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Tunneling spectroscopy of one-dimensional interacting wires can be profoundly sensitive to the
boundary conditions of the wire. Here, we analyze the tunneling spectroscopy of a wire coupled to
capacitive metallic leads. Strikingly, with increasing many-body interactions in the wire, the impact of the
boundary noise becomes more prominent. This interplay allows for a smooth crossover from standard 1D
tunneling signatures into a regime where the tunneling is dominated by the fluctuations at the leads. This
regime is characterized by an elevated zero-bias tunneling alongside a universal power-law decay at high
energies. Furthermore, local tunneling measurements in this regime show a unique spatial dependence that
marks the formation of plasmonic standing waves in the wire. Our result offers a tunable method by which
to control the boundary effects and measure the interaction strength (Luttinger parameter) within the wire.
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Advances in control and design of mesoscopic systems
have made it possible to realize a variety of ultrasmall
electronic tunnel junctions [1,2]. In such junctions, many-
body interactions and coherent effects compete with the
charge fluctuations and impedance of the environment to
profoundly impact the resulting tunneling characteristics;
the tunneling inside the junction excites the electromag-
netic modes of an external circuit making it extremely
sensitive to the circuit’s impedance [1–5]. This competition
alters the tunneling density of states (TDOS) of the various
device constituents, with a wide variety of such effects seen
in, e.g., normal-metal tunnel junctions [6], Josephon
junctions [7], and transmission lines [8]. Particular exam-
ples of such effects include, among others, the Coulomb
blockade [9], the Kondo effect [10–12], and Andreev
bound modes [13–16].
Tunnel junctions involving one-dimensional (1D) quan-

tum wires are especially intriguing, since many-body
interactions fundamentally alter the emergent many-body
physics compared with conventional Fermi-liquid metals.
Interacting wires are better described using Tomonaga-
Luttinger liquid (TLL) theory [17–19]: the low-energy
elementary excitations in 1D appear as collective bosonic
plasmon modes—in stark contrast to the constitutive
fermionic electrons. Consequently, 1D systems show exotic
phenomena, such as charge fractionalization of injected
electrons [20,21], spin-charge separation [22,23], and zero-
bias anomalies (ZBA) [24–27], all of which uniquely
interplay with disorder [28,29], quasidisorder [30], and
dissipation [31,32]. Such 1D effects are ubiquitous and
have been observed in a wide variety of systems from
nanotubes [33–36] to cleaved and V-groove GaAs wires
[22,23,37,38] through quantum Hall edges [39–41] and
engineered systems such as arrays of Josephson junctions
[42,43], ultracold atoms in 1D optical superlattices [44,45],

spin chains [46], and 1D crystals made of gold atoms [47]
or Li0.9Mo6O17 [48–50].
Recently, significant progress was made in the descrip-

tion of realistic finite-sized 1D wires with boundary
conditions both in and out of equilibrium [27,51–54].
These can generally be grouped into wires (i) with open
boundaries [55–57], (ii) connected to Ohmic contacts [58],
or (iii) coupled to inherently out-of-equilibrium charge
distributions [27,53]. The coupling between the wire and
the leads is usually treated as adiabatic on the scale of the
Fermi wavelength. This suppresses backscattering and thus
implies that dc transport through the wire cannot detect
interaction effects [51,57,59–63]. In contrast, a tunnel
junction, e.g., between a scanning tunneling microscope
(STM) and the wire, is ideally suited to sense these effects,
since it gives access to the wire’s energy distribution
function [64,65] or to the (local) TDOS [66] of the wire,
respectively. The latter commonly displays power-law
scaling dependent on the extent of many-body interactions
in the system [51,67]—quantified by the Luttinger para-
meter K—and is strongly impacted by the boundaries, i.e.,
impedance of the environment [3,4].
In this work, we study the impact of noisy capacitive

metallic leads adiabatically coupled to an interacting
quantum wire on tunneling from an STM into the wire.
The capacitance in the leads imposes a finite response time
in the wire, suppressing its fast high-energy excitations.
Surprisingly, with increasing many-body interactions, the
impact of the boundary noise on the wire is enhanced. The
TDOS then enters a regime where it is dominated by
the classical impedance of the capacitive reservoirs: (i) at
low energies, the finite length of the wire cuts off the
expected 1D tunneling zero-bias anomaly [57,67], and a
zero-bias tunneling peak appears instead as a function of
the environment capacitance; (ii) at high energies, the
characteristic power-law growth is replaced by a universal
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ω−3 decay [3]. Interestingly, this interaction-noise compe-
tition introduces a unique spatial dependence to the
TDOS, thus offering an external handle by which to control
the correlations in the wire, such that its Luttinger param-
eter can be tunably detected. To emphasize these novel
effects, we concentrate on a spinless model adiabatically
connected to the leads. For a discussion of the effects of
spin and tunnel coupling to leads we refer the reader to
Refs. [55,68–70] and [71], respectively. In the interest of
readability, we briefly introduce the system and state our
main result before showing the technical steps required to
obtain it.
We consider a finite 1D wire coupled to metallic leads,

depicted as an outer circuit that is characterized by an
Ohmic resistance R and the capacitance C, and probed by a
nearby STM, see Fig. 1(a). The STM signal measures the
local TDOS at position x along the wire [72],

νðx;ωÞ ¼ i
Z

dteiωt½G>ðx; tÞ − G<ðx; tÞ�; ð1Þ

where ω is the electron’s energy, and G<ðx; tÞ and G>ðx; tÞ
are the lesser and greater Green’s functions, respectively.
We work in natural units, where ℏ; e ¼ 1. In equilibrium,
G<ðx; tÞ ¼ −G>ðx;−tÞ [72] and it suffices to analyze
G<ðx;tÞ¼ihψ†ðx;tÞψðx;0Þi, where we wrote its definition
using the electronic field operator ψðx; tÞ, and the average
is taken with respect to the equilibrium ground state.
In one dimension, interacting electrons form a TLL with

collective wavelike plasmonic excitations [17–19,51,74].
An electron injected from the STM into the wire excites
plasmonic modes that propagate away such that the
probability amplitude for the excitation to tunnel back
into the STM decreases faster than in a noninteracting
system. This decay manifests as a power law in the Green’s
function [52,54,74]

lim
L→∞

G<ðx; tÞ ¼ iΛ
2πvF

1

ð1þ iΛtÞα ; ð2Þ

where L is the length of the wire, Λ is the bandwidth of the
electronic system, vF is the Fermi velocity, and α ¼
ðK þ K−1Þ=2 ≥ 1 is the interaction-dependent power-law
exponent for the Luttinger parameter K. For noninteracting
systems K ¼ 1, and therefore α ¼ 1.
In a finite wire, the effects of many-body interactions

compete with the noise arising at the boundaries
[27,52,53,58]. The latter is characterized, in our case, by
a power spectral density [75–77]

SðωÞ≡ hδjL=RðωÞδjL=Rð−ωÞi ¼
ω½1 − fFDðωÞ�
1þ τ2RCω

2
; ð3Þ

where τRC ¼ RC is the charging time of the capacitor in the
outer circuit, and fFDðωÞ ¼ ð1þ exp½ω=kBT�Þ−1 is the
Fermi-Dirac distribution in the left and right leads—
assumed here to be identical and uncorrelated. The main
difference between Eq. (3) and the power spectral density
of ideal Ohmic leads is that the RC circuit acts as an
additional low-pass filter [52,73], see Fig. 1(b).
We are interested in how the boundary noise (3) and

interaction-induced 1D plasmons manifest in the electronic
correlations in the wire, e.g., in G<ðx; tÞ. While the noise is
characterized by the charging time τRC, we shall see below
that the plasmonic waves are characterized by their time-of-
flight τ through the finite wire, cf. Eq. (9). We provide here
first a brief overview of our main results: the finite charging
time of the leads imposes two distinct regimes, (i) the large-
capacitance regime (see Fig. 2), where the time of flight is
much shorter than the charging time, τ ≪ τRC, and (ii) the
more commonly studied complementary small-capacitance
regime with τ ≫ τRC. The latter shows a standard
TLL behavior for short times t ≤ τ, whereas for long times
the finite wire acts as a 0D Fabry-Pérot cavity for the
plasmons and free-electron correlations are reobtained
(cf. Refs. [3,57,78]). Case (i) shows a richer behavior: at

(a) (b)

(c)

FIG. 1. (a) A 1D metallic quantum wire of length L is
connected to metallic leads, depicted as an outer circuit that is
characterized by an Ohmic resistance R and the capacitance to the
ground C. The leads act as electron reservoirs with well-defined
Fermi-Dirac distributions. The tunneling density of states
[Eq. (1)] at position x along the wire is probed by a nearby
scanning tunneling microscope (STM). (b) The zero temperature
power spectral-density SðωÞ of the RC-circuit’s noise [Eq. (3)]
(blue solid line) and two asymptotic limits: (i) ωτRC ≪ 1 (orange
dot-dashed line) corresponding to the behavior of ideal Ohmic
leads [73] and (ii) ωτRC ≫ 1 (red dashed line) where high-energy
fluctuations are damped by the circuit’s capacitance. (c) (Top) An
electron from the STM induces 1D plasmonic excitations, for
which the finite wire acts as an effective Fabry-Pérot interfer-
ometer with reflection (transmission) coefficients rA;B (tA;B).
(Bottom) A schematic view of the wire as left- and right-
propagating modes connected to two identical leads, that impart
current fluctuations δjL=RðtÞ onto the wire [Eq. (3)].
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short times (t ≪ τ; τRC), the boundary noise inhibits highly
excited plasmons and consequently suppresses tunneling,
whereas at long times (t ≫ τ; τRC), both the interactions
and noise correlations are averaged out to yield a similar 0D
plasmonic Fabry-Pérot behavior. Interestingly, at inter-
mediate times (τ < t < τRC), a competition between the
TLL correlations and the boundary response ensues,
showing both Fabry-Pérot oscillations, as well as nontrivial
power laws in the electronic correlations, cf. Eq. (10) and
see Fig. 2(a). Furthermore, the power laws show an
unexpected dependence on the STM’s position [79] that
can be observed through [see Fig. 2(b)]

g̃ðx; tÞ≡ G<ðx; tÞ
G<ðL=2; tÞ : ð4Þ

In Fig. 3(a), we plot the TDOS in the large-capacitance
regime. The spatial dependence can be seen in the
intermediate energy regime, see Fig. 3(b). For comparison,

in Fig. 3(c) we plot the TDOS for both finite- and infinite-
length interacting wires. The relatively flat peak of the
TDOS at low energies is a result of the finite length of the
wire that suppresses the ZBA of an infinite TLL [Fig. 3(c)],
and is in agreement with the free-electron behavior of
the Green’s function at long times, cf. Fig. 2(a) and
Refs. [57,80]. At high energies, interaction-induced
Fabry-Pérot oscillations appear but there is no interac-
tion-dependent power-law growth as compared with
both the finite- and infinite-TLL, where the TDOS
grows as νðωÞ=ν0 ∝ ωα−1, with α ¼ ðK þ K−1Þ=2 and
ν0 ¼ νðω; τRC ¼ 0; K ¼ 1Þ the TDOS into a noninteracting
metal with zero capacitance. This is a consequence of a
linear, interaction-independent growth of the Green’s
function at short times, see Fig. 2(a). Hence, the noise
of the capacitive leads suppresses the power-law growth
and causes the TDOS to drop as ν=ν0 ∝ ω−3, in similitude
to high-impedance tunnel junctions [1,3].

(a)

(b)

FIG. 2. The Green’s function of the wire in the large-capaci-
tance limit. (a) The imaginary (thin green line) and real (thick red
line) part of a lesser Green’s function G<ðL=2; tÞ [Eq. (7)]. The
dashed lines show the analytically obtained asymptotic limits for
long (t ≫ τRC) and short (t ≪ τRC) times. The shaded region
(light blue) marks the time interval τ < t < τRC where the
interaction-induced correlations in the wire compete with
the RC noise. (b) The real part of log½g̃ðx; tÞ� [Eq. (4)] exhibiting
the nontrivial power-law behavior of the Green’s function depend-
ing on the position of the STM tip (solid lines). Furthermore, our
analytical asymptotic result (dashed lines) [Eq. (11)] agrees with
the numerical result (solid lines). In all plots, we use an
experimentally realizable interaction parameter U=vF ¼ 15,
see, e.g., Refs. [33,34], and large capacitance, τRC=τ ¼ 100.

(a)

(c)(b)

FIG. 3. (a) The normalized TDOS ν=ν0 in the large-capacitance
regime (τRC=τ ¼ 100) calculated for five different STM positions
in the wire. At high energies, ω ≫ 2π=τRC, the tunneling is
suppressed and the TDOS exhibits a power-law decay. Inter-
action-induced Fabry-Pérot oscillations with a period of 2π=τ are
present at high energies. For low energies, the TDOS is constant
that depends on the value of τRC. (b) An enlargement on (a) where
the TDOS is rescaled by a factor ω3 such that the difference
between different measuring positions inside the wire can be seen
more clearly. (c) The TDOS of a finite (blue solid line) and
infinite (black dashed line) TLL when the capacitance in the
leads is set to zero. In a finite-length TLL, the zero-bias TDOS
does not vanish but saturates at a finite value [57]. Note that the
normalization of the TDOS is with respect to the value of
noninteracting TDOS with vanishing capacitance, ν0. The
interaction strength used in all plots is U=vF ¼ 15.
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Model.—To obtain our results, we closely follow
the derivation used in Refs. [57,80]. We consider
the Hamiltonian density of a single-channel wire
[51,52,54,57,74]

HðxÞ ¼ −ivF½ψ†
RðxÞ∂xψRðxÞ − ψ†

LðxÞ∂xψLðxÞ�

þ
X

η;η0¼L;R

Z
dyVηη0 ðx − yÞρηðxÞρη0 ðyÞ; ð5Þ

where the left- and right-moving electrons (η ¼ L, R) are
described by field operators ψηðxÞ, and Vηη0 ðxÞ is the
electronic interaction between (normal-ordered) density
operators ρηðxÞ ¼ ∶ψ†

ηðxÞψηðxÞ∶. The first term describes
the kinetic contribution for a linearized dispersion EðδkÞ ¼
vFδk around the Fermi momentum kF, such that the
electron field ψðxÞ ≃ e−ikFxψLðxÞ þ eikFxψRðxÞ. We further
assume that the effective electron-electron interaction is
pointlike, i.e., Vηη0 ðxÞ ¼ UδðxÞ. Note that the linearized
dispersion is associated with a bandwidth Λ serving as a
high-energy cutoff. Using bosonization [74], we introduce
new bosonic field operators ϕηðxÞ related to the electron
density by ρηðxÞ ¼ ∂xϕη=2π, with commutation relations
½ϕL=RðxÞ; ∂xϕL=RðyÞ� ¼ �2πiδðx − yÞ. These fields are
defined via ψηðxÞ≕ F̂ηðΛ=½2vFπ�Þ1=2e−iϕηðxÞ, where the
Klein factors F̂η ensure fermionic anticommutation of
ψη. In this language, the Hamiltonian takes a simple
quadratic form [51,52,74]

HðxÞ ¼
�
vF
4π

þ U
8π2

� X
η¼L;R

ð∂xϕηÞ2 þ
U
4π2

∂xϕL∂xϕR: ð6Þ

Substituting the bosonization identities into the lesser
Green’s function of a finite wire, we obtain

G<
η ðx; tÞ ¼

iΛ
2πvF

exp

�
−
1

2
h½ϕηðx; tÞ − ϕηðx; 0Þ�2i

�
; ð7Þ

where we have used the fact that the charge fluctuations
at the boundaries are Gaussian distributed, and that
hF†

ηFηi ¼ 1. Note that the overall Green’s function is
G<ðx; tÞ ¼ G<

L ðx; tÞ þ G<
Rðx; tÞ [72]. Using the equations

of motion for the fields ϕη [80], we find (in similitude to
Ref. [57]) that G<

η ðx; tÞ≡ iΛ=ð2πvFÞ exp½−Iðx; tÞ� with
the integral

Iðx; tÞ ¼
Z

Λ

−Λ

dω
ω2

ð1 − e−iωtÞF ðx;ωÞSðωÞ; ð8Þ

where SðωÞ is as in Eq. (3). The structure function

F ðx;ωÞ≡ 1þ χ − 2χ cosðτωÞ cos½2τωð1
2
− x

LÞ�
1 − χ cosð2τωÞ ð9Þ

captures both interaction effects through the parameter χ−1≡
½1þ8πvF=Uþ8π2ðvF=UÞ2�¼½1−8K2=ð1þ6K2þK4Þ�−1,
and the finite length of the wire through the time of flight of
the plasmonic excitations τ ¼ ðL=vFÞð1þ π−1U=vFÞ−1=2.
This structure function is equivalent to that of a plasmonic
Fabry-Pérot interferometer of length L. Indeed, the same
expression is obtained when describing a free particle that is
injected at a position x and is reflected from the two
boundaries with reflection and tunneling coefficients
rA;B ≡ r, tA;B ≡ t, respectively, where χ ¼ 2r2ð1þ r4Þ−1
[cf. Fig. 1(c) and Refs. [20,53,57,87]]. This implies that the
plasmonic character of excitations in the wire (due to
interactions) causes reflections from the free-electron
boundaries.
We can now (i) evaluate G<

η ðx; tÞ numerically using
Eqs. (3) and (7)–(9) for different devices with varying
τRC=τ and U=vF [80], as well as (ii) find analytical
asymptotic results for the specific time windows mentioned
above. In the latter, we assume that the STM is placed
in proximity to the middle of the wire, such that
ð1=2 − x=LÞ ≪ 1.
Large-capacitance regime ðτ ≪ τRCÞ.—For short times,

t ≪ τ ≪ τRC, the real-part of the Green’s function is linear,
while its imaginary part reaches a finite value, i.e.,
G<ðx; t → 0Þ ¼ ΛðπvFÞ−1ði − πt=2τRCÞ, see Fig. 2(a).
This behavior leads to the reduced TDOS at high energies,
see Eq. (1) and Fig. 3(a). The large capacitance in the leads
effectively acts as a low-pass filter for the plasmonic
modes, and inhibits the conversion of high-energy STM
electrons into plasmons.
At intermediate times, τ ≪ t ≪ τRC, the main weight of

the integral Iðx; tÞ [Eq. (8)] lies at ω ≫ τ−1RC, where the
spectral function is approximated as SðωÞ ≈ 1=τ2RCω

−1. We
expand the cosine terms in Eq. (9) in small τ=t ≪ 1, to
obtain

G<ðx; tÞ ≈ G<ðL=2; tÞ iΛ
2πvF

1

ð1þ itΛÞαðxÞ ; ð10Þ

with a spatially dependent exponent

αðxÞ ¼
�
1

2
−
x
L

�
2 ðK2 − 1Þ2

2K3

τ2

τ2RC
: ð11Þ

The first factor in Eq. (10) does not depend on the position
within the wire. Remarkably, however, the second factor
has the same power-law form as that of the Green’s function
of an infinite TLL, see Eq. (2)—with the notable difference
that the exponent has a spatial dependence. This exponent
can be extracted from g̃ðx; tÞ as defined in Eq. (4), see
Fig. 2(b).
In the long time limit, τ ≪ τRC ≪ t, the main weight

of the integral Iðx; tÞ [Eq. (8)] stems from small energies,
ω ≪ τRC

−1, where the spectral function is approximated
as SðωÞ ≈ ω½1 − fFDðωÞ�, see Fig. 1(b). Furthermore, for
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τ ≪ t, the structure function is constant, i.e., F ðx;ωÞ≈
1þOðτ2=t2Þ. Hence, the leading term in Eq. (8) becomes
Iðx; tÞ ¼ γE þ logðt=τRCÞ þ iπ=2 with γE the Euler
constant, resulting in a free-electron response, G<ðtÞ ¼
−ΛðπvFÞ−1 expðγEÞτRC=t [cf. Eq. (2)]. The plasmons
created by the STM reflect back and forth multiple times
between the boundaries such that their interference “washes
out” the effects of 1D interactions, and a 0D plasmonic
cavity forms [3,57].
Conclusion.—The competition between noisy capacitive

boundaries and many-body interactions in a finite quantum
wire can smoothly alter its temporal and spatial correla-
tions. Specifically, we find that the many-body interactions
drive the wire to display a TDOS with features that are
dominated by the classical fluctuations of its boundaries.
Moreover, the emergent TDOS is predicted to be spatially
dependent and can be measured using, e.g., a scanning
tunneling microscope. Employing this emergent spatial
dependence and control over the classical boundary noise,
one can extract the Luttinger parameter of a finite interact-
ing wire with the ability of performing multiple measure-
ments on a single sample. The model considered here is
applicable to a broad set of experimental realizations [80].
In the mesoscopic realizations, the leads and STM are
available, while in engineered systems they can be
designed, e.g., in cold atomic transport experiments, the
atomic reservoirs can be embedded into external reservoirs
[81] to induce noise and a third reservoir can accomplish
the role of an STM. In Ref. [80], we provide a table with
realistic parameters for a variety of 1D platforms, demon-
strating the experimental feasibility of our model.
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