
 

Z4 parafermions in Weakly Interacting Superconducting Constrictions
at the Helical Edge of Quantum Spin Hall Insulators

C. Fleckenstein,1,* N. Traverso Ziani,1,2 and B. Trauzettel1
1Institute of Theoretical Physics and Astrophysics, University of Würzburg, 97074 Würzburg, Germany
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Parafermions are generalizations of Majorana fermions that may appear in interacting topological
systems. They are known to be powerful building blocks of topological quantum computers. Existing
proposals for realizations of parafermions typically rely on strong electronic correlations which are hard to
achieve in the laboratory. We identify a novel physical system in which parafermions generically develop.
It is based on a quantum constriction formed by the helical edge states of a quantum spin Hall insulator in
the vicinity of an ordinary s-wave superconductor. Interestingly, our analysis suggests that Z4 parafermions
are emerging bound states in this setup in the weakly interacting regime. Furthermore, we identify a
situation in which Majorana fermions and parafermions can coexist.
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Introduction.—During the last decades, topological quan-
tum physics has become one of the most active directions of
modern condensed matter research. Especially, the forma-
tion of topological boundary excitations, such as Majorana
fermions [1,2], has attracted a lot of attention, both theo-
retically as well as experimentally [3–12]. These robust
bound states have been proposed in various host materials,
ranging from vortices in px þ ipy superconductors [13,14]
over ferromagnet-superconductor heterojunctions in quan-
tum spin Hall insulators (QSHIs) [15–21] to spin-orbit
coupled quantum wires [3,4]. Due to their non-Abelian
statistics [22–24], the interest in those topological bound
states is not only fundamental but also practical: they can
potentially be used for protocols in topological quantum
computation (TQC) [25]. Majorana fermions are the con-
ceptually simplest representatives of non-Abelian particles.
However, braiding of Majorana fermions is not able to
generate all the operations needed for universal TQC. For
this task, more complex anyonic particles, assigned in
general to a Zn permutation group, are required [23,26].
Due to the high groundstate degeneracy of thoseZn anyons,
electron-electron interactions are essential in the physical
realizations thereof. In particular, Zn parafermions are
concrete examples of topological states that are proposed
to emerge in correlated topological systems.
Recently, possible realizations of those exotic bound

states have been predicted in different setups, including
interacting QSHIs [27–31], fractional quantum Hall insula-
tors [32–36], fractional QSHIs [37,38], quantum wires [39],
or lattice systems [40–42]. Typically, s-wave superconduc-
tors are placed in proximity to a repulsively interacting
region of the electronic system. Then, parafermionic bound
states can form at the interface between two distinct regions
in space. The experimental realization of parafermions is

however an unsolved and undoubtedly challenging task.
Difficulties arise as superconductors and strong magnetic
fields are, for instance, required at the same time in
fractional quantum Hall systems. In QSHIs, where magnetic
fields are not essential, many proposals rely on particularly
strong repulsive interactions at the corresponding helical
edge. Although topological insulators based on InAs=GaSb
quantum wells [43–45] have been shown to present a
platform for repulsively interacting helical edge states,
the magnitude of the interaction strength consistent with
experimental data is under debate [46,47]. Moreover,
previous proposals for parafermions in the weakly interact-
ing regime [48,49] rely on the controlled use of magnetic
impurities at the helical edge, which is definitely difficult to
achieve in present-day experiments.
From our point of view, a feasible proposal for the

generation of parafermions in the laboratory is still lacking.
We argue for closing this gap in this Letter. The system we
propose is a quantum constriction (QC) formed at the
(weakly) interacting helical edge of a QSHI in proximity to
two ordinary s-wave superconductors [see Fig. 1(a) for a
schematic]. We are inspired by the investigation of similar
setups in the absence of electronic correlations. In particu-
lar, the formation of Majorana bound states [50] and the
emergence of odd-frequency superconductivity [51] has
been theoretically proposed.
In the presence of interactions, the system becomes

evidently much richer. Indeed, the QC gives rise to several
interaction terms that are relevant in the renormalization
group (RG) sense for a wide range of repulsive interactions.
Generically, single- and two-particle scattering terms have
to be taken into account. For the appearance of parafer-
mions, two-particle scattering has to dominate over single-
particle scattering. Surprisingly, we argue below that this
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can even happen in the weakly interacting regime in our
system. We identify two distinct cases schematically illus-
trated in Figs. 1(a) and 1(b), respectively. In case (a), a
Majorana bound state and a parafermion coexist in region II
in a nonlocal fashion, i.e., across the two edges of the QSHI.
In case (b), where the QC is totally pinched off, which we
illustrate by an impurity in the figure, two local parafer-
mions appear in region II, being spatially separated at the
two edges of the QSHI.
Model.—The starting points of our analysis are the two

helical edge states formed at the boundary of a QSHI. With
ℏ ¼ 1, the kinetic energy is then described by the fermionic
Hamiltonian

H0 ¼
Z

dx
X

l¼ðR;LÞ¼ðþ;−Þ
σ¼↑;↓

ψ̂†
l;σðxÞð−ivFl∂xÞψ̂ l;σðxÞ ð1Þ

with the Fermi field operators of the upper (ψ̂R;↑ðxÞ;
ψ̂L;↓ðxÞ) and the lower edge (ψ̂R;↓ðxÞ; ψ̂L;↑ðxÞ), respec-
tively. Including density-density interactions in the usual
way, we can bosonize the theory exploiting the bosoniza-
tion identity in the charge-spin basis [52], i.e.,

ψ̂ r;νðxÞ ¼
Ûr;νeirkFxffiffiffiffiffiffiffiffi

2πα
p e−

iffiffi
2

p frϕρðxÞ−θρðxÞþν½rϕσðxÞ−θσðxÞ�g; ð2Þ

where r ¼ R, L ¼ þ;− and ν ¼ ↑, ↓ ¼ þ;−. Ûr;l are
Klein factors lowering the number of fermions by one. In
Eq. (2), α denotes a high-energy cutoff. The conjugate
bosonic fields ϕρ=σðxÞ, θρ=σðxÞ are linear combinations of
bosonic fields on the upper and lower edge (designated
by the indices 1 and 2): ϕρ ¼ 1=

ffiffiffi
2

p ½ϕ1ðxÞ þ ϕ2ðxÞ�,
ϕσ ¼ 1=

ffiffiffi
2

p ½θ2ðxÞ−θ1ðxÞ�, θρ¼ 1=
ffiffiffi
2

p ½θ1ðxÞþθ2ðxÞ�, θσ ¼
1=

ffiffiffi
2

p ½ϕ2ðxÞ − ϕ1ðxÞ�, obeying the commutation relations

½ϕνðxÞ; θμðyÞ� ¼ iπθðy − xÞδνμ: ð3Þ

The interacting extension of the Hamiltonian of Eq. (1) can
then be written in the well-known bosonized form

H0¼
1

2π

Z
dx

X
ν¼ρ;σ

�
uν
Kν

½∂xϕνðxÞ�2þuνKν½∂xθνðxÞ�2
�

ð4Þ

with renormalized velocities uν and Luttinger interaction
parameters Kρ and Kσ characterizing the interaction
strength. For helical Luttinger liquids, where spin-rotation
invariance is strongly broken, Kρ < 1 and Kσ > 1 for
repulsive interactions, likewise, Kρ > 1 and Kσ < 1 for
attractive interactions. For vanishing interedge interaction
strength, the interaction parameters of both channels (charge
and spin) are coupled to each other by Kρ ¼ 1=Kσ ≡ K0

[53]. This strong coupling of Kρ and Kσ is, however, lost if
interedge interaction is switched on. Hence, in our system,
the interaction parameters should obey a spatial dependence
when the two helical edges of the QSHI are brought
together in the QC. There, we expect to have Kρ < K0

and 1 ≤ Kσ < 1=K0 provided that intraedge interactions are
stronger than interedge interactions.
Apart from density-density interactions, in regions I and

III of Fig. 1(a), additional interaction terms, that do not
result in a quadratic form after bosonization, have to be
taken into account. In region III, we consider supercon-
ducting s-wave pairing. This can be incorporated on the
basis of a BCS mean field approach by the following
fermionic Hamiltonian

HΔ ¼
Z

dxΔðxÞ½ψ̂†
R;↑ðxÞψ̂†

L;↓ðxÞþ ψ̂†
L;↑ðxÞψ̂†

R;↓ðxÞ�þH:c:;

ð5Þ

whereΔðxÞ is a spatially dependent pairing potential. Since
we do not assume a connection between the two helical
edges in region III, justified by a significant width of the
QSHI system, the corresponding Hamiltonian is diagonal
in the fields of upper and lower edge. Using the bosoniza-
tion identity [Eq. (2)] neglecting Klein factors [52], the
bosonized form of Eq. (5) becomes

HΔ ¼
Z

dxΔ̃ðxÞfsin ½2θ1ðxÞ� þ sin ½2θ2ðxÞ�g; ð6Þ

with Δ̃ðxÞ ¼ ΔðxÞ=ðπαÞ.
For the QC in region I, we consider all possible single-

and two-particle scattering terms that (i) preserve time-
reversal symmetry, (ii) are able to open a (partial) gap, and
(iii) are relevant in the RG sense for a wide range of (weak)
repulsive interactions, see Supplemental Material (SM [54]).
Those terms are in fermionic representation

(a)

(c)

(b)

FIG. 1. (a) Schematic of the system: an extended QC in a stripe
of a 2D topological insulator is brought in vicinity to two regions
with proximity induced superconductivity. (b) The same setup as
in (a) with an additional impurity that totally pinches off the QC.
(c) Schematic of the unfolded structure after applying appropriate
boundary conditions to case (b).
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Ht ¼
Z

dx tðxÞ½ψ̂†
R;↑ψ̂L;↑ þ ψ̂†

L;↓ψ̂R;↓� þ H:c:; ð7Þ

Hum ¼
Z

dx gumðxÞψ̂†
R;↑ψ̂

†
R;↓ψ̂L;↓ψ̂L;↑ þ H:c:; ð8Þ

Hpbs ¼
Z

dx gpbsðxÞψ̂†
R;↑ψ̂L;↓ψ̂

†
L;↑ψ̂R;↓ þ H:c:; ð9Þ

where we have dropped the explicit spatial dependence of
the field operators to save space. Note that the single-particle
scattering term [Eq. (7)] [50,55–58] and the Umklapp
scattering term [Eq. (8)] [52] are spin-preserving processes,
while the pair backscattering term [Eq. (9)] [59–61] requires
breaking of axial spin symmetry [62]. Applying the boso-
nization identity [Eq. (2)] to Eqs. (7)–(9), neglecting Klein
factors, we obtain the bosonized Hamiltonians

Ht ¼
Z

dxt̃ðxÞ cos½
ffiffiffi
2

p
ϕρðxÞ − k̄Fx� cos½

ffiffiffi
2

p
ϕσðxÞ�; ð10Þ

Hum ¼
Z

dxg̃umðxÞ cos½2
ffiffiffi
2

p
ϕρðxÞ − 2k̄Fx�; ð11Þ

Hpbs ¼
Z

dxg̃pbsðxÞ cos½2
ffiffiffi
2

p
θσðxÞ þ 2δkFx� ð12Þ

with t̃ðxÞ ¼ 2tðxÞ=ðπαÞ, g̃sðxÞ ¼ gsðxÞ=ð2π2α2Þ, g̃pbsðxÞ ¼
gpbsðxÞ=ð2π2α2Þ, k̄F¼ðkF;1þkF;2Þ, and δkF¼ðkF;1−kF;2Þ,
where kF;1, kF;2 are the chemical potential in edge 1, 2,
respectively.
Note that Hum and Hpbs commute with each other but

both do not commute with Ht [63]. Hence, they cannot be
ordered simultaneously in the same region of space.
Therefore, pinning of the bosonic fields in the strong
coupling regime is only possible if either single- or two-
particle scattering dominates the physics. For the emer-
gence of parafermions, it is mandatory that at least one of
the two 2-particle scattering terms (Hum or Hpbs) provides
the dominant interaction. Only then the required ground
state degeneracy is present.
We now consider the relative importance of the terms in

Eqs. (10)–(12). At the Dirac point, where kF;1 ¼ kF;2 ¼ 0,
the RG equations of the terms [Eqs. (10)–(11)] can be
straightforwardly obtained, see SM [54]. All the three terms
are RG relevant for a wide range of repulsive interactions
[60,64–66]. We can order their relative importance accord-
ing to their scaling dimension. This ordering yields the
following inequalities between Kρ and Kσ for the regime
in parameter space where two-particle terms dominate the
low-energy physics

Kσ > 3Kρ; ð13Þ

Kσ > −Kρ=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

ρ=4þ 4

q
: ð14Þ

These equations emerge from imposing the required
hierarchy in the scaling dimensions such that at least
one of the two 2-particle backscattering terms [Eqs. (11)
or (12)] dominates over the single-particle backscattering
term [Eq. (10)], see SM [54]. More precisely, if Eq. (13)
[Eq. (14)] is fulfilled, then Hum (Hpbs) dominates over Ht

in the RG sense. The conditions are illustrated in Fig. 2.
As Kσ cannot exceed 1=Kρ in our model, the shaded areas
represent the parameter space for which at least one of the
two 2-particle processes is dominant. For the emergence of
parafermions, it is indeed sufficient (as we show below)
that either Hpbs or Hum is more relevant than Ht. In fact,
whenHum is the most relevant interaction, we first pin ϕρ to
minimize the contribution from the dominating term Hum.
It turns out that for the pinned values that ϕρ is forced to,Ht

vanishes exactly. Due to this property, this subsequently
also allowed us to pin the bosonic field operators that
characterize Hpbs. Having Hpbs stronger than Ht, and
consequently pinning θσ , this also allows us to neglect
Ht on the basis of energetics [37]. The lowest energy states,
which are degenerate in the absence of Ht, are then
obtained by pinning Hum.
If we look at Fig. 2, it suggests thatKρ < 1=

ffiffiffi
3

p
≈ 0.58 is

needed such that two-particle backscattering dominates
over single-particle scattering. This range of Kρ still
corresponds to rather strong Coulomb interactions. In fact,
the constraint can be released a little bit if inter- and
intraedge forward scattering are more accurately taken into
account, see SM [54]. Nevertheless, there is no substantial
gain by these refined arguments in terms of a reduction of
the required interaction strength. Fortunately, there are two
physical scenarios that lead to a suppression of single-
particle backscattering compared to the two-particle proc-
esses (even in the regime 1=

ffiffiffi
3

p
< Kρ < 1). (i) We can

take into account the different origin of the coupling
constants of single- and two-particle scattering. The ampli-
tude of single-particle scattering is related to the overlap of
the wave functions of the edge states. Thus, it decays

FIG. 2. Illustration of the conditions obtained from the RG
analysis of the various terms. The lines correspond to Kσ ¼ 3Kρ

(green), Kσ ¼ −Kρ=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

ρ=4þ 4
q

(red), and Kσ ¼ 1=Kρ

(blue). The light and dark blue shaded areas mark the parameter
regime where two-particle terms are RG dominant.
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exponentially with the width of the QC. In contrast, the
amplitude of two-particle scattering is related to Coulomb
interactions following a power-law decay. We hence expect
the existence of a geometric regime of the QC where single
particle backscattering can be neglected compared to two-
particle backscattering [67,68]. In this scenario, we require
the chemical potential to be sufficiently close to the Dirac
point in both edges such that k̄F ≪ a−1 and δkF ≪ a−1

with a being the length of the QC. (ii) For narrow QCs,
where the electrostatical environment is approximately the
same for both edges, we can assume δkF ¼ 0. Thus, a finite
chemical potential mainly affects Ht and Hum, but leaves
Hpbs invariant. If the flow is analyzed at a fixed chemical
potential, we find a finite chemical potential range in which
Ht andHum are still relevant [52]. However, for k̄Fa ≳ π the
energy contribution of these terms is reduced at least by
1=ðk̄FaÞ with a being the length of the QC. Typical values
in experiments based on Hg(Cd)Te quantum wells are
given by a ∼ 300 nm and kmax

F ∼ 2 × 107 m−1 [18]. This
reduction can then lead to a crossover for which Hpbs

becomes the dominant scattering process.
Under the assumption that two-particle scattering domi-

nates the physics in the QC at low energies, we drop the
single-particle scattering completely for the subsequent
discussion of parafermions. As the relative weight of g̃um
and g̃pbs does not influences the groundstate degeneracy, we
choose for simplicity gpbsðxÞ ¼ gumðxÞ and reorganize
Eqs. (11) and (12) into

H2p¼HumþHpbs¼
Z

dx2g̃pbsðxÞcos½2ϕ1ðxÞ�cos½2ϕ2ðxÞ�:

ð15Þ

This Hamiltonian constitutes the basis for the following
construction of parafermionic operators.
Parafermions.—Non-Abelian exchange statistics

requires ground-state degeneracy. In the thermodynamic
limit for the gapped phase of a sine-Gordon theory, it makes
sense to assume that, deep inside the gapped area, the fields
are pinned such that the cosine potential is minimized. The
corresponding fields ϕ1=2ðxÞ; θ1=2ðxÞ can take values ½0; 2π½
(modulo 2π) [27]. Within this range, several minima of the
assigned cosine or sine potentials can be reached, which
implies a degenerate ground state. For the superconducting
section [region III of Fig. 1(a)], the fields θ1ðxÞ and θ2ðxÞ
are pinned independently. To properly formalize this, we
introduce phase fields θ̂1 and θ̂2, where the corresponding
eigenvalues are designated to the pinned values. The gap
induced by the QC [region I of Fig. 1(a)], however, involves
both edges, implying a correlation between ϕ1ðxÞ and
ϕ2ðxÞ. Indeed, minimization of Eq. (15) is achieved
whenever one of the two cosines is maximized and the
other is minimized. This constraint forces a relation
between the assigned phase fields ϕ̂1 and ϕ̂2

ϕ̂2 ¼ −ϕ̂1 − π=2þ πl̂; ð16Þ

where ϕ̂1 takes the eigenvalues ϕ1 ∈ f0; π=2; π; 3=2πg and
the integer valued operator l̂ with eigenvalues l ∈ f1; 2g
(modulo 2) relates ϕ̂1 and ϕ̂2. The representation of ϕ̂2 in
terms of ϕ̂1, together with Eq. (3) for the system shown in
Fig. 1(a), implies the following commutation relations

½l̂; θ̂1� ¼ ½l̂; θ̂2� ¼ i; ½ϕ̂1; θ̂1� ¼ iπ; ½ϕ̂1; θ̂2� ¼ 0: ð17Þ
With Eq. (16), the two-particle scattering [Eq. (15)] in the
QC can be written as

H2p ¼ −g̃pbsaðcos½4ϕ̂1 − 2πl̂� þ cos½2πl̂�Þ; ð18Þ
where we assumed the length of each section to be a for
simplicity.
With the (quasi)conjugate variables ϕ̂1, l̂, θ̂1, θ̂2 and

the different sections being disjoint, we are able to
construct parafermionic bound states at the interface
between two neighboring sections, in a similar way as in
Refs. [28,32,33]. The major difference in our case (as
compared to previous work) stems from the presence of the
operator l̂. It turns out that this operator can change the
ground-state manifold and lead to nonlocal bound state
operators. This nonlocality arises as any parafermionic
operator, applied to a certain ground state, cannot add
energy to the system but rather projects the system onto
another (degenerate) ground state. This implies that the
parafermionic creation operator necessarily needs to com-
mute with the Hamiltonian. For our present case, however,
it is not possible to write a purely local operator that obeys
this constraint. This is indeed a direct consequence of
the presence of the operator l̂ that couples ϕ̂1 and ϕ̂2.
We find that the set of operators feiðπ=2ÞŜ; eiπl̂g, where

πŜ ¼ θ̂1 − θ̂2, commute with the Hamiltonian and among
themselves. They induce the degenerate set of states js; li,
each of which satisfying eiðπ=2ÞŜjs; li ¼ eiðπ=2Þsjs; li and
eiπl̂js;li¼eiπljs;li with distinct eigenvalues s ∈ f0; 1; 2; 3g
(modulo 4) and l ∈ f1; 2g (modulo 2). Moreover, it is easy
to demonstrate that the operators

χ̂s¼ eiπ=4eiπϕ̂1ei=2ðθ̂1−θ̂2Þ; χ̂l ¼ eiπ=2ei=2ðθ̂1þθ̂2Þeiπl̂ ð19Þ

commute with the Hamiltonian and describe creation
operators of the quantum numbers s and l, respectively,

χ̂sjs;li¼ eiðπ=2Þsjsþ1; li; χ̂ljs; li¼ eiπljs;lþ1i: ð20Þ

From Eqs. (19) and (20), we obtain the relations

χ̂sχ̂l ¼ e−iπ=2χ̂lχ̂s; χ̂4s ¼ 1; χ̂2l ¼ 1: ð21Þ
These relations imply the simultaneous presence of a Z4

parafermion (χ̂s) as well as a Majorana zero mode (χ̂l).
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To the best of our knowledge, this combination has not
been predicted before. It should be noted that the fields θ̂1
and θ̂2 are necessarily contained within each operator.
Hence, they describe nonlocal bound states delocalized
across the upper and lower edge of region II in Fig. 1(a).
Interestingly, we can slightly modify our setup according

to Fig. 1(b) to obtain local parafermions. The physical
situation corresponds to a pinched off QC, which is either
realized by a strong impurity or a physical boundary of
the structure. We can model it by adding the impurity
Hamiltonian [65]

Himp ¼ V½ψ̂†
R;↑ð0Þψ̂L;↑ð0Þ þ ψ̂†

L;↓ð0Þψ̂R;↓ð0Þ� þ H:c: ð22Þ

The corresponding (hard-wall) boundary conditions are
derived on the fermionic level [69–72] (see SM [54]). In
bosonic language, it forces the following (nonlocal) rela-
tions between bosonic field operators

ϕ2ðxÞ ¼ −ϕ1ð−xÞ − π=2; θ2ðxÞ ¼ θ1ð−xÞ: ð23Þ

Although Eq. (23) contains two different points x and −x in
space, the similarity to Eq. (16) is apparent, where now the
operator l̂ (that induced the nonlocality of the resulting
bound state operators) is absent since the pinning of the
fields due to interactions has not been performed yet.
Starting from the physical setup depicted in Fig. 1(b),
taking into account Eq. (23), we unfold the system to
arrive at an equivalent (sine-Gordon) model illustrated in
Fig. 1(c). Note that the unfolding is a pure mathematical
procedure with no physical meaning. The resulting sine-
Gordon model contains the following mass terms

HΔ ¼HΔ−þHΔþ ¼ Δ̃
�Z

−b

−c
þ
Z

c

b

�
dx sin½2θ1ðxÞ�; ð24Þ

H̃2p ¼ −g̃pbs
Z

a

−a
dx cos½2ϕ1ðxÞ� cos½2ϕ1ð−xÞ�; ð25Þ

which includes nonlocal interaction terms coupling the
fields at position x and −x [69]. The minimization of
Eq. (25) requires a constant field ϕ1ðxÞ ¼ ϕ1ð−xÞ ¼ ϕ̂,
since any modulation with space adds energy ∝ g̃pbs. With

the introduction of phase fields ϕ̂1 and θ̂� [where � refers
to the superconductor right (þ) and left (−) of the origin in
Fig. 1(c)], we obtain effective Hamiltonians

HΔ� ¼ Δ̃ðc − bÞ sin½2θ̂��; ð26Þ

H2p;j ¼ −g̃pbsaðcos½4ϕ̂1� þ 1Þ: ð27Þ

The relevant bosonic field operators obey the following
commutation relations ½ϕ̂1; θ̂−� ¼ 0, ½ϕ̂1; θ̂þ� ¼ iπ, which
imply that

ξ̂− ¼ eiϕ̂1eði=2Þθ̂− ; ξ̂þ ¼ eiϕ̂1eði=2Þθ̂þ ð28Þ

commute with the Hamiltonian and obey parafermionic
exchange relations

ξ̂−ξ̂þ ¼ e−iπ=2ξ̂þξ̂−; ξ̂4� ¼ 1: ð29Þ

The fourfold degenerate groundstate manifold is formed by
eigenstates of the operator ξ̂†−ξ̂þ ¼ eði=2Þðθ̂þ−θ̂−Þ, measuring
the spin trapped in between the two superconducting
regions in space. ξ̂� are purely local operators, bound in
region II of Fig. 1(b), where each helical edge is occupied
by a single parafermion. Including small overlaps between
the two parafermionic bound states, this would result in a
8π-periodic Josephson current, when a superconducting
phase shift is applied between the superconductors of upper
and lower edge [27].
To summarize, we have proposed a system composed of

a QC and proximity induced s-wave superconductivity in a
QSHI that can host Z4 parafermionic bound states even in
the weakly interacting regime. This finding is based on the
competition between different coupling terms in the QC.
We discuss their relative importance and construct explicit
operators for the bound states. Our predictions should be
observable by tunneling spectroscopy or the Josephson
effect.
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