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Solution of ' Solvable model of a spin glass' 
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ABSTRACT 
The Sherrington-Kirkpatrick model of a spin glass is solved by a mean field 

technique which is probably exact in the limit of infinite range interactions. At and 
above T, the solution is identical to that obtained by Sherrington and Kirkpatrick 
(1975)  using the n+O replica method, but below T, the new result exhibits several 
differences and remains physical down to T = 0. 

5 1. INTRODUCTION 
Sherriiigton and Kirkpatrick (1975) (SK) have proposed an idealized 

model of a spin glass which apparently allows an  exact formal solution. 
Unfortunately, the solution is non-physical a t  low temperatures, leading in 
particular to  a negative zero-point entropy. We present here a new solution 
of the SK model which behaves sensibly at low temperatures, while agreeing 
with the SK solution at and above the critical temperature T,. Our analysis 
is based on a high temperature expansion, supplemented below Tc by a mean 
field theory which takes into account not only the average spin on each site, 
but also the mean square fluctuation from this average. 

The Sherrington-Kirkpatrick Hamiltonian 

describes N Ising spins (&= 
Gaussian-random exchange interactions : 

1) interacting in pairs (ij) via infinite-range 

Prob (Jij)cc exp 2Ja ( - z J i i 2 )  
with a variance j 2 j Z  where Z is the number of neighbours of each spin, 
presumed effectively infinite ; we work in the limit N 22 % 1. The 2-1'2 

dependence of the interact,ions is necessary to  ensure a sensible thermo- 
dynamic limit. We consider only the case in which J i j  has zero mean, 
setting XK's J ,  parameter t o  zero. We also set k, = 1 and p = l / T  throughout. 

t Also a t  Bell Laboratories, Murray Hill, New Jersey 07974, U.S.A. 
1 Work at  Princeton University partially supported by National Science Founda- 

tion Grant No. DMR76-00880. 
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The SK solution follows the approach of Edwards and Anderson (1975) 
using the well-known trick of replacing In 2 by lim (2" - l ) /n  and regarding 

Zn (for integer n )  as the partition function of n replicas of the original system. 
This allows one to perform the average over the J distribution before taking 
the spin trace. It seems necessary, however, to use the thermodynamic 
limit iV+m before taking n-0, and it is this improper reversal of limits that  
leads to SK's erroneous solution (R. G. Palmer, to be published). We there- 
fore avoid the replica method and turn to  a different approach. 

n 4  

$ 2 .  THE HIGH TEMPERATURE REGION 

For T > T ,  we make a high temperature series expansion for the free 
energy, using the standard identity 

Thus exp (/3JijSiSj) = cosh /3Jij( 1 + SiSi tanh /3Jii). (3) 

- /3F = (In Tr exp ( - /3X)), 

= N/32J2/4 + O ( N / Z )  

+ (In Tr (1 + C TijSiSj + + C TijT,,SiSiS8, .. .)),, ( 4 )  
( U )  (U) # (kl) 

where Tij = tanh /3Jij. The expansion may be analysed diagramatically (each 
line representing a T i j ) ,  noting the following conditions for a non-vanishing 
diagram : 

(a) There must be an even number of lines a t  each vertex. 
( b )  No line may be double before taking the logarithm. 
(c) Every line must be double after taking the logarithm (because ( J )  = O ) .  

We find no terms of order ,V (except the trivial N In 2),  and a summable 
series in order X / Z ,  consisting of simple polygons (fig. 1 ( a ) )  which become 
double (fig. 1 ( 6 ) )  after taking the logarithm. 

F = X f o  + (LV/Z)/, + lower order, 

We thus obtain 

Fig. 1 

The most important diagrams in orr ler 'S ,Z before (a) and after (6) taking the 
logarithm. 
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with 

and 
f o  = - T In 2 - J 2 / 4 T ,  (5) 

f l  = - )T In (1 - ,PJJZ)  + non-singular part. 

The extensive part of the free energy is identical to the SK result for T 2 T,. 
The contribution of order NIZ-1 is negligible in the thermodynamic limit 
for T > J ,  but diverges as T = T ,  = J  signaling the transition found by Edwards 
and Anderson (1975) and SK. We note that the divergent part f l  is intrin- 
sically positive, in contrast to the corresponding result of conventional mean 
field theory. This reflects the fact that the spin glass transition is a blocking 
effect of interference among the different interactions ; the free energy below 
T ,  is greater than an analytic continuation of the high temperature result. 

3 3. DERIVATION OF THE MEAN FIELD EQUATION 

Below T ,  we must introduce a mean field in order to reconverge the series 

(6) 

where &,, is a soluble mean field Hamiltonian which is to be used in evalua- 
ting the diagrams generated by exp ( ~ 2 0 - t 9 & ' ) .  

for F. We employ the usual identity 

Tr exp ( - B ' w  = Tr exp ( - P ~ o ) ( e x p  @ S o  - PW>x.,, 

An obvious ansatz is 

(31po-3Ep)ij =Jij(Si-mi)(Sj-mj) 

(So)ii = Jii(mimi - miSi - miSi) 
so that 

(7 )  

where mi is the mean spin on the i th site, to  be determined self-consistently 
by the condition 

<Si)Hyo =mi. (8) 

Ignoring the perturbation & -So leads to  the appealing (but incorrect) 
mean field equation 

(9) 

which would imply a critical temperature of ZJ, since the largest eigenvalue 
of a Gaussian-random matrix (Mehta 1967)'is (JJmaX = 21 / (NJ2)  = 23. How- 
ever, the series generated by exp (BX0 - /3&) is still divergent with this choice 
for .fo, showing that it is essential to consider correlations between spin 
fluctuations on different sites. 

It is possible to proceed diagramatically (Thouless, Anderson, Lieb and 
Palmer, unpublished report), removing the most divergent diagrams by 
manipulating the X0/Y separation. However, it is simpler, and perhaps 
more physical, to observe that the set of diagrams contributing in order N 
are just  those which would remain on a ' Bethe lattice ' or Cayley tree ; all 
diagrams with no loops. Any diagram containing a closed ring is necessarily 
of order NIZ or less, since the internal connection reduces the number of site 
summations by one. The Bethe method (1935) is exact for the Ising model 
on a Cayley tree, and should therefore solve this problem wherever the order 
.Y/Z terms are convergent (and hence ignorable). 

hi = C Jijmi = T tanh-I m, 
i 
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In the Bethe method, we consider a ' cluster ' of a central site 0 and all 
its neighbours j .  On the neighbours j we assume mean fields hj  which, for 
a Cayley tree, are the only effect their neighbours can have on them. Using 
the smallness of J O j  (ocZ-liz), it is easy to arrive a t  the following expressions 
for m, and m, : 

m, = tanh /3 C J O j  tanh /3hj 
j I 

mi = tanh /3hj + m,/3JOi( 1 - tanh2 /3hj).) 

We may now eliminate the his (again using the smallness of Jo i ) ,  obtaining the 
fundamental equation 

2 JOimj - mop 2 Joj2(  1 - mi2) = T tanh-' m, 
j j 

which supplants the incorrect eqn. (9), and must, of course, be valid for any 
choice of site 0. The correction term proportional to m, is more readily 
understood upon realizing that /3( 1 - mi2) is the single-site susceptibility, x i ,  
as may easily be proved. Equation (11 )  may thus be written 

m, = tanh /3 C Joi(mi - mOJojxi) 
j 

and the second term on the right-hand side is seen as the response of site j 
to the mean spin on site 0 ; this must be removed from 'mi when computing 
m,. 

The corresponding free energy is not easily obtained from the Bethe 
method, and we therefore present it as a fait accompli, originally derived by 
diagram expansion : 

+ ~ T ~ [ ( l + m , ) l n ~ ( l + m i ) + ( l - m i ) l n ~ ( l - m i ) ]  ( 1 3 )  

As it must, direct differentiation of eqn. ( 1 3 )  gives eqn. (11). Additionally, 
eqn. (13) is quite physically transparent : the first term is the internal energy 
of a frozen lattice ; the second term is the correlation energy of the fluctua- 
tions, and is just the NJ2/4T term of eqn. (5) ,  modfied for the effective 

freedom ', 1 -mi2, of each spin ; and the last term is the entropy of a set of 
Ising spins constrained to have means mi. 

We emphasize that the Bethe method, the use of the Cayley tree, and the 
resulting eqns. ( 1 1 )  and ( 1 3 )  are only meaningful if the terms of order N / Z  
(and lower) are convergent. Evaluation of these terms is rather awkward 
and will be discussed in detail elsewhere. The only simple region is near 
T,, where we find 

i 

- 
J (  1 -m2) < T (T  T,) ( 1 4 )  

as the convergence criterion for the N / Z  diagrams, and hence as a validity 
condition for our mean field theory. 

Our problem is now reduced to finding solutions to the mean field eqn. 
( l l ) ,  subject to the convergence condition (14), and then to using eqn. (13 )  
to obtain the thermodynamics. This programme is not much easier than 
the original problem, since J i j  is a random matrix, and eqns. (11 )  and (13) 
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hold for an individual realization, not for an ensemble average. We have 
been able to find solutions both near T ,  and near T = 0. I n  both cases the 
solutions involve some numerical conjectures checked by machine simulation, 
so that while we are reasonably certain of the general form of the solution in 
both regions, they are far from complete analyses. We also encounter some 
' coincidences ' which require further investigation. DetaiIs of our solutions 
will be given elsewhere, and we attempt here only a general description of the 
methods. 

5 4. THE CRITICAL REGION 

For T near T, we expect mi to be small and similar to the eigenvector M i  
belonging to the largest eigenvalue (JJmax = 2J of the matrix Jii : 

C JiiMj = ZJM., (15) 
i 

We first linearize eqn. ( I l ) ,  approximating Jij2,yi by &? : 
i 

C Jiimi = PJ2( 1 - 2 ) m i  + T(mi + mi3/3 + m,"/5 + . . . ) 
i 

We then expand mi about Mi 
mi = Mi + Am,, (17)  

chosing the R.M.S. amplitude 
- 

q = Mi2 

of Mi such that Mi is orthogonal to 6m,. The components Mi have a 
Gaussian distribution, as may be proved from the invariance of a Gaussian- 
random matrix (with suitable diagonal elements) under orthogonal trans- 
formations. Using this fact to take a scalar product of eqn. ( 1 6 )  with Mi, 
we obtain 

(2J-BJ2- T)q=(T-pJ2)q2+3Tq3+ T Mi36mii-O(q4). 
i 

The term in &mi is essential-there is no solution without it-but is difficult 
to estimate. Analysing the projection of eqn. ( 1 6 )  orthogonal to Mi by a 
combination of eigenvector expansions and numerical estimates, we find 
finally 

(Zf-Jz/T-T)q-(T -J2 /T)q2+(2T2 /J -3T)q3=0 .  (20) 

Near T ,  = J  this equation has a double zero at 

which gives the mean field free energy, eqn. (13) ,  a saddle point at T,. 
Near T ,  the form of F,, is very complicated and quite unlike that for 

typical phase transitions (fig. 2)) and it is not a t  all surprising that the 
Edwards-Anderson and SK continuations come out on a wrong branch of 
the free energy function. It is important to note that F,, is not a genuine 

P.M.  2Q 
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Fig. 2 

ql /2 = 
mr.rn.s. 

The form of the mean field free energy for T slightly below Tc.  The N / Z  terms 
diverge in the shaded region. 

free energy functional in the Ginzburg-Landau sense, in that the convergence 
condition (14) restricts the freedom of q, and in particular eliminates the 
spurious minimum a t  q = O  as soon as T falls below T,. This behaviour, the 
43 term, and the saddle point in F,,, are very reminiscent of the heuristic 
free energy functional of Harris, Lubensky and Chen (1976). 

As far as we can see, our solution deviates only in higher order from SK 
near T,. The cusp of the specific heat is the same, as is the T-dependence 
of m2 = q. 
- 

$ 5. THE LOW TEMPERATURE REGION 

In  the low temperature regime, T < T,, our analysis is based on the prob- 
ability distributions of the fields hi= C Jijrnj and the mean spins, mi. At 

j 
T = 0 the mean field equation obviously selects a self-consistent lowest energy 
solution of 

mi =sign (hi), (22) 

and we have generated a large number of such solutions numerically to  
investigate the distribution of hi. We find that Prob (Ih,l)-hence written 
p(h)-becomes linear for small h as N+co (there is a finite offset p ( 0 )  at 
finite N ) .  As a by-product of this study, we find a ground state energy of 
U,= - (0.755 O.OlO)jN, which is certainly different from SK’s value of 
U ,  = - (2/7r)1’zJN = - 0.80JN. 

To derive the low temperature thermodynamics we assume 

lim p(h)  = h/H2 
h 4  

and 
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where H and a are parameters to be determined later. 
easily justified a posteriori. 
are related by 

and the definition 

Equation (24) is 
Again approximating the Jij2xj  term, mi and hi 

hi = a T m ,  + T tanh-l mi (25 )  

m 2 =  5 m2(h)p(h) dh (26) 
f f i .  

0 

leads after some integration to 

H 2 / J 2  = aa + (2  In 2 + 1)/3 + In 2/a,  (27 )  

which leaves only one unknown parameter, a. The minimum acceptable 
value for H is H = 1.2SJ and we beIieve on the basis of our numerical work 
and general considerations that H is actually equal to this limiting value, 
giving 

a = 2x1’111 2 = 1.665. 

Fig. 3 

The order parameter q=mz as a function of temperature. The circles and broken 
line are the results of SK. 

Figure 3 shows the resulting order parameter, q, fitted smoothly to the SK 
result near T,. The convergence criterion, eqn. (14), is easily satisfied at  
low temperatures, but there are corrections to this criterion away from T,. 
We suspect, but have not yet proved, that  the solution coincides with the 
true convergence criterion, and the FMF has the saddle point form sketched 
in fig. 2 a t  all temperatures below T,, thus giving a line of critical points. 

2 Q 2  
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We may now calculate the entropy from eqn. (13) : 

- [ (T) In (+) + (9) In (?)I 
z Sa' 

- - -- ( T / J ) z - S  J [. 
4 0 

The low temperature specific heat is thus quadratic . 

c = 154N( T/J)2 .  
M'e have performed some finite temperature Monte Carlo simulations of this 
spin glass model and find a specific heat consistent with this result. 

The low temperature susceptibility 

x = zj = 1.665TIJ (31) 

is linear in T ,  in contrast to SK's which has a finite zero-temperature intercept 
(fig. 4). 

Fig. 4 

0 2  O 4 I /  

0" ' I I I I I I 
I ]  

0 0 2  0 4  0 6  0 8  10 12 14 16 18 2 0  

T /  TC 

The temperature dependence of the susceptibilitj.. according to the present work 
(solid line) and SK (circles and broken line). 

9 6 .  CONCLUSION 
In conclusion, we believe that  we have shown that  a consistent mean field 

theory of the Sherrington-Kirkpatrick ' solvable model ' can be constructed. 
We believe that  this mean field theory represents the actual thermodynamic 
behaviour of the model accurately to  order ljZ. The infinite range inter- 
actions seem necessary at  present to  make the model tractable, but also make 
it  somewhat unrealistic. We therefore caution others against, any literal 
comparison of these model results with experiment, but  emphasize tha t  our 
solution strongly supports the essential conclusions of the Edwards-Anderson 
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spin glass theory, that  a sharp thermodynainic transition into a totally 
randomly ordered state can and does occur. 
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