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The critical behavior of the s-state Ashkin-Teller-Potts model on a square lattice is studied for s = 3, 4, and 5,
using a variational renormalization-group transformation of the type introduced by Kadano6'. For the s = 3
and s = 4 models, the transformation correctly predicts a continuous phase transition. The calculated values of
the critical exponents and the transition temperature are consistent with the results obtained from other
approaches. For s = 5, however, the transformation fails to detect the first-order transition that is known to
occur.

I. INTRODUCTION

After a period of comparative neglect, there
has recently been a renewed interest in the Ashkin-
Teller-Potts (ATP) model. " The s-State ATP
model is a generalization of the standard spin-&
Ising model in which each site of the lattice can
lie in one of s distinct states. Nearest-neighbor
sites interact with energy e, if they are in the same
state, and with a different energy c, if they are in
different states. There may also be external fields
which favor a site being in one or another of the s
states. Evidently, the spin--,' Ising model corre-
sponds to s =2. In the s-1 limit, this model des-
cribes the percolation problem. ' '

The question that has attracted the most atten-
tion is the order of the phase transition for the
ferromagnetic (e,)&0) s-state ATP model. Lan-
dau mean-field theory" predicts a first-order
transition in all dimensions for s &2, essentially
because the model permits a coupling trilinear
in the magnetization variable. On the other hand,
Baxter' has shown by an exact calculation that the
s-state ATP model on a square lattice has a first-
order transition for s &4, and a continuous transi-
tion for s» 4. Series-expansion results' ' in two
dimensions are consistent with a continuous transi-
tion for s = 3 and s =4. There has been consider-
able numerical work'~" with series expansion for
the three-state ATP model in three dimensions.
These calculations indicate a continuous or nearly
continuous phase transition.

Renormalization-group (RG) techniques have
been used by many authors to study the continuum
generalization'4 of the ATP model. Using an ap-
proximate RG recursion formula, Golner' has
found the transition in the three-state model to
be first order in both two and three dimensions.
a-expansion calculations'~" near four dimensions
indicate that all the fixed points are unstable with
respect to the trilinear coupling. All indications

are that this instability leads to a first-order
transition for s & 2. Priest and Lubensky" have
found a new fixed-point which is stable in 6-E'
dimensions. For s =1, this fixed-point can be
identified as the one that describes the percolation
problem. However, for s =3 and s =4, this fixed
point can not be related to the continuous phase
transition that is known to occur in two dimen-

sions�

.
In recent years, many position-space RG

schemes' ' have been developed and very success-
fully applied to the spin-& Ising system. This
paper describes the application of the variational
RG scheme proposed by Kadanoff"~" to the s-
state ATP model on a square lattice. The approx-
imate RG recursion relations in this scheme are
relatively easy to obtain and this scheme gives ex-
cellent results for the critical exponents for the
spin-~ Ising model. The fact that the RG results
for the continuum version of the ATP model con-
tradict some of the known properties of the lattice
model makes it a very interesting system to study
in a position-space RG scheme.

In Sec. II, the application of Kadanoff's lower-
bound RG transformation to the ATP model on a
square lattice is described. The results for the
three-, four-, and five-state models are dis-
cussed in Sec. III. The results for the s-1 (per-
colation) limit have been reported in an earlier
paper. "

II. APPLICATION OF KADANOFF'S VARIATIONAL RG
TRANSFORMATION TO THE ATP MODEL ON

A SQUARE LATTICE

The s-state ATP model is defined by the Hamil-
tonian

H"'= —J Q (s5„,„—1) -h Q (s&„,—1), (1)

where for each site i, the ATP variable n, as-
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sumes the values 1, 2, . . . , s, the sum(ij) is over
nearest-neighbor pairs, and 6

„

is the Kronecker
delta. The first term in the Hamiltonian repre-
sents the nearest-neighbor interaction. If two
neighboring sites are in the same state, they in-
teract with energye, =-Z(s —1). If they are in
different states, the interaction energy is &, =J.
J&0 corresponds to the ferromagnetic model.
The second term in the Hamiltonian represents
interaction with an external field in the "1"direc-
tion.

An RG transformation takes a Hamiltonian Hz(a)
where o represents the initial set of spin variables

and K represents a set of coupling constants, to a
new Hamiltonian Hx. (p, ) involving a new set of
coupling constants K' and a smaller number of
variables p, . For the s-state ATP model on a
square lattice, we consider a Hamiltonian of the
form

Hx(a}= —ksT Q kx(ag, am~a" a4),
squares

where O„o„a„ando4 represent, in cyclic or-
der, the four ATP variables at the corners of the
square. The variational RQ transf ormation used
in this paper has the form

(P'$! 02P3'144) lnTr, ... eW(x[s('„+'„+&„,+&„,) —4]+4kx(a~, a2, a~, a4) f(a.-, a'm, a., a )],
(3)f(a„a„a„a,) =lnTr„exp(x[s(5„,+~„,+5„,+5„,) —4]).

(4)kx(g) 2y gp 4) Q r j(1t 21 39 4

where, within each square, the set(s j includes
all the possible interactions which are consistent
with the point-group symmetries of the square.
These interactions are listed in Appendix A. All
these interactions have been made traceless with
respect to each of the variables involved. When
there is no symmetry-breaking external field,
only the first seven interactions so,s„.. . , s6 (the
so-called "even-spin" interactions) have to be
considered. If an external field is introduced in
the "1"direction, the remaining ten interactionss„.. . , s„(the"odd-spin" interactions) have to
be taken into account.

The transformation (3} has the property that,
if kx(a„.. . , a4) is completely symmetric in the
four a variables, then k-„,(p.„.. . , p, ) is also
symmetric in the four p. variables. Difficulties
arising from extra relevant variables" are en-
countered if this transformation is used outside
this invariant subspace of Hamiltonians. To
avoid such difficulties, we confine our attention

Here, x is a variational parameter. This trans-
formation, which yields a lower-bound to the exact
free energy, is a straightforward generalization
of the lower-bound transformation used by Kadanoff
in his treatment of the spin-2 Ising model. For
s =2, Kadanoff's spin-~ Ising transformation is
recovered. At each renormalization step, the
number of variables is reduced by a factor of 4.
[For the details of how the transformation (3) is
constructed, see Ref. 23.]

kx(a„.. . , a'4) is written in the form

to that 12-dimensional subspace of the full 1V-di-
mensional coupling-constant space in which K,
=K2, K5=K6, KS=Kg K11 K12p andK» K16
This corresponds to considering the Hamiltonian

III. RESULTS

For the three-state model, not all the 12 inter-
actions SO S1 S11 are linearly independent.
We find that the following relations are satisfied
for all possible configurations of the four ATP
variables on the square

2S3=$4, 7 8 9 10+ 11 '

So, one has to consider recursion relations for
the following nine coupling constants: KO K1 K2,

HK(a}= —ksT Q QK,S,(a„a„„aa),
squares

wher SO 0 1 1+ 2 S2 3 3 4

S4 S5+S6, S5 S7, S6 Ss+Sg, S7 S10y Ss S11+S12~
9 s13 10 s14 and S» = s»+s„.Starting from

the Hamiltonian defined in Eq. (1}, one can enter
this symmetric subspace by performing an exact
decimation transformation" in which every other
ATP variable on the lattice is summed over.

The transformation (3} can be written as a
transformation on the coupling constants of the
form K'=R„(K). Both the fixed-point structure of
this transformation and the location of a fixed
point in the coupling-constant space depend on the
value of the variational parameter x. The value
of x appropriate for a given fixed point x* is taken
to be the value which maximizes the lower bound
to the free energy for the fixed-point Hamiltonian.
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v = 1n2/ink, ,

5 = in', /(ln4 —ink, ),
(7)

where X, is the eigenvalue for the relevant eigen-
operator with even-spin symmetry and Xp is the
eigenvalue for the most relevant eigenopeiator
with odd-spin symmetry (there are two relevant
eigenoperators with odd-spin symmetry). The
values of the other static exponents o. , 9, and y
are then obtained by using the scaling relations
dv=2 —o.', o'. +II(5+1)=2, and n+28+y=2. The
results are listed and compared with series ex-
pansion results in Table I. The agreement is
found to be quite good. Berker and Wortis' have
used a position-space renormalization-group

TABLE I. Numerical results for the critical exponents
for the three-state ATP model.

Exponent
Value obtained from

This work Series expansion

0.326
0.107

1.460

0.837
14.644

0.05 +0.10'
0.103+0.010
0.105+0.005'
1.5 +O. i b

1.45 +0.15'
1.42 ~0.05'

15 2+0 5c
15.0 +0.5

~See Ref. 8. Later calculations (Refs. 9 and 10) indi-
cate that these authors underestimated the value of e.

"See Ref. 8.
See Ref. 9.
See Ref. 10.

'See Ref. 13.

K3 + 2K4, K„Ke,K, +Ks, K9 +4K„,and Klp 4K»
These recursion relations exhibit several fixed
points. However, for only one of these is there
an x~(= 0.562) that maximizes the lower bound to
the free energy of the fixed-point Hamiltonian.
This fixed-point, which for x =x~, is located at
K, =0.09080, K2 =0.02413, K, +2K, =-0.00386, K,

characteristics of a second-order fixed point (only
one relevant eigenoperator with even-spin sym-
metry). This is in agreement with the Baxter re-
sult that the three-state ATP model on a square
lattice undergoes a second-order phase transition
in the absence of any external symmetry-breaking
field.

We have used the standard procedure" "to cal-
culate the critical exponents from the optimal
lower-bound recursion relations K'=R, ~(K). The
exponents v and 6 are obtained by using the re-
lations

TABLE II. Numerical results for the critical exponents
for the four-state ATP model.

Exponent
Value obtained from

This work Series expansion

0.488
0.091
1.330
0.756

15.527

0.64 +0.05
0.089 + 0.03
1.20+ 0.05

15.8 + 0.8

See Ref. 30. See Ref. 10~ See Ref. 9.

transformation of the Niemeyer-van Leeuwen"
type to study the Blume-Emery-Griffiths model
on a square lattice and have calculated the critical
exponents for the three-state ATP model to which
the Blume-Emery-Griffiths model reduces for
specific values of the interaction constants. Their
results (+ =0.192,6 =0.117,y=1.574) are in rea-
sonable agreement with those presented here.
Burkhardt, Knops, and den Nij s" have independent-
ly obtained almost identical results by using a
transformation similar to the one used here.

The transition temperature is determined by
finding the value of J/kaT for which the fixed
point can be reached by first applying the decima-
tion transformation to the Hamiltonian defined in
Eq. (1) (with h =0) and then repeatedly applying
the lower-bound transformation. Numerically, we
find that J/kaTc =0.346, in good agreement with
the exact result, J/kaTc = 0.335, . . . , obtained by
locating the fixed point of the dual transforma-
tion ~ which is known to exist for the s-state ATP
model on a square lattice.

For s =4, we find that 3Sg 3Syp+S» for all pos-
sible configurations on the square. So, we con-
sider recursion relations for the 11 coupling con-

+ 3K' y and K„—3K». The fixed-point structure
is found to be qualitatively similar to that for the
three-state model. The second-order fixed point
is the only one at which the lower bound to the
free energy can be maximized. This is in agree-
ment with the Baxter result of a continuous transi-
tion for the four-state ATP model on a square lat-
tice. For x =x*=0.444, the fixed-point is located
at Kj 0 06465

~ K2 0 01887' K3 0 004 50' K4
= 0.00123, K5 =K, =K, = K, = (K9+ 3K„)= (K,o —3K,~)
=0.

The numerical results for the critical exponents
are listed and compared with series results in
Table II. The calculated value of Z/kaTc(=0. 283)
is quite close to the exact value, J/kaTc
=0.2748, . . . .

Baxter has shown that the s-state ATP model
on a square lattice exhibits a first-order phase
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transition for s &4. According to Nienhuis and

Nauenberg, "the occurrence of a first-order tran-
sition is indicated by the presence of a "discon-
tinuity" fixed point, characterized by a relevant
eigenoperator with eigenvalue l' (l is the change of
scale of length under the RG transformation) cor-
responding to each order parameter that changes
discontinuously at the transition. So, for s = 5,
one would expect to find a fixed point with A., = Xo

=4, corresponding to the discontinuities in the
derivatives of the free energy with respect to the
temperature and the external field variables re-
spectively. The calculations, however, do not
show such a fixed point. For s =5, all the 12 in-
teractions are linearly independent. The lower
bound to the free energy can be maximized at only
one fixed point, which for x=x*=0.370, is located
at K1=0 04995 K2 0 01410 K3 0 00224 K,
=0.00042, K, =K, = .=K„=O.This fixed point
corresponds to J/ksTc =0.241 (exact value:
0.2349, . . . ) and has one relevant even-spin eigen-
operator with eigenvalue 2.643 and two relevant
odd-spin eigenoperators with eigenvalues 3.698
and 1.336. The fact that both X, and A.o increase
with s indicates a trend towards a first-order
transition for large s. However, the calculated
values of X, and X, for s=5 are quite different from
the expected values, X,= X, = 4. The reason for
this discrepancy is not clear. The most probable
explanation is that the single-parameter variation-
al transformation (3) fails to give a sufficiently
good fit to the free energy for s = 5. (Application of
Midgal's approximate recursion relations to the
ATP model in bvo dimensions" yields second-or-
der exponents for all s. Series calculations"'
for the s = 5 model in two dimensions also fail to
show a first-order transition. These results in-
dicate that a very good approximation is necessary
in order to detect the true nature of the transition. )
The excellent agreement between the results ob-
tained by using this transformation and the re-
sults obtained from other approaches for the s
= 1,"s =2,"and s = 3 (see Table 1) models indicates
that the transformation works very well for small
values of s. However, it can be seen from Table
II that the agreement is not so good for s =4.
Thus, it seems that the fit to the free energy de-
teriorates as s is increased. A better approxima-
tion can, in principle, be obtained by using a
transformation that involves more variational pa-
rameters. In particular, the three-spin interac-
tion S„which gives rise to a term trilinear in
the magnetization variable in the mean-field free
energy, is expected to become more and more im-
portant as s is increased. This seems to indicate
that, for a sufficiently good approximation for the
free energy for large s, one should include in the

transformation a new term that corresponds to the
three-spin interaction. Unfortunately, such a
term in the transformation cannot be handled
within the framework of the present scheme.
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APPENDIX A: INTERACTIONS WITHIN A SQUARE

For the s-state ATP model with an external field
in the "1"direction, the following 17 interactions
have to be considered.

Even-spin interactions

s, =l, s, = g(s5. , —1), s, =2+ (s, , —1),1

P P

s, = [s'5. ..—s(5, , +5, , +5, , )+2],123 12 23 31P

P

s, = Q (as'5. .5. , —s5. , + g),12 34 12P

s, = [s'5, , &, , —s (5, , + 5, , ) + 1] .13 24 13 24

Odd-spin interactions

s, = Q (s5, , —1),

sa= Q fs'5. ..—s (5, ,+ 5, ,)+ 1] s,
P

sg = 2 Q Is 5q ~ y
—s(5~ g+ 5~ ~)+ 1]—s2,

P

P

+s(5, ,+5,+5, ,) -1]—s, ,

P

—s(5, , +5, , +25, ,)+2],23341
P
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P P

+s(5, ,+5, , +5, , ) —1]—2s, .

P

P

+s(25, , +5, , +&, , +&, , ) —2],
4 13 12 23

Here, 0„0„v„and04 are the four ATP vari-
ables at the corners of the square; 0,0'„0,0'3,

0304 and 040, are nearest -neighbo r pairs; 0103

and o,o, are next-nearest-neighbor pairs; Qp
means a sum over all the four cyclic permutations
of 01 02, 0„and04, and

+s(&, ,+ &, , +&, , ) —1]—2s, , =-5
A1A2 A~ Aj A2 A2A3 A~ 1A~

'
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