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FIG. 1. The dimensionless quantity &0/(E&+E, ) as a
func'. ion of x=E&/E2. When x= 1, the value is —v2/16.
As x 0 the function behaves as 1/2+8/21'. The
curve crosses zero at - 0.1993.

=v 2-1, P, =-', ln(1+v'2), and numerically evalu-
ate (13)-(15) to obtain"

C, = 0.025 536 9V1 9. . . ,

C„=0.962 581 V32 2. . . ,

C, = —0.001 989 410 V. . . ,

C, + =O.OV4988153 8

These results give very good agreement with
Sykes et al."above T„C,+ = 0.962 59 + 3 x10 ',
C„=O.OV42, and with Quttmann" below I'„Cc
=0.0256+ 1x10 '.

Arguments can be made that the constants C,+

and C, are equal. The value of this constant de-
pends on correlation functions at short distances,
and hence cannot be computed by the present
method. Details will be published elsewhere.
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A special renormalization transformation is constructed for one-component spin sys-
tems on a two-dimensional triangular lattice. Fixed point, eigenvalues, and eigenvec-
tors are determined in various approximations, which converge well to known Ising data.

Most of the specific results of the renormaliza-
tion approach to critical phenomena have been ob-
tained by the & expansion for continuous spin sys-
tems interacting through a I andau-Ginzburg Ham-
iltonian (with s =4 —d, and d the dimensionality
of the spin lattice). This Letter concerns an ap-
plication of Wilson's' ideas to a general class of

discrete spin Hamiltonians which comes closer
to Kadanoff's' original derivation of the scaling
laws and which avoids the s expansion (which is
presumably asymptotic rather than convergent).

The method is best illustrated' for a two-dimen-
sional (2D) triangula. r lattice. In Fig. 1 the lat-
tice is divided into cells (triangles) having an odd
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FIG. 1, Triangular lattice with cells shaded.

number (three) of sites such that the lattice of
cells is again triangular. Other cell divisions
are possible but this choice has the additional
advantage that the cells are as small as possible
(three sites) and that the cells fully occupy the
lattice. Each of the N sites i has a spin s; =+1
which interacts through a general Hamiltonian
H(s) (—P = —1/kBT included). H(s) is decomposed
into its various types of interactions, viz. , near-
est-neighbor (nn) pair interactions K„„s,s, , long-
er-ranged pair interactions, triple-spin interac-
tions &„s;s,. s~, etc. Formally we write, where
the sum over b runs over all subsets of sites,

H(s) =+K,s, , sy= gsq ~

ieb

s;.' = sgn( Q s; ).

Since a cell has an odd number of sites, s;.' is
unambiguously +1. For a given value of s; ' there
are a number (viz. , four) of internal configura-
tions o; ~ for the spins of cell i' Thus H. (s) can
also be written as H(s', o). Then define a renor-
malization transformation from a site-spin Ham-
iltonian H(s) to a cell-spin Hamiltonian H'(s') as

expH (s', o) =—expH'(s'). (3)

Here it should be noted that even if one starts out
with only simple interactions (e.g. , only nearest-

The strength parameters K, can be obtained from
H(s) as

K, = 2 " s,H(s),
S

where the sum over (s) runs over all possible
spin configurations. H(s) is taken to have short-
range interactions and to be invariant under the
symmetries of the lattice. So the sum in (1) in-
cludes no sets with sites far apart, and the K~ of
sets b of the same type P (e.g. , nea. rest-neighbor
pairs) have the same value KB.

We associate with a cell i' a spin s; ' defined
as the signature of the sum over all spins in cell

neighbor interactions) on the site lattice, (3) gen-
erates in principle all types of interactions on
the cell lattice. The main point of this Letter is
to show, by studying various approximations,
that (3) exhibits a fixed point with properties to
be expected for 2D spin systems. We view (3) as
a map of the original interaction constants K to
renormal'red K ' [belonging to H'(s')]:

K„=K.'(K).

A fixed point is a set of values K * such that
K '(K") =K *. The critical properties (exponents)
can be expressed in terms of the eigenvalues and
eigenvectors of the matrix

T 8=(sK '&sKa4=E'

From the known results for the 2D triangular Is-
ing system, one expects two eigenvalues X2 and
A.„to be

A, =I =F3=1.73205,
l~ssa 3~5l~6 2 800 92

(l being the cell spacing measured in units of the
site spacing), and all others &1 in absolute value.

A fixed point is located in the surface of criti-
cal systems. The tangent plane in this fixed point
is (for vanishing odd interactions) determined by
the (left) eigenvector cp belonging to Xr. Since
the fixed point has no special physical signifi-
cance, the critical surface will not be anomalous
there. We found, in fact, very little curvature
around the fixed point. So the tangent plane gives
a good measure for the variation of the critical
temperature T,(J') with the (even) interaction con-
stants Z =(k~T)K One may .write the equation
for the tangent plane in the form

where T, is the Ising critical temperature (with
only nearest-neighbor interactions present). We
used the intercept of the Ising axis (K„=0 except
o. =nn) with this tangent plane as an estimate for
the Ising critical parameter K, (Table I, third
column).

In order to study (3) we must approximate the
sum over the internal configurations o. Most
naively one separates H(s) into a piece H con-
taining the intracell interactions and a perturba-
tion V containing the intercell interactions. The
results of first-order perturbation theory for A. ~,
A.z, and K, are listed in the first line of Table I.

A more promising approximation uses the fact
that the transformation (3) can be studied in any
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TABLE I. Values of the "thermal" and "magnetic"
eigenvalues ~z and Xz and the value Kc for an Ising sys
tern as deduced. from the fixed-point tangent plane,

Approximo tion "c

1' order p crt urbotion 1.634 3.036

cluster l. 544 3.036 0.365

1, 501 2.501 0.255

1. 567 2.497 0. 253

1.782 3.186 0. 281

1.7 590 2. 8024 0.27416

exo ct (Ising) 1.73205 2.80092 0.27465

detail on a small system. If c is a (specific)
cluster of cells with Hamiltonian &,(s), we write

expFI, (s', o) = exp', '(s') =- exp+ K,"s„', (8)
a bcc

where the summation over 5 runs through the sub-
sets of cluster c. Then we have to solve the com-
binatorial problem to account for the number of
times a certain interaction can be a part of a
cluster c of type y. The result may be put in the
form

K„(K)= P C, (P)K. '(K), (9)
ncBc y

where the combinatorial coefficients C&(p) give
the weight factors by which the coefficients K '

of the subfigures P of y have to be combined.
We have computed the transformation K '(K)

for several figures. For the very small clusters
(two or three cells) one easily evaluates the

(K) analytically. For the larger clusters the
transformation was obtained on a computer by
generating all configurations a compatible with a
cell spin distribution s' and then selecting out the
K„' (K) by weighted sums over (s') as in (1). The
basic limitation of such a cluster approximation
is the fact that all interaction types are omitted
which do not fit in the figure chosen. The advan-
tage of the cluster approximation is that all in-
teractions inside the cluster can be treated to
any order and on equal footing, which turns out

TABLE II. Fixed-point values for the interaction parameters K&~ and components r„=.y~ /
of the left eigenvector belonging to ~~. Here, as in Eq. (4), & corresponds to the particu-

lar geometrical arrangement of interacting spins or cells as shown. in Fig. l.

Approximo t

1 order pert. Ka 0, 3356

cluster 0.365

Kc, 0.255

K~ 0.257 -0.0022 — - 0.00085

Ka 0.331 -0.0275 -0.0267 0.0086 0.0080 -0.0037

Ka 0 3069 0,0183 - 0.0214 0.0034 0, 0066 0.0036 -0.0022 -0.0016 -0.0009 0.0003 0.00004

1.205 2.990

1.708 1.917 1.237 5.978 2. 742

1.607 1.811 1. 248 5.782 1.083 2.808 1.372 3.081 0. 452 2. 777
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to be important because, e.g. , pair interactions
are partially compensated at the fixed point by
quadruple interactions of the same range.

In Table II we have listed the locus K * of the
fixed point in the various approximations togeth-
er with the left eigenvector r =y /y„belong-
ing to X~. From this table one observes which
interaction parameters are included and also that
among the K ~ the nearest-neighbor interaction
stands out by a factor 15 over the other (negative)
pair interactions, which again are a factor 4
larger than the four-spin intera, ctions and many
times larger than the six-spin interactions. Al-
though the fixed point shifts notably, a lower ap-
proximation could very well be used as a, guess
for the fixed point of a higher approximation, in-
dicating that the transformation does not develop
singularities for larger and larger clusters at
the fixed point (which is a basic assumption in
the renorma. lization approach).

In Table I the va.lues for A. ~, A. ~, and K, are
given and compared with the values for a triangu-
lar ising system. The last approximation (seven
cells symmetrically arranged) gives particularly
accurate values, in our opinion, not only because
it is the largest basic figure but also because its
symmetry is the same as that of the lattice. Qn
the basis of these A. ~ and A.~ we find, e.g. , the

critical exponents

v = inl/ink. r = 0.9"t3,

5 = ink„/(2 inl —ink„) =15.017,

which should be compared with the exact values v

=1 and 6=15. The value of x may be compared
with the coefficients giving the variation of T,(J)
with J around the Ising system (J' =0, ac nn)
obtained either analytically' or numerically. '
Dalton and %ood' find x„„„=1.35. Our rather high
value of 1.60'(t' could be lowered only a few hun-
dredths by accounting for the curvature of the
surface of criticality. One must conclude that
longer-range forces than fit in our largest clus-
ter play a role in determining r~.

L. P. Kadanoff, Physics (Long Is. City, N. Y.) 2, 268
(1966).

K. G. Walson, Phys. Bev. B 4, 3174, 3189 (1971).
A more detailed discussion can be found in Th. Nie-

meijer and J. M. J. van Leeuvren, to be published.
R. M. F. iioutappel, Physica (Utrecht) 15, 425 (1950).

'P. T. Herman and J. B. Dorfman„Phys. Bev. 176,
295 (1968); J. Stephenson, J. Math. Phys. (N.Y.) 5,
1009 (1964).

'N. W. Dalton and D. W. Wood, J. Math. I hys. (N.V.)
10, 1271 (1969).

C. Vettier
Enstitut LaiVe-I angeein, 38042 G~enoble Cedex, Finance

H. L. Alberts* and D. Bloch
Laboxato~xe de Magnetisme, 38042 GxenobIe Cede, I"'vance

(Received 25 September 1979)

Measurements of the magnetization of FeBr& and FeC1~ as a function of magnetic field,
temperature, and hydrostatic pressure establish lines of tricritical points &3, with slopes
(T3$ 'dT3, /dI'= —0.025, +0.021, and +0.040 kbar for the low- and high-pressure phases
of FeC12 and for FeBr&, respectively. The variation of the tricritical transition with pres-
sure should provide sensitive tests of theories relating interaction constants in the Hamil-
tonian to tricritical behavior in magnetic systems.

Considerable interest has been aroused recent-
ly by the existence of tricritical points, which in-
volve the meeting of a line of second-order tran-
sitions with a line of first-order transitions.
Metamagnets such as FeCl, and FeBr, ' provide
typical examples of such tricritical points; other

examples are the two-fluid critical mixing point
in He'-He4, the order-disorder transitions in
NH4Cl and NH4Br, thin supereondueting films,
and the metamagnet dysprosium aluminum gar-
net. There are two levels to the problem of tri-
critical points. The first is understanding their


