic massless free field)
in B(0, R) is a "Gaussian FieldX with covariance given by:

E[Xr(2)Xr(y)] = Gr(2,y),

whereGp, is the Green function oB(0, R) (see for example chapter 2.4 [n [13] for the def-
inition and main properties). Let the proceBsbe Brownian motion starting froma under
the measure”” and consider the stopping tin1; = inf{¢t > 0, |B;| = R}. If we denote
pr(t,x,y) = P*(By € dy, Tr > t), we have:

GR(xv y) = 71-/v pR(tv €z, y)dt
0

Note that for eacht > 0, pr(t,z,y) is a continuous positive and positive definite kernel
on B(0, R). Therefore, we can define the GFF measlfe as multiplicative chaos|[([11])
associated to the kernetG r wherey? < 4. In this framework, M is the almost sure limit
(in the space of Radon measuresj gees ta) of the measure:

M, p = 6Xl,F(I)—%E[Xl,F($)2}dx

whereX,  is a Gaussian field with the following covariance:
“+00
EX; p(x)Xip(y)] = 727T/ pr(t,z,y)dt.

l2

We know have the following analog of theoréml5.2:



Theorem 5.4. Assume that? < 4 andr < R. Let K C B(0,r) be some deterministic
and measurable nonempty set aidts Hausdorff dimension with respect to the Euclidian
metric. Then the Hausdorff dimensidin? (K) of K with respect to the random measuve
coincidesP a.s. with the unique solutiohin [0, 1] of the equatior, = ¢(J).

6 Proof of Theorem4.1

Lemma6.1.Letz <y € R. If ¢ € [0, 1] then
E[p(l’, y)q] < C(Tv Q)|x - y|C(q)7

whereC' (T, q) is a positive constant only dependingrny. As a consequence,if, 9, j, are
defined as in Theorem 4.1, then &&dim?,(K)) < do.

Proof. By stationarity of the measur® and Propositiof 215, we have
Elp(x,y)] = E[M [z, y])] = E[M([0,y — z])*] = |y — z|“DT*@E[M([0, T])"].

So we can choos€(T, q) = T—SDE[M([0,T])1] < +oc.
Leta > 0 andq € [0, 1] such that(q) > d,. There exists a covering @ by a countable
family ([z,, Yu])n Such thadd”" |z, — 4.|°@ < a. Hence

E| > plwn 5n)| = D Elp(@a, 1)) < C(T,0) Y g = 229 < C(T q)ar

By the Markov inequalityP( Y, p(zn, y,)? < C(T, q)\/a) > 1—+/a. Putin other words,with
probability1 — \/«, we have a covering of K with balls whopeadii satisfy) " p(z,, y,)? <
C(T,q)\/a. Thusq > dimf,(K) a.s. and the lemma follows. O

Proposition 6.2. Let K, §, dy, dim’, (K) be as in Theorem 4.1 and lete [0, 1] be such that
((g) < 0. Then a.sq < dim%,(K), thatisdy < ((dim%,(K)).

Proof. Since((q) < do, by the Frostman Lemma, there is a Borel probability measyre
supported by such thaty,(K) = 1 and

| o=y ) ) < +oc,
(0,7]

Let us define, for an§ < | < T', the measure o, 7':

v(dr) = edwi(r) =4 (a)(In(T/1)+1) Yo(dr)



and its associated metric @
vxayeRv pl(x7y):l/l([x7y])'
We now investigate the quantity:
o0 =E[ [ plr.0) uldo) n(dy)]
0,72
= / E [Pl(% y)—qeqwz(r)+qwz(y)—2w(q)(1n(T/l)+1)] Yo(dz)vo(dy)
[0,7]?
_ 2/ E[pl(oa y— x)—qeqwz(0)+qwz(y—w)—w(q)(ln(T/l)Jrl)] Yo(dz)vo(dy)
y>x
by stationarity of the process. To this purpose, we split the above integral in two terms as
¢(57%) :2/ E[pz(O,y _ x)_qeqwl(0)+qwl(y—w)—2w(Q)(1n(T/l)+1)i| yo(dx)%(dy)
0<y—z<l

) / B [ (0, — x)—qeqwl<o>+qwl(y—w)—w(q)(ln(T/l)H)} ~o(dz)vo(dy)
y—x>l1
=é1(1,70) + d2(1,70)-

We first estimatey; (1, v0). Using the Jensen inequality and the decrease of the mapping
x +— x~9yields

o1(1,7)

y—x —q
0<y—ax<l 0

2e—2¢(9) [2¢(9) / y—z e
_e T E [( / ()= (0)—e (y—) dr) } o () (dy)
T2%() 0<y—a<l 0

2e—2¢(q) [2¢(q) vz ar
< = " Rk [e 0 (qwz(0)+qwz(y—r)—qwz(7‘))yfz] Vo(dx)%(dy).
/(;Sy—m<l T2¢(Q)‘y — x|q

Given0 < z < y < T suchthay —z < [, defined! = A;(0)NA;(y —x) # 0. Each cone-like
subset4,(r) (0 < r < y — z) can be splitinto three terms as(r) = A?(r) U Al U Af(r),
whereA7(r) (resp. A¢(r)) denotes the part of;(r) located on the left (resp. right) ofi. It
is worth emphasizing that:

(@] (M)ozry—o = (AL (y—2)\ Al (y =2 = 7)) =" (0)0(A} (y —2) \ A (y =2 = 7))o<r <y

10



is a right-continuous martingale, as well@g (r))o<,<,—. Where:

wi (r) = p(A7(0) \ A7 (r)) — ¥'(0)0(A7(0) \ Af(r)).
By using the fact that’(0) < 0, we get:

qi(0) + qui(y — ) — qui(r) = qui + qp(Af(y — ) \ A{(r)) + au(A7(0) \ A7 (r))
< qup + qui(y — @ — 1) + qwi (7).

Since(w{(r)),, (w/(r)), andw} = u(A!) are independent, the last expression is estimated as:
¢1(L,70)

[ e T me] s IR sup ) y(daa(ay)
< . e Wy su e wp\y—x—r su e wp T T
= Jocy—za T D |y — xd Wit it TR0

202~ 2v(a) 2¢(q) _ . ,
< q E eqwlZ Eletv (y—x) E et (y—=) Y dr Yo dy :
/0<y—x<l T2w(Q) |y — ;(;|q [ ] [ ] [ ] ( ) ( )

the last inequality resulting from the Doob inequality apglto the functionc — ¢* (C, is a
constant only depending @. It remains to computé(A?), 0(A7(0)) andd(Ad(y — z)). Itis
plain to see that

0(AD) =W(T/1) + 1~ (y—a)/l, (A](y —x)) = 0(A}(0)) = (y — 2)/1,
in such a way that (we use thatq) < 0 for all ¢ in 0, 1[):
(2)

¢1(1,70) S/

0<y—z<l T2¢(f1)‘y - ‘T‘q

2036—2@0@)[21!)((1)

@ (/) +1+(=2)/1) 200(0) 27— (0) 2 Jv0(dz)vo(dy)

<20 ) | ~aoldzholdy).

0<y—z<l ‘y - ‘T‘C(q)
Let us now focus o, (1, 7). In what follows, we make a change of variable- T'r /(y—
x):
¢2(l7 70)
/ e4wi(0)+qwi (y—2)=2¢(q) (In(T/1)+1)
—9 [
y—x>l

( foy_m ewi(r) dr) I

/ 2T [eqwz (0)+qwi(y—2)—=24(q) (In(T/1)+1)
= q
y ( I enly=apr ) du)

] Yo(dz)yo(dy)

[RECRHCD)

—x>1 ‘y - x|q

11



We remind the reader of the following property: the prodess,(at))o<:<r has the same law
as the procesf, + wy (t))o<i<r, Wherea €]0,1], I’ < T and(2, is an infinitely divisible
random variable independent from the process(t))o<i<r such thatE[e®*] = a=¢@_ In
particular, choosing = IT/(y — x) anda = (y — =) /T, the proces$w; ((y — =)t/T)) -,

has the same law as the proc€S§,_.),r + wir/(y—2)(t))o<t<r. Plugging this relation into the
above estimate af,(/, o) yields

¢2(l7 70)
/ 9T 6qQ(yfz)/T+qulsz(0)+qwl(T)—2¢(Q)(1H(T/l)+1)
Yy

y—x

. ]7 dx)vo(dy
a1 |y — | ( OTewyz;w(U) du)q o(dx)yo(dy)

qw%(0)+quz%(T)—w(q)(ln(yfw)ﬂ)

27¢(a) e
N £ Yo(dz)yo(dy
/y—le ly — z[¢@ [ ( T wir (u) du>q ] o(dz)y0(dy)

0o &

Thus it just remains to show that there exiSts> 0 such that for all’ in [0, 7]

[eqwu (0)+qwy (T)=2¢(q)(In(T/')+1)
q
(S er® du)

In the above inequality, we will restrict to the (non obvipuase’ € [0,7'/4]. We have:

<

[eqwu (0)+quwy (T)=2¢(q)(In(T/1")+1) ]

( foT ewr (1) du)q

[eqwz/(0)+qwu(T)—Zw(q)(ln(T/l’)Jrl) }
— q
(" et du)
It is worth mentioning that the set, (0), A, (T) are disjoint. We then define

By = Ar(0) \ Ar(T/4)
Bjy = Av(T) \ Av(3T/4)

We stress that for any in [1'/4, 37/4]:

Ap(u)N B =0, Ap(u)NBi =0

12



Using the relatiord(B¢) = 6(B4) = In(T/I') + 1 — In(4) and the independence pfB;),
,U(Bffl)’ (,U(Az/ (u)))T/4§u§3T/4, we get:

ey (0)+qwy (T)=2¢(q) (In(T/1')+1)
[ ( 3T/4 )q }
Joja et

— o~ 2@ (TR [equ(Blg/)} E [eqMBﬁ >] E [

e (A (0)NAY (T/4)+qu(Ay (T)NA (3T/4)) }

3T/4 . ( a
(fT/4 e )

e (Ay (0)NAy (T/4))+au(Ay (T)NA (3T/4)) ]

3T/4 oy ( a
(fT/4 et )

_ 6—21n<4>w<q>E[

Let us denoted’,(u), A¢ (u) the following sets fow € [T'/4,3T'/4]:

Aj(u) = (Ar(0) N Ap (u)) \ Av(3T/4)
Af(u) = (Av(T) 0 Ay (w)) \ A(T/4)

We have the following decompositions:
M(Al,(()) N Al/(T/4)> - u(Af,(T/éL)) + M(Al,(()) N Al/(BT/4)),
,u(Al/(T) N Al/(3T/4)> — u(Af,(BT/AL)) + u(Al/(T) N Ay (T/4)).

We also have for all in [T°/4, 37 /4]:

(Av(w) = (A7 (u)

13



Therefore, we get:

[eq“’l’ (0)+quwy (T)=2¢(q)(In(T/1')+1) ]

<f3T/ ewr () du)q

- edH(Ay (ONAY (T/4))+qu(Ay (T)NA (3T/4)) ]
( f ST/4 oo (u) du)q
et (AL (T/ 4))+qu (A (3T/4))

( ST A 0 A (0) 1Ay (9\ (A 0040 (T du) }

— e 2n@¥(@R

_ 2@ |

< 2@ [ (A l,(T/4))—quuu(Af,(u))]

y E[equ(Afl (3T/4))—q it (AL (“))]E[ 1 }
( f3T/4 w( Ay (w)\(Ay (0)UAy (T du)

_ 2@ [eq sup,, (1(AY, (T/4)) (A (u)))]

[ A T/ ) | | 1 .
( fz?jz/‘l Ay ()\(Ay (0)UA (T du)

_ 2@ [eq sup,, (1(A, (T/9)\AY, (u)))}

B[4 61/ 0\ 4500 1 /]
( f3T/4 oAy ()\(Ay (0)UA (T)) du)

The process
(AT /4)\ AL (u) — ' (0)0(AL(T/4) \ AL (u))

is a martingale for in [T'/4, 3T, 4] and we havé(.A7,(7'/4)) bounded independently froth
By applying Doob’s inequality, there exists some constant 0 independent froni’ such

that:
E[eqsupum(ft ,(T/4)\Af ( ] <C.

Similarly, we have:
E [eq sup,, (j1(A% (3T/4)\ A, (u)))} <C

Therefore, we get:
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w0y (0)+qwy (T)=2¢(q) (In(T/U)+1)
[ ( 3T/4 )‘1 }
S e

B M S
( f3T/4 (A ()\(Ay (O)UA (T du)

Sincey(—q) < oo, by using the same argument than the proof of theorem 3 (Mtsran
negative orders) in [3], one can show that:

1

supE[

g <jﬁjy4 M(Au >\@h4muAycm) du)q

] <o
T/4

To sum up, gathering the estimates®f/, v,) andg, (1, v), we have proved the existence
of some constant’ > 0 such that:

1
ol v0) < C/[OT]2 m%(dx)%(dy) < +o00.

Let us now define the measwré&it) = lim, o+ v4(dt) (See Lemm&6]3 below). From Lemma
and the Fatou lemma, we obtain

IEl[/{OT]2 p(z,y) 9 v(dr) I/(dy)} < E[lim inf/[oﬂ2 oz, y) " vy (dx) I/l(dy)}

I—0+

< lim inE[/ pu(z, y) " v(dx) Vl(dy)}
0,77

1—0+

1
: C/[OTP T ac@ o) n(dy) < +oc.

As a consequenc, a.s. the mtegraf[0 172 p(x,y)~?v(dz) v(dy) is finite. We complete the
proof with the Frostman Lemma. O

Lemma 6.3. Assume that we are givene [0, 1] such that

/ %(dﬁ_)%(dy)
(0,71

y— @ -
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We consider, for any > 0, the measure oft), 7'):
wi(df) = e O=0@ (@) Ly
Then the weak limit (in the sense of measures)

v(dt) = lim v (dt)

1—0+t

existsP-a.s., is finite, supported bl P-a.s., and we have

| sl otdn) vidy) < limint [ pny) (o) m(dy).
(0,72 [0,7)?

—0t+
Proof. According to the proof of Propositidn 6.2, we have

Yo(dx)yo(dy)

¢(l770> S C
oz |y —z[¢@

< 4o00.
Furthermorep;(x,y) < p,(0,7) forany0 < z < y < T, in such a way that

E[v(A)?p(0,T) @] < ¢(l,7) < C no(dz)0(dy) - oo
0,772 |y — {L’|<(‘Z)

for any Lebesgue measurable subdeidf [0, 7'|. Moreover, if the Lebesgue measureAfs
strictly positive then the Holder inequality yields

E[vy(A)Y CHD] <E[1y(A)2M, ([0, T]) @)/ O @R[ M, ([0, T])]5@/0+¢@)

(3) < C’/ Yo(dz)7v0(dy) < oo,
[0,7]2 ly — 2|¢@
We remind the reader that;(A)), is martingale for any Lebesgue measurable sudset
[0, T]. From [3), this martingale is bounded i< for somee > 0. As a consequence, it
convergesP-a.s. towards a limit denoted by(A) asi — 0. It is readily seen that is a
measure o0, 7'] P-a.s. Since,(K°) = 0, itis clear that/(K°) = 0 P-a.s.
Finally, E[v([0, T1)] = lim;_,o E[,([0, T])] = 70([0,T]) > 1. Moreover{v([0,T]) > 0}
is an event of the asymptotie-field generated by the random variables(A)); and has
therefore probability O or 1. As a consequence, the e{efj0, 7']) > 0} has probability 1.
The last inequality of the lemma results from Lenima 6.4 belad the weak convergence
of measures. O
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Lemma 6.4. P a.s., the metri¢p; ), uniformly converges towards the metri@as! — 0, that
is
Pas, lim sup |[p(z,y) — p(z,y)| = 0.

=0 0<a<y<T

Proof. The mappingr — p(0,x) is continuous because of the non-degeneracy (fee
Propositioi25). Moreover, for ea¢h> 0, the mapping: — p;(0,x) is increasing and
the sequencép,; (0, z) converges pointwis® a.s. towards (0, z) (see Definitioi 214). The
uniform convergence then results from the Dini theorem. O

7 Proof of theorem(5.4

Letr < R. We choose&) > 0 such that- + § < R. With the notations of section 5.1, one
can see that there exists two positive constantsC, s such that for all:, y € B(0,r + ) we
have (independently dfandz, y):

(4) E[Xi(2)Xi(y)] + ¢rs < B[Xy p(2) X1 (y)] < E[Xi(2) Xi(y)] + Crs.

Proof of: ¢(dim}/* (K)) < dimg(K).
The inequality[(#) and the classical corollary 6.2[in|[18pignthe existence fog € [0, 1]
of C, s > 0 such that:

VB(xi,:) C B(0,r +0), E[Mp(B(;,1,))7) < Cyrors®.

We conclude by using the same argument than in the proof oféne4.1.

Proof of: ¢(dimy” (K)) > dimg (K).

Suppos€ (¢q) < dimy(K). Following the notations of section 6 (proof of theorem| 4.1)
we consider a measufig supported byx" such thaty,(K) = 1 and

/ ) |z — y|‘<(q) Yo(dz) o (dy) < +00.
(0,17

The inequality[(#) and the classical corollary 6.2[in|[18pimthe existence of some constant
Cyrs > 0such that for alle, y € B(0,r) with |y — z| < §:

E [(/ eX1.F(2)— %E[XL,F(Z)Q}CZZ) _qele,F(x)'f‘le,F(y)_q;IE[XL,F(Z’)Q}_(Z;IE[XL,F(y)2]:|
B(w,ly—=|)

<G|

Xi(2) - FE[X1(2)2] dz)—qequxmxl(y)—éE[Xl(m?]—éE[Xz(y)?]}

(@,ly—=[)
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Taking the limit ad goes ta, this implies:

lim ’Vo(dl’)’}/o(dy)E [</ eXz,F(z)—%IE[XL.,F(Z)Q}dz)_qele,F(J?)-i-qXL,F(y)—(122E[Xl.,F(l’)Q}_(I;E[Xl»F(y)2q
=00 ly—z|<d B(z,|ly—zl)

< Cyrslim Yo(dz)vo(dy)E [(/ eXz(z)—%E[XZ(Z)Q]dz)_qeqxl(l’)*qxl(y)_gmxl(“”ﬂ_ém&(yﬂ]
o IS ly—z|<d B(z,|ly—zl)

< oQ.

We remind that the second inequality above results fromaagsttforward adaptation to
the2 dimensional case of the proof of theorem| 4.1 (in the log nboase).
We then conclude by using the same argument than in the pfoloé¢oren{4.11.
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