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Spin-1 ladder: A bosonization study

D. Allen* and D. Se´néchal
Centre de Recherche sur les Proprie´tés Électroniques de Mate´riaux Avance´s et Département de Physique, Universite´ de Sherbrooke,

Sherbrooke, Que´bec, Canada J1K 2R1
~Received 16 August 1999; revised manuscript received 21 December 1999!

We construct a field-theoretic description of two coupled spin-1 Heisenberg chains, starting with the known
representation of a single spin-1 chain in terms of Majorana fermions~or Ising models!. After reexamining the
bosonization rules for two Ising models, taking particular care of order and disorder operators, we obtain a
bosonic description of the spin-1 ladder. From renormalization-group and mean-field arguments, we conclude
that, for a small interchain coupling, the spin-1 ladder is approximately described by three decoupled, two-
frequency sine-Gordon models. We then predict that, starting with decoupled chains, the spin gap decreases
linearly with interchain coupling, in both the ferromagnetic and antiferromagnetic directions. Finally, we
discuss the possibility of an incommensurate phase in the spin-1 zigzag chain.
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I. INTRODUCTION

Among the properties of spin ladders, the best known
the reduction of order as we go from a single spin-1

2 Heisen-
berg chain to two coupled chains: the single spin-1

2 chain is
critical ~its correlation length is infinite! whereas the spin-1

2

ladder has finite-range correlations and an excitation g
growing linearly with interchain couplingJ' , at least for
small J' ~for a review and further references, see Ref.!.
This may seem paradoxical because one would naively
pect that coupling two quasiordered chains would only
crease the tendency to order, but a critical system like
spin-12 Heisenberg chain is easily sent off-criticality by
perturbation such as ladder couplingJ' . In this paper we
will study the corresponding spin-1 ladder~two coupled
spin-1 chains!, which is already disordered and has a fin
gap atJ'50. On the contrary, we will argue that the sp
gap decreases asJ' increases from zero, and does so f
both antiferromagnetic and ferromagnetic interchain c
plings, thus giving the gapD(J') a nonanalytic behavior~a
cusp! at zero~cf. Fig. 4 below!. We will arrive at this con-
clusion after obtaining a field-theoretic description of t
spin-1 ladder in terms of six quantum Ising models or, alt
nately in terms of three boson fields. The motivation
using bosonization is that it offers a safer description of
system at weakJ' , valid for both positive and negativeJ' ,
and allows at the same time for a description of the spi
zigzag chain, in which frustration plays a role. Thus, at sm
J' , this method is more general and reliable than as model
description. For a small antiferromagnetic interchain co
pling, the drop in the gap as a function ofJ' was already
noticed in Monte Carlo simulations and accounted for wit
nonlinears model description of the spin-1 ladder.2

We will consider the spin-1 ladder as a perturbed criti
model, so that the low-energy description of the system w
be a perturbed conformal field theory. The critical mod
used as a starting point is a pair of decoupled biquadr
spin chains, with Hamiltonian

H05(
a,i

$Sa,i•Sa,i 112~Sa,i•Sa,i 11!2%, ~1!
PRB 610163-1829/2000/61~18!/12134~9!/$15.00
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whereSa,i is a spin-1 operator at sitei on chaina(a51,2).
At this critical point the two chains are decoupled, ea
chain being described by an integrable model3,4 which is
equivalent in the continuum limit to a level-2 su~2! Wess-
Zumino-Witten ~WZW! model.5 We then need to conside
the following perturbation~see Fig. 1!:

HI5~11h!(
i ,a

~Sa,i•Sa,i 11!2

1
1

2
J'(

i
S1,i•@~11d!S2,i1~12d!S2,i 11#. ~2!

When (11h).0, the first term brings us back to th
Heisenberg point (h50). The interchain interaction, o
strengthJ' , is that of a ladder (d561) or of a zigzag chain
(d50). We will proceed by~i! constructing a continuum
description of the interaction in term of WZW models an
~ii ! finding out the behavior of this perturbed WZW mod
by field-theoretic methods, mainly through representation
terms of Ising models~fermionization! and sine-Gordon
models~bosonization!.

This paper is organized as follows. In Sec. II, we revie
the field-theoretic description of a single spin-1 chain,
particular its representation in terms of three Majorana f
mions~or Ising models!. In Sec. III, we write down a repre
sentation of two coupled spin-1 chains in terms of thr
bosons, using the bosonization formulas for pairs of Is
models given in Appendix A. In Sec. IV, the behavior of th
spin gap as a function of interchain coupling is inferred fro
this bosonized description. In Sec. V, the spin-1 zigzag ch
is considered instead, and a weak interchain coupling is

FIG. 1. Schematic illustration of the coupled spin chains w
the various couplings, normalized to the intrachain coupling.
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gued to cause a short-distance incommensurability, i.e
displacement of the minimum of the one-magnon spectr
from q5p.

II. CONTINUUM DESCRIPTION OF THE SINGLE SPIN-1
CHAIN

A. Phase diagram

Let us first review the phase diagram of the biquadra
spin-1 chain:6

H5(
i

$Si•Si 111h~Si•Si 11!2%. ~3!

At h521, the Hamiltonian is integrable and has gaple
modes atk50 andk5p. It is also integrable ath51 and
has then gapless modes atk50 andk562p/3. If h,21,
we have a dimerized phase characterized by two degen
ground states with a finite gap. On the other hand, in
interval hP(21,1) the spectrum has a singlet ground st
with a finite gap. This is the so-called Haldane phase, ch
acterized by the spontaneous breakdown of aZ23Z2
symmetry.7,8 This breakdown implies a fourfold-degenera
ground state in an open chain, but these different gro
states differ only by the spins at the ends of the chain, an
this sense they are equivalent in the thermodynamic lim
The excitations are solitons switching from one ground s
at x→2` to another ground state atx→`. Related to the
symmetry breaking is a dilute antiferromagnetic order; sc
matically,

10•••020•••010•••02. ~4!

This order is defined by an alternation of sites withSz51
and Sz521, with someSz50 sites in between. It can b
measured by the so-called string order parameter7

O z5 lim
m2n→`

K Sn
z expS ip (

k5n11

m21

Sk
zDSm

z L . ~5!

This order parameter and the gap are maximal ath51/3,
where the valence-bond-solid-like ground state is exa
known.9 The gap grows monotonically fromh521 to h
50 without a phase transition, and thus we may consider
Heisenberg point (h50) as a perturbation of the critica
point (h521).

Note also that incommensurability develops starting ah
'0.4: the peak in the spin-spin correlation function movi
from k5p to k52p/3 ath51.10 This last transition point is
described by an SU~3! generalization of the Kosterlitz
Thouless phase transition.11

B. Field-theoretic description

The critical point (h521) is equivalent, in the low-
energy limit, to a conformal field theory: the su~2! Wess-
Zumino-Witten model at levelk52, plus a marginally irrel-
evant perturbation.5 This WZW model contains two scalin
fields: a spin doubletgmn(m,nP$2 1

2 , 1
2 %) with left and right

conformal dimensions (316 , 3
16 ) and a spin tripletFmn(m,n

P$21,0,1%) with dimensions (12 , 1
2 ). They are, respectively

232 and 333 matrix fields. The link between the spi
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chain and the WZW model is given by the following repr
sentation of the spin operators in the continuum limit:5,12

1

a0
Sa~x!5

1

2
@Ja~x!1 J̄a~x!#1~21!x/a0Qga~x!, ~6!

wherea0 is the lattice constant,Q a nonuniversal constant
Ja and J̄a are the right and left su~2! currents, andga is
defined in terms of Pauli matrices as

ga5
1

A2
Tr ~sag!5

1

A2
(
m,n

smn
a gnm . ~7!

The currents (Ja, J̄a) and the fieldga correspond to the sof
modes of the spin chain neark50 andp, respectively.

For 11h not too large, the spin chain may be describ
by the above WZW model, plus the following perturbation5

L15m Tr F2l1JaJ̄a, ~8!

where a summation over repeated indices is implicit an
2m is proportional to (11h) (m is negative in the Haldane
phase!. The second term is the marginally irrelevant pertu
bation alluded to above~if l1.0). On the other hand, the
first term (TrF) is relevant, with scaling dimension 1, an
leads to a gap proportional toumu}u11hu.

There is an interesting equivalence between thek52
su~2! WZW model and three quantum Ising models,13 and so
we will not have to deal with the WZW model directly. Thi
equivalence is defined by the following relations:

Ja5
2 i

A2
eabccbcc , J̄a5

2 i

A2
eabcc̄bc̄c , ~9!

F15
z

A2
~2c11 ic2!, F05zc3 , F215

z

A2
~c11 ic2!,

~10!

F̄15
z̄

A2
~2c̄12 i c̄2! F̄05 z̄ c̄3 , F̄215

z̄

A2
~ c̄12 i c̄2!,

~11!

g05A2s1s2s3 , ga52A2sama11ma12 , ~12!

where the latin index goes from 1 to 3;ca and c̄a are re-
spectively, the right and left fermions associated with ea
Ising model~see the Appendix!. sa andma are the order and
disorder fields of each Ising model. The 333 matrix field
Fnm is here factorized asFnm[FnF̄m . The constantsz and
z̄ are such that their product iszz̄5 i . Note that our relations
differ slightly from those given by Fateev an
Zamolodchikov.13 The action of the WZW model in imagi
nary time becomes simply that of free Majorana fermions

SWZW5
1

2pE dx dt~ca]̄ca1c̄a]c̄a!, ~13!

where]5(]t2 i ]x)/2 and]̄5(]t1 i ]x)/2 ~in order to lighten
the notation, the characteristic velocityv of the WZW model
has been set to unity!. The perturbation~8! becomes
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L15mcac̄a2l1cac̄acbc̄b . ~14!

Except for the marginally irrelevant term, the spin chain
thus equivalent to three Majorana fermions of massm. This
description of the spin-1 chain has been proposed
Tsvelik14 who used it to study the effect of a magnetic fie
on the low-energy spectrum. It was also used in a fie
theoretic treatment of the spin-1

2 ladder39 and of the spin-12
zigzag chain.16

The representation~9!–~12! of the WZW fields is invari-
ant under the following changes~for a51,2,3 simulta-
neously!:

ca→2ca , c̄a→2c̄a , ma→2ma , sa→sa .
~15!

This is related to the absence of fermionic field in the WZ
model. This ‘‘gauge’’ symmetry accounts for the expect
degeneracy of the ground state near the critical point in o
chains. Specifically, recall thatm,0 in the Haldane phase
In our formulation, this corresponds to the disordered ph
of the Ising models~see the Appendix! and the expectation
value of the disordered operators is nonzero:^ma&Þ0. In this
phase each Ising model has a doubly degenerate gro
state, associated with different spin configurations at the e
of the open Ising chain. The two ground states differ in
sign of ^ma&. For the spin chain, this degeneracy implies
apparent eightfold (8523) degeneracy, but the gauge inva
ance ~15! reduces this to a physical fourfold degenera
These different ground states come from the breakdown
the hiddenZ23Z2 nonlocal symmetry alluded to above, an
are physically equivalent in the thermodynamic limit. In th
Ising model description of the spin chain, the element
excitations are kinks switching from one value of^ma& at x
→2` to its opposite atx→`. On the other hand, Fa´th and
Sólyom6 have shown that the excitations of the Heisenb
model are solitons connecting the ground states with dif
ent values of the string parameter~5!. We are thus led to
identify these solitons with the kinks of the Ising model.

We can do the same exercise form.0 ~or h,21). We
are now in the ordered phase of the Ising models:^sa&Þ0.
Such an expectation value is already invariant under
gauge change~15! and therefore there are really eight phy
cally different ground states for the open chain. A hidd
Z23Z2 symmetry breaking is again expected and so th
eight different ground states will be locally equivalent to tw
distinct ground states in the thermodynamic limit, cor
sponding to the expected dimerized state.

III. BOSONIZATION

Using the continuum description~6! of the spin operators
we obtain the following Lagrangian density from the Ham
tonian ~1!,~2!, in terms of WZW fields:

L5LWZW@g#1LWZW@g8#1m Tr F1m Tr F8

2l1~JaJ̄a1J8aJ̄8a!1l2~JaJ8a1 J̄aJ̄8a!

1l3~JaJ̄8a1 J̄aJ8a!1lgag8a

1r@ga]xg8a2~]xg
a!g8a#. ~16!
y

-

n

e

nd
ds
e

.
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y

g
r-

e

n
e

-

The unprimed fields correspond to the first chain and
primed fields to second chain. The first three terms repre
the intrachain interaction and the last four terms the int
chain coupling. The interchain couplingsl2 ,l3 ,l, and r
are, respectively, proportional toJ' ,J' ,J'd, and J'(1
2d2) at high energy, but they renormalize differently t
wards low energy. The last term, neglected in previous fie
theoretic studies of the spin-1

2 zigzag chain,15,16 has been
considered by Nersesyanet al.17 The particularity of this per-
turbation is its nonzero conformal spin, which makes t
study of its relevance nontrivial. Nersesyanet al. have
shown that, for the spin-1/2XX zigzag chain, this perturba
tion ~called thetwist term! leads to a critical incommensu
rable phase. Finally note thatr must be zero for the spin
ladder, whereasl vanishes for the pure zigzag chain. In th
following we will consider the Haldane phase only so thatm
is negative.

The Lagrangian~16! is difficult to study in terms of WZW
fields. The simplest information we may extract from it is t
scaling dimension of the various perturbations, from those
the various WZW fields. Thus, the interchain couplin
l2 ,l3 ,l, andr, respectively, have scaling dimension 2,
3
4 , and 7

4 . Moreover, the couplingsl2 andr have conformal
spin. By itself, a relevant couplingg of scaling dimension
g,2 and zero conformal spin is expected to produce a
of orderD;g1/(22g). Thus, at the in-chain critical point (h
521), the interchain couplingl would open a gap of orde

D~l!;l4/5 ~17!

in the spin-1 ladder.
However, far from the critical point, the WZW model i

of little help in predicting the behavior of the gap and t
fermionic language seems more appropriate. Using the
resentation~9!–~12!, we can express the Lagrangian dens
~16! in terms of Majorana fermions, order and disord
fields. Unfortunately, the resulting expression is not easy
study since it contains a mixture of fields that are mutua
nonlocal~the order and disorder operators!.

An interesting way to deal with the Lagrangian~16! is
bosonization. The two-dimensional~2D! Ising models may
be bosonized by pairing them~see the Appendix!. The natu-
ral way to bosonize the ladder is to pair an Ising mod
describing one chain with its twin on the other chain. Usi
the relations~9!–~12!, ~16!, and~A11!, we obtain the follow-
ing Lagrangian density for two coupled spin-1 chains:

L5L01L11L21L31Lr1Ll ,

L05 (
a51,2,3

F 1

8p
@~]twa!21~]xwa!2#22m coswaG ,

L1516l1 (
a51,2,3

~coswa11coswa121cosua11cosua12!,

L254l2 (
a51,2,3

~]twa11]twa122]xwa11]xwa12!,

L3528l3 (
a51,2,3

~sinwa11sinwa121sinua11sinua12!,
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Ll54A2l (
a51,2,3

cos
wa

2
sin

wa11

2
sin

wa12

2
,

Lr524A2r (
a51,2,3

cosuaFcos
wa

2
sin

wa11

2
sin

wa12

2

2sin
wa

2
sinS wa111wa12

2 D G , ~18!

whereua is the boson dual towa . To shorten the expression
we have adopted a periodic condition on the indexa, i.e.,
a13[a. The twist termLr , the trickiest to bosonized, ha
been inferred from the representation~A12! of the stress-
energy tensor for each Ising model, plus the usual oper
product expansion~OPE! between the energy-momentu
tensor and a conformal field.

Thus, we have transformed the problem into a system
three perturbed sine-Gordon models, although the simu
neous presence of the bosonswa and of their dual fieldsua
makes some perturbations nonlocal. However, as we
see, the most relevant perturbation is local and makes
problem tractable in this language. Note that our normali
tion is such that cos(bwa) is marginal forb5A2, and thus
bound states appear in the sine-Gordon model forb,1.
Also, for b,A2, the wa→wa12p symmetry is spontane
ously broken and we have to consider fluctuations aro
one of the minima of the potential. However, it is importa
to keep in mind that our bosonization procedure is from
start invariant under the translationwa→wa14p, and this
4p-periodicity property must be regarded as a constitut
constraint imposed on the sine-Gordon models. Thus, e
sine-Gordon model inL0 hastwo inequivalent ground states
associated with the minimawa56p of the potential~for
m,0). The spontaneous breakdown of the symmetrywa
→wa12p implies a nonzero expectation value for the o
erators sinwa/2 ~the disorder operatorsma) and coswa .
Moreover, this breakdown becomes explicit if the perturb
tion Ll or Lr is added. This symmetry breaking of the thr
sine-Gordon models corresponds in fact to the hidden s
metry breaking in the spin-1 chain~cf. Sec. II A!. Therefore
the different choices of the ground state (wa56p) are
equivalent, since the different ground states of the spi
chain are equivalent in the thermodynamic limit. Finally,
us recall that the elementary excitations of each sine-Gor
model have finite mass and correspond to the kink and a
kink connecting the two different ground states. The cha
conjugation changing kink into antikink corresponds to t
following transformation:

w~x!→2p2w~x! mod 4p. ~19!

The presence of nonzero expectation values for the opera
sinwa/2 and coswa implies that more relevant terms may b
generated from the perturbations~18!. Let

a5 K sin
w

2 L , a15^cosw&, ~20!

the expectation values being taken in thew5p ground state.
These have been calculated by Lukyanov a
Zamolodchikov18,19 and are proportional toumu1/4 andm, re-
spectively. Then
or

of
a-
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-

-

1
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cos
wa

2
sin

wa11

2
sin

wa12

2
56a2 cos

wa

2
1fluctuations.

~21!

The sign depends on the relative choice of the ground s
for wa11 and wa12. Keeping only the most relevant term
and neglecting the fluctuations of sinw/2 and cosw around
these expectation values, we find the following effective L
grangian:

Leff5(
a

H 1

8p
@~]twa!21~]xwa!2#

2~2m216l1a1!coswa64A2la2 cos
wa

2

74A2ra cosuaFcos
wa

2
2cos

wa11

2
2cos

wa12

2 G J .

~22!

At this level of approximation, we have three perturbed sin
Gordon models—mutually coupled only ifrÞ0—and the
sign of the interchain coupling can be incorporated in
choice of ground state. Thus, a ferromagnetic or antifer
magnetic interchain coupling would have the same effe
Note that the couplingsl andr break the charge conjugatio
symmetry~19!.

IV. BEHAVIOR OF THE GAP IN THE SPIN LADDER

Let us first consider the spin-1 ladder, which correspon
to r50. The effective Lagrangian~22! then reduces to three
decoupled, two-frequency sine-Gordon models:

Llad5(
a

H 1

8p
@~]twa!21~]xwa!2#2M coswa6L cos

wa

2 J ,

~23!

where M5(2m216l1a1) and L54A2la2. The two-
frequency sine-Gordon model has been studied by Del
and Mussardo.20

A. Consistency at the mean-field level

From our point of view, the Lagrangian~23! is a mean-
field approximation, whose parametersM and L must be
determined, as functions ofl and m, by solving Eq.~20!
self-consistently. This is impossible to do exactly within t
two-frequency sine-Gordon model, and we will proceed a
proximately. To simplify matters, let us neglectl1a1 and
simply set M52m. We then concentrate on calculatin
a(L). For L50, a can be determined exactly,18 with the
result a(0)'0.4909umu1/4. However, no such exact resu
exists forLÞ0. The crudest way to estimatea(L) is clas-
sical: we simply neglect all fluctuations and set^ sin(w/2)&
'sin(̂ w&/2), where^w&5w0 is the location of the minimum
of the potentialM cosw2L cos(w/2), such that

cosw05
L

4M
. ~24!

The self-consistent relation is then
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L

M
52A2

l

m
a~L!252A2

l

m S 12
L2

16M2D , ~25!

from which L/M can be extracted.
A more refined calculation, which takes quantum fluctu

tions into account, consists in defining a new sine-Gord
field w̃, such thatw5w̃1w02p. Then

K sin
w

2 L 5K sin
w̃

2L sin
w0

2
1K cos

w̃

2L cos
w0

2
. ~26!

We treat w̃ as a single sine-Gordon field, with the usu
potentialM cosbw̃ with a minimum atw̃5p and a value of
b that can be inferred from the second derivative of
potential at the minimumw0. This is obviously an approxi-
mation, but fares better than the above semiclassical ca
lation. Simple matching of the second derivative at the m
mum yields b5A12(L/4M )2. For L not too large, one
may neglect the second term on the right-hand side~RHS! of
Eq. ~26!, since it behaves likeL3. Keeping only the first
term, one ends up with the following self-consistent equat
for L:

L54A2lK sin
w̃

2L
2S 12

L2

16M2D . ~27!

Having neglected the second term of Eq.~26!, we may set
b51 in the above, and therefore^sin(w̃/2)&5a(0). We end
up with the approximate self-consistent equation

L

M
52A2

l

m
a~0!2S 12

L2

16M2D , ~28!

which differs from Eq.~25! simply by a renormalizationl
→la2(0). Solving for L/M , we find

1

2A2

L

M
52

m

la2~0!
1A21

m2

l2a4~0!
. ~29!

The dependence ofL/M on m/l is shown in Fig. 2. We see
that when the interchain coupling becomes large, the r
L/M reaches a maximum.

FIG. 2. Self-consistent value of the parameterL/M as a func-
tion of the coupling constantl andm.
-
n

l

e

u-
i-

n

io

B. Evolution of the gap with interchain coupling

The potential in the two-frequency sine-Gordon mode
illustrated on Fig. 3 for some values ofL/M . It is intuitively
clear that, asL increases from zero, one of the kinks b
comes more massive, whereas the other one becomes
massive:20 the soliton having to bridge the potential barri
from w;p to w;3p ~towards the right! has a lower energy
than the soliton going fromw;p to w;2p[3p ~towards
the left!. Which kink sees its mass decrease depends on
sign of the perturbation, but the net result is the same wh
ever this sign is.

With the help of sine-Gordon form factors,18,19 we can
ascertain how the kink mass varies withL. At first order, the
variation of the mass squared is20

dma
2'uLuFaā~ ip!, ~30!

where the form factorF is

Faā~h![^0usin
w

2
ua~h1!ā~h2!&, ~31!

wherea and ā represent the kink and antikink andh1,2 are
the associated rapidities (h5h12h2). From Ref. 18, we
extract the following expression:

Faā~h!52^eiw/2&eh/22^e2 iw/2&e2h/2

52S 1

2
maD 1/4

21/6A3e21/42 cosh
h

2
, ~32!

wherema is the mass of the kink andA'1.282 427 is the
Glaisher constant. From this result, we see thatdma

2 vanishes
at first order. We thus expect it to be proportional toL2. This
is compatible with the semiclassical result that the variat
of the mass of the kink is proportional to the variation of t
height of the potential. We thus conclude that

dma}L. ~33!

The most striking feature of the two-frequency sin
Gordon model is the existence of a critical point at a fin
value of L. Classically, this critical point occurs when th
two minima illustrated on Fig. 3 coalesce pairwise, atL

FIG. 3. Evolution of the sine-Gordon potential cosw
1L cos(w/2) for L50, 1/4, 1, and 4. The mass of the lowes
energy kink decreases linearly withL, and vanishes classically a
L54.
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54M. In Ref. 20, it is shown that this fixed point has Isin
character, with central chargec5 1

2 . Since the scaling dimen
sions of M and L at the Gaussian fixed point (L50,M
50) are, respectively, 22151 and 22 1

4 5 7
4 , the ratio z

5L/M7/4 is invariant under renormalization-group~RG!
flow and is in fact a control parameter which tells us how
we are from the Ising fixed point, characterized by a criti
value zc . At this value, i.e., atL5zcM

7/4, the light kinks
have exactly zero mass. If we return to an Ising-model
scription of the system, we can understand intuitively h
this flow happens: The effective Lagrangian~23! corre-
sponds to six 2D Ising models coupled pairwise by the f
lowing interaction:

LIsing52
L

A2
ss8. ~34!

Thus, the excitation such thats(x) is parallel tos8(x) will
have a lower mass ifL.0 ~a similar reasoning holds whe
L,0, by changing the sign ofs8). WhenL is large enough,
s must be parallel tos8 and this parallel configuration de
fines a new Ising model, whose critical point occurs at so
value of the ratioL/M7/4.

Our approximate self-consistent solution~Fig. 2! shows
that this critical point will not be reached even for a ve
large interchain coupling. Of course, it is dangerous to
trapolate the above calculation to large values ofL/M , in
view of the approximations leading to Eq.~28!. However,
this conclusion is robust for the following reason: At th
classical critical point (L54M ), the potential has an abso
lute minimum atw52p and thereforê sin(w/2)& must van-
ish, by symmetry. Then, Eq.~24! has no solution, except in
the limit l→`. Thus, the dependence ofL/M on interchain
couplingl illustrated in Fig. 2 is qualitatively correct, eve
beyond the approximations made above.

To conclude our analysis, we expect that the gap of
spin-1 ladder should decrease linearly with a weak interch
coupling@Eq. ~34!#, both on the ferromagnetic and antiferr
magnetic sides~with the same slope!. The gapD(J') is then
conjectured to have a cusplike maximum atJ'50, a peculiar
nonanalytic feature, as illustrated schematically in Fig.
This is to be compared with the Monte Carlo data of Fig
of Ref. 2, which illustrates this drop in the gap, for an an
ferromagnetic interchain coupling only. We emphasize ag
that the sign ofl is immaterial, being determined by th
minima picked by the three sine-Gordon fieldswa . This ex-
plains the symmetry between weak ferromagnetic and a
ferromagnetic couplings. On the other hand, the sign ofl2

FIG. 4. Conjectured dependence of the spin gapD upon the
interchain couplingJ' in the spin-1 ladder.
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andl3, associated with marginal terms neglected in this s
tion, is important. Being marginal, these terms will have
impact at larger interchain coupling, but only on one sid
corresponding to the antiferromagnetic case: eventually
gap must increase linearly at large positiveJ' , since the
lowest-lying excitations are then rung triplets, costing an
ergyJ' . On the ferromagnetic side, we can expect the gap
decrease likeL/M in a wider domain. Translating thisL
dependence into al dependence with the help of Fig. 2, on
conjectures a coupling dependence of the gap as illustrate
Fig. 4. That the gap drops on the ferromagnetic side is
surprising, considering that~i! the ladder becomes equivale
to a spin-2 chain at large ferromagnetic coupling and~ii ! the
gap of an antiferromagnetic Heisenberg chain with inte
spin s decreases withs.

V. ZIGZAG SPIN CHAIN

The zigzag spin-1 chain corresponds tod50, and thus
l50,rÞ0. The effective Lagrangian is then

Lzigzag5(
a

H 1

8p
@~]twa!21~]xw!2#

2~2m216l1a1!coswa74A2ra cos~ua!

3Fcos
wa

2
2cos

wa11

2
2cos

wa12

2 G J . ~35!

This Lagrangian is not easily analyzed. Let us go back to
fermionic representation of the twist term by order and d
order fields:

Lr52r(
a

sama11ma12]x~sa8ma118 ma128 !. ~36!

With ^mama8&52A2ia @cf. Eq. ~A11!# the most relevant
term will be

Lr'24a2rsa]xsa8 . ~37!

We will now study the effect of this approximate represe
tation of the twist term by considering the correspondi
lattice model~see the Appendix!. Let us map the order fields
in the following way:

sa~x!→sa
x~n! sa8~x!→sa

xS n1
1

2D . ~38!

With the representation~37! for the twist term, the system is
described by the following Hamiltonian:

H5(
n,a

$2sa
z~n/2!2ksa

x~n/2!sa
x~n/211!%

24ra2(
n,a

sa
x~n!@sa

x~n11/2!2sa
x~n21/2!#,

~39!

wherek is related to the constantm ~i.e., 212h) by the
relation k511a0m, wherea0 is the lattice constant. Thu
k51 for m50(h521) and tends to 0 whenh grows. To
bring this Hamiltonian to a more familiar form, we perform
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rotation ofp around thez axis of the spin operator at ever
other site, on each chain. This changes the sign ofsa

x on
those sites and gives the Hamiltonian a slightly differe
form:

H5(
n,a

$2sa
z~n/2!1ksa

x~n/2!sa
x~n/211!%

14ra2(
n,a

sa
x~n!@sa

x~n11/2!1sa
x~n21/2!#.

~40!

The Hamiltonian~40! defines the quantum axial nex
nearest-neighbor Ising~ANNNI ! model. Together with its
two-dimensional, classical counterpart~cf. Refs. 21–23!, it
has been extensively studied by a variety of methods: me
field theory,24 Monte Carlo simulations,25–28 Muller-
Hartmann-Zittartz approximation,25 perturbative
expansions,29–31free fermion approximation,21,22,32and exact
diagonalizations.32,33 The phase diagram for the classic
model is shown in Fig. 5. In the scaling limit, the temper
ture T of the classical model model is related to the massm
by T5(12a0m)Tc5(22k)Tc . The nearest-neighbor cou
pling is proportionnal to the interchain couplingr andJ2 to
k. Thus, the case of small zigzag interaction correspond
the limit of smallJ1. The different phases are the following
ferromagnetic~F!, paramagnetic commensurate~PC!, para-
magnetic incommensurate~PI!, incommensurate critica
phase~IC, also called ‘‘floating phase’’!, and antiphase~A!
of alternating pairs (112211•••). A disorder line
found by Peschel and Emery34 divides the PC and the P
phase.

We conclude from this phase diagram that incommen
rability will arise in the spin-1 zigzag chain as soon as
interchain coupling is nonzero@the model~40! is then on the
far right of the PI phase#. One premise for this deduction i
that the incommensurability of the Ising spins (sa) is re-
flected in the correlation of the spins of the quantum cha
this comes from the relation~12!. Note that increasingr
brings us from infinity on the phase diagram 5 towards
origin, along a straight line. One could expect such a line
go through other phases~like the IC phase! at some point.

FIG. 5. Phase diagram of the classical ANNNI model.T is the
temperature, andJ1 and J2 are the nearest-neighbor and nex
nearest-neighbor Ising couplings, respectively.
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However, we should note that the omission of the fluctuat
of ma in Eq. ~37! is valid only whenT2Tc is large compare
to r.

Moreover, we can have an idea of how the incommen
rability develops as a function ofr. A recent analysis using a
high-temperature expansion and bosonization35 shows that in
the limit of very strong next-nearest-neighbor interaction
the ANNNI model, the incommensurability is proportional
r/k. Explicitly, in the high-temperature limit, the incommen
surate wave vector is given by

q056
2a2r~11k1k21••• !

2k~12k!
, ~41!

where the ellipsis stands for higher powers ofk. The6 sign
are, respectively, associated with the correlation function
the combination6sa

z(n)1sa
z(n71/2). This result that the

incommensurability is linear with the interchain couplin
confirms the one obtained by a semiclassical analysis.36
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APPENDIX: THE 2D ISING MODEL

In this appendix, we review briefly the correspondence
the Ising model with fermions, the conformal structure of t
model and we indicate a set of careful bosonization formu
for a pair of Ising models.

1. Definitions

As is well known, the 2D statistical Ising model is equiv
lent to a quantum Ising chain in a transverse field, w
Hamiltonian

H52l(
i

s i
z2(

i
s i

xs i 11
x , ~A1!

where s1,2,3 are the Pauli matrices. The Hamiltonian~A1!
can be diagonalized through a Jordan-Wigner transforma
followed by a Bogolubov-Valatin transformation. The sol
tion shows that̂ s i

x&Þ0 if l,1 and ^s i
x&50 otherwise.

Thusl51 is the critical point. A peculiarity of this model is
the existence of a duality transformation mapping the
dered phase to the disordered phase and vice versa. U
this transformation the spin operatorss i

a are mapped to the
so-called disorder operators, defined on links~dual lattice! by
the following relations:

m i 11/2
z 5s i

xs i 11
x ,

m i 11/2
x 5)

j < i
s j

z . ~A2!

Let us apply the Jordan-Wigner transformation on the d
lattice. The fermion creation and annihilation operators
defined as
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cj 11/25m j 11/2
2 expS ip

2 (
k, j

~mk11/2
z 21! D ,

cj 11/2
† 5m j 11/2

1 expS 2 ip

2 (
k, j

~mk11/2
z 21! D , ~A3!

where m65(mx6 imy)/2. The fermions correspond to th
kinks in the original formulation. Indeed the fermion numb
on link j 11/2 is

cj 11/2
† cj 11/25

12s j
xs j 11

x

2
; ~A4!

i.e., there is no fermion on the link if the spins onj and j
11 are parallel and one if they are antiparallel. Note that
order parametersx has a bosonic character, whereas the d
order parametermx is fermionic. This is easily seen from th
following equivalence:

m j 11/2
x 5cj 11/2

† expS 2 ip(
k, j

ck11/2
† ck11/2D

1cj 11/2expS ip(
k, j

ck11/2
† ck11/2D ,

s j
x5s2N

x expS 6 ip(
k, j

ck11/2
† ck11/2D . ~A5!

2. Continuum limit

The critical point of the 2D Ising model is equivalent,
the continuum limit, to a free, massless Majorana fermion
conformal field theory with central chargec51/2 and three
conformal families: the identity operator, the energy opera
e, and the the spin density~or order! operators. The use of
complex coordinatesz5t1 ix and z̄5t2 ix is standard,
along with the complex derivatives]5]z5(]t2 i ]x)/2 and
]̄5] z̄5(]t1 i ]x)/2 ~the notation used is that of Ref. 37!.
The energy density operator may be expressed in term
the chiral components of the Majorana fermion ase5 icc̄.
The order fields is the continuum limit of the spin operato
s i

x , and a fermionic disorder fieldm may be introduced as
the continuum limit of the disorder operatorm i 11/2

x . The field
m has the same scaling properties as the fields, but is non-
local with respect tos. The conformal transformations ar
generated by the energy-momentum tensor, whose c

components areT52
1
2

c]c and T̄52
1
2

c̄ ]̄c̄. All these

fields have the following short-distance products or OPE

c~z!c~w!;
1

z2w
12~z2w!T~w!,

c̄~ z̄!c̄~w̄!;
1

z̄2w̄
12~ z̄2w̄!T̄~w̄!,

s~z,z̄!s~w,w̄!;
1

uz2wu1/4
1

1

2
uz2wu3/4e~w,w̄!,
r

e
-

a

r

of

ral

m~z,z̄!m~w,w̄!;
1

uz2wu1/4
2

1

2
uz2wu3/4e~w,w̄!,

s~z,z̄!m~w,w̄!;
g~z2w!1/2c~w!1g* ~ z̄2w̄!1/2c̄~w̄!

A2uz2wu1/4
,

m~z,z̄!s~w,w̄!;
g* ~z2w!1/2c~w!1g~ z̄2w̄!1/2c̄~w̄!

A2uz2wu1/4
,

c~z!s~w,w̄!;
g

A2~z2w!1/2
m~w,w̄!,

c~z!m~w,w̄!;
g*

A2~z2w!1/2
s~w,w̄!,

c̄~ z̄!s~w,w̄!;
g*

A2~ z̄2w̄!1/2
m~w,w̄!,

c̄~ z̄!m~w,w̄!;
g

A2~ z̄2w̄!1/2
s~w,w̄!, ~A6!

whereg5expip/4 ~or, equivalently, exp2ip/4).

3. Bosonization

Two Ising models form ac51/211/251 conformal
theory. We therefore expect a representation of the differ
fields in terms of a free bosonw, defined by the action

S5
1

8pE dx dt@~]tw!21~]xw!2#. ~A7!

Our choice of normalization (1/8p) simplifies the exponen-
tials and circular functions appearing in the sine-Gord
theory. The OPE’s of the boson field and of its~normal-
ordered! exponentials are

]w~z!]w~w!;
1

~z2w!2 ,

eiaw(z)eibw(w);~z2w!abei (a1b)w(w)1•••. ~A8!

The boson field can be separated into chiral compone
w(x,t)5f(z)1f̄( z̄). These fields have the following mod
expansion in radial quantization:37

f~z!5q2 ip ln z1 i (
kÞ0

1

k
akz

2k,

f̄~ z̄!5q̄2 i p̄ ln z̄1 i (
kÞ0

1

k
ākz̄

2k, ~A9!

where the operatorsp,q,an satisfy the commutation relation

@q,p#5 i , @an ,am#5ndn,m , ~A10!

with similar relations for the left-moving~barred! operators.
A faithful representation of the Ising fields is then give

by the following relations:38
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c5
1

A2
eip p̄eif1

1

A2
e2 ip p̄e2 if,

c̄52
i

A2
e2 ip p̄e2 i f̄2

i

A2
eip p̄ei f̄,

c852
i

A2
eip p̄eif1

i

A2
e2 ip p̄e2 if,

c̄852
1

A2
e2 ip p̄e2 i f̄1

1

A2
eip p̄ei f̄,

ss85A2 cos
w

2
,

sm852 iA2 sin
u

2
,

ms852 iA2 cos
u

2
,

y

t

mm852A2i sin
w

2
, ~A11!

whereu5f2f̄12p p̄ is the field dual tow ~the operator
2p p̄ is added to ensure proper anticommuation properti!.
This representation leads to the correct OPE~A6! between
the Ising fields. The phase factoreip p̄ is similar to the phase
factor in the Jordan-Wigner transformation,p̄ being to the
number of left fermions. Only its odd or even character m
ters. We note the natural periodicity propertyw→w14p
andu→u14p of this representation.

The energy-momentum tensorsT andT8 of the two Ising
models, along with their antiholomorphic counterparts,
bosonized as follows:

T~z!2T8~z!54A2e2p i p̄ cos@2f~z!#,

T̄~ z̄!2T̄8~ z̄!524A2e2p i p̄ cos@2f̄~ z̄!#. ~A12!

This relation is useful when bosonizing the twist term@the
last term of Eq.~16!#.
*Present address: Department of Theoretical Physics, Universit
Oxford, 1 Keble Road, Oxford, OX1 3NP.
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