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The Burgers equation is the simplest nonlinear generalization of the diffusion equation. We

present a detailed dynamical renormalization-group analysis of this equation subject to random
noise. The noise itself can be the product of another stochastic process and is hence allowed to have
correlations in space and/or time. In dimensions higher than a critical d, weak and strong noise
lead to different scaling exponents, while for d &d, any amount of noise is relevant resulting in

strong-coupling behavior. In the absence of temporal correlations we find two regimes for d & d, :
either the hydrodynamic behavior is determined by white noise and correlations are unimportant,
or correlations dominate and the resulting scaling exponents can be obtained exactly. With tem-

poral correlations present, the hydrodynamic behavior is much more complex, as renormalization
predicts a complicated dependence of the effective noise spectrum on frequency in certain regimes.
The relevance of these results to two interesting problems is discussed. One is the anomalous trans-

verse fluctuations of a directed polymer in a random medium, and the other is a description of a
growing interface. Various recent numerical simulations are reviewed in the light of these results.
For example, we show that an exponent identity observed in all simulations so far follows simply
from the Galilean invariance of the equation in the absence of temporal correlations.

I. INTRODUCTION AND SUMMARY

The dynamics and evolution of many degrees of free-
dom interacting through nonlinear equations leads to
many complex patterns and collective behaviors.
Renormalization-group techniques, successful in the
study of static collective phenomena, ' have been extend-
ed to dynamics and reveal a much more complicated
structure of universality classes than the corresponding
static case. One of the simplest archetypes of nonlinear
evolution is the Burgers equation for a vorticity-free,
compressible fluid flow. The deterministic equation can
be solved exactly, and shows how "shock waves" arise
naturally as a result of the nonlinearity. Forster, Nel-
son, and Stephen (FNS) studied a stochastic version of
the Burgers equation (along with several other models of
fiuid behavior) by dynamic renormalization-group (RG)
techniques, and demonstrated that it exhibits nontrivial
dynamic behavior below two dimensions.

Recently there has been a renewed interest in the
Burgers equation since it is found to arise naturally in a
number of diverse contexts. Variants of this equation de-
scribe the growth of interfaces, driven diffusion, and the
large time limit of the Sivashinski equation describing
flame fronts. One explanation for this wide range of ap-
plications is that the Burgers equation is the simplest gen-
eralization of the diffusion equation that contains
relevant nonlinearities. With these recent applications in
mind, here we undertake a more detailed description of
the RG method. The FNS results are extended to cases

Bh =vV h+ —(Vh) +il(x, t),
Bt 2

(1.2)

where f= —Vil. (Note that the requirement VXv=0
implies VX f =0.) This nonlinear differential equation
describes fluctuations of a growing interface with v being
the surface tension. The coefficient A. is proportional to
the average growth velocity and arises because the sur-
face slope is parallel transported in such growth process-
es. Equation (1.2) can be generalized to describe a profile
in d spatial dimensions. A third variant of this equation
is obtained by the nonlinear transformation
W' = exp[(A, /2v)h]. W satisfies

BR' 2~+ il(x, t) ~
at (1.3)

which is a diffusion equation with random sources and

where the stochastic noise has long-range correlations in
space and time, and consequently discover a number of
surprising results.

In the presence of a random force f(x, t), the velocity
field of the Burgers equation evolves as

Bv
+A,v Vv=vV v+f(x, t),

at

where v is the viscosity and a coefficient A, has been intro-
duced for convenience. This stochastic equation is relat-
ed to a number of other useful models. Since v is vortici-
ty free, it can be written as v = —Vh, with the scalar field
h satisfying
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sinks. It is in general related to directed polymers in ran-
dom media, and in the special case of two dimensions
describes roughening of an interface by impurities.

Two other related problems are worth mentioning.
One is the fluctuations P in a driven diffusive system
which satisfy

a =DV P —w. VP —V j(x, t) .
r)t

(1.4)

I

& lh(»t) h(x t )I'&-lx —x'I'9'
[x—x'/'

where g is the "roughening exponent" for the interface,
and the dynamic exponent z describes the scaling of re-
laxation times with length.

Section II is devoted to calculation of the exponents g
and z. Simple dimensional analysis indicates that in the
absence of nonlinearities (A, =O), zo=2 and
go=(3 —d)/2+p+28. For d & d, =3+2p+48 these re-
sults are not va4id as A, becomes a relevant parameter and
leads to new scaling which is probed by a one-loop renor-
malization procedure. The case 0=0 is studied first as it
is a rather straightforward generalization of the FNS pro-
cedure, and offers a good opportunity for a review of the
mechanics of the RG scheme. The new results take on
simple forms and can be understood intuitively. For spa-

The nonlinear term expresses the fact that the velocity at
which a density fluctuation travels depends on its magni-
tude. Although this is not identical to Burgers's equa-
tion, it is equivalent to it in one dimension. Finally, the
Sivashinski equation applied to the evolution of flame
fronts takes the form

ah 2 k 2, 4= —vV h + —(V'h) —v'V h .
at 2

This is a deterministic equation with a band of linearly
unstable modes at short wavelengths. It is believed that
the chaotic behavior generated by these modes can be de-
scribed by a stochastic noise acting on the long-
wavelength modes, so that the long-time, large-distance
behavior of this equation is identical to Eq. (1.2).

It is usually assumed that the stochastic noise g(x, t)
has at most short-range correlations in space and time.
However, if Eq. (1.1) is used to describe turbulence in the
inertial range, so that the noise describes the effect of re-
moving fast modes, this assumption may not be
justified. ' Here we consider cases where the noise term
is allowed to have long-range correlations in space
and/or time. In these cases the noise spectrum D(k, co)

defined through

(t)(k, co)71(k', co')) =2D(k, co)5 '(k+k')5(co+co') (1.6)

has power-law singularities of the form D(k, co)
—

~
k

~

~co . The renormalization-group procedure of
FNS (Ref. 4) is now generalized to calculate various dy-
namic critical exponents and their dependence on p and
0. Since there is no intrinsic length scale in the problem,
various correlation functions obtain simple algebraic
asymptotic limits. For example, height fluctuations in
the interface equation (1.2) behave as

tial correlations (p )0, 8=0), renormalization of the
noise spectrum D(k) indicates two regimes. For small p
the white noise generated under scaling is dominant and
the exponents z (d) and y (d) associated with p=O are
recovered. For p larger than p, (d)=g +(d —1 —z )/2
the long-range part of D(k) takes over, leading to new
correlated noise exponents. The exponents in this regime
are obtained exactly from a simple Flory-type scaling"
and equal zz=(3+d —2p)/3 and gz=(3 —d +2p)/3.
These expressions for exponents are not valid for p) d/2
as no stable interface exists for g) 1. The generalization
to 0&0 is studied next. Since all of the complexity that
arises, here comes from the temporal part alone, we have
set p=0 throughout most of this section for simplicity.
(The results can be trivially extended to the general case
of p&0, 0&0 as pointed out in the text and in the appen-
dixes. ) For this case, there is still the regime 8&8, (d)
when the exponents z (d) and y (d) characteristic of
short-range noise are observed. However, for
8) 8, =p, (d)/z (d) the exponents are not given by any
simple rule. This is shown to result from the absence of
Galilean invariance in the presence of temporally corre-
lated noise. Also the fixed function D*(co) becomes quite
complicated for 0, &0& —,

' as various intermediate fre-

quency dependencies are generated. For 0) —,', the fixed
function D*(co) develops an essential singularity at co=0
because increasingly more singular powers of u are gen-
erated under RG. No stable surface can exist in this re-
gime for any finite d unless Eq. (1.2) is modified to include
higher powers of (Vh).

In Sec. III we take advantage of the mapping to Eq.
(1.3) to describe the behavior of directed polymers in ran-
dom media. The noise g(x, t) now describes the effect of
impurities on the polymer. Typical transverse fluctua-
tions ~x~ scale with the length t of the polymer as ~x

~

-t .
In all dimensions, for strong disorder v can be different
from the random walk value of —,', and is related to the
dynamic exponent of the Burgers equation by v= 1/z. In
two dimensions the polymer problem is equivalent to the
interface of an Ising model. Spatial correlations in

g(x, t) now describe the long-range effect of impurities on
the interface. " As the exponent p varies from 0 to 1 the
effect of impurities interpolates between random bonds
and random fields. The exponent v also changes from

3

to 1 as a consequence. Preliminary descriptions of these
results were presented earlier. " Since then an indepen-
dent calculation on a similar model has been reported by
Natterman. ' Numerical studies of the hierarchical
structure of optimal paths subject to such impurities are
also presented.

Section IV discusses the growth problem described by
Eq. (1.2). We start by explaining the origin of the dynam-
ically generated nonlinearity, and its connection to lateral
growth. We briefly review various numerical simulations
of growth that have recently appeared. All numerical
simulations agree with the predictions based on Eq. (1.2)
for two dimensions (e.g. , z =—,'). In the interesting case of
d =3, although simulations rule out the trivial scaling
z =2, the value of z is less certain with z ——,'being sug-
gested. '~ Temporal correlations in g(x, t), i.e. , 8&0, can
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originate from impurities that do not diffuse and impede
the growth of the interface, they will invalidate the ex-
ponent identity y+z =2.

A variety of technically interesting results and compu-
tational tools are relegated to the appendixes. In Appen-
dix A we prove a number of exact exponent identities
(e.g., resulting from nonrenormalization of long-range
correlated noise). The importance of Galilean invariance
is emphasized in Appendix B. Because of this symmetry
the vertex A. does not renormalize in the absence of tem-
poral noise, and this leads to the exponent identity
y+z =2. Numerical simulations in all dimensions are in
agreement with this identity. The calculations leading to
propagator renormalization are described in Appendix C,
while similar computations for noise renormalization and
vertex renormalization (with temporal noise) are ex-
plained in Appendixes D and E. Finally, a typical in-

II. RENORMALIZATION WITH CORRELATED
NOISE

A. General procedure

It is more convenient to work with a scalar rather than
a vector equation, and hence we shall focus on Eq. (1.2)
describing an interface in d dimensions. After a Fourier
transformation

h (x, t)= f™f dao d k h (k, co)e''"'"
k(A (2m. )

this equation becomes
(2.1)

tegral involved in the noise-noise contraction is worked
out in detail in Appendix F.

—icoh (k, co)= —vk h (k, co) ——f fdQd" q q (k —q)h (q, Q)h (k —q, co —II)+ri(k, to) .
2 (2n )

(2.2)

Note that the momentum integrals are performed in the
transverse d' =d —l dimensional space subject to an
upper cutoff A. A plays the role of a "lattice spacing" in
real space and will be scaled to 1. The noise g(x, t) is as-
surned to have correlations in space and time. Such
correlations arise if the noise is itself the result of remov-
ing "faster" degrees of freedom. ' If 21(x, t) is related to
uncorrelated (white) noise R (x, t) through

g(x, t) =f dt' f " d"'x'K (x—x', t —t')R (x', t'),

I

ventional hydrodynamic exponent q describing velocity
power spectrum through g=(2 —d')/2+(2 q —z)/—2].
These exponents are first studied by naive dimensional
analysis: A change of scale x~bx is accompanied by
t ~b 't and h ~b Xh (and the corresponding changes in
Fourier space). After this rescaling, Eq. (1.2) transforms
to

bX 2 &bx
—2q2h + b2X 2(P'h)2

Bt 2

(2.3)
+g (p —d'/2)+(0 —1/2)z

g 7 (2.6)

then a long-range power-law decay of the kernel K results
in algebraic correlations in q. For example, if asyrnptoti-
cally K(x, t) —I/(~x~" ~~t~' ), then

where Eq. (2.4) is used to determine the scaling of noise
q(x, t). Thus under this transformation the parameters
change to

(2.4a)

and asymptotically as (k, co)~0,

(g(k, to)rt(k', ro'))=2Dk 't'co ' 5 (k+k')5(co+~') .

(2.4b)

We are interested in correlations in the solution of Eq.
(2.2) in the hydrodynamic limit (k, co)~0. The average
behavior of height fluctuations, for example, is described
by Eq. (1.7), which after Fourier transformation reads

(h (k, to)h (k', co') ) = 5" (k+k')5(co+co')ski'

(2.5)

The scaling information and hence the dynamic univer-
sality class of the Langevin equation is contained in the
exponents g and z. [The exponent y is related to the con-

v~b' v,
D ~g 2p —d' —2g+(20+1)za

7

A ~b++' A,

(2.7)

In the absence of the nonlinear term (i.e., A, =O), the
equation is made scale invariant upon the choice of

z —z —2p

y=yo=p+29+(3 —d)/2 .
(2.8)

A nonlinearity added to this scale invariant equation has
a dimension y& =zp+pp 2=+p. For d )d =3+2p
+48 a small nonlinearity scales to zero and is irrelevant,
while for d & d, the nonlinearity is relevant and grows un-
der rescaling. Nontrivial exponents are expected for
d &d, in the presence of nonlinearities. This change of
behavior at d, is also reflected in a perturbation analysis
to be described next.

Equation (2.2) can be rewritten as
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h(k, ()))=GO(k, co)i)(k, co) ——Go(k, ()))f fdQd q q (k —q)h(q, A)h(k —q, co —0),
2 (2m. )

with a bare propagator

(2.9)

Go(k, co) =
vk l co

(2.10)

Equation (2.9) is a convenient starting point for a perturbative calculation of h (k, cu) in powers of A, as indicated di-
agrammatically in Fig. 1. The graphic expansion is quite standard with ~ indicating the propagator Go and X de-
picting the noise il(k, co). The averaging over stochastic noise is performed using Eq. (2.4b), and the effective response
function G(k, ~) [defined by h (k, co)= G(k, (o)il(k, co)] is given perturbatively in Fig. 2(a). The lowest-order (one-loop)
correction is

2

G(k, co) =Go(k, (())+ 4 Go(k, co)

X f f dAd q „q.(k —q)q. kGO(k —q, e —A)Go(q, Q)Go( —q, —A)2D(q, Sl)+O(A, ),

(2.11)

where the combinatorial factor of four represents possible
noise contractions leading to Fig. 2(a). Calculating the
integrals is reasonably complicated and not particularly
instructive (they are performed in Appendix C). For spa-
tial correlations [D (q, 0)=Dq ('], after performing the
frequency integrals and letting co~0 we obtain Eqs. (C2)
and (C3) (Appendix C) leading to

The correction term is well behaved and finite ford') 2(1+p), but diverges for d' &2(1+p). This is anoth-
er indication of relevance of nonlinearities and oc-
currence of nontrivial scaling behavior.

An effective spectral function D(k, co) can be defined
from

(h*(k, co)h (k, cu)) =2G(k, ~())G( —k, co)D(k, co) . —

A. D I

G(k, O)=G()(k, O)+
~ G()(k, co)

This quantity is calculated perturbatively by the series
shown in Fig. 2(b). The first correction term gives

x f dd' —2(1+p)1

(2)r )
(2.12)

k, Q) k, Qj

q, n

+ 0(&')
where terms of the order of k are kept. Since
Go(k, O)=1/(vk ), this allows us to determine an
effective surface tension v from G(k, O) =1/(vk ). From
Eq. (2.12) the first-order correction of surface tension
from nonlinearity takes the form

A D d 2 2P 1 d 1 2((+p)v=v 1 3, fd

— k, - c() k, co k,+
k- -k, A—o)

+ 0(~)

(2.13) k
1+k

2 2 I + 4
r

+ 4 +4

X
G (k, ~)

(k-q)
2 )

f[(k, co)
x +

G (4, co) -q, co—Q)

3 (k-q, co—Q}

k1

2 2

(c) + higher-order
terms

2 D(q, co)

FICx. 1. Diagrammatic representation of the nonlinear in-
tegral equation (2.9), and the perturbation series that results
from it.

FIG. 2. After averaging over the noise, the perturbation
series of Fig. 1 can be reorganized to describe (a) an eff'ective

propagator or response function, (b) an e6'ective noise spectral
density function, and (c) an effective vertex function or coupling
constant.
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2D(k, co) =2D(k, co)+2 f f dQd q [q (k —q)]2
(2n. )"

X Go(q, Q)GO( —q, —Q)GO(k —q, co —Q)GO( —k+q, —~+Q)

X2D(q, Q)2D (k —q, co —Q)+O(A4) . (2.14)

This expression is evaluated in Appendix 0 and again the
perturbative correction is found to diverge for d &d, .
Similarly an effective "nonlinearity" A. is defined graphi-
cally in Fig. 2(c). This quantity, as calculated in Appen-
dix E, is also divergent for d & d, .

The divergences in perturbation series arise from the
q~O limit of the integrals depicted in Figs. 2. The
renormalization-group procedure amounts to a resurnma-
tion of the perturbation series to avoid this singularity.
The various steps of the program are outlined here.

(1) The averaging (i.e., the integrations in Figs. 2) is
performed only over fluctuations with rnomenta k in the
range Ae '~ k ~A. As there are no singularities in this
range of integration, only analytic corrections to v, D,
and A, result after elimination of the fast modes.

(2) After step (1) the resulting equation has a cutoff of
Ae '. This difference from the original model is removed
by rescaling momenta k~ke which is identical to the
scaling carried out earlier with b =e'. The parameters v,
D, and A, are rescaled as in Eq. (2.7) with additional
corrections arising from the integrations in step (1).

(3) As in Eq. (2.8), the exponents y and z are obtained
by requiring that the parameters stay fixed; i.e., by mak-
ing the equation invariant under the rescaling transfor-
mation. (Note that the freedom to choose A, makes it pos-
sible to leave all three parameters fixed).

The scaling of fiuctuations also follows from the renor-
malization transformations. For example, scale invari-
ance implies

(ih(x, t) —h(0, 0)i )

=e + (~h(e x, e 't) h( —
0, 0)~ ),

and the choice of e '-
~
x

~
leads to the form

( ~h (x, t) —h (0,0) ~') —~x 1'zf (t/x'),

(2.15)

as indicated in Eq. (1.7). The actual implementation of
steps (1)—(3) is demonstrated by specific examples in Secs.
II 8 and II C and the detailed calculations leading to the
renormalization recursion relations are given in the ap-
pendixes.

B. Spatial correlations

First we consider the case where the noise has only
spatial correlations but with a general form D(k) rather
than the special case in Eq. (2.4b). Although, as we shall
see later on, only the k~0 limit of D(k) is responsible
for the scaling behavior, here the thee steps outlined pre-
viously will be carried out to give a quite general func-
tional recursion relation for D (k).

(1) The first step is to divide the Brillouin zone
k G [0,A] in two parts: high momenta k E [Ae, A] to
be integrated out, and the remaining long wavelengths
k H[O, Ae ']. The integration of fast modes results in
an effective propagator G (k, co) for the remaining
modes. The co~O limit of this propagator calculated
from Eq. (2.11) after manipulations similar to those in
Appendix C is

G (k, O) =Go(k, O)+ Go(k, O) f d q
2v (2m. )

k
4

q.k+
2

'2
2

q+ —
q +k q k

2 4

D q+-k
2

(2.16)

The form of the new propagator is more complicated than the initial 1/(vk ), as it contains k and k terms and so on.
However, as the hydrodynamic behavior is completely determined by the small-k limit, the expression in Eq. (2.16) is
expanded in powers of k. As in Eq. (2.13) we can define an effective surface tension v for the long-wavelength modes

by

1 D(q) 1 (q k) f (q)
v =v 1—

2v3 (2')d' q2 2 q2k2 2
'd"

q
L

(2.17)

The integration f d" q is over a shell [Ae ', A], and f (q)=BlnD(q)/Blnq. Using spherical coordinates and an

infinitesimal l, the integral is easily evaluated to

( AD(1) d' —2+.f (1)
3 d 4d I

(2.18)

where K& =Sz /(2m. ) and S~ is the surface area of a unit sphere in d dimensions. Without loss of generality the cutoff
A is set to unity.
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The effective noise acting on the long-wavelength modes can be calculated similarly starting from Eq. (2.14). After
performing the frequency integrals

1 [q.(k —q)] D (q)D (k q—)
(2.19)

2v (2m. ) q (lt —q) [q +(lt —q) ]

In the same spirit as before we concentrate on the correc-
tion term only as k ~0, and find after performing the
shell integration

D (k)=D(k)+ EqD (1)I .
4v

(2.20)

Thus any type of noise under renormalization generates a
white-noise (i.e., k-independent) contribution. The third
parameter to consider is the coeKcient k of the non-
linearity which has contributions coming from the graphs
in Fig. 2(c). The integrations as described in Appendix E
give a null result for spatial correlations. This is due to a
Galilean invariance that is preserved under renormaliza-
tion, and thus A. =k. Cxalilean invariance is discussed in
detail in Appendix B.

(2) Thus after short wavelengths are integrated out, the
remaining modes are subject to the parameters calculated
in (1). The only difference with the original Eq. (2.2) is
that the allowed k are in the range 0 to e '. This
difference is eliminated by reparametrizations k~e k,
h~e+'h, and t~e "t. The result is similar to Eq. (2.7)
with b =e '. Combining these contributions for
infinitesimal 1 with those calculated in Eqs. (2.18) and
(2.20) leads to the differential recursion relations:

dv A. D(1) d —2+f (1)
4d' (2.21a)

dD (k)
dl

=D(k)[z 2y d' f (k)]+—Kg — D—(1),
4 3

dl
=Z[X+z —2] .

(2.21b)

(2.21c)

(3) The next step is to choose z and y such that the pa-
rameters are unchanged. Setting d v/dl =0 and
d A, /dl =0, Eqs. (2.21a) and (2.21c) become

A, D (1) d' —2+f (1)
4d'

(2.22)

5d' —6p —6
0 P 4di (2.23a)

dU
2 3

dl
= U (2 —d'+2p)+ U (d' —2 —2p)4d'

+ UoU
3(d' —2)

(2.23b)

From these recursion relations we can solve for fixed
points (points at which parameters are unchanged under
rescaling) and determine the flows in ( Uo, U ) space as a
function of' p and the dimensionality of space d. The re-
sults are shown in Fig. 3, where a variety of qualitative
behaviors are apparent.

In region A we observe that for small p the long-range
part of the correlations is irrelevant, i.e., U* =0; so we
have a fixed point on the Uo axis and the exponents

(d' —2)'
z 2+

(2.24)
(d' —2)'
6—4d'

associated with p=0 are obtained. These exponents are
arrived at by substituting the fixed values of Uo and U'
into the equations for z and y. For larger values of p,
namely, for

and starting from any D(k) its renormalization can be
followed from this equation. For any function that is
finite at k =0 the fixed function will be a constant
[D*(k)=Do, i.e., white noise]. If initially D(k)-k
as k —+0, this singularity is preserved under renormaliza-
tion, while a white-noise component is also generated.

The noise spectrum now approaches a form
D ( k ) =Do+ D k ~. In terms of the dimensionless pa-
rameters Uo:—Kd'~ +o/+ Up =Kd'~ +p/

dUO 3 d' —2 1 Up

dl 4 d'' 4 4
= U (2—d')+ U — +—+

A, D(1) d' —2+f (1)
y = —K~. 4d'

d' —z (d')
p) p, (d') =y„(d')+

2

(2.25)

Substituting these into (2.21b) yields

+3K~.
d' —2+f(1) k D(k)D(1)

4d'

= [2—d' f(k)]D(k)—
dl

(region B in the diagram), the long-range part of D(k)
takes over, leading to new exponents. As shown in Fig.
3, an off-axis fixed point is obtained and the exponents are
given by

d'+ 1 —2p
3

(2.26)&~ X'D'(1)+
4 3

2p —d' —1
g(p) =1+

3
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0.0
4

0.25 0.5 0.75 1.0

3/2

1/2—

z 2
0.25 0.50

P

0.75 1.0

Dp

X 1/2

0 ~ 25 0 ' 5 0.75 1.0

FIG. 3. Distinct behaviors of renormalization group Aows in
(d', p) space for L9=0 (no temporal correlations) calculated to
one-loop order. The solid line d,'=2+2p represents the upper
critical dimension. For d & d,

' both weak-coupling and strong-
coupling regimes exist. The fixed point moves off axis in going
from A to B, and in the shaded regime the exponent y is larger
than unity so our procedure is not applicable.

0.25 0.50
P

0.75 1.0

FIG. 4. (a) Dynamic exponent z and (b) roughening exponent
g as a function of the exponent p for decay of spatial correla-
tions, in d =2(d'=1).

These exponents are depicted in Fig. 4 for d =2. It is
worth emphasizing that in the case of d'=1 (d =2) the
results obtained from these one-loop calculations are ac-
tually exact. This is a consequence of certain exponent
identities, as discussed in Appendix A.

From Eq. (2.26) we see that noise with very-long-range
correlation (i.e. , large p) tends to roughen the surface (in-
crease roughening exponent y}while a high dimensionali-
ty tends to stabilize or smoothen the surface. For y~ 1,
Vh ~b+ 'h starts to grow under rescaling and higher-
order nonlinearities become relevant. Hence the range of
p for which Eq. (1.2) describes a well-behaved surface is
by Eq. (2.26)

d'+ 1
p +pmax 2

Beyond this limit, Eq. (1.2) must be modified to include
higher powers of Vh.

Interesting behavior is also observed above the line
which defines the critical dimensionality (where small
nonlinearities are irrelevant). This regime [regions E and
F in Fig. (3)] allows for a phase transition between an
"ideal" phase (weak-coupling limit Uo= U =0} charac-
terized by the exponent z =2, and a strong-coupling limit
(where fiows go to infinity) not accessible by this pertur-
bative scheme. The phase boundary is depicted by a
dashed line in Fig. 3, and is controlled by an unstable
fixed point. This fixed point emerges from the origin and
follows a trajectory that ends as it merges into the U0

axis when crossing into region F. The exponents for this
critical fixed point are also given by Eqs. (2.24) and (2.25).

Finally, in the two regions C and D observed in the di-
agram, no stable Gxed points are found for finite U0 and
U . On the d'=2 line itself the coupling is marginally
relevant, and hence a How similar to region D is attained.
In these regions, the perturbative calculation must be car-
ried out to higher order (two- and three-loop diagrams) in
order to evaluate the exponents. It is clearly observed in
all regimes (see Fig. 3) that white noise is always generat-
ed under renormalization. The Aows that begin near the
U axis (only k correlations) generate a Uo+0 com-
ponent as was pointed out before. In the derivation of
the exponents z and g above, we have been using the ex-
pression

(2.27)

(which was derived from setting di, /dl =0). In fact this
is an identity as a consequence of the Galilean invariance
of Eq. (1.2) (see Appendix B) in the presence of whatever
correlations that preserve this symmetry, and is valid to
all orders of perturbation theory. We shall see in Section
IIC that in the presence of temporal correlations this
symmetry is broken and the identity no longer holds.

As is clear from our description, this perturbative
analysis is distinguished from a traditional e expansion,
where one expands around the critical dimension of the
system (above which the critical behavior is of the weak-
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coupling mean-field type) to obtain access to lower di-
mensions where the exponents are nontrivial. ' The one-
loop calculation is uncontrolled since the fixed point
value of the coupling constant cannot be controlled in a
perturbative fashion about e=d,' —d'. As seen in Fig. 3
there is no fixed point from Eqs. (2.23) for small e, and
fixed points first appear in region A.

C. Temporal correlations

dv 2 —d=v z —2+ Uo 4d'

+Us, (1+20)sec(mg)2 d +2p
4d'

dA, 0y+z —2+ Us, ( 1+20)sec(mg)

(2.29a)

(2.29b)

The renormalization procedure used in Sec. II B is now
generalized to arbitrary spectral functions D (k, co). After
going through the calculations outlined in Appendixes C,
D, and E, we arrive at the following set of differential re-
cursion relations for the functional renormalization of
D (k, co):

dv
dl

=v z —2 —K ~

k D, (1) d' —2+f(1)
V 4d' (2.28a)

dD (k, co) ' BlnD=D kco z 1—
ain~

BlnD—2X—d-
Blnk

A.2—
+Ad D 2(co),

4v
(2.28b)

dX XD3
y+z —2 —K ~

dl 2d
(2.28c)

D
~
(1)=Do+D~(1+20)sec(m 0), 0 & 0 &

—,
'

D&(1)f(1)=—2pDs(1+20)sec(rrg), 0&g& —,
'

where f and D's involve various integrals of D(k, co),
their exact forms are given by Eqs. (Cl), (Dl), and (El).
Equations (2.28) yield a nonlinear integral-differential
equation for the fixed function D*(k,co) when the ex-
ponents are chosen such that d v/dl =0=d A. /dl. Solving
such an equation is difficult and is not very instructive.

Motivated by the form of the fixed function D*(k,co)
of Sec. IIB, we look for a fixed function of the form
D(k, co) =Do+Dsk ~(colcoo), where the factor
cuo=vA (=v for A= 1) is included to make the argu-
ment dimensionless. [The more complicated case involv-
ing nonseparable D(k, co) will not be treated here. ] The
relevant integrals needed to obtain D's are evaluated us-
ing contour integration (an example will be shown later in
Appendix F). The results are

dUg = Us[z (1+20)—2y —d'+2p], (2.29c)

dUo = Uo(z —2y —d')+ —,
' Uo+ —,

' UOU~(1+20)sec(erg)

+ —,
' Us(1+40)sec(2~0), (2.29d)

I

0,(d')=
d +4d 8

(2.30)

Beyond this region, U& becomes relevant; we must have
(see Appendix A)

z (1+20)—2y —d'+2p=0 (2.31)

for Eq. (2.29c) to hold at a fixed point. But unlike the
case of spatial correlation, no simple expression for the
exponents can be obtained because of the absence of
Galilean invariance (and hence the loss of the exponent
identity y+z =2). If we ignore the correction to the ex-
ponent identity in Eq. (2.29b), then Eq. (2.31) along with
the exponent identity would result in the following ex-
pression for the exponents

d,'(p, 0) —d'
z (p, g, d')=2— (2.32a)

valid for 0( —,'. Note that in the absence of temporal
correlations, i.e., 0=0, the correction term to the vertex
in Eq. (2.29b) vanishes as required by Galilean invari-
ance.

From Eqs. (2.29), the fixed points can be determined by
solving the flow structure in (Uo, Us) space as in Sec.
II B. The overall picture of the flows as a function of d',
p, and 0 is similar to the case of spatial correlation only
(see Fig. 3). Again there is a region in which white noise
dominates. The boundary of this region is given by the
stability of Us in (2.29c), i.e. ,

z (d')(1+20) —2g (d') —d'+2p=O .

Using Eqs. (2.24) for z and y, the boundary of this re-
gion for p=0 is given by

D 2(co) = Do+2DODs(1+20)sec(mg) d,'(p, 0)—d'
y*(p, g, d') = (2.32b)

+D s(1+40)sec(2n.g), 0 & 0 & —'

D3 = Ds20(1+ 20—)sec(erg), 0 & 0 & —,
'

Expressed in terms of dimensionless parameters
Uo =Ed k Do/v and U& =Ad A, D/v, the recursion re-2 3 2 3

lations are

where d,'(p, g) =2+2p+40 is as given before. However,
for large 0 we expect z(p, g, d') and y(p, g, d') to deviate
significantly from z* and g; so the exponents should in-
stead by obtained numerically by solving for the fixed
point of the flow equations. As discussed in the case of
spatial correlations, absence of a fixed point just below
the upper critical dimension makes it impossible to con-
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struct a systematic perturbation expansion for the fixed
point. Also, lack of Galilean invariance implies that we
cannot obtain any exact exponents in the presence of
temporal correlations. For d'=1 the one-loop recursion
relations do provide us with an accessible fixed point. Al-
though the results will not be systematic, to gain insight
into the role of temporal correlations we shall examine
the case p=0 in some detail. For d'=1 the recursion re-
lations,

dU~ = Us (1+48)— Uo

—Ussec(~8)(1+ 28) 3+ 100

dU0 1+80
0 2 0 9

= Uo —
—,
'

Uo Utisec(m8)(1+28)

+ Ussec(2m8)
1+40

are obtained from Eqs. (2.29) after eliminating z and y. A
stable fixed point in the physical region (i.e., Uo 0,
Us~0} is found for 0~8& —'; the resulting exponents
z(8) and y(8) are plotted. As shown in Fig. 5, the ex-
ponents increase for a range of 8) 8, (d'=1)= —,'; but
then they turn around and rapidly approach the values
z'(8) and y"(8) given by Eqs. (2.32) as 8~—,'. Beyond
0= —,', no stable point in the physical region is found in

(Uo, Us) space.

Qo) 5

The behavior close to 0= —,
' is very suspicious, as physi-

cally there should be nothing special at 0= —,'; in particu-
lar Galilean invariance is still violated at this value. The
source of such peculiar behavior is the infrared diver-
gence of the integral for D 2 which makes the last term in
Eq. (2.29d) singular as 8~ —,'. Going back to the deriva-
tion of D 2 in Appendix D with co dependence included

D 2(co)= —j dz
77 Qo

D 1,co0z +—D 1,co0z ——
2

'
2

(1+z )

(2.33)

(D;(co)D, (co) ) = 3 (i,j )D, D co ' '+B(ij )D, D

where A (i,j ) and B (i,j ) are integration constants. We
can denote the new power generated in the same form,
co ' ', with 0, + =0, +0 —

—,'. If the most divergent
part of D(co~ )0is characterized by co then terms—20„
generated by RG are co

" with 8„=n8—(n —1)/2, and
the fixed function is of the form D*(co)=DO—26}„+g„D„'~ ". The number of divergent terms M(8) in
the sum is the largest n for which 0„&0, i.e.,

Using D (k, co) =D (co)-co, we find the leading co

dependence of D 2(co) to be

D 2(co) =D 2(0)+0 (co' ) for 8~—,
'

An additional component of the spectral density function
is generated under RG. It becomes "nonignorable" as
0~—,'. The fixed function is of the form—28) —26}2D*(co)=Do+D, co '+Dice ', where 82=28, —

—,'.
However with this new form, even more components are
generated from the contractions (DiDz) and (DzD2).
By simple power counting, the contraction between—28,. —20
D;co ' and D ~ ' terms is

14
0

I

0.1

(a)

I

0.2 0.5 M(8) =int 1

1 —20
(2.34)

0.65

—0.55—
OC

0.45
0 0.1

I

0.2 0.5

(b)
FIG. S. (a) Dynamic exponent z and (b) roughening exponent

g as a function of the exponent 0 for decay of temporal correla-
tions, in d =2 (d'=1). The exponents are calculated to one
loop for the choice of a spectral function
D*(co)=DO +D*m . There is no solution for y and z for
0 & 4, indicating that form of D*(co) is invalid for this range.

As 0 increases from 0 to —,', a new divergent term is added
to the fixed function whenever 8„(8')=0,where the spe-
cial values 0 's are

n —1
1 2 3 40 0, —„—„—,, —, , . . . .

So the unphysical behavior obtained close to 0= —,
' is a

reflection of emergence of the next divergent term in the
fixed function D'(cg).

Obviously, the RG Bow space must be expanded for an
improved treatment. The relevant integral for the noise
contraction is computed in Appendix F; the coefficients
A (i,j) and B (i,j) are given in Eq. (F2},and

4 sin(m8;)sin(ir8, ) I (1—28; )I (1—28, )
A (i,j)=-

sin(ir8;+~ ) I (1—28;+~ )

B (ij ) = ( 1+28, +28 )sec[n(8,. +8 )],
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for 0,. + &0. The two terms conspire to give In(co) when
0,. + =0 as in Eq. (F3).

Incorporating these results, we try a fixed function of
the form

1V
—26„

( co/coo)
" —( 1+20„)sec( ir0„)

Dg(co)=DO+ g ~D„ I ( 1 —20„)

sin�(

vr 0„)

with 0„=n0—(n —1)/2 and the value of the cutoff X,„
will be discussed later. (Note that this form has the
desired logarithms built in when 0„=0.) The recursion
relations Eq. (2.28) become

dv d 2—v z 2 U
dt 4d'

(20„)( 1+20„)sec(sr0„)
dl 2d' „, " I (1 —20„)sin(ir0„)

y+z —2—,g AU„

max

y+z —2—,g U„I (2+20„)

dU, = Ui[z(1+20) —2g —d'],

dU„ max= U„[z(1+20„)—2y —d']+ g U, U
i,j=1

(i+j=n)

dUO U2 max= Uo(z —2y —d')+ +4z0 g U„(1+20„)I(20„)
n =1

max

+2[z(1+20)—2g —d'] g U„(n —l)(1+20„)I(20„)
n =1

max cos(ir0; )cos(vr0, )+ g U,. U. I (20, )I"(20.) (1+20, +20. )
—(1+20,. )(1+20.)

cos ~(0;+0, )

where the identity I (z)l (1—z) =~/sin(~z) is used, and U,:K„A, D; /v —as before.
The condition dU, /dl =0 implies 2y+d'=z(1+20) for 0) 0, . So

dU„

dt i+j=ni+j=n
= U„z(20„—20)+ g U; U = U„z(20—1)(n —1)+ g U; U, .

By setting d U„/dt =0, it is easy to verify that

U„=[z(l—20)] "+'U",

max ~(D* )
Ds(co)=DO + g [z (1—20)]"

The exponents y and z are calculated from

2Z=2- -U
4d'

} max

Uo +, g U„*I (2+20„),

Hence we can describe the fixed function D*(co) by two parameters Do and D s as

(co/coo) " —(1+20„)sec(m0„)
I (1—20„)sin(ir0„) (2.35)

(2.36a)

(2.36b)

with

(Ue )n
U„*=,, 20„=1 —n (1—20),

[z (1 —20)]" (2.36c)

where the fixed points Uo and U& are found from the flow equations
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dUg = U [z(1+20)—2y —d'], (2.36d)

dUO U2 max= Uo(z —2y —d')+ +4z0 g U„(1+20„)l(20„)
4 n=1

max

+2[z(1+20)—2g —d'] g U„(n —1)(1+20„)I(20„)
n =1

max cos(~0; )cos(vr0J )+ g U; U 1 (20, )I (20 ) (1+20, +20 )
—(1+20, )(1+20 )

cos[vr(0, +0~ )]
(2.36e)

I.5
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FICx. 6. Some exponents as in Fig. 5 calculated by including
more and more powers, generated by renormalization, in the
spectral function D*(~). The exponents are found to rapidly
converge upon including more powers.

The terms that seem to diverge as 0„~0in the last equa-
tion cancel each other; and Eqs. (2.36) can easily be
solved numerically in the range 0 0( —,

' once N, „ is
defined.

From the preceding discussion it seems as if the sum
should be unbounded since terms with arbitrarily large
positive powers are generated. This might be a serious
problem because the frequency integrals contributing to
one-loop propagator and vertex correction will have ul-
traviolet divergence if the full form of D*(co) is used for
the entire range 0~co~ ~, a cutoff must be made as
D*(co) is really only the behavior in the co~0 limit. On
the other hand, the coefficients of the higher-order terms
are suppressed by a factor of 1/I (2n0); as a result the
exponents should not depend too sensitively on the upper
cutoff.

Equations (2.36) are solved numerically for various
N, „at d'= 1, and the resulting exponents z (0) and y(0)
are shown in Figs. 6(a) and 6(b). We observe that in the
region with M(0) divergent terms as given by Eq. (2.34),

at least M(0) terms are necessary to find fixed points and
exponents at all; beyond that the convergence of the
series is rather fast. N, „can be pushed to 2M(0)+1
giving exponents with an accuracy of better than 0.1%
before Eqs. (1.36) become problematic. Using this upper
cutoff, we find that y(0) calculated can be fitted to a
straight line

y(0) = l. 690+0.22,

and the corresponding expression for z(0) is obtained
from the fixed point condition for Us in Eq. (2.36c)

2y(0)+ 1

1+20

The calculation becomes increasingly difficult to carry
out as 0~ —,

' because N, „M&(0)—(1 —20) '~~. In
any case, the results obtained for d' = 1 have y exceeding
1 at 0=0.46; so the theory is not valid for 0 close to —,',
since g) 1 would necessitate including higher powers of
Vh in Eq. (1.2) (as argued earlier).

Finally, we look at the situation for 0~ —,': From sim-
ple power counting (see results of (D; D, ) contraction in
Appendix F), we see that the situation is quantitatively
changed for 0& —,', because increasingly' more divergent
terms are generated by RG, giving the fixed function an
essential singularity at co=0. As a consequence no stable
surface can survive in any dimension and higher powers
of V'h are essential.

The case of 0= —,
' corresponding to the ubiquitous 1/co

noise is special: (DD ) contraction does not generate any
new term; so the fixed function has the simple form
D(co)=Ds/co. However, the renormalization procedure
outlined in Sec. IIB breaks down here because the fre-
quency integrals in one-loop calculations also have in-
frared divergencies for 0~ —,'. This divergence may be
tamed by switching the role of space and time in the RG
treatment; i.e., do the coarse graining, averaging in time,
and perform integrations over internal momenta. Such a
treatment is rather involved and will not be dealt with
here. Nevertheless it may be worthwhile to solve for the
behavior at 0= —,

' to see how the system switches from a
well behaved region for 0& —,

' to the unstable region when
0) —,. In addition we may gain some insight into the na-
ture of 1/co noise.
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III. DIRECTED PATHS IN RANDOM MEDIA

Understanding the statistical mechanics of disordered
systems has proved to be a most challenging problem. '

The complexity of dynamics of relaxation in these sys-
tems is partly due to the pinning of domain walls by im-
purities. ' ' A domain wall of characteristic size L is ex-
pected to be subject to pinning barriers of typical energy
growing as L . Another consequence of impurities is an
anomalous roughening of domain walls such that typical
height fluctuations grow as L+ with an exponent g larger
than the "ideal-surface" value of (3—d)/2 calculated in
Sec. II. As a prototype, the interface of the Ising model
in two dimensions has been the subject of extensive stud-
ies, both analytical ' ' and numerical. '

Numerical simulations in d =2 are performed on a
discrete interface described by x(t) (x, t both integers);

I

i.e., overhangs are ignored. A transfer-matrix method is
then usually employed to obtain the ground states and
statistics of the problem. The first set of simulations were
performed in the presence of random field impurities, '

and strongly suggested the exponents g= co = 1 (indicat-
ing d =2 as the lower critical dimension of the random
field Ising model). Recently Huse and Henley' per-
formed similar simulations in the presence of random
bonds and discovered anomalous exponents g= —', and
co=- —,

' (compared with y= —,
' and co=0 for the ideal sur-

face). These results are exact as can be shown from a
number of analytic approaches such as the replica
method. ' A particularly elegant demonstration is due to
Huse, Henley, and Fisher. Consider the partition sum
W'(x, t) of the weights of all paths connecting the origin
(0,0) to the point (x, t). In the continuum limit,

(x, t) v dx'
W(x, t)= ' Dx'(t')exp —I dt'

(0,0) 0 2 dt'

12

+p(x', t') (3.1)

where v is an eff'ective line tension, and p(x, t) represents
the effects of impurities on the interface crossing the
point (x, t). Clearly 8'(x, t) satisfies the differential equa-
tion

(3.2)

p(x, t)= g R (x', t),
x' ( &:x)

(3.3)

where the fields R (x', t) are now independently distribut-
ed. This leads to long-range (spatial) correlations in the
noise described by ' p= 1. As Fig. 4 indicates, p = 1 leads
to a dynamic exponent z = 1 in d' = 1, again in support of
numerical simulations indicating g=1 in the presence of
random fields. ' We can also consider impurities in-
teracting with the interface through a long range poten-
tial falling off algebraically, i.e.,

p(x, t)= g R ( 'x, t) ~/x
—x'~'

x' ( &x)
(3.4)

This is clearly a discrete limit of Eq. (2.3), and interpo-
lates between random bond and random field cases as p is

which is the same as Eq. (1.3) for d'=1. This mapping
thus relates the free-energy profile [f(x, t) = —In@'] of
the static problem of an interface in a random environ-
ment, to the dynamics of the Burgers equation. The fixed
random energies p(x, t) are mapped onto the stochastic
noise acting on Eq. (1.3). It also follows that the
roughening exponent (5x -t") is related to the dynamic
exponent of the Burgers equation via y=1/z. For ran-
dom bonds p, (x, t) are independent random variables, and
the white-noise result z =—', translates into the numerical-

ly observed' ''" value of —', for g. In the case of random
fields ' the effective energy cost of an interface crossing at
height x is made up of the sum of random fields in the
same column t, i.e.,

varied from 0 to 1. The roughening exponent g for this
generalized model is again read off easily from Fig. 4, and
interpolates from -', to unity. A related model, in the con-
text of anticorrelated impurities, was recently considered
by Nattermann. '

An interesting question concerns the fluctuations in the
shape of a domain wall as it moves through the random
environment. The optimal paths in fact form a hierarchi-
cal structure reminiscent of river basins, as depicted in
Fig. 7. In these figures one end of an interface is pinned
at the apex of each triangle, while the other end is moved
along the base. The different figures correspond to
different values of p in the interval 0 to 1. These pictures
show qualitatively how the tree structure changes from
the case of random fields (p= 1 ) to random bonds (p=0).
We have not attempted to make a quantitative analysis of
these patterns.

A few words on the numerical procedure are appropri-
ate here. The paths in Fig. 7 are non-Markovian in na-
ture, in the sense that the impurities at large t influence
and modify the optimal path at small t. However, the en-
ergy profile E(x, t) of optimal paths connecting the apex
to the point (x, t) evolves in a Markovian way [as in Eq.
(3.2)]. Thus rather than updating a single optimal path,
one updates a whole energy profile E(x, t). This involves
keeping O(t,„)numbers in the memory, and the compu-
tation time grows as t „.The end point of the optimal
paths can then be obtained from the optimum of
E(x,t,„). To generate the complete shape of the op-
timal paths as in Fig. 7 is slightly more complicated.
This is done by keeping in the memory at each step the
direction U(x, t) of the local optimal path to (x, t). Once
the calculation has proceeded to t „, this information
can be used to draw an optimal path backward. The
memory requirement for this case grows as t,„. The to-
tal number of possible paths, of course, grows exponen-
tially in t,. „,but the transfer-matrix procedure allows us
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p = I.O p= 08

p =0.6 p =0.4

to obtain information regarding the optimal paths in po-
lynomial time.

The interface problems in three and higher dimensions
are considerably more complicated. There is no mapping
to a Burgers-type equation, and a numerical transfer-
matrix calculation has to follow the evolution of a string.
The memory requirements and calculational times now
grow exponentially with the interface width. We have in
fact carried out such a calculation, but due to the small
sizes of the interfaces that are tractable the results are not
very reliable. Another possible generalization is to exam-
ine linear defects in higher dimensions. This problem, by
construction, corresponds to the generalization of Eq.
(1.1) to higher dimensions d. Physically we may en-
counter this situation for directed polymers (as in po-
lyelectrolites) moving in a random and quenched gel ma-
trix.

In the absence of impurities, the polymer executes a
random walk in the transverse direction, and as a result
typical transverse fluctuations ~x~ scale with the length t
of the directed polymers as

~
x

~

—t ' with v =
—,'. lt is clear

that in general the exponent v is related to the dynamic
exponent of the corresponding the Burgers equation via
v= 1/z. A nontrivial z therefore corresponds to anoma-
lous transverse fluctuations. For the rest of this section
we will concentrate on uncorrelated random impurities

p(x, t). As discussed in Sec. II the renormalization flows
only result in a finite strong coupling fixed point in d =2.
For d = 3 impurities are marginally relevant and the flow
is to infinity. Similarly in d =4 the flows indicate a tran-
sition to strong-coupling behavior for sufficiently strong
randomness. Therefore although in dimensions d ~ 3 the
RG- flows suggest an anomalous exponent z, the actual
exponent is not reached by perturbative schemes, and
other means have to be employed.

We carried out extensive numerical simulations of op-
timal directed paths in dimensions d =2, 3, and 4, on a
Cray XMP computer. Details of the procedure have
been discussed elsewhere, and are straightforward gen-
eralizations of the transfer-matrix procedure to higher di-
mensions. For each realization of randomness typical
transverse fluctuations ~x~; and energy fluctuations b,E of
the optimal paths were calculated as a function of t. The
results after averaging over many realizations of random-
ness, were fitted to power laws (~x~ )-t'and (hE) t"-
For d =2 the predicted exponents v= —', and co= —,

' were
recovered. For higher dimensions we indeed observed
nontrivial scaling with estimated exponents
v=0. 62+0.04 and m =0.33+0.02 in d =3 and
v=0. 64+0.07 and co=0.41+0.04 in d =4.

Based on these results we conjectured that the ex-
ponents v= —', and co= —,

' may in fact be valid in all dimen-
sions, i.e., superuniversal. Although this is consistent
with our simulations, it seems not to be supported by
simulations on the related interface problem to be dis-
cussed in Sec. IV. ' Since we have not clearly identified a
Axed point for the strong-coupling behavior, there could
still be questions regarding the uniqueness of the strong-
coupling exponents. In any case, all numerical simula-
tions so far support two important conclusions of the
renormalization-group procedure. First they confirm the
existence of a new behavior with z&2 for strong random-
ness. Second all simulations agree with the exponent
identity g+z =2 which follows from Galilean invariance
(note that co=a/z for the directed-polymer problem).
Recently Derrida and Spohn have solved exactly the
problem of directed polymers on a Cayley tree. Gn a tree
no exponent v can be defined; however, they demonstrate
a phase transition as a function of disorder, and for
strong disorder they find b,E-lnt (i.e., co=0, although
the fluctuations are still anomalous). Assuming that as
usual the Cayley-tree results apply to Euclidean lattices
as d ~~; the conclusion is that the anomalous v de-
creases to —,

' as d~ ~; but that logarithmic corrections
remain at d = ~.

p =0.2 p =O.O IV. DYNAMICS OF GROWING SURFACES

FIG. 7. Optimal paths of 500 bonds along diagonals of a
square connecting the apex to various points on the base. The
bonds are all random variables, with correlations in horizontal
strips, decaying with an exponent p. Different figures corre-
spond to different values of p, varied from 1.0 (upper left) to 0.0
(lower right) in steps of 0.2. As explained in Sec. III, p=0 cor-
responds to random bonds, while p = 1 represents random fields,
for an Ising model.

The patterns formed in growth processes have been a
constant source of fascination and scientific inquiry. In
many cases the patterns are due to inherent instabilities
of a growth front controlled by an underlying diffusion
mechanism. Yet is is instructive to examine a simpler
type of growth exemplified by a vapor-deposition process,
where the growth rate is locally determined by the flux of
particles arriving ballistically at the surface. Although
there are no instabilities in the usual sense, this process



3066 MEDINA, HWA, KARDAR, AND ZHANG 39

leads to a variety of columnar structures. The origin of
these structures can be traced back to nonlinearities that
are dynamically generated in the growth process. In fact
the simplest nonlinear equation describing the evolution
of the surface profile h (x, t) moving with an average ve-
locity v, is'

Bh =vV h+ —(Vh) +q(x, t)+Uo .
Bt 2

(4.1)

FIG. 8. Growth by addition of spherical particles. It can be
seen that growth occurs always normal to the interface so that
the local tangent vector is parallel transported.

Clearly in a coordinate frame moving with the interface,
fiuctuations around the average position h (x, t)
~h (x, t) —vot are described by Eq. (1.2).

The first term in the preceding equation describes the
relaxation of the interface by a surface tension v, for
example, by evaporation and readsorption of particles
on the surface. Such relaxation can be obtained by con-
sidering a "capi11ary-wave" Hamiltonian H cw= fd 'x(Vh); and constructing the corresponding
Langevin equation. ' This is in fact the simplified model
studied by Edwards and Wilkinson, and predicts that
the growing interface behaves as a "free surface;" i.e., for
d ) 3 the interface is flat while for d ~ 3 typical roughness
at size L scales as L~ with y=yo=(3 —d)/2. Relaxation
of fluctuations is also described by the dynamic exponent
zo =2. According to the linear equation the shape of the
profile is symmetric about the average position [due to
the h (x)~ —h (x) symmetry]. This is clearly not true
for a typical growth profile from which it is usually possi-
ble to identify the growth direction. This by itself leads
us to suspect nonlinear terms that break this symmetry.

To see how the nonlinear term in Eq. (4.1) originates,
consider growth by addition of discrete spherical parti-
cles of diameter d to a surface as in Fig. 8. It is clear that
the growth direction is always locally normal to the sur-
face. Consequently, as Fig. 8 demonstrates the vertical
change 5h is given by 5h =d/cos8=d[1+(Vh) ]'~ .
The local slope V'h therefore appears in the growth equa-
tions in a nonlinear and nonsymmetric form. In a contin-
uum limit it is clear that the slope V'h is parallel trans-
ported during growth, and hence v = —Vh satisfies a
Navier-Stokes equation as in Eq. (1.1). The relation to
the Burgers equation and the necessity for the nonlinear
term now becomes apparent. Also it is clear that the pa-
rameter A, in Eq. (4. 1) has to be proportional to the aver-
age velocity vo; i.e., the nonlinearity is dynamically gen-
erated.

The need for nonlinearities in a description of surface
dynamics had been recognized earlier by Bausch et aI.
for a stationary interface, and in the context of columnar
growth by Ramanlal and Sander. It is instructive to
first examine the relaxation of an initially rough surface

deterministically, i.e., according to Eq. (4.1) with
g(x, t)=0. After mapping to a diffusion equation as in
Eq. (1.3), we can solve exactly the evolution of any initial
pattern h (x, t =0)=ho(x), and conclude

(x — )X exp
4vt

+ ho(g)2v

(4.2)

The inside integral can be evaluated by the saddle-point
method for small surface tensions, i.e., v~O (Burgers
shows that similar results are obtained in the long-time
limit t~ ~ ). After maximizing the integrand and taking
a logarithm, the solution is found to be composed of par-
aboloid segments h„= 3„—(x —g„) /2A, t joined together
by discontinuities in V'h. For a finite v the discontinuity
is somewhat smoothed out. A typical one-dimensional
growth pattern is sketched in Fig. 9, together with the
asymptotic form of v = —Bh /Bx. Such patterns are quite
commonly encountered in nature in geological
stratifications, successive layers of snow drifts, etc. The
relation between parabolic patterns and shock waves of
the Burgers equation is also apparent from this figure.

Further evolution of the pattern proceeds through the
larger paraboloid segments growing at the expense of
smaller ones, and parallels the evolution of shock waves
which may be more familiar. In one dimension it is easy
to calculate the scaling of the average size of these para-
boloids with time. In the saddle-point minimization we
can look at some point x, and ask how far it is from the
center g„of the paraboloid to which it belongs. Moving
to g reduces the exponent by (x g) /4vr. This red—uc-
tion will be tolerated if ho(g) is sufficiently large. If
the initial profile is rough (i.e. , P(ho(g) )
-exp[ (K/2—)fdx(dh/dx) ]), ho(g) undergoes a ran-
dom walk and is expected to fluctuate on average as
much as ~x

—g~' . Balancing the two terms we find
~x —

g„~ —r; i.e., typical widths of the paraboloid grow
as t, and typical heights as t' . These exponents are
remarkably the same as 1/z and g/z for
the stochastic equation. Note, however, that in higher
dimensions a profile distributed according to
&(&0($))-exp[ —(K/2) fd 'x (Vh) ] is already fiat,
and the typical curvature of paraboloids decreases as 1/t
without any appreciable change in their extent. Deter-
ministic growth equations with a general

~

Vh~~ replacing
(Vh) in Eq. (4.1) have also been recently examined from
the scaling point of view.

For the stochastic growth problem we can now use the
results obtained in Sec. II. For example, in the absence of
any long-range correlations in the local growth factors
g(x, t) (i.e., for g=p=O), we expect in d =2 a nontrivial
growth characterized by y= —,

' and z =—', due to relevance
of nonlinearities. In d =3, again nonlinearities are
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ah„
8x

yet

FIG. 9. Successive layers of an interface relaxing to a Aat configuration by a deterministic growth mechanism similar to Eq. (4.1).
The relaxation occurs via paraboloid segments joined together at cusps. The gradient of the surface profile evolves according to the
Burgers equation, and develops shock fronts corresponding to the cusps.

relevant and by analogy with the directed polymer prob-
lem nontrivial exponents y-0. 4 and z —1.6 are expect-
ed. In higher dimensions both trivial (y=O, z =2) and
nontrivial exponents (y )0, z (2) are possible depending
on the relative strengths of surface tension and nonlinear
terms. We shall now compare these predictions with nu-
merical simulations of growth.

Some of the earliest numerical results are due to Fami-
ly and Vicsek on a "ballistic deposition model, " which
describes vapor deposition processes. New particles
come down vertically and become part of the growing
surface on impact with a surface particle (sideways stick-
ing is allowed). Their simulations show that initially
the interface width grows with time as t —,very
close to our prediction of t ' ' . Eventually the width
saturates to a value that scales with the interface size L as
L~ with y=0.42+0.02, not very different from the pre-
dicted value of —,'. The dynamic scaling form, i.e., width
—L«g(t/L"), was also observed by Plischke and Racz
on the Eden model. ' In the Eden model a surface site is
selected at random, and one of the available neighboring
sites is added to the cluster. The numerical estimate of
z =1.55+0. 15 is in excellent agreement with the predic-
tion of —,

' (y is fixed to —,
' in simulations). Note that unlike

diffusion-limited aggregates, both ballistic deposition and
Eden growth lead to compact clusters, but the behavior
of surface fluctuations is still interesting.

The fact that g takes the same value of —,', as in the
"free" interface, initially led to conjectures that g=go
=(3—d)/2 in all dimensions. ' This appeared to agree
with simulations on small strips for d =3 and 4. How-
ever, because of the small sizes these results were not reli-
able, and we have seen that nonlinearities lead to a

different y. Since the publication of the original paper
on Eq. (4.1), various numerical and analytic studies have
appeared that shed new light on growth problems, and
some of these results will be briefly summarized here.

For d =2 extensive numerical simulations on the Eden
surface by Zabolitzky and Stauffer, and on different
ballistic deposition models by Meakin, Ramanlal, Sander,
and Ball (MRSB) and Plischke, Racz, and Liu (PRL)
quite convincingly confirm the exponents g= —,

' and z =
=,'.

The small discrepancies between the earlier simula-
tions and theoretical predictions are thus removed.
MRSB (Ref. 34) provide a nice argument for the genera-
tion of the nonlinear term, starting from a discrete
growth model. The model studied by PRL (Ref. 35) al-
lows simultaneous deposition and evaporation of parti-
cles. They can then explicitly show that the nonlinear
term is present because of the breaking of time-reversal
symmetry. When the average deposition and evaporation
rates are equal, time-reversal symmetry is restored and
the nonlinear term vanishes.

MRSB also introduce a growth model which is in fact
exactly solvable for d =2 and leads to g= —' and z =—'.

2 2'
Yet another exactly solvable growth model in d =2 has
been introduced by Dhar who also gets the same ex-
ponents. In conclusion essentially all theoretical and nu-
merical simulations of growth for d =2 indicate the pres-
ence of the nonlinear term and agree on the exponents
y= —,

' and z =—', .
The situation in higher dimensions is less clear. The

simulations of Zabolitzky and Stauffer clearly rule out
but cannot provide a definite answer for the

asymptotic exponents. The lattice simulations of MRSB
(Ref. 34); and off' lattice simulations of Jullien and Mea-
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kin, give g- —,'. Wolf and Kertesz in a series of investi-
gations' ' of Eden surfaces conclude g=0. 33+0.01 in
d =3 and g=0.24+0.02 in d =4. They hence conjecture
g=1/d in d dimensions. This clearly differs from the
conjecture of a superuniversal g= —,

' based on our simula-
tions of directed polymers. As mentioned in Sec. IV, the
polymer results are not inconsistent with g=1/d, which
is in fact a more appealing result as it goes to the free in-
terface limit for d~ ~, and thus can be connected with
the result of Ref. 29 on a Cayley tree. Also a "proof" of
superuniversality of g by McKane and Moore does not
really exclude this possibility. It is worth reemphasizing
that all simulations reported so far agree on the validity
of g+z =2 which follows from Galilean invariance.

It is hard to come up with physical problems where
long-range correlations in the local growth probability
may occur. One possibility is relatively immobile im-
purities in the path of the interface that get trapped by it
and impede further growth at that point. Another possi-
ble case is when there are charged ions that become part
of the interface and effect further growth via the long
range Coulomb interaction. It would be interesting to
come up with such a model that is easy to simulate, yet
violates the Galilean invariance. The breakdown of
g+z =2 can then be probed in such a model.
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APPENDIX A: EXPONENT IDENTITIES
FROM NONRENORMALIZATION

OF CORRELATED NOISE

The stable fixed points governing the scaling behavior,
encountered in this paper, can be subdivided into the fol-
lowing two distinct categories.

(i) At the fixed point the noise is white with no correla-
tions (e.g. , region A in Fig. 3).

(ii) The noise at the fixed point is long-range correlated
and characterized by the exponents p or 9 (e.g. , region B
in Fig. 3).

The second type of fixed point is in a sense simpler to
handle since there is an exponent identity relating the ex-
ponents g and z. This exponent identity follows from
nonrenormalization of correlated noise and is charac-
teristic of long-range interactions. The RG equations
giving the corrections to D(k, co) only produce analytic
powers of k (spatial correlations), or higher nonanalytic
powers of cu (temporal correlations). This was shown ex-
plicitly in Sec. II at the one-loop order, and in fact holds
at all orders. Hence the lowest nonanalytic powers of k
or co in the noise spectrum D (k, co) obtains no anomalous
corrections from the integration of short wavelength
modes. The scaling of this term therefore arises fully

from its "bare" dimension as in Eq. (2.7). At the fixed
point, the scale invariance of this term, immediately leads
to the exact exponent identity

2p —d' —2g+(29+1)z =0 . (Al)

For spatial correlations (9=0), the above identity, in
addition to the identity that follows from Galilean invari-
ance [Eq. (B6)] leads to the exponents y= 1 —(d'+1
—2p)/3 and z =1+(d'+1 —2p)/3 given in Eq. (2.26).
These exponents are exact in region B, but the boundary
of this region depends on the exponents z (d) and y (d)
for white noise. Hence this boundary is only known
within the one-loop approximation. The only exception
is for d'=1, where as discussed by FNS (Ref. 4) there is
(with uncor related noise) a fiuctuation-dissipation
theorem ' that ensures that v and D scale in the same
way to all orders in perturbation theory. This immediate-
ly leads to g (1)=—,

' and z (1)=—,'; and allows us to ob-
tain the exact exponents y and z for all p (as in Fig. 4).
Although the exponent identities lead to the exact ex-
ponents, the position of the fixed point is only known per-
turbatively and is expected to change upon going to
higher loop calculations.

APPENDIX B: CONSEQUENCES
OF GALILEAN INVARIANCE

The Burgers equation has a Galilean invariance associ-
ated with looking at the Auid in a moving frame. Hence
the transformation

v(x, t) ~vo+v'(x vot, t)— (Bl)

is an exact symmetry of the equation (with X=1). For
the interface equation (1.2) this symmetry corresponds to
the infinitesimal reparametrization

h'=h +e.x, x=x+ket', t =t', (B2)

which describes the tilting of the interface by a small an-
gle e. The tilted surface to 0 (e') satisfies the equation

Bh'
,

=vV' h'+ —(V'h') +q(x+Aet', t') .at' 2
(B3)

Clearly the deterministic equation is invariant under this
transformation, while the stochastic equation is subject to
a noise g'( tx')=II(x'+let', t'). Let us examine the
correlations in the noise g':

Here F measures the noise correlations in the original
equation. In the absence of temporal correlations
F(x, t)=6(t)F(x) and from Eq. (B4), we observe that the
correlations for the new noise g are identical to that in
the original equation; i.e.,

F'(x, t)=F(x+Aet, t)=5(t)F(x+Aet)=5(t)F(x) . (B5)

('g (x), t ) )g (x2, tp ) ) = ( g(x( +XEt, , t, )1)(x~+A et~, t2 ) )

=F(x, —x, +le(t, t, ), t, t, ) .— —

(B4)
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This invariance is no longer true if F(x, t) is not propor-
tional to 5(t). Therefore the stochastic equations is in-
variant under Galilean transformations, only if the noise
has no temporal correlations.

Note that the parameter A. appears both as the
coefficient of the nonlinearity in Eq. (1.1) and as an in-
herent factor relating to x and t reparametrizations in Eq.
(B2). Hence any renormalization of the Burgers equation
that preserves Galilean invariance must leave the
coefficient A, unchanged. This is even more transparent in
the original Eq.(1.1). Here the nonlinearity on the left-
hand side (with X= 1) originates from the total derivative
Dv/Dt. After any rescaling, we still expect Dv/Dt to ap-
pear as a consequence of Newton's law. Hence to all or-
ders in perturbation theory we expect A, =A, . Due to ab-
sence of corrections, Eq. (2.21c) is exact, leading to the
exponent identity

g+z 2 (86)

APPENDIX C: PROPAGATOR RENORMALIZATION

We start from the symmetrized version of Eq. (2.11),

Due to this identity there is only one scaling exponent if
Galilean invariance is not broken by noise correlations.
As shown in the following appendixes, in the presence of
temporal correlations dA, /dl&0. It is interesting that
Eq. (86) also emerges as a consequence of assuming a
continuum elastic description for directed polymers in
random media. ' Krug obtained this identity using a
mode-coupling approximation on the interface growth
equation. Also MRSB (Ref. 34) give this result by postu-
lating a scale invariance for A, .

2

G (k, a) ) =Go(k, cu)+ 4 —— Go(k, cv )

k kq+ — . q ——
2 2

k
k q+—

2

XG0 q ——,——A G0 q+ —,—+Qk 67 k co

2 '2 ' 2 '2 2D q+ —,—+0k co

2 '2

where Go(k, m) =(vk 2 —i co) ' is the bare ProPagator. The q integral is calculated in sPherical coordinates:

2

G(ken)=Go(ken)+ 4 —— Go(ken) z, f dq q
' f dH sin" Of dII

2 ' ' (2~)' o o — 2~r

kq— , —+Q'2
t 1/2

k k
kq cosO+ 2D q + kq cosO+

2 4
X--

v q
—kq cosO+2 k

4
CO—i ——0,
2

2
k

v q +kq cosO+
4

+ —+0
2

2

where k.q= kq cos8 and Sd. is the surface area of a d'-dimensional sphere. We look at G (k, co) only to leading orders in
k and co, which completely determines the behaviors of the system in the hydrodynamic regime of interest. The m~0
limit can be taken right away. After changes of variables x =k/q and z =0/vq to make the integration variables di-
mensionless, the propagator becomes

G(k, O)=Go(k, O)+Go(k, O) f dq q ', f dz —f dHsin" 0
0 v' (27r)

X1—
2 2

1/2

x cosO+ D q 1+x cosO+
2 4. , Vq Z

X
X

1 —x cosO+ +iz
4

2
X1+x cosO+ +z
4



3070 MEDINA, HYENA, KARDAR, AND ZHANG 39

The leading order k dependence in the integrand is x and x cos 0, as the x cos0 term vanishes by symmetry upon an-
gular integration.

Define the expression in I I above to be I (x, q). Then to leading order in x,

A,
2

I(x,q)= d, f dz f—d0sin"' 0
v (2~)

D(q, vq z)+ —cos0(B D)
2

(1 —x cos0+iz)(1+2x cos0+z )

d ' dzl 1 .
d0 d-20 1+ o0

(2~) —" ~ (1+iz)(1+z ) 1+iz
2x cos0
1+z

x x
X x cos0+ D(q, vq z)+ —cos0(B D)

2 2

1dz-
v (2~)" — ir (1+iz)(1+z )

X f d0sin" 0 x [ ,'D(q, vq z)]—+xcos 0 ' — ' + —,'8 D(q, vq z)z i D(q, vq z) 2D(q, vq z)

The angular integrals are now easily evaluated by noting that

I

', f d0sin"' 0=, =Kd, , f 'd0sin"' 0cos 0=, f d0sin"' 0
(2~)

'
p (27r)

' '
p d' p

f 1
d 0 sjn 0 cos 0 d 0sjnd 20

0 0

by symmetry. So 1, 1 1 1 1I(x,q)=x~Kd. dz —D(q, vq z)
2 (1+iz)(1+z ) d' (1+z )2

(1+iz)(1+z ) 2d'

Since D is even in z, the two z integrals it multiplies are identical. If we define

then

2 f d D(qvq z)
(1+z )

=2 A d 2- 1I(x,q)=x Kd, , —„, D, (q)+, 8 D, (q) =x K„4d' 4d' q

D, (q) d' 2,+f,(q)—
2 4d'

(Cl)

where

2 1 BlnD (k, cp)

Bink k=q
co=vq z2

The propagator becomes

d' 2+fi(q)—
G(k, O)=Gp(k, O)+Gp(k, O)K„, , k'f dq q" 'q 'D, (q)

0 4d'

In the special case of D(k, ~) =D (k) =Dk ~, the integral in (Cl) can be easily evaluated,

D, (q)=D(q), f, (q)= —2p .

(C2)

(C3)
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The q integral in (C2) has an infrared divergence for d &d, as discussed in Sec. II A. The renormalization procedure
outlined there is used to tame the singularity. Integrating over the outer shell momenta A(1 —51) & q & A, where 51 is
infinitesimal, and setting A to unity,

G (k, O)=Go(k, O)+Go(k, O)Kd
A. D, (1) d' 2+—f, (1)

k 51

A, D, (1) d' 2+f—, (1)=Go(k, O) 1+51Kd
v 4d'

or

A. D, (1) d' —2+f, (1)
v =v 1 —51Kd

v 4d'

Now the variables are rescaled: k~(1 —51)k, co~(1—z51)co, h ~(1—g51)h. The renormalized eff'ective surface ten-
sion v is related to v by simple dimension counting similar to Eq. (2.6),

dvv=v+ 51=v [1+51(z—2)] .
dl

Hence the difterential recursion relation for v is

A, Di(1) d' —2+fi(1)
4d' (C4)

APPENDIX D: SPECTRAL-DENSITY FUNCTION RENORMALIZATION

We first compute the leading-order correction due to the elimination of high momenta modes. The relevant diagram
is shown in Fig. 2(b); it has a multiplicity of 2. The details of the calculation will not be repeated here as they are simi-
lar to Appendix C. We have

2

2D (k, co) =2D (k, co)+2 —— I d q, J dO
2 ( 2m') d — 2m

k kq+ — q ——
2 2

2

2

2
k co

X 6 q+ —,—+B
2

k k coX2D q+ —,—+0 2D q
——,——Q

2 '2 2 '2

A.
2

=2D(k, co)+512 3,I dz f dH sin" 8
v3 (2m)d — 2n o

k2—
=2D(k, co)+251Kd D z(co) for k &[0, 1 —51],

4v

CO CO
D 1,vz+ —D 1,vz ——

2
' 2

(1+z )
for k, co~0

where

D ~(ro) =——f dz

CO COD 1,vz+ —D 1,vz ——
2

'
2

(1+z )

2 D (l, vz)
dz 22(1+z )

(D 1)

Again, for the special case of D(k, co)=D(k), (Dl) reduces to D z=D (1), leading to Eq. (2.20). Now perform rescaling
to get back to the original Brillouin zone,

D(k, co) =D ((1—51)k, (1—z51)co)[1+51(z—2y d')]—
=D(k, n))+5l (z 2y d')D(k, co) —k— ——zen +Kd D ~(co)

BD (3D

Bk BQ7

We obtain the following functional integral-diH'erential recursion relation for the spectral density function:
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D(k, }=D(k, ) 1—
dl ' '

Blnco
—2 —d' —81D(k, ) +K ~

~
D ( )

Bink d'4 3

APPENDIX E: VERTEX RENORMALIZATION

We calculate the three-point vertex function I at the symmetrized point. There are three distinct one-loop diagrams
contributing to the correction to the vertex as shown in Fig. 2(c). These diagrams all have multiplicity 4. Let
k; =(k;,co;), Q—:(q, Q), k;.q=k, -q cosO, ; we proceed with elimination of high momenta for the first diagram,

k, k, k} k}r. k„+k,,
—k, =r, k„+k,, —k,

2
'

2
'

2 2

4( —
A, /2 )

(ki/2+k') (ki/2 —k~)

X jj'd'qdn
(2vr )

k}
q+

2

k}q—

k, —k2 .(q —k2)
I

+kz .(q —k2)

k,
X GO +q Go

2

k} —
q I GO(g —k, }I'2D (q —k, )

1 D(l, vz) . , (k&/2} cos Oi
—kzcos Oz=1+61

3 d dz —
2 2

dg}sin"' '0}
(2~)~ —~ 77 (1+z2}2 (k& /2)

where 1 0(k, +k~, k„kb ) = —(A /2)k, .kb Go(k, )Go(k& ) is the bare vertex function.
The two angular integrals are identical by a shift of integration variable, so

1 1D1 A, Di(1)
V

where D, (1) is as given in (Cl).
The remaining two diagrams are calculated similarly. They are equal in the k„k2~0 limit,

k}
q+

2

k,
q

k,
2 2 2

—k .(q —k) k,
+kz .(q —k2)

k, k,
X GO +Q Go —

q
2

2

k,
Go(g —k~ )2D

P2 Sz,
&

~ 1 D(1 vz), (k)/2) cos O) kpcos Op=I 0 1 —51, , dz — ' dO sin O,
v' (2') — ~ (1+z )(1 iz)— (k, /2) —k~

I- 1 —51K
k 1 f dz

1 D( l, vz)

v d — ~ (1+z~)(1—iz)2
=1, (k, , k~~0) .
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Combining the results:

A. D3r =r. +r, +r, =r, i —Six„,
V

Im(z)

where

1 —3D3—= —f dzD(1 vz)
z 3(1+z )

For spatial correlation only, i.e., D (q, vz)=D (q), the in-

tegral vanishes, and I =I p. This result is attributed to
Cxalilean invariance, as discussed in Appendix B. Finally,
the parameters are rescaled as done previously, leading to
the recursion relation

ak k k k k k I i k L k k k Era
v 4 v 4&'4N 4&& 4 4~

- zo Z~ Re(z)

dk X D3 ly+z —2—
2

(E2) FIG. 10. Contours in complex z plane, used to perform the
integrations in Appendix F.

APPENDIX F: FREQUENCY INTEGRAL FOR ( DD ) CONTRACTION

We want to evaluate the integral involved in contraction of the ith and jth term of the spectral density function—20„D(co)=DO++„D„co ", where 0„=n0—(n —1)/2. The relevant integral to do is Eq. (Dl). Here we compute one
generic term,

z+
2cop

r = f "dz-
oo

—20
I

(1+z )

CO
Z

26)p

—20
J

Z+
2&p

+ f +"dz

—20.
CO

Z
2cop

(1+z2)~

—20
J

Z +
2')p

dZ-
CO/2CtPO

ccp /2coo 2COp

+ dZ
ct) /267O

—20.
J

—20,
CO

Z
2cop

(1+z )
—20.

t
—20.

CO
Z

2cop

(1+z2)2

z+
2ct)p

+ dZ
M /2ct)O

—20J

(1+z )

CO
Z

2cop

—20

In the limit co —+0, the last term above becomes

+z
cu/2cuo 2COp

I, —:f dz
CO /2COO

—20,

Z
2ct)p

(1+z )

' —20.
J

CO /2COO

dZ +Z2'
—20.

I
—20.

Z
2cop

[I+O(z )]

COp

1 —20, —20

d '
1 — '+0

p COp

3 —20. —20.J

COp

I (1—20,. )I (1 —20. )' +o1(2—20, —20 ) 67p

' 3 —20. —20.
j J

From definition of 0„above, we have n (1 —20) =1—20„. Hence

I)=
COp

'+~ 1 (1—20;)I (1—20 ) ~ +J' +or(1 —20, , ) COp
(F1)
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We now turn to the other two pieces of I. Consider the following integral taken along the contour as shown in Fig.
10:

Z+ "
2COp

Iz(i,j )= fcdz

—20. —20.
CO

Z
2COp

(1+z )
—20

i

X+
2COp

(1+x )
—20.

' —20.
J

X +
2COp+f", dx-

CO
X

2COp

(1+x )

+X
—2mi0 0

2CO

+e ' dx
Ql /2COO

CO
X

—2mi (0i +0. )
2CO

=e dx
2"o

—20. —20.
l

(1+x )

—20.
CO

X
2COp

Symmetric combination of I2's leads to

CO +
—2 9, —2 9 ~2O 2cO

Iz(i, j)+I&(j,i) =2nig Re. s(Iz)= (e '+e ')f dx
0

—20,-

CO

(1+x )

' —20.J

x+
—2 (0+0 )

—20,.
CO

X
2COp

J

(1+x )

—20.
J

X+
2COp+f" dx-

—20.
CO

X
2COp

(1+x )

—20.
I

—2' ( 0,. +0 - ) —2~i9, —2mi 0. —2+i(0,. +0- )=I(1+e ' ' )+I, (e '+e,' —1 —e ' ' ) .

We can now solve for the desired integral,

2ni g Res(Iz )
—2mi (0, +0. )

+Ii
1+e 1

—2m j0.
)

—2n. i 0,')(1 —e
—2~i (0.+0. )+e

The second term is

2 sin(n. 8; ) 2 sin(lr8, ) =2
2 cos[n(8;+8, )]

I (1—28, )I (1 —28 ) 2 sin(n 8; ) 2 sin(n8; )

I (1—28;+~ ) 2 sill( rl 8; +~- ) Q)0

—20, +.

2 —29,. + .

COp

In the first term,

2ni g res(I~) =2vri . d
dz

Z+
2 p

—20i
CO

Z
2COp

(i +z)

i —29.

Z+ "
2COp

' —20
CO

Z
2COp

(i +z)

—20

in/2

=n.e ' ' (1+28, +28, )+0
COp

Therefore
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2
D (co)= I—=

2

1+20, +20 4 I (1 —20;)I (1—20 ) 2sin(tr0, . ) 2sin(m0 )
J

cost'~(0;+0, )] rr 1(1—20;+, ) 2 sin(m0;+J) Q)p

COp

2 —20,. + .

+0
COp

'2

In the limit 0, + . ~Q, g, +g.~,',
D', (co)~ 4 sin(tr0; )cos(tr0, )+—I (1 —20, )I (20, )

' '
1 —20. .1 +g(0o )

I +J QPp

Using the identity I (z)I (1—z) =tr/sin(trz), we ohtain:

4
D z(co)= ——1n +const for 0, + =0 .

7T COp
l+J (F3)
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