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Spin-1 ladder: A bosonization study
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We construct a field-theoretic description of two coupled spin-1 Heisenberg chains, starting with the known
representation of a single spin-1 chain in terms of Majorana ferm{imnising models After reexamining the
bosonization rules for two Ising models, taking particular care of order and disorder operators, we obtain a
bosonic description of the spin-1 ladder. From renormalization-group and mean-field arguments, we conclude
that, for a small interchain coupling, the spin-1 ladder is approximately described by three decoupled, two-
frequency sine-Gordon models. We then predict that, starting with decoupled chains, the spin gap decreases
linearly with interchain coupling, in both the ferromagnetic and antiferromagnetic directions. Finally, we
discuss the possibility of an incommensurate phase in the spin-1 zigzag chain.

I. INTRODUCTION whereS, ; is a spin-1 operator at sifeon chaina(a=1,2).
At this critical point the two chains are decoupled, each
Among the properties of spin ladders, the best known ihain being described by an integrable mddelhich is
the reduction of order as we go from a single spikleisen-  equivalent in the continuum limit to a level-2 (& Wess-
berg chain to two coupled chains: the single spiohain is ~ Zumino-Witten (WZW) model® We then need to consider
critical (its correlation length is infinitewhereas the spig-  the following perturbatiorisee Fig. 1
ladder has finite-range correlations and an excitation gap,
growing linearly with interchain couplind, , at least for
small J, (for a review and further references, see Ref. 1 Hi=(1+7)2 (Syi-S,i+1)>
This may seem paradoxical because one would naively ex- ha ' '
pect that coupling two quasiordered chains would only in- 1
crgasle thg tendency to order, b_ut a critical system like the + EJLE S [(1+8)S+(1-8)S:1]. (2
spin5 Heisenberg chain is easily sent off-criticality by a [
perturbation such as ladder couplidg. In this paper we
will study the corresponding spin-1 laddéwo coupled \yhen (1+7)>0, the first term brings us back to the
spin-1 chaing which is already disordered and has a finite Hejsenberg point 4=0). The interchain interaction, of
gap atJ, =0. On the contrary, we will argue that the spin strengthJ, , is that of a ladder§= + 1) or of a zigzag chain
gap decreases ab increases from zero, and does so for(s—0). We will proceed by(i) constructing a continuum
both antiferromagnetic and ferromagnetic interchain couyescription of the interaction in term of WZW models and
plings, thus giving the gajA(J,) a nonanalytic behavida (i) finding out the behavior of this perturbed WZW model
cusp at zero(cf. Fig. 4 below. We will arrive at this con-  py field-theoretic methods, mainly through representations in
clusion after obtaining a field-theoretic description of theterms of Ising models(fermionization and sine-Gordon
spin-1 ladder in terms of six quantum Ising models or, alterynodels(bosonization
nately in terms of three boson fields. The motivation for  This paper is organized as follows. In Sec. I, we review
using bosonization is that it offers a safer description of thene field-theoretic description of a single spin-1 chain, in
system at weald, , valid for both positive and negativk , articular its representation in terms of three Majorana fer-
and allows at the same time for a description of the spin-Inions(or Ising models In Sec. I1l, we write down a repre-
zigzag chain, in which frustration plays a role. Thus, at smalkentation of two coupled spin-1 chains in terms of three
J;, this method is more general and reliable than@model  posons, using the bosonization formulas for pairs of Ising
description. For a small antiferromagnetic interchain coumodels given in Appendix A. In Sec. IV, the behavior of the
pling, the drop in the gap as a function &f was already  spin gap as a function of interchain coupling is inferred from
noticed in Monte Carlo simulations and accounted for with &this hosonized description. In Sec. V, the spin-1 zigzag chain

nonlinearc- model description of the spin-1 ladder. s considered instead, and a weak interchain coupling is ar-
We will consider the spin-1 ladder as a perturbed critical

model, so that the low-energy description of the system will | o _ _ _ .

be a perturbed conformal field theory. The critical model a;' -
used as a starting point is a pair of decoupled biquadratic & \w/
spin chains, with Hamiltonian 5 ‘j

HOZE {Sa,i Spiv1—(Sui- Sa,i+l)2}r (1) FIG.. 1. Schematlc |IIustrat.|0n of the goupled spin chglns with
a the various couplings, normalized to the intrachain coupling.
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gued to cause a short-distance incommensurability, i.e., ehain and the WZW model is given by the following repre-

displacement of the minimum of the one-magnon spectrunsentation of the spin operators in the continuum lit:

from gq= . 1 1
— R(x)= =[I(X) +IA(X) ]+ (— 1)Y00g%(x), (6

Il. CONTINUUM DESCRIPTION OF THE SINGLE SPIN-1 ag ) 2[ ) COJ+( ) 9" ®)

CHAIN wherea, is the lattice constant) a nonuniversal constant,

A. Phase diagram J? and J? are the right and left @) currents, andy® is

Let us first review the phase diagram of the biquadraticdefined in terms of Pauli matrices as
spin-1 chairf

1 1
g°=—=Tr(0°9)= = 2 o Gnm-: (7)
H=2 (S Sa+ 7SS0, 3 V2 V2

L The currents §&, J?) and the fieldg? correspond to the soft
At 7=—1, the Hamiltonian is integrable and has gaplessygges of the spin chain nele=0 andr, respectively.
modes ak=0 andk=. It is also integrable ay=1 and For 1+ 5 not too large, the spin chain may be described

has then gapless modeskat 0 andk==*2x/3. If »<—1, b\ the ahove WZW model, plus the following perturbatfon:
we have a dimerized phase characterized by two degeneraté

ground states with a finite gap. On the other hand, in the £1=mTr<I>—)\1Jaja, @)
interval ne (—1,1) the spectrum has a singlet ground state

with a finite gap. This is the so-called Haldane phase, chawhere a summation over repeated indices is implicit and
acterized by the spontaneous breakdown ofZa<7,  —mis proportional to (¥ ) (mis negative in the Haldane
symmetry’® This breakdown implies a fourfold-degenerate phas¢. The second term is the marginally irrelevant pertur-
ground state in an open chain, but these different grounéation alluded to abovéf X\;>0). On the other hand, the
states differ only by the spins at the ends of the chain, and ifirst term (Tr®) is relevant, with scaling dimension 1, and
this sense they are equivalent in the thermodynamic limitleads to a gap proportional fen|s|1+ 7|.

The excitations are solitons switching from one ground state There is an interesting equivalence between kise2

at x— —o to another ground state at—«. Related to the su2) WZW model and three quantum Ising mod&lsnd so
symmetry breaking is a dilute antiferromagnetic order; schewe will not have to deal with the WZW model directly. This
matically, equivalence is defined by the following relations:

+0---0-0---0+0---0—. (4) i

JBr=— , = , 9
This order is defined by an alternation of sites wh= 1 \/Eeabcwbd/c \/Eeabcwbwc ©

and S,=—1, with someS,=0 sites in between. It can be

measured by the so-called string order parameter l _ ¢ _
1 <I)1=E(—¢l+|¢2), o=, <I),1=—2(1//1+|¢2),
O0*= lim <s§ exp(m > s§> sfn>. (5) (10)
m—n—o k=n+1

This order parameter and the gap are maximakatl/3, - :z L TN & T & :z - .=
where the valence-bond-solid-like ground state is exactly ®; \/5( Y1=ith2) Po={ys, Py \/5("/’1 Hh2),
known? The gap grows monotonically fromy=—1 to (11
=0 without a phase transition, and thus we may consider the
Heisenberg point #=0) as a perturbation of the critical 90:\/5010203, ga:_\/igaﬂaﬂﬂa”, (12
point (p=—1).

Note also that incommensurability develops startinggat where the latin index goes from 1 to 3, and ¢, are re-
~0.4: the peak in the spin-spin correlation function movingspectively, the right and left fermions associated with each
from k= 7 to k=27/3 at »= 1 .1° This last transition pointis Ising model(see the Appendix o, and u, are the order and
described by an S@) generalization of the Kosterlitz- disorder fields of each Ising model. Thex3 matrix field

Thouless phase transitidh. &, is here factorized a®,,,=P,P,. The constantg and
_ _ o { are such that their product ig=i. Note that our relations
B. Field-theoretic description differ slightly from those given by Fateev and

The critical point (p=—1) is equivalent, in the low- Zamolodchikov:® The action of the WZW model in imagi-
energy limit, to a conformal field theory: the (81 Wess-  nary time becomes simply that of free Majorana fermions:
Zumino-Witten model at levet=2, plus a marginally irrel- 1
evant perturbation.This WZW model contains two scaling :_f AX A hodra+ hadilr. 13
fields: a spin doubleg,,(m,ne{—3,3}) with left and right Swaw=5 (Vadat Yadta). (13

. . 3 . . _
conformal dimensions,15) and & spin tripletdp(m,n whered=(d,—i4d,)/2 andd=(d,+id,)/2 (in order to lighten

e{—1,0,1}) with dimensions £,3). They are, respectively, the notation, the characteristic velocityof the WZW model
2X2 and 3x3 matrix fields. The link between the spin has been set to unityThe perturbatior{8) becomes
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_ o o The unprimed fields correspond to the first chain and the
Lr=Mada=Mavatatils. 14 primed fields to second chain. The first three terms represent
Except for the marginally irrelevant term, the spin chain isthe intrachain interaction and the last four terms the inter-
thus equivalent to three Majorana fermions of massThis  chain coupling. The interchain couplings,,A3,\, and p
description of the spin-1 chain has been proposed bwre, respectively, proportional td, ,J, ,J, d, and J, (1
Tsvelik'* who used it to study the effect of a magnetic field — 6%) at high energy, but they renormalize differently to-
on the low-energy spectrum. It was also used in a fieldwards low energy. The last term, neglected in previous field-
theoretic treatment of the spintadderf® and of the spiny  theoretic studies of the spihzigzag chain?!® has been
zigzag chairt® considered by Nersesyan all’ The particularity of this per-
The representatio(®)—(12) of the WZW fields is invari- turbation is its nonzero conformal spin, which makes the
ant under the following changeffor a=1,2,3 simulta- study of its relevance nontrivial. Nersesyast al. have

neously: shown that, for the spin-1/XX zigzag chain, this perturba-
tion (called thetwist term) leads to a critical incommensu-
Yo — W, Ya— — e, Ma— —fha, Ta—0g. rable phase. Finally note that must be zero for the spin

(15) ladder, whereaa vanishes for the pure zigzag chain. In the
following we will consider the Haldane phase only so timat
This is related to the absence of fermionic field in the WZWis negative.
model. This “gauge” symmetry accounts for the expected The Lagrangiari16) is difficult to study in terms of WZW
degeneracy of the ground state near the critical point in opefields. The simplest information we may extract from it is the
chains. Specifically, recall tham<0 in the Haldane phase. scaling dimension of the various perturbations, from those of
In our formulation, this corresponds to the disordered phaséhe various WZW fields. Thus, the interchain couplings
of the Ising modelgsee the Appendjxand the expectation )\, \;,\, andp, respectively, have scaling dimension 2, 2,
value of the disordered operators is nonzéjo;)# 0. In this 43_1: and%_ Moreover, the couplings, andp have conformal
phase each Ising model has a doubly degenerate grounghin. By itself, a relevant coupling of scaling dimension
state, associated with different spin configurations at the end§<2 and zero conformal Spin is expected to produce a gap
of the open Ising chain. The two ground states differ in theof order A~g(?~". Thus, at the in-chain critical point(
sign of (u,). For the spin chain, this degeneracy implies an=—1), the interchain coupling would open a gap of order
apparent eightfold (8 2%) degeneracy, but the gauge invari-
ance (15) reduces this to a physical fourfold degeneracy. A(N)~\Y5 (17
These different ground states come from the breakdown of )
the hidder,x 7, nonlocal symmetry alluded to above, and In the spin-1 ladder. - _ _
are physically equivalent in the thermodynamic limit. In this _ However, far from the critical point, the WZW model is
Ising model description of the spin chain, the elementanf little help in predicting the behavior of the gap and the
excitations are kinks switching from one value(gf,) at x fermionic language seems more appropriate. Using the rep-
— —o to its opposite ak— 0. On the other hand, Baand reseqtatlor(Q)—(12), we can express the Lagrangian (_jensny
Sdyom® have shown that the excitations of the Heisenberd16) in terms of Majorana fermions, order and disorder
model are solitons connecting the ground states with differli€lds. Unfortunately, the resulting expression is not easy to
ent values of the string parametés). We are thus led to study since it contains a mixture of fields that are mutually
identify these solitons with the kinks of the Ising model. nonlocal(the order and disorder operatprs _ _
We can do the same exercise for-0 (or 7<—1). We An interesting way to deal .Wlth the _Lagranglath) is
are now in the ordered phase of the Ising modgis;)#0. bosomzapon. The t\_/v_o-d|men3|oneﬂD) Ising models may
Such an expectation value is already invariant under th@€ Posonized by pairing thefsee the Appendix The natu-
gauge changél5) and therefore there are really eight physi- @/ Way to bosonize the ladder is to pair an Ising model
cally different ground states for the open chain. A hiddend€Scribing one chain with its twin on the other chain. Using
75X 7, symmetry breaking is again expected and so thes_gje relat|ons(_9)—(12), _(16)’ and(All), we obt_am the f_OHOW'
eight different ground states will be locally equivalent to two "9 Lagrangian density for two coupled spin-1 chains:
distinct ground states in the thermodynamic limit, corre-

sponding to the expected dimerized state. L=Lot Lo+ Lot LaT L+ Ly,

1
IIl. BOSONIZATION Lo= >, g[(é’,(pa)z-i-((9x<pa)2]—2mCOS(pa ,
a=1,2,3
Using the continuum descriptig®) of the spin operators,
we obtain the following Lagrangian density from the Hamil-
tonian(1),(2), in terms of WZW fields: L1=16\ 22 , (COSQ,+1C0SP,1 2+ COSOy41C0SHy 4 2),
a= s

L= Lyl 91+ Lzl 9 1+ MTrdé+mTrd’

Ly= 4)\2a;2 3 (0:Pa119:Par2— IxPar19xPa+2),

—N1(JR3+ 378073 + N 5(J7072+ 340’9

+N3(J2)'2+ 21"+ \g?g’?
L3=—8\ sin sin +sinf,..Sin06 ,

+p[g20,g"2— (,9%)g"?]. (16) 3 3a:;,2,3 (SiN@ay 1SN, a+1l at2)
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Lo=42n >, cos&sin@sinw, c0s2sim 2 e 22 — + 42 cos 2 + fluctuations.
a3 9523 2 253 2 2
(21
L,=—4\2p 3 cost, cos Agipatly Pat2 The sign depends on the relative choice of the ground state
a=123 2 2 2 for @441 and ¢, ,. Keeping only the most relevant terms

and neglecting the fluctuations of si#2 and cos around

— sinsin w> ' (18  these expectation values, we find the following effective La-
2 2 grangian:

whered, is the boson dual te, . To shorten the expression, 1

we have adopted a periodic condition on the index.e., Log=>, (_[(,; ©2)2+ (3,04)?]
a+3=a. The twist term.,, the trickiest to bosonized, has of 87 2 e
been inferred from the representatihl2) of the stress-

energy tensor for each Ising model, plus the usual operator —(2m—16\1a1)COS@,* 412\ a? cos?
product expansionfOPE) between the energy-momentum 2
tensor and a conformal field.
Thus, we have transformed the problem into a system of T4\2pacosh, cos&—cos(@—cosw )
three perturbed sine-Gordon models, although the simulta- 2 2 2
neous presence of the bosapg and of their dual field¥), (22)

makes some perturbations nonlocal. However, as we will o )
see, the most relevant perturbation is local and makes th@t this level of approximation, we have three perturbed sine-
problem tractable in this language. Note that our normalizaGordon models—mutually coupled only if#0—and the
tion is such that cogp,) is marginal for,8=\/§, and thus SIgn of the interchain coupling can be mcorporated in the
bound states appear in the sine-Gordon model det1. choice pf ground _state. Thus, a ferromagnetic or antiferro-
Also, for B< 2, the ¢,— @,+ 27 Ssymmetry is spontane- magnetic mtercham coupling would have the same effect.
ously broken and we have to consider fluctuations aroundi©te that the couplings andp break the charge conjugation
one of the minima of the potential. However, it is important SYMMetry(19).

to keep in mind that our bosonization procedure is from the

start invariant under the translatios,— ¢,+ 4, and this IV. BEHAVIOR OF THE GAP IN THE SPIN LADDER
4qr-periodicity property must be regarded as a constitutive
constraint imposed on the sine-Gordon models. Thus, eaclla
sine-Gordon model iy hastwo inequivalent ground states
associated with the minima,= =7 of the potential(for
m<0). The spontaneous breakdown of the symmeipy 1 ®
— @5+ 2 implies a nonzero expectation value for the op- £|ad=E 8—[(37¢a)2+(ﬁx¢a)2]—M COSp, = A cos—!,
erators sinp,/2 (the disorder operatorg.,) and cosp,. a ™ 2
Moreover, this breakdown becomes explicit if the perturba- (23
tion £, or £, is added. This symmetry breaking of the three\yhere M =(2m—16\,e;) and A=4.2\a? The two-

sine-Gordon models corresponds in fact to the hidden symgequency sine-Gordon model has been studied by Delfino
metry breaking in the spin-1 chaief. Sec. Il A. Therefore  and Mussard@®

the different choices of the ground state,E =) are
equivalent, since the different ground states of the spin-1
chain are equivalent in the thermodynamic limit. Finally, let
us recall that the elementary excitations of each sine-Gordon From our point of view, the Lagrangia23) is a mean-
model have finite mass and correspond to the kink and antfield approximation, whose parametes and A must be
kink connecting the two different ground states. The chargéletermined, as functions of and m, by solving Eq.(20)
conjugation changing kink into antikink corresponds to theself-consistently. This is impossible to do exactly within the

Let us first consider the spin-1 ladder, which corresponds
p=0. The effective Lagrangia(®22) then reduces to three
' decoupled, two-frequency sine-Gordon models:

A. Consistency at the mean-field level

following transformation: two-frequency sine-Gordon model, and we will proceed ap-
proximately. To simplify matters, let us neglect«, and
o(X)—=2m—@(X) mod 4. (19 simply setM=2m. We then concentrate on calculating

The presence of nonzero expectation values for the operatofd\)- FOr A=0, caﬂ4be determined exacttj with the

sine,/2 and cosp, implies that more relevant terms may be eSult @(0)~0.4909m|™. However, no such exact result

generated from the perturbatiof&s). Let exists forA #0. The crudest way to estimatg A) is clas-
sical: we simply neglect all fluctuations and getin(¢/2))

" ~sin((¢)/2), where{e) = ¢ is the location of the minimum
a={siny), a;=(cosp), (200 of the potentialM cose—A cos/2), such that
the expectation values being taken in the 7 ground state. A
These have been calculated by Lukyanov and COSpo= 77 (24)

Zamolodchikov®®and are proportional ttm|** andm, re-
spectively. Then The self-consistent relation is then
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AM| ¢

4 6 8 10
M|m|o(0)

FIG. 2. Self-consistent value of the parametddM as a func-

tion of the coupling constant and m. FIG. 3. Evolution of the sine-Gordon potential @ps

+A cos(p/2) for A=0, 1/4, 1, and 4. The mass of the lowest-
energy kink decreases linearly with, and vanishes classically at

2 A=4.

1_

A \ A
V=22 —a(A)?=242 ) (25

16M?2 _ . _ .
B. Evolution of the gap with interchain coupling
from which A/M can be extracted. The potential in the two-frequency sine-Gordon model is
A more refined calculation, which takes quantum fluctuasjjystrated on Fig. 3 for some values af M. It is intuitively

tions into account, consists in defining a new sine-Gordonyjear that, asA increases from zero, one of the kinks be-

field ¢, such thatp= ¢+ ¢@o— 7. Then comes more massive, whereas the other one becomes less
massive?’ the soliton having to bridge the potential barrier
@ AN P ®o from ¢~ to ¢~ 37 (towards the righthas a lower energy
sinz | =| sing | sin=-+ cos | cos=-. (26)  than the soliton going fronp~ 7 to ¢~ — =37 (towards

the lefy). Which kink sees its mass decrease depends on the
| sign of the perturbation, but the net result is the same what-
ever this sign is.

With the help of sine-Gordon form factot$® we can

We treaty as a single sine-Gordon field, with the usua
potentialM cosBe with a minimum ate= 7 and a value of

B ttha:_ (I:ant ttr)we mfe_rred frorr_1rhthe_ sego_nd (?erlvatlve of .theascertain how the kink mass varies with At first order, the
potential at the minimuny,. This is obviously an approxi- - w0 o the mass square&%
mation, but fares better than the above semiclassical calcu-

lation. Simple matching of the second derivative at the mini- Sm2~|A|F 45(im) (30)
mum vyields 8= \1—(A/4M)Z. For A not too large, one a. e

may neglect the second term on the right-hand &Rt¢S) of ~ Where the form factoF is

Eq. (26), since it behaves like\*. Keeping only the first o

:g:n;\,.one ends up with the following self-consistent equation F ol n)s(0|sin5|a( n)al7,)), (31)

wherea anda represent the kink and antikink ang , are
(27) the associated rapiditiesp& 7, — 7,). From Ref. 18, we

~\ 2
A2
A=4\/§)\<sin§> (1—

16M?2 extract the following expression:
Having neglected the second term of Ef6), we may set Faa )= —(e'¥?)en?— (e71¢2)g= 72
B=1 in the above, and therefotsin(¢/2)) = a(0). We end 1 1/4 7
up with the approximate self-consistent equation =— Ema 216p3a= 14y Coshz_’ (32

2 wherem, is the mass of the kink and~1.282 427 is the

Glaisher constant. From this result, we see #af vanishes

at first order. We thus expect it to be proportionaltt This
which differs from Eq.(25) simply by a renormalization is compatible with the semiclassical result that the variation
—\a?(0). Solving for A/M, we find of the mass of the kink is proportional to the variation of the
height of the potential. We thus conclude that

1 A m m?
L O At o o %

The most striking feature of the two-frequency sine-
The dependence df/M onm/\ is shown in Fig. 2. We see Gordon model is the existence of a critical point at a finite
that when the interchain coupling becomes large, the ratizalue of A. Classically, this critical point occurs when the
A/M reaches a maximum. two minima illustrated on Fig. 3 coalesce pairwise, At

: (28)

A A
R _ 2l 1 _
v 22 —a(0) (1 Y
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gap A and)\ 3, associated with marginal terms neglected in this sec-
tion, is important. Being marginal, these terms will have an
impact at larger interchain coupling, but only on one side,
corresponding to the antiferromagnetic case: eventually the
gap must increase linearly at large positiye, since the
lowest-lying excitations are then rung triplets, costing an en-
ergyJ, . On the ferromagnetic side, we can expect the gap to
decrease likeA/M in a wider domain. Translating thid

0 L dependence into m dependence with the help of Fig. 2, one
FIG. 4. Conjectured dependence of the spin gampon the ~ COnjectures a coupling dependence of the gap as illustrated in
interchain couplingl, in the spin-1 ladder. Fig. 4. That the gap drops on the ferromagnetic side is not

surprising, considering thét) the ladder becomes equivalent
to a spin-2 chain at large ferromagnetic coupling &ndthe
gap of an antiferromagnetic Heisenberg chain with integer
spins decreases witls.

=4M. In Ref. 20, it is shown that this fixed point has Ising
character, with central charge= 3. Since the scaling dimen-
sions of M and A at the Gaussian fixed pointA=0,M
=0) are, respectively, 21=1 and 2= =1, the ratio¢
=A/M™ is invariant under renormalization-groufRG) V. ZIGZAG SPIN CHAIN
flow and is in fact a control parameter which tells us how far
we are from the Ising fixed point, characterized by a critical
value /.. At this value, i.e., at\ =M the light kinks
have exactly zero mass. If we return to an Ising-model de- 1

scription of the system, we can understand intuitively how Ezigzag=2 (g[(éﬁoa)%(&x@)z]
this flow happens: The effective Lagrangi@@3) corre- @

sponds to six 2D Ising models coupled pairwise by the fol- — (2m— 16\, a;)COS® 14\/§pa cos 6,)
lowing interaction: a a

The zigzag spin-1 chain corresponds d& 0, and thus
N=0,0#0. The effective Lagrangian is then

Pa Pa+1 Pa+2
A X| 0S5 —C0S—— — COS—— ] (395
‘Clsing: —=0oo’. (34) . . .
NA This Lagrangian is not easily analyzed. Let us go back to the
fermionic representation of the twist term by order and dis-
Thus, the excitation such that(x) is parallel too’ (x) will order fields:
have a lower mass ik >0 (a similar reasoning holds when
A <0, by changing the sign af’). WhenA is large enough, _ ;o ,
o must be parallel tar’ and this parallel configuration de- LP_ZP; Taka+ifa+20x(Tattaritara).  (36)
fines a new Ising model, whose critical point occurs at some
value of the ratioh /M4 With (uaul)=—\2ia [cf. Eq. (A11)] the most relevant
Our approximate self-consistent soluti¢fig. 2) shows term will be
that this critical point will not be reached even for a very 2 ,
large interchain coupling. Of course, it is dangerous to ex- Ly~—4a"poadyo,. (37

trapolate the above calculation to large valuesAdM, in e will now study the effect of this approximate represen-
view of the approximations leading to E@8). However,  tation of the twist term by considering the corresponding

this conclusion is robust for the following reason: At the |attice modelsee the Appendjx Let us map the order fields
classical critical point £ =4M), the potential has an abso- jn the following way:

lute minimum ate= 27 and thereford sin(¢/2)) must van-

ish, by symmetry. Then, Eq24) has no solution, except in « , « 1

the limit \— . Thus, the dependence afM on interchain ga(X)—=03(n)  oa(X)—og Nt ). (38)
coupling illustrated in Fig. 2 is qualitatively correct, even

beyond the approximations made above. With the representatio(87) for the twist term, the system is

To conclude our analysis, we expect that the gap of thelescribed by the following Hamiltonian:
spin-1 ladder should decrease linearly with a weak interchain
coupling[Eq. (34)], both on the ferromagnetic and antiferro- _ _ z X X
magnetic side$with the same slopeThe gapA(J,) is then H % {=0a(nf2) = xog(n2)og(n/2+1)}
conjectured to have a cusplike maximumdat= 0, a peculiar
nonanalytic feature, as illustrated schematically in Fig. 4. _ 2 X X Xy
This is to be compared with the Monte Carlo data of Fig. 3 4pa n§;‘1 oa(Mloa(n+1/2) = oa(n=1/2)],
of Ref. 2, which illustrates this drop in the gap, for an anti-
ferromagnetic interchain coupling only. We emphasize again (39
that the sign of\ is immaterial, being determined by the where « is related to the constamh (i.e., —1— %) by the
minima picked by the three sine-Gordon fields. This ex-  relation k=1+aym, wherea, is the lattice constant. Thus
plains the symmetry between weak ferromagnetic and antik=1 for m=0(»=—1) and tends to 0 whe® grows. To
ferromagnetic couplings. On the other hand, the siginpf bring this Hamiltonian to a more familiar form, we perform a
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/7, However, we should note that the omission of the fluctuation
3 of w, in Eq.(37) is valid only whenT —T, is large compare
to p.
25) PC Moreover, we can have an idea of how the incommensu-
5 rability develops as a function @f. A recent analysis using a
PI high-temperature expansion and bosonizafishows that in
1.5 the limit of very strong next-nearest-neighbor interaction in
the ANNNI model, the incommensurability is proportional to
1 pl k. Explicitly, in the high-temperature limit, the incommen-
o F A surate wave vector is given by
2 2
o oA 06 0d 1 12 14l Jo= LZalp(lt ), (41)

2k(1l—«k)

FIG. 5. Phase diagram of the classical ANNNI modeis the
temperature, and; and J, are the nearest-neighbor and next-
nearest-neighbor Ising couplings, respectively.

where the ellipsis stands for higher powerskofThe £ sign
are, respectively, associated with the correlation function of
the combination= ¢%(n) + o%(n+ 1/2). This result that the

. ) ) incommensurability is linear with the interchain coupling
rotation of = around thez axis of the spin operator at every .onfirms the one obtained by a semiclassical anaf§sis.
other site, on each chain. This changes the sigwr-pon
those sites and gives the Hamiltonian a slightly different ACKNOWLEDGMENTS
form:
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APPENDIX: THE 2D ISING MODEL
+4pa?d, dX(nN[ai(n+1/2)+aX(n—1/2)].
n,a

In this appendix, we review briefly the correspondence of
the Ising model with fermions, the conformal structure of the
model and we indicate a set of careful bosonization formulas

The Hamiltonian(40) defines the quantum axial next- fOF & pair of Ising models.
nearest-neighbor IsingANNNI) model. Together with its
two-dimensional, classical counterpdcf. Refs. 2128 it
has been extensively studied by a variety of methods: mean-
field theory?® Monte Carlo simulation® 2 Muller-
Hartmann-Zittartz approximatioft, perturbative
expansiong?~3free fermion approximatiofi:*3?and exact

(40)

1. Definitions

As is well known, the 2D statistical Ising model is equiva-
lent to a quantum Ising chain in a transverse field, with
Hamiltonian

diagonalizationd?*® The phase diagram for the classical
model is shown in Fig. 5. In the scaling limit, the tempera-
ture T of the classical model model is related to the mass
by T=(1-aym)T.=(2—«)T.. The nearest-neighbor cou-
pling is proportionnal to the interchain couplipgandJ, to

k. Thus, the case of small zigzag interaction corresponds t

H (A1)

23 o= ooy,

where o122 are the Pauli matrices. The HamiltoniéA1l)

can be diagonalized through a Jordan-Wigner transformation

followed by a Bogolubov-Valatin transformation. The solu-
tion shows that{o;)#0 if A<1 and(o})=0 otherwise.
Thus\ =1 is the critical point. A peculiarity of this model is

the existence of a duality transformation mapping the or-
dered phase to the disordered phase and vice versa. Under
this transformation the spin operataré are mapped to the
so-called disorder operators, defined on lifthsal lattice by

the following relations:

the limit of smallJ,;. The different phases are the following:
ferromagnetic(F), paramagnetic commensurafeC), para-
magnetic incommensuratéPl), incommensurate critical
phase(IC, also called “floating phase), and antiphaséA)
of alternating pairs ¢ +——++---). A disorder line
found by Peschel and Eméfydivides the PC and the PI
phase.

We conclude from this phase diagram that incommensu
rability will arise in the spin-1 zigzag chain as soon as the
interchain coupling is nonzeifdhe model(40) is then on the
far right of the PI phase One premise for this deduction is
that the incommensurability of the Ising sping,j is re-
flected in the correlation of the spins of the quantum chain;
this comes from the relatio12). Note that increasing
brings us from infinity on the phase diagram 5 towards the_et us apply the Jordan-Wigner transformation on the dual
origin, along a straight line. One could expect such a line tdattice. The fermion creation and annihilation operators are
go through other phasdtke the IC phasgat some point. defined as

z _ X X
Mit12= 0011,

it 1= H 5. (A2)

j<i
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Cj+1/2= Mj11/28X s > (1)), (z,2) w(W W)~;—l|z—w|3’4e(w w)
] I 2 (S A2, 2) WS |Z_W|1/4 2 P
—iT 1/2 * (5 o\ 12
_ - . — + _
k<j ! ! \/§|Z—W|1/4 ’

where u* = (u*+iuY)/2. The fermions correspond to the o
kinks in the original formulation. Indeed the fermion number — — Y (z=W)Y2(w) + y(z—w) V()
on link j +1/2 is p(zz)o(w,wW)~ 2lz—w] :

4 1- 0'}(0'}(+1 Al
j+1Cj+12 5 (A4) W2 o (W)~ = Y )1/2'“(W'W)'
z—w

i.e., there is no fermion on the link if the spins prand j
+1 are parallel and one if they are antiparallel. Note that the . v
order parametes™ has a bosonic character, whereas the dis- (z) u(w,w)~ =
order parameter* is fermionic. This is easily seen from the \/E(Z_W)
following equivalence:

a(W,w),

*

’y J—

J(;)U(W,W)NWM(W,W),

X _ AT P T
Hi+12™ Cj+1lzeXF{ -1 WIZJ_ Ck+1/ZCk+1/2)

_ J— ’y J—
+c,—+1,2exp{i7rk§<:j CIH,ZCKH,Z), lﬂ(Z)M(W,W)NWU(W,W), (AB)

where y=expin/4 (or, equivalently, expin/4).

of=0%y exp( +im Y, Cl,1Cus 1,2) . (A5) o
k<] 3. Bosonization
. o Two Ising models form ac=1/2+1/2=1 conformal
2. Continuum limit theory. We therefore expect a representation of the different
The critical point of the 2D Ising model is equivalent, in fields in terms of a free bosop, defined by the action
the continuum limit, to a free, massless Majorana fermion: a 1
conformal field theory with central charge=1/2 and three S= _j dx dr (9.¢)%+ (dy@)?]. (A7)
conformal families: the identity operator, the energy operator 8m

€, and the the spin densipr orde) operatoro. The use of o, chojce of normalization (148 simplifies the exponen-
complex coordinategz=7+ix and z=7—ix is standard, tials and circular functions appearing in the sine-Gordon
along with the complex derivatives=d,=(d,~id,)/2 and  theory. The OPE’s of the boson field and of itsormal-
d=d,=(9,+14,)/12 (the notation used is that of Ref. 87 ordered exponentials are

The energy density operator may be expressed in terms of
the chiral components of the Majorana fermioneasi /.

The order fieldo is the continuum limit of the spin operator
af, and a fermionic disorder fielg may be introduced as
the continuum limit of the disorder operataf, ,,. The field

u has the same scaling properties as the figldut is non-  The boson field can be separated into chiral components:

local with respect tar. The conformal transformations are ,(x, 7)= ¢(z)+$(?). These fields have the following mode
generated by the energy-momentum tensor, whose Ch'r%lxpansion in radial quantizaticA:

1
de(z)dep(w)~ =w?’

eia‘P(z)eiB‘P(W)N(Z_W)aﬂei(a+ﬂ)¢(w)+ . (A8)

1 - 1—
components ard = — ilﬁé’l[/ and T=— Ezpﬁ(//. All these

1
i ; —k
fields have the following short-distance products or OPE: $(z)=g-ipIn Z+'k§#:(, K32
1 L 1
P2 P(w)~ —— = +2(z=wW)T(w), d(z)=q—ipInz+i, Eakz—k, (A9)
K70

_ where the operators,q,a, satisfy the commutation relations

- 1 .
W(Z2) P(W) ~ =——=+2(z— W) T(W)
Z—W

[q,p]=i, [anvam]:nﬁn,m: (A10)
1 1 with similar relations for the left-movingbarred operators.
0(2,2) (W, W) ~ — §|z—w|3’4e(w,W), A faithful representation of the Ising fields is then given
|z—w| by the following relations®
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= 1 -
et g imPeid

90:5
_ i e
:__e—lvrpe—lqs_ _elwpelqﬁ
\/E )
i = i =
/:__elwpel¢+ _e—mpe—u;b'
b > N
_ 1 = =1 = =
/:__eflﬂ'pefqu_’_ _elﬂ'pquS’
R 2
UU'=\/§CO§,
. 0
ou'=—i 23|n§,
, 0
no'=—i 2cosz—,
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' =—2i sin; (A11)

where 0=¢>—$+ 2775 is the field dual top (the operator

277§is added to ensure proper anticommuation properties
This representation leads to the correct OEB) between

the Ising fields. The phase factef™? is similar to the phase

factor in the Jordan-Wigner transformatigm,being to the
number of left fermions. Only its odd or even character mat-
ters. We note the natural periodicity property— ¢+4w
and 6— 6+ 4 of this representation.

The energy-momentum tensorsand T’ of the two Ising
models, along with their antiholomorphic counterparts, are
bosonized as follows:

T(2) - T'(2)=426*"P co§ 2h(2)],

T(2)-T'(2)=-4V2e*"P cog24(2)].  (A12)

This relation is useful when bosonizing the twist tefthe
last term of Eq.(16)].
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