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Regularization methods for delta-function potential in two-dimensional
guantum mechanics

Su-Long Nyeo
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The quantum mechanics of a bound particle in the delta-function potential in two dimensions is
studied with a discussion of its regularization and renormalization. A simple regularization approach
is considered with the introduction of several regularizing functions for defining the quantum
system. More systematic regularization is introduced from the mathematical viewpoint of the theory
of distributions. The renormalization scheme independence of the physical observable is
demonstrated. ©2000 American Association of Physics Teachers.

[. INTRODUCTION #2/m, which have the same dimensions. But, dimensional
. . hi analysis for the energy scale of the system indicates that the
Simple solvable models in quantum mechanipiy an  pinging energy cannot just be a combination of the two pa-

important role in illustrating physical conceftS and pro-  \ameters. There is a dimension deficiency, and an additional

vide useful applications for models that make use of perturyaameter with dimensions of squared momentum is re-
bation theory, in which a solvable part is required. For ex-

| h imple h . il h ided hquired.
ample, the simple harmonic oscillator has provided the" ., convenience, we rewrite E(L) as

analytic and algebraic methods for many calculations in
quantum theory. o _ [V2+Xo8%(r)]eh(r)=Boy(r), 2
The delta-function potentials in quantum mechathitare where o= 2m\/#? is a dimensionless parameter aBd

exactly solvable models, which enjoy many useful applica-_ 5 . X )
tions. In two and higher dimensions, they provide a peda— 2MB/%” is an arbitrary dimensional constant. Equatigh

gogical introduction to the techniques of regularization incan be easily solved by Fourier transform with

guantum field theory. Here we shall concentrate on the two- dk’

dimensional case, which exhibits a logarithmic divergent w(r)=fwe'k Tk, 3
property and requires regularization before renormalization

can be carried out. Thus, this model provides a simple illus- 2)r

tration of dimension deficiency, such that an additional scale  #(0)= J ﬁqﬁ(k’). (4)
has to be introduced. In one dimension, the quantum system (2m)
needs no regularization. For other dimensions, we refer t@he Fourier transform of the left-hand side of E) gives
Refs. 3—6, where other technical and physical aspects of th
models are studied. Here we shall consider only the bouni d2re= KT V24\ o 6%(r) Je(r)
state, while the scattering state can be easily worked out
outlined in Refs. 5 and 6. d2k’

We organize this paper as follows. In Sec. Il, we consider = f ——[—k'2¢p(k")(27)%6%(k" —K) + N gp(K’
the Schralinger equation for a bound particle in the delta- (2m) : Bl ) (2my o )+ hod (k)]
function potential in two dimensions with an outline of the )
usual solution. In Sec. lll, a simple regularization approach K=p(k)+ o9 (0), ©
is considered for the delta function with the introduction of while the transform of the right-hand side leads to
several regularizing functions for the divergent integral in
the problem. The renormalization scheme independence of f d’re K Byy(r)=Byd(K). (6)
the physical observable of the model is mentioned. In Sec.
IV, the theory of distributions is briefly introduced for defin- Equating Eq(5) to Eq. (6), we then get
ing the delta-function potential. Section V provides a discus-

[ Aoi(0)
sion. _ 0
¢(k)_ k2+ BO ' (7)
[I. THE DELTA-FUNCTION POTENTIAL IN TWO- Integrating both sides ovérand using Eq(4), we obtain the
DIMENSIONAL QUANTUM MECHANICS integral
. 2
The Schrdinger equation for a particle in the delta- i:i dk
function potential in two dimensions is given by No 47? ) k®+By
h? 1 (a2 dk?
— ——V2=N\&(r) |p(r)=E(r), 1 - lim -——
where, for the bound state,>0. At first sight, we would 1 A2+ B
naively expect that the physical binding enefgy —B<0 = lim —1n 0 (8
can only depend on the parameters in the equatioand AmeBTT Bo
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Thus the integral diverges logarithmically &s—. For
large but finite cutoff momentum, which acts as a regula-
tor, we then have

1 1 [A? o
)\_O’VE B_O ’ ( )
or the binding energy
h2A?
E=——_e %, (10)

dk,dk,
Ak +k2+BO

)\_047Tff

J‘Zfr fA kdk
K2+ B,

which is a physical observable and should be independent &. p (k) =exp(—ek?)
A. We now define the renormalized dimensionless coupling

constant\ g by

1 1 1

An )\0 41

g 11

A2
| ( ) '
where the momentum scaleis an arbitrary renormalization
or subtraction scale. The constant defined as such is finite
as A —o0 and reads

1 1 | Bo 12
)\—R— i n F ) (12
from which theB function is given by By /du=0)
d\g A2
B(p)= ding . 2m 0, (13

which exhibits an asymptotic free behaviotg—0 as u
— 00,
Now from Eq.(12) the binding energy is given by
2,2
h”u e 4R

o (14

which is independent oft asE is a physical observable.

[ll. SIMPLE REGULARIZATION

Instead of Eq(8), which is undefined ad —, we con-
sider regularizing it by

1 1 d%kp (k) 15
No 472 ) KZrBy (19

wherep (k) is a regularizing or smearing function withel/
acting as an ultraviolet cutoff, such that lim, p.(k)=1.
The limit e—0 is to be taken after the integration okeand,

for e#0, the integral is finite. For illustrative examples, we o

consider the following regularizing functions.

A. p(K)=0%(Ue+K) 6*(e—k)
Here §%(1/e=k) denotesd(1/e+k,) 8(1/exk,), which is

a product of step functions and corresponds to implementing

cutoffs on the integration limits. Let &= A>1, Eq. (15
becomes
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1 En A2+B, 16
" 4r By, |’ (16)
which is identical to Eq(8) as it should be.
This choice leads to the Laplace transférm
1 1 Joc dxe < BocEi(B .
No 47 o x+B, 4n°  CiBoe) a7
where Eif) is the exponential integral
. ~e ! o (="
EI(X)—JX J dU—‘?’E"”X_nZ:l ani (x<1),
(18)
with yg=0.5772... being Euler's constant. Fer=0, Eq.

(17) becomes the unregularized foi®), while for e+ 0, the
integral (17) is finite. From Eq.(17), we see that for a given
binding energyE, the coupling constant depends on the cut-
off scaleA=1/\e. For A>1,

2
No By
where C= — yg/4m. Thus, in the limitA —o, we recover

Eq. (9), but there is an additional constabtWe now define
the renormalized constant by

1 1 1I A2
Ar Ao 4w \u?

+C, (19)

1|B+C 1|
47Tn06 n

>l+(c-c),
(20)

where the choice off’ corresponds to a renormalization
scheme; for example, we may chodsé=0 or C'=C for
convenience. However, the physical observadbie indepen-
dent of the renormalization scale and hence the choice of a
scheme, since we can always make a rescaling and write

4

1 Bo
~C'=——In|—
,u

C. p(k)=exp(—eK|)
With this choice, we get from Eq15)’
1 1 (=kdke <
27 Jo k*+Byg
o 1.d ff>cdxe‘SX
- 2mds)o x*+1 o= (e
1
on ds( —Si(s) coss+C|(s)sms) , (22

s=Bge
where Sig) and Ci(s) are the Sine and Cosine integrals
defined by
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scost— 1 Table I. The regularizing functions.(k) and their corresponding regular-
ized delta functions.(x) in one dimension.

. ssint )
SI(S)=font, Ci(s)=vyg+Ins+ fo

(23 p(k) (e>0)
For e=1/A<1, we have 0(Lle+K) 6(1/e—k) e o C
1 1 (A2 1 [x 1 @ 1 e
—_—— —_— " ) —ginl - [EE— J— —
" 4ﬂ_ln( Bo) +Cr. 24 6.0 ﬂ_xsm(é) Wexp( 45) e
Here we have a constarf)’= — y¢/27, but it can be ab-

sorbed by redefining the scalein \y.

IV. REGULARIZED DELTA FUNCTIONS . . ..
a given calculation. Some commonly used regularizing func-

In the previous sections, the quantum system with thdions with their corresponding regularized delta functions are
delta-function potential in two dimensions was shown to begiven in Table I.
an exactly solvable model but requires a regularization. We We now consider the two-dimensional case. With the
first considered the problem by using a cutoff as an ultravioregularized delta-function potential, the reduced Sdimger
let regulator and then introduced a more general and simplequation(2) becomes
regularization approach. Here we discuss a more systematic 5 2 _
apgproach from &pe mathematical point of view. g [V oS J§(r) =Boy(r). (29)

We first recall that the Dirac delta function in one dimen- For ¢+ 0, B, depends on\, and the regularizing parameter
sion is defined bys(x)=0 for x#0 andf?, 8(x)dx=1 for ¢, and different regularizing functions correspond to different
arbitrarya>0. Technically, the function is ill-defined since it but related models. We expect that in the lingit-0, the
is neither differentiable nor continuousat 0. Mathemati-  binding energy reduces to E¢lL4).
cally, it is defined as a generalized function or distribution in  The Fourier transform of the regularized delta-function
the theory of distributions. Here we give a brief introduction potential in the left-hand-side of E29) gives
to the theory?

We refer tof (x) as a test function if it is infinitely differ- )‘OJ' dzre*ik'rﬁﬁ(r)zj;(r)
entiable. For our purpose, we take the Schwartz spgce
which is a space of test functions of rapid descent. For d2k’ o
f(x) e S, thenf(x) and all its derivatives decrease to zero )\OJ W¢(k/)J d?re k=KD T 52(r)

faster than every negative powerofWe defineg(x) as a

generalized function or distribution and represent it by a se- & 2, o ,
quence{¢.;e=1/j,j=1,2,..}. Thend(x) e S, and T Aq? d*k’pk—k") B(k"), (30)
f DOOFO0)dx= Iimf b.()F(x)dx (25 Where
Q e—0JQ )
. pe(k)=j d?re T 82(r). (31)
exists forf(x) e S,xe Q.
Now the Dirac delta function can be defined by Hence, the Fourier transform of E@9) leads to the integral
S(x)=lim §.x), (26) equation
0 No 1
O ! ! !
which may be expressed as the Fourier transform (K)=7—> szBof d*k’p(k—=Kk")p(k’). (32
5.(x) = 1 j“cp (ke *dk j+m5 (x)dx=1, (27) Integrating both sides ovés, we obtain
€ 2 . € ’ . € ’
" No [ s [ Fpk—K)
where € is a dimensional parameter playing the role of a ~ #(0)= 16774J d°k’ ¢(k )j TKZ¥B, (33

cutoff. In Eq.(26), the limit e—0 should only be taken after ) ) _
the integration ovek. For example, it is easy to verify that Where interchange of integrations has been assumed. If we

the delta-function satisfies the operational property: takek’ fixed and choose & |k’|, then we can show that
st=tim [ 5,001000x=1(0 2 - e J e ”
. _eer:J » (X)f(x)dx=1(0). (29) = k?+B, - k’+Bg (39

The regularizing functionp (k) satisfies the condition SO that Eq(33) reduces to Eq(15). To see this, we write
lim._op.(k)=1. Then different regularizing functions cor- % .

respond to different mathematical deformations of the |=f dae*“BOJ d%kp(k)e ok 77, (35)
model. In the limite— 0, we should expect that the deformed 0

models lead to the same physical result, provided that th@/here it is clear that for k> |k’|, we havep (k)~1, and
regularization does not destroy the symmetries of the origi-

nal model in the limite— 0. Depending on the physical prob- J d%kp (k)e,a(kr,k)z% K (3
lem of interest, a regularizing function is chosen to facilitate €

¢
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which becomes independent kf as e—0. Now consider V. DISCUSSION
the regularizing functions given in Table | for the two-

dimensional case; the corresponding integrals(B§). given In this paper, different regularizing functions parametrized

in the following are then trivial. by an infinitesimal paramete¢ have_ be_en cons[dered_ for

defining the delta-function potential in two-dimensional

A. p (k)= 60*(Ue+k) 0*(Ve—Kk) Schralinger equation. We note that different functions cor-
respond to different regularization methods, and hence allow
For Lle=A>|k'[, we get different renormalization schemes to be used. Thus, different
dk, dk, regularization methods correspond to different models in the

I—f f N k)2+Bo limit e— 0 with renormalization scheme dependent coupling

constants. In essence, a regularization is a mathematical de-

K (KA dk, dk, formatic_)n of a system. In this regarq, we note that regular-

f f ization is a general procedure for defining a physical system.
1 K+Bo +Bo In the study of a gauge theory, implementation of a gauge

A dkdk, condition is .the use of a _regularization. A good choice of a

f f _2_ (37) gauge condition can facilitate our analysis of a gauge prob-
k“+Bo’ lem. Physics is not affected by our choice.

A regularization may not respect all the symmetries of a
system if the deformed system does not enjoy the symme-
tries of the original system. In this instance, the regulariza-
B. p(k)=exp(—ek?) tion is not suitable. The usefulness of a particular technique
of regularization is usually limited to a certain theory or
model, so care should be exercised to choose a consistent
regularization method.

(" B 20 o a(k! —k)2— ek In this paper, we have concentrated only on the bound
' dae™“% [ d°ke state and demonstrated the renormalization scheme indepen-
dence of the binding energk. This fixed, but arbitrary,
o ae 5 binding energy only serves to define the energy scale of the

f daexp ———k'“—aBg f d°k quantum system. At fixe®,, Eq. (12) or (14) provides a

relation between the renormalized coupling constas(t)

, 2 and the renormalization scale Further study of the system
k includes the consideration of the scattering solution, or the

physical quantities, such as the differential or total cross sec-

» da ae tion. Detailed calculation of the scattering solution to the
j ————_k'"—aBy Schralinger equation with a positive scattering energy may
be found in Refs. 5 and 6. The scattering cross section cal-

which is further evaluated in E{16).

Using this function in Eq(35), we have, for vanishingly
small ¢,

xexp{—(a+e)(k—

ate

*» da ~ By culated from the scattering solution appears to depend on the
=~ ”J; a+e e scaleu andAg(w), but they are related according to Efj2)
and can be simultaneously eliminated for the figd The
=du _ o cross section is then explicitly renormalization scheme inde-
—me o€ pendent and depends on the fixed binding energy as refer-
‘ ence scale.
= meBo¢ Ei(Bye), (39 Finally, it should be noted that renormalization is not lim-

ited to quantum systems; it appears also in classical systems.
We refer to Ref. 9 for a discussion with a simple classical
example, where dimensional regularization was used.

which leads to Eq(17).

C. p(k)=exp(—elk|)
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QUEEN ELIZABETH

When you wish to attack a colleague’s claim, criticise a world-view, modalise a statement you
cannotjust say that Nature is with you; ‘just’ will never be enough. You are bound to use other
allies besides Nature. If you succeed, then Nature will be enough and all the other allies and
resources will be made redundant. A political analogy may be of some help at this point. Nature,
in scientists’ hands, is a constitutional monarch, much like Queen Elizabeth the Second. From the
throne she reads with the same tone, majesty and conviction a speech written by Conservative or
Labour prime ministers depending on the election outcome. Indeeddidesomething to the
dispute, but only after the dispute had ended; as long as the election is going on she does hothing
but wait.

Bruno Latour,Science in Action—How to Follow Scientists and Engineers Through SdEiatyard University Press,
Cambridge, Massachusetts, 1987. 98.
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