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Regularization methods for delta-function potential in two-dimensional
quantum mechanics

Su-Long Nyeo
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The quantum mechanics of a bound particle in the delta-function potential in two dimensions is
studied with a discussion of its regularization and renormalization. A simple regularization approach
is considered with the introduction of several regularizing functions for defining the quantum
system. More systematic regularization is introduced from the mathematical viewpoint of the theory
of distributions. The renormalization scheme independence of the physical observable is
demonstrated. ©2000 American Association of Physics Teachers.

I. INTRODUCTION

Simple solvable models in quantum mechanics1 play an
important role in illustrating physical concepts2–6 and pro-
vide useful applications for models that make use of pertur-
bation theory, in which a solvable part is required. For ex-
ample, the simple harmonic oscillator has provided the
analytic and algebraic methods for many calculations in
quantum theory.

The delta-function potentials in quantum mechanics3–6 are
exactly solvable models, which enjoy many useful applica-
tions. In two and higher dimensions, they provide a peda-
gogical introduction to the techniques of regularization in
quantum field theory. Here we shall concentrate on the two-
dimensional case, which exhibits a logarithmic divergent
property and requires regularization before renormalization
can be carried out. Thus, this model provides a simple illus-
tration of dimension deficiency, such that an additional scale
has to be introduced. In one dimension, the quantum system
needs no regularization. For other dimensions, we refer to
Refs. 3–6, where other technical and physical aspects of the
models are studied. Here we shall consider only the bound
state, while the scattering state can be easily worked out as
outlined in Refs. 5 and 6.

We organize this paper as follows. In Sec. II, we consider
the Schro¨dinger equation for a bound particle in the delta-
function potential in two dimensions with an outline of the
usual solution. In Sec. III, a simple regularization approach
is considered for the delta function with the introduction of
several regularizing functions for the divergent integral in
the problem. The renormalization scheme independence of
the physical observable of the model is mentioned. In Sec.
IV, the theory of distributions is briefly introduced for defin-
ing the delta-function potential. Section V provides a discus-
sion.

II. THE DELTA-FUNCTION POTENTIAL IN TWO-
DIMENSIONAL QUANTUM MECHANICS

The Schro¨dinger equation for a particle in the delta-
function potential in two dimensions is given by

F2
\2

2m
¹22ld2~r !Gc~r !5Ec~r !, ~1!

where, for the bound state,l.0. At first sight, we would
naively expect that the physical binding energyE52B,0
can only depend on the parameters in the equation,l and

\2/m, which have the same dimensions. But, dimensional
analysis for the energy scale of the system indicates that the
binding energy cannot just be a combination of the two pa-
rameters. There is a dimension deficiency, and an additional
parameter with dimensions of squared momentum is re-
quired.

For convenience, we rewrite Eq.~1! as

@¹21l0d2~r !#c~r !5B0c~r !, ~2!

where l052ml/\2 is a dimensionless parameter andB0

52mB/\2 is an arbitrary dimensional constant. Equation~2!
can be easily solved by Fourier transform with4,5

c~r !5E d2k8

~2p!2 eik8•rf~k8!, ~3!

c~0!5E d2k8

~2p!2 f~k8!. ~4!

The Fourier transform of the left-hand side of Eq.~2! gives

E d2re2 ik•r@¹21l0d2~r !#c~r !

5E d2k8

~2p!2 @2k82f~k8!~2p!2d2~k82k!1l0f~k8!#

52k2f~k!1l0c~0!, ~5!

while the transform of the right-hand side leads to

E d2re2 ik•rB0c~r !5B0f~k!. ~6!

Equating Eq.~5! to Eq. ~6!, we then get

f~k!5
l0c~0!

k21B0
. ~7!

Integrating both sides overk and using Eq.~4!, we obtain the
integral

1

l0
5

1

4p2 E d2k

k21B0

5 lim
L→`

1

4p E
0

L2 dk2

k21B0

5 lim
L→`

1

4p
lnS L21B0

B0
D . ~8!
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Thus the integral diverges logarithmically asL→`. For
large but finite cutoff momentumL, which acts as a regula-
tor, we then have

1

l0
'

1

4p
lnS L2

B0
D , ~9!

or the binding energy

E52
\2L2

2m
e24p/l0, ~10!

which is a physical observable and should be independent of
L. We now define the renormalized dimensionless coupling
constantlR by

1

lR
5

1

l0
2

1

4p
lnS L2

m2D , ~11!

where the momentum scalem is an arbitrary renormalization
or subtraction scale. The constantlR defined as such is finite
asL→` and reads

1

lR
52

1

4p
lnS B0

m2D , ~12!

from which theb function is given by (dB0 /dm50)

b~m![
dlR

d ln m
52

lR
2

2p
,0, ~13!

which exhibits an asymptotic free behavior:lR→0 as m
→`.

Now from Eq.~12! the binding energy is given by

E52
\2m2

2m
e24p/lR, ~14!

which is independent ofm asE is a physical observable.

III. SIMPLE REGULARIZATION

Instead of Eq.~8!, which is undefined asL→`, we con-
sider regularizing it by

1

l0
5

1

4p2 E d2kre~k!

k21B0
, ~15!

wherere(k) is a regularizing or smearing function with 1/e
acting as an ultraviolet cutoff, such that lime→0 re(k)51.
The limit e→0 is to be taken after the integration overk and,
for eÞ0, the integral is finite. For illustrative examples, we
consider the following regularizing functions.

A. re„k…Äu2
„1Õe¿k…u2

„1ÕeÀk…

Hereu2(1/e6k) denotesu(1/e6kx)u(1/e6ky), which is
a product of step functions and corresponds to implementing
cutoffs on the integration limits. Let 1/e5L@1, Eq. ~15!
becomes

1

l0
5

1

4p2 E
2L

L E
2L

L dkxdky

kx
21ky

21B0

'
1

4p2 E
0

2p

duE
0

L kdk

k21B0

5
1

4p
lnS L21B0

B0
D , ~16!

which is identical to Eq.~8! as it should be.

B. re„k…Äexp„Àek2
…

This choice leads to the Laplace transform7

1

l0
5

1

4p E
0

` dx e2ex

x1B0
5

1

4p
eB0eEi~B0e!, ~17!

where Ei(x) is the exponential integral

Ei~x!5E
x

` e2u

u
du52gE2 ln x2 (

n51

`
~2x!n

nn!
~x!1!,

~18!

with gE50.5772... being Euler’s constant. Fore50, Eq.
~17! becomes the unregularized form~8!, while for eÞ0, the
integral~17! is finite. From Eq.~17!, we see that for a given
binding energyE, the coupling constant depends on the cut-
off scaleL[1/Ae. For L@1,

1

l0
'2

1

4p
ln B0e1C5

1

4p
lnS L2

B0
D1C, ~19!

whereC52gE/4p. Thus, in the limitL→`, we recover
Eq. ~9!, but there is an additional constantC. We now define
the renormalized constant by

1

lR
5

1

l0
2

1

4p
lnS L2

m2D2C852
1

4p
lnS B0

m2D1~C2C8!,

~20!

where the choice ofC8 corresponds to a renormalization
scheme; for example, we may chooseC850 or C85C for
convenience. However, the physical observableE is indepen-
dent of the renormalization scale and hence the choice of a
scheme, since we can always make a rescaling and write

1

lR
52

1

4p
lnS B0

m82D , m825m2e4p~C2C8!. ~21!

C. re„k…Äexp„Àezkz…

With this choice, we get from Eq.~15!7

1

l0
5

1

2p E
0

` kdke2ek

k21B0

52
1

2p

d

dsE0

` dxe2sx

x211 U
s5AB0e

52
1

2p

d

ds S Fp22Si~s!Gcoss1Ci~s!sinsD U
s5AB0e

, ~22!

where Si(s) and Ci(s) are the Sine and Cosine integrals
defined by
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Si~s!5E
0

s sint

t
dt, Ci~s!5gE1 ln s1E

0

s cost21

t
dt.

~23!

For e51/L!1, we have

1

l0
'

1

4p
lnS L2

B0
D1C9. ~24!

Here we have a constant,C952gE/2p, but it can be ab-
sorbed by redefining the scalem in lR .

IV. REGULARIZED DELTA FUNCTIONS

In the previous sections, the quantum system with the
delta-function potential in two dimensions was shown to be
an exactly solvable model but requires a regularization. We
first considered the problem by using a cutoff as an ultravio-
let regulator and then introduced a more general and simple
regularization approach. Here we discuss a more systematic
approach from the mathematical point of view.

We first recall that the Dirac delta function in one dimen-
sion is defined byd(x)50 for xÞ0 and*2a

a d(x)dx51 for
arbitrarya.0. Technically, the function is ill-defined since it
is neither differentiable nor continuous atx50. Mathemati-
cally, it is defined as a generalized function or distribution in
the theory of distributions. Here we give a brief introduction
to the theory.8

We refer tof (x) as a test function if it is infinitely differ-
entiable. For our purpose, we take the Schwartz spaceS,
which is a space of test functions of rapid descent. For
f (x)PS, then f (x) and all its derivatives decrease to zero

faster than every negative power ofx. We definef̃(x) as a
generalized function or distribution and represent it by a se-
quence$fe ;e51/j , j 51,2,...%. Thenfe(x)PS, and

E
V

f̃~x! f ~x!dx[ lim
e→0

E
V

fe~x! f ~x!dx ~25!

exists for f (x)PS,xPV.
Now the Dirac delta function can be defined by

d~x![ lim
e→0

de~x!, ~26!

which may be expressed as the Fourier transform

de~x!5
1

2p E
2`

1`

re~k!eikxdk,E
2`

1`

de~x!dx51, ~27!

where e is a dimensional parameter playing the role of a
cutoff. In Eq.~26!, the limit e→0 should only be taken after
the integration overx. For example, it is easy to verify that
the delta-function satisfies the operational property:

d: f [ lim
e→0

E
2`

1`

de~x! f ~x!dx5 f ~0!. ~28!

The regularizing functionre(k) satisfies the condition
lime→0 re(k)51. Then different regularizing functions cor-
respond to different mathematical deformations of the
model. In the limite→0, we should expect that the deformed
models lead to the same physical result, provided that the
regularization does not destroy the symmetries of the origi-
nal model in the limite→0. Depending on the physical prob-
lem of interest, a regularizing function is chosen to facilitate

a given calculation. Some commonly used regularizing func-
tions with their corresponding regularized delta functions are
given in Table I.

We now consider the two-dimensional case. With the
regularized delta-function potential, the reduced Schro¨dinger
equation~2! becomes

@¹21l0de
2~r !#c~r !5B0c~r !. ~29!

For eÞ0, B0 depends onl0 and the regularizing parameter
e, and different regularizing functions correspond to different
but related models. We expect that in the limite→0, the
binding energy reduces to Eq.~14!.

The Fourier transform of the regularized delta-function
potential in the left-hand-side of Eq.~29! gives

l0E d2re2 ik•rde
2~r !c~r !

5l0E d2k8

~2p!2 f~k8!E d2re2 i ~k2k8!•rde
2~r !

5
l0

4p2 E d2k8re~k2k8!f~k8!, ~30!

where

re~k!5E d2re2 ik•rde
2~r !. ~31!

Hence, the Fourier transform of Eq.~29! leads to the integral
equation

f~k!5
l0

4p2

1

k21B0
E d2k8re~k2k8!f~k8!. ~32!

Integrating both sides overk, we obtain

c~0!5
l0

16p4 E d2k8f~k8!E d2kre~k2k8!

k21B0
, ~33!

where interchange of integrations has been assumed. If we
takek8 fixed and choose 1/e@uk8u, then we can show that

I 5E d2kre~k2k8!

k21B0
'E d2kre~k!

k21B0
, ~34!

so that Eq.~33! reduces to Eq.~15!. To see this, we write

I 5E
0

`

dae2aB0E d2kre~k!e2a~k82k!2
, ~35!

where it is clear that for 1/e@uk8u, we havere(k)'1, and

E d2kre~k!e2a~k82k!2
'

p

a
, ~36!

Table I. The regularizing functionsre(k) and their corresponding regular-
ized delta functionsde(x) in one dimension.

re(k) (e.0)

u(1/e1k)u(1/e2k) e2ek2 e2euku

de(x)
1

px
sinSxeD 1

A4pe
expS2 x2

4eD 1

p

e

x21e2
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which becomes independent ofk8 as e→0. Now consider
the regularizing functions given in Table I for the two-
dimensional case; the corresponding integrals Eq.~35! given
in the following are then trivial.

A. re„k…Äu2
„1Õe¿k…u2

„1ÕeÀk…

For 1/e5L@uk8u, we get

I 5E
2L

L E
2L

L dkx dky

~k82k!21B0

5E
ky82L

ky81LE
kx82L

kx81L dkx dky

k21B0

'E
2L

L E
2L

L dkxdky

k21B0
, ~37!

which is further evaluated in Eq.~16!.

B. re„k…Äexp„Àek2
…

Using this function in Eq.~35!, we have, for vanishingly
small e,

I 5E
0

`

dae2aB0E d2ke2a~k82k!22ek2

5E
0

`

da expS 2
ae

a1e
k822aB0D E d2k

3expF2~a1e!S k2
a

a1e
k8D 2G

5pE
0

` da

a1e
expS 2

ae

a1e
k822aB0D

'pE
0

` da

a1e
e2aB0

5peB0eE
e

` du

u
e2uB0

5peB0e Ei~B0e!, ~38!

which leads to Eq.~17!.

C. re„k…Äexp„Àezkz…

In this instance, we get from Eq.~35!, for 1/e@uk8u,

I 5E
0

`

dae2aB0E d2ke2a~k82k!2
e2euku

5E
0

`

dae2aB0E d2ke2ak2
e2euk2k8u

'E
0

`

dae2aB0E d2ke2ak2
e2euku

52pE
0

` kdke2ek

k21B0
, ~39!

which can then be evaluated according to Eq.~22!.
From the above mentioned examples, we observe that not

all re(k)’s lead to the same calculational difficulties.

V. DISCUSSION

In this paper, different regularizing functions parametrized
by an infinitesimal parametere have been considered for
defining the delta-function potential in two-dimensional
Schrödinger equation. We note that different functions cor-
respond to different regularization methods, and hence allow
different renormalization schemes to be used. Thus, different
regularization methods correspond to different models in the
limit e→0 with renormalization scheme dependent coupling
constants. In essence, a regularization is a mathematical de-
formation of a system. In this regard, we note that regular-
ization is a general procedure for defining a physical system.
In the study of a gauge theory, implementation of a gauge
condition is the use of a regularization. A good choice of a
gauge condition can facilitate our analysis of a gauge prob-
lem. Physics is not affected by our choice.

A regularization may not respect all the symmetries of a
system if the deformed system does not enjoy the symme-
tries of the original system. In this instance, the regulariza-
tion is not suitable. The usefulness of a particular technique
of regularization is usually limited to a certain theory or
model, so care should be exercised to choose a consistent
regularization method.

In this paper, we have concentrated only on the bound
state and demonstrated the renormalization scheme indepen-
dence of the binding energyE. This fixed, but arbitrary,
binding energy only serves to define the energy scale of the
quantum system. At fixedB0 , Eq. ~12! or ~14! provides a
relation between the renormalized coupling constantlR(m)
and the renormalization scalem. Further study of the system
includes the consideration of the scattering solution, or the
physical quantities, such as the differential or total cross sec-
tion. Detailed calculation of the scattering solution to the
Schrödinger equation with a positive scattering energy may
be found in Refs. 5 and 6. The scattering cross section cal-
culated from the scattering solution appears to depend on the
scalem andlR(m), but they are related according to Eq.~12!
and can be simultaneously eliminated for the fixedB0 . The
cross section is then explicitly renormalization scheme inde-
pendent and depends on the fixed binding energy as refer-
ence scale.

Finally, it should be noted that renormalization is not lim-
ited to quantum systems; it appears also in classical systems.
We refer to Ref. 9 for a discussion with a simple classical
example, where dimensional regularization was used.
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QUEEN ELIZABETH

When you wish to attack a colleague’s claim, criticise a world-view, modalise a statement you
cannotjust say that Nature is with you; ‘just’ will never be enough. You are bound to use other
allies besides Nature. If you succeed, then Nature will be enough and all the other allies and
resources will be made redundant. A political analogy may be of some help at this point. Nature,
in scientists’ hands, is a constitutional monarch, much like Queen Elizabeth the Second. From the
throne she reads with the same tone, majesty and conviction a speech written by Conservative or
Labour prime ministers depending on the election outcome. Indeed sheaddssomething to the
dispute, but only after the dispute had ended; as long as the election is going on she does nothing
but wait.

Bruno Latour,Science in Action—How to Follow Scientists and Engineers Through Society~Harvard University Press,
Cambridge, Massachusetts, 1987!, p. 98.
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