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Renormalization group and stability in the exciton Bose liquid
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The exciton Bose liquid (EBL) is a hypothesized phase of bosons in 2+1D which possesses a dispersion that
is gapless along the coordinate axes in momentum space. The low energy theory of the EBL involves modes on
all length scales, extending all the way down to the lattice spacing. In this paper, we discuss a renormalization
group scheme that can be used to address the stability of this and related phases of matter. We find that, in the
absence of an extensively large symmetry group, realizing the simplest formulation of the EBL always requires
fine-tuning. However, we also argue that the addition of certain marginal interactions can be used to realize a
stable phase, without the need for fine-tuning. A simple generalization to 3+1D is also discussed.
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I. INTRODUCTION

Most fixed points of renormalization group (RG) flows are
characterized by the absence of any intrinsic length scale. At
such fixed points the low energy physics is scale invariant (and
often conformally invariant), with all the universal data of the
fixed point being determined by pure dimensionless numbers.

One important counterexample is a Fermi liquid. Fermi
liquids can be realized as gapless end points of RG flows,
but they are not scale invariant: the Fermi momentum kF

plays a crucial role in determining correlation functions, and
low energy degrees of freedom live at length scales all the
way down to 1/kF , which is usually comparable to the lattice
spacing.

Another less well-known example of a fixed point with an
intrinsic length scale is the exciton Bose liquid (EBL), which
was proposed in [1] and which has recently arisen in a diverse
array of different contexts (e.g., Refs. [2–5]). The EBL is a
phase of bosons in 2+1D possessing a dispersion of the form

εk ∝ | sin(kxa/2) sin(kya/2)|, (1)

where a is the lattice spacing. The most important aspect of (1)
is that εk = 0 along the coordinate axes in momentum space.
This means that the theory possesses low energy modes on
all length scales down to the lattice spacing, and consequently
exhibits “UV-IR mixing” [4,5]. As such, any theory capturing
the universal physics of this phase of matter cannot be fully
scale invariant, as it must know about the scale a.

The EBL was originally proposed [1] to be a stable phase
of matter, viz. one which does not require fine-tuning to be
realized. This claim was however later disputed [6]. In order
to have a clear answer to the question of whether or not the
EBL is stable (in the presence of a given group of micro-
scopic symmetries), one needs to construct an RG scheme that
determines which perturbations affect the universal physics.
As far as the author is aware, there does not seem to be a
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discussion of how to do this in the literature (at least when
the thermodynamic limit is taken), and in this paper we will
attempt to fill in this gap.

In order to address the question of stability, we need to
understand how to perform RG in a system where low energy
modes live at all length scales. RG is often described as a
procedure involving coarse graining in space, in the manner
of Kadanoff’s original spin-blocking procedure [7]. There is
however no unique way of performing RG, and the most
useful scheme will depend on context.

In general, a useful RG scheme is one which eliminates
nonuniversal degrees of freedom, namely those which are
not necessary for describing the low energy physics of the
system. These nonuniversal degrees of freedom may or may
not be associated with short distance scales. In particular,
associating RG flow with a successive elimination of short
distance degrees of freedom is only appropriate in problems
where things happening at short distances also live at high
energies, which is not the case for the EBL. It is therefore
misleading to describe the EBL and related models as being
“beyond renormalization” [8,9] (one would certainly not use
these words when discussing a Fermi liquid, for example),
Rather, such models simply mandate an RG scheme which
does not proceed by eliminating short-distance modes. The
purpose of this paper is to construct an appropriate RG scheme
and determine whether or not the EBL is in fact stable.

An outline of the remainder of this paper is as follows.
In Sec. II, we give a brief review of the aspects of the EBL
which will be relevant in the following sections. Section III
describes our approach to performing RG and in Sec. IV we
use this approach to analyze the stability of the EBL. We will
find that the simplest version of the EBL can only be realized
with fine-tuning, but that a certain choice of marginal “Landau
parameters” can be made such that a stable phase seems likely
to exist. In Sec. V we generalize the preceding discussion
to the triangular lattice (where the simplest version of the
EBL is again unstable) and in Sec. VI we briefly describe
a generalization to a related 3+1D model. We conclude in
Sec. VII.
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II. EBL FIXED POINT

In this introductory section we recapitulate the physics of
the EBL from a perspective that will be useful in subsequent
sections. In all of what follows we will be working in a setting
appropriate for doing condensed matter physics: we will be in
(continuous) imaginary time, on a spatial lattice with a finite
lattice spacing a, and will be performing all calculations in the
thermodynamic limit. In this limit the system size L is sent to
infinity, while a is held fixed. For more background informa-
tion and a discussion of other types of starting assumptions,
see, e.g., Refs. [1,4–6]. Working in the thermodynamic limit is
particularly important; if we were to instead use a continuum
limit in which a is sent to zero, our conclusions about stability
would change, in line with the discussion of Ref. [4]. We
will have more detailed comments to make about this issue
later on.

The EBL is a system of bosons on a 2+1D square lattice at
average density n. In most of what follows we will take n to be
some generic (incommensurate) value. The dynamics of the
bosons is assumed to be dominated by an on-site repulsion and
a ring exchange hopping term, with the most important terms
in the microscopic Hamiltonian schematically of the form

H ∼ K
∑

i

b(ri )b
†(ri + ax̂)b(ri + ax̂+aŷ)b†(ri + aŷ)+H.c.

+ U
∑

i

[n(ri ) −n]2, (2)

where n(ri ) is the boson number operator, ri runs over lattice
sites, and a is the lattice spacing.

One important feature of the ring-exchange term is that it
separately conserves the number of bosons along every row
and column of the lattice. In the absence of any other boson
hopping terms in the Hamiltonian such as

∑
μ=x,y b†(ri )b(ri +

aμ̂), the Hamiltonian thus possesses a gigantic group of sub-
system symmetries, with the boson number along each row
and column of the lattice being separately conserved. In what
follows we will never include this subsystem symmetry as
part of our microscopic symmetry group, since a microscopic
boson Hamiltonian with this symmetry group requires a large
amount of fine-tuning. Rather, we will always imagine that the
Hamiltonian above includes terms with small bare coefficients
which break the subsystem symmetry. Part of the task at hand
is to determine whether or not such terms are relevant (in the
technical sense). The actual microscopic symmetry group we
will work with in this paper will at most consist of overall
U (1) boson number conservation, translation symmetry, and
the discrete symmetries of the square lattice. In fact, for the
purposes of the points we are trying to make, none of these
symmetries are essential, and we will eventually relax them in
subsequent sections.

An analysis of the problem defined by the UV Hamiltonian
(2) proceeds by using a hydrodynamic description in terms
of two compact fields φ, θ , which keep track of fluctuations
in the phase and density of the UV bosons, respectively [1].
This is done in a manner very similar to what we would do
when writing down a hydrodynamic description of interacting
bosons in 1+1D. The legitimacy of this approach can be
justified a posteriori by computing correlation functions using

the φ, θ description and noting their quasi-1+1D character,
as well as by the fact that the various ordered phases of
the theory can be accessed from the hydrodynamic descrip-
tion by turning on appropriate cosines of φ and θ (to be
discussed later).

In more detail, the hydrodynamic description works by
performing a polar decomposition on the microscopic boson
annihilation operator by writing

b = eiφ

√
a2n + 1

2π
�x�yθ, (3)

where �μ denotes the dimensionless lattice gradient and φ is
a compact field keeping track of the boson phase. The sub-
system symmetries referred to above (which will always be
broken microscopically) act as φ(r) �→ φ(r) + f (x) + g(y)
for arbitrary functions f , g. θ on the other hand is a field
which keeps track of the fluctuations in the boson den-
sity. It is defined on the sites of the dual lattice, so that
�x�yθ at a lattice site r can be written out as (�x�yθ )(r) =
θ (̃r) − θ (̃r + ax̂) + θ (̃r + ax̂ + aŷ) − θ (r + aŷ), where r̃ =
r − (a/2, a/2).

As written in (3), θ must be constrained so that a2n +
1

2π
�x�yθ has integer eigenvalues; as usual this constraint will

be enforced softly in the low-energy theory by letting θ run
over all real values, and adding cosines like cos(q[2πnxy +
θ ]) to the low-energy action, with q ∈ Z. The reason for
parametrizing the fluctuations in the density as �x�yθ is
because θ then determines the density of quadrupolar ring-
exchange configurations of bosons [1], which given the form
of the Hamiltonian are the most important density fluctuations
to keep track of. Note that this whole procedure is exactly
analogous to what we would do when studying interacting
bosons in 1+1D, with the only difference being that in the

latter case we would replace (3) with b = eiφ
√

an + 1
2π

�xθ .
As mentioned above, we will mostly be interested in

scenarios where the microscopic symmetries of interest are
those of boson number conservation and translation, together
with D4 point group symmetry. These act on the hydrody-
namic fields as [1]

U (1) : φ(r) �→ φ(r) + λ, θ (r) �→ θ (r),

Tδ : φ(r) �→ φ(r + δ),

θ (r) �→ θ (r + δ) + 2πn(δxy + δyx + δxδy),

D4 : φ(r) �→ φ
(
Rn

π/4Rm
x r

)
,

θ (r) �→ (−1)n+mθ
(
Rn

π/4Rm
x r

)
,

(4)

where λ ∈ [0, 2π ), Tδ is the operator which implements trans-
lation through the vector δ = (δx, δy), and we have written
a general element in D4 in terms of a π/4 rotation Rπ/4

and a reflection about the x axis Rx. The action of Tδ on
θ can be understood by requiring that the boson density
n = n + a2

2π
�x�yθ transform as a density under continuous

translations, with n(r) �→ n(r + δ)(1 + � · δ) to first order in
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δ.1 Note also that the transformation of θ is nonlinear, with the
nδxδy piece ensuring that Tδ′Tδθ = Tδ′+δθ .

In terms of the hydrodynamic variables φ, θ , the action
appropriate for the Hamiltonian (2) can be written as

S =
∫

dτ
∑

i

[
i∂τφ

(
a2n + 1

2π
�x�yθ

)

+ R2ς

2π
[1 − cos(�x�yφ)] + ς

4πR2
(�x�yθ )2

]
+ · · · ,

(5)

where the first term is the hydrodynamic representation of
b†∂τ b, the sum over i is over the implicit position argument
ri of the φ, θ fields, and where we have chosen to parametrize
the couplings in the Hamiltonian in terms of an energy ς and
a dimensionless constant R2. In terms of the notation used,
e.g., in [1], we have ς ∼ 2πn

√
UK, R2 = n

√
K/U . In (5)

the terms in · · · include other subdominant boson hopping
terms such as b†(ri + aâ)b(ri ) + H.c.

∼−→ cos(�μφ), as well
as cosines like cos(q[2πnxy + θ ]), cos(q[2πnx + �yθ ]), etc.
(with q ∈ Z), which as mentioned above arise from softly
constraining the dimensionless boson number density to be in-
teger valued. The terms written down explicitly in (5) preserve
an additional subsystem symmetry which acts on the θ fields
(corresponding to the conservation of vortex number on each
row and column of the lattice), but this symmetry is broken
completely by the aforementioned cosines involving θ .

As in the hydrodynamic analysis of interacting bosons in
1+1D, we can analyze the low energy behavior of this system
by first assuming that the cosines of θ are small enough to
allow θ to be integrated out via Gaussian integration, produc-
ing an effective action in terms of φ alone. The legitimacy of
this step can then be determined a posteriori by using an RG
scheme to determine the relevance of the appropriate cosines.
Doing this, we then obtain2

S = R2

2π

∫
dτ

∑
i

(
1

2ς
(∂τφ)2 + ς [1 − cos(�x�yφ)]

)
+ · · · , (6)

where the · · · again contain all the nonlinear interactions
allowed by symmetry and compactness of φ.

Since we are assuming that the dynamics of the bosons is
dominated by the ring-exchange term, the modes which are
relevant for describing the low energy physics are those for
which �x�yφ (but not necessarily �μφ) is small. This allows
us to Taylor expand the cosine in (6) to leading order, produc-
ing a quadratic action for φ. Doing this, Fourier transforming
to momentum space, and then generalizing by letting R2, ς be

1In fact as written above this property only holds for transforma-
tions for which �x�yδ

y = �x�yδ
x = 0 (these translations are more

easily represented due to the form of the derivatives in �x�yθ ), but
restricting ourselves to these transformations will be enough for the
present purposes.

2Here we are intentionally omitting the total derivative term∫
dτ

∑
i na2∂τφ, which will not be important to keep track of in what

follows.

FIG. 1. Plot of the EBL dispersion, which is minimized along the
coordinate axes. The dashed black contour indicates a cutoff at the
momentum scale � 	 1/a; the solid black contour indicates one at
� − d�. The modes lying between the two contours are integrated
out during an RG step.

nontrivial functions of momentum [corresponding to letting
the parameters K,U in (2) be position-dependent functions;
we will elaborate on this later], the quadratic part of the action
is then

S0 =
∫

k,ω

R2(k)

4πςk

(
ω2 + ε2

k

)|φ(ω, k)|2, (7)

where
∫

k,ω
= ∫

d2k
(2π/a)2

dω
2π

, and where the dispersion is

εk = 4ςk| sin(kxa/2) sin(kya/2)|. (8)

This dispersion is shown in Fig. 1, with its most salient feature
being the fact that it vanishes along the coordinate axes in
momentum space.

Alternatively we may integrate out φ instead, producing a
quadratic action for θ that reads∫

k,ω

1

4πR2(k)ςk

(
ω2 + ε2

k

)|θ (ω, k)|2. (9)

The duality between φ and θ is much the same as in the 1+1D
case, and simply sends R2(k) ↔ R−2(k). This free model,
where all allowed cosines of θ are neglected (corresponding
to removing field configurations of φ containing vortices),
is essentially the same as the modified Villain XY-plaquette
model introduced in [10].

The functional form of ςk will turn out to not affect any
RG eigenvalues or other quantities of interest for the present
discussion; therefore, in what follows we will simply as-
sume that ςk = ς is independent of momentum. R2(k), on
the other hand, does affect RG eigenvalues, and the physics
described by (7) depends in an essential way on its functional
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form. In what follows we will allow R2(k) to be an arbitrary
positive-definite function that is smooth on momentum scales
of order 1/a, so that the Fourier transform of R2(k) is local in
real space.

III. RG PROCEDURE

In this section we set up an RG scheme that can be used
to address the stability of the Gaussian action (7). The gen-
eral approach we will take to RG in the EBL is inspired by
Shankar’s treatment of RG in Fermi liquids [11], and will
essentially follow the procedure worked out in [12,13].

As mentioned in the Introduction, the point of an RG anal-
ysis is to isolate the universal physics, regardless of the length
scales involved. In the present setting, the universal physics
of the fixed point is determined by the modes living near the
coordinate axes in momentum space; small modifications to
the dispersion in regions far away from the coordinate axes
should therefore be counted as irrelevant within any useful RG
scheme. We therefore impose a cutoff � in momentum space
by restricting to modes of φ and θ with momentum such that

εk � ςη2, (10)

where we have defined the small parameter

η ≡ a� 	 1. (11)

An illustration of the cutoff imposed by (10) is shown in
Fig. 1. The fact that η 	 1 means that �x�yφ is always small,
in accordance with our assumption that we may get away with
Taylor expanding the cosine in (6).

The perturbations to the fixed point we will need to con-
sider in our stability analysis can all be expressed as3

δS = gηdOς

∫
dτ

∑
i

cos[O(ri, τ )], (12)

where O is some equal-time polynomial in the φ, θ fields, dO
is a number whose determination will be discussed shortly,
and g a small dimensionless coupling, of order η0. Note that,
as can be shown using the scheme developed in this section,
other terms involving time derivatives such as (∂τ�xφ)2 are
either marginal and go into modifying the function R2(k), or
else are irrelevant. Therefore, in the following we will only
consider terms without time derivatives.

Even though the combination gς
∫

dτ is dimensionless,
the cutoff explicitly makes an appearance in (12) by way
of the factor ηdO . Determining the correct value to take for
dO can be done by requiring that, when evaluated on typical
field configurations, the integrand in (12) is of the same order
in η as the kinetic term in the Gaussian fixed point action,
viz. of order (�x�yφ)2 ∼ η4.4 If dO is chosen to be larger
than this value then δS is too small to have any effect as a
perturbation, while if dO is chosen to be smaller then the

3When eiO has long-range order, we will instead write the sum-
mand as 1 − cos[O(ri, τ )].

4One can also determine dO by requiring that the perturbation δS
make contributions to correlation functions/the free energy, which
are the same order in η as the appropriate quantities in the free theory.

effects of δS are not perturbatively small, which contradicts
our assumptions. As we will see, dO essentially determines
the effective dimension that the “scaling” dimension of O
is to be compared to when determining the relevance of δS
(scare quotes added here as we will not really be doing any
scaling per se—more on this shortly). Note that this effec-
tive dimension cannot simply be determined by the number
of space-time dimensions in which cos(O) has power-law
correlations—as was suggested in [1,6]—since the nature of
the problem means that our RG scheme cannot involve any
uniform rescaling of space-time (real-space conformal pertur-
bation theory is rendered unworkably awkward for the same
reason).

The correct value to take for dO is determined on an
operator-by-operator basis. As an example, for typical field
configurations in the cutoff theory we have

�n
sx�

m
pyφ ∼ η2 min(n,m), (13)

where �sμφ(r) = φ(r) − φ(r + saμ̂), s ∈ Z. Thus in order to
have η

d�n
sx�m

pyφ [1 − cos(�n
sx�

m
pyφ)] ∼ (�x�yφ)2 ∼ η4 on typi-

cal field configurations, we must take

d�n
sx�

m
pyφ

= 4[1 − min(n, m)]. (14)

Therefore, e.g., d�μφ = 4, while an operator O which is in-
variant under the row/column subsystem symmetries acting
on φ [which can be written as (13) with both n, m nonzero]
has dO � 0.

Now we move on to the determination of RG eigenvalues.
In each RG step, we first split up φ = φ< + φ> into fast and
slow modes (and likewise for θ ), with φ> only containing
modes satisfying

(η′)2 < εk/ς < η2, (15)

and with φ< containing the rest, where we have defined

η′ ≡ η(1 − dt ) (16)

with dt = d�/� 	 1 the RG time step. Note that the modes
being integrated out include modes of all frequencies—given
the nonrelativistic nature of the problem and the lack of a need
for a frequency cutoff when calculating correlation functions,
it is more natural to simply integrate out all frequencies,
thereby keeping the effective action local in time.

Integrating out the fast fields, to lowest order in g the
perturbation to the slow field effective action is

δS = gςηdO

∫
dτ

∑
i

cos(O<)e− 1
2 GO> (0,0), (17)

where GO>
is the two-point correlation function of O>, with

the decomposition O = O< + O> induced from those of φ

and θ . We then define the “scaling” dimension �O by

GO>
(0, 0) = 4�Odt + O(dt2). (18)

The factor of 4 here (as opposed to a factor of 2) arises
because with this definition the power laws that appear in
the correlation functions of O are functions of space-time
distances to the power of 2�O (see the Appendix). Rewriting
the ηdO appearing in (17) in terms of η′, we then see that the
mode integration effectively results in g being replaced by

g′ = g[1 + (dO − 2�O )dt], (19)
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so that the RG eigenvalue of the coupling g associated to O is

yO = dO − 2�O. (20)

Therefore, whether or not g represents a relevant perturbation
is determined by comparing 2�O to the effective dimension
dO.

Note that at no point have we rescaled coordinates so that
the cutoff is increased back to �; we have instead simply
reexpressed η in terms of the new (reduced) cutoff. Due to the
form of the dispersion a rescaling which returns the cutoff to
its original value cannot be uniform in momentum space and
as such must necessarily have a rather nasty implementation
in real space, which is where the hydrodynamic description
of the EBL is most naturally formulated (moreover, any such
rescaling is ultimately nothing more than a change of variables
and cannot by itself contain any physical content).

IV. STABILITY ANALYSIS

We now apply the general discussion of the preceding
section to compute scaling dimensions of operators in the EBL
theory, with the goal of determining the stability of the free
fixed point (7).

A. “Scaling” dimensions of operators

Before committing to a particular choice for the function
R2(k), let us make a few general comments. The operators
added as perturbations to the free fixed point that we are
interested in can all be written as either cos(�q) or cos(�q),
where �q, �q represent general integral linear combinations
of φ, θ fields, respectively:

�q =
∑

i

qiφ(ri ), �q =
∑

i

qiθ (ri ), qi ∈ Z. (21)

The scaling dimensions of cos(�q), cos(�q) can be com-
puted as follows. First, consider cos(�q) operators. Letting
dS� denote the shell in momentum space containing fast
modes with momenta satisfying (15), the scaling dimension
of cos(�q) is extracted by computing the fast-mode correlator
as (working to leading order in dt)

4dt��q =
∫

dS�

dkxdky

(2π/a)2

∫
R

dω
|q(k)|2
R2(k)

× 1

ω2/ς + ς [4| sin(kxa/2) sin(kya/2)|]2

= 1

4π�2

∫
dS�

dkx dky
|q(k)|2
R2(k)

,

(22)

with q(k) the lattice Fourier transform of qi.
As mentioned above, R2(k) is assumed to be the Fourier

transform of a function which is localized on length scales
below 1/�2a = 1/η�. Microscopically, momentum depen-
dence of R2 arises from nontrivial position dependence
of the parameters K,U appearing in (2), since R4(k) =
n2K(k)/U (k). To illustrate what we mean by this, consider
the interaction∑

i, j

(Ri − R†
i )δK(ri − r j )(R j − R†

j ), (23)

where Ri = b(ri )b†(ri + ax̂)b(ri + ax̂ + aŷ)b†(ri + aŷ) is
the ring-exchange operator at site i. In the IR this
term becomes

∫
k δK(k)|(�x�yφ)(k)|2, thereby making a

momentum-dependent contribution to K(k), and hence to
R2(k). Similarly, interactions like∑

i, j

[n(ri ) − n]δU (ri − r j )[n(r j ) − n] (24)

make momentum-dependent contributions to U (k), and hence
to R2(k).

The exact k dependence of R2(k) is thus nonuniversal, but
as long as the interactions like δK(r) and δU (r) contributing
to R2(k) decay sufficiently quickly at large r, R2(k) can be
Taylor expanded about zero momentum when either kx or ky

is much less than π/a, in particular when kx, ky ∼ �. We
furthermore will only be interested in operators �q which
are themselves local on scales below 1/η�, so that |q(k)|2
can be similarly expanded. Now the integral over the shell
dS� can be split into regions where kxa 	 1 and ky ranges
from � to π/a [for which the shell dS� is defined via
kx = �2a/2 sin(kya/2)], and likewise for kx ↔ ky. Perform-
ing appropriate Taylor expansions of R2(k) and q(k) in these
regions, we may perform the integral over dS� and write

��q = a

4π

∫ π/a

�

(
dkx |q[kx,�

2a/2 sin(kxa/2)]|2
R2[kx,�2a/2 sin(kxa/2)] sin(akx/2)

+ dky |q[�2a/2 sin(kya/2), ky]|2
R2[�2a/2 sin(kya/2), ky] sin(aky/2)

)
≈ a

4π

∫ π/a

�

(
dkx |q(kx, 0)|2

R2(kx, 0) sin(akx/2)

+ dky |q(0, ky)|2
R2(0, ky) sin(aky/2)

)
, (25)

where ≈ means equality up to terms suppressed by higher
powers of η.

There are several things to note about this expression. First,
note that the scaling dimension depends only on the values
that R2(k) takes on the coordinate axes. Therefore, for the
purposes of determining the stability of the Gaussian fixed
point we only need to know the function R2(kx, 0) [which
is equal to R2(0, ky) by the square lattice symmetry we have
assumed to be present for simplicity].

Secondly, note that ��q diverges logarithmically as
− ln(η) unless q(0) = 0, since R2(0) is assumed to be fi-
nite. This implies that ��q diverges if

∑
i qi 
= 0, i.e., if �q

is charged under the global U (1) boson number symmetry.
Hence only operators which conserve total boson number
have a chance to be relevant.

Thirdly, note that the scaling dimension vanishes with η →
0 if q(kx, 0) = q(0, ky) = 0 for all kx, ky. This condition is
equivalent to the condition that �q be neutral under the row
and column subsystem symmetries which act on φ. As was
discussed near (13), any operator neutral under both row and
column subsystem symmetries must have dO � 0. Together
with the fact that such operators have �O = O(η) → 0, this
means that any perturbation preserving the subsystem sym-
metries is guaranteed to be either irrelevant or marginal.
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Therefore, any operator cos(�q) which has a chance to be
relevant must both (a) preserve the global U (1) symmetry and
(b) break the subsystem symmetries. From the discussion near
(13) we see that such operators have dO = 4; as such their rel-
evance is determined by comparing their scaling dimensions
to 2.

Above we have focused on cos(�q) operators. The story
for the cos(�q) operators is the same, with the only dif-
ference in the calculation of ��q being the replacement
R2(k) → R−2(k). In particular, any operator with nonzero
vortex number [such as cos(θ )] will be infinitely irrelevant,
while any operator invariant under the dual subsystem sym-
metries (which count the vortex number in each row and
column of the lattice) will be either irrelevant or marginal.

From (25) is clear that the operators with the smallest
nonzero scaling dimensions must either have q(kx, 0) = 0
for all kx or q(0, ky) = 0 for all ky, but not both. Therefore,
when going about finding operators which have the potential
to destabilize the fixed point, we may restrict our attention
to operators which break one of the row/column subsystem
symmetries, but not both. Without loss of generality we may
thus only consider operators with nonzero q(kx ) ≡ q(kx, 0).
Combined with the fact that the scaling dimensions of such
operators depend only on R2(kx, 0), the calculation of the
smallest scaling dimensions appearing in the operator spec-
trum reduces to a one-dimensional optimization problem,
considerably simplifying the stability analysis.

When performing a numerical search for relevant opera-
tors, it is helpful to further simplify things slightly. Since all
�q (�q) operators we need to consider have zero (vortex)
charge, implying that q(0) = 0, we may without loss of gen-
erality write q(k) in terms of integers ql defined on the links
of a one-dimensional lattice as

q(k) =
∑
l∈Z

e−iklaql (1 − e−ika). (26)

In terms of the ql , the scaling dimensions are

��q = 1

π

∫ π/a

0
dk

sin(ka/2)

R2(kx, 0)

∑
l,l ′

qlql ′ cos([l − l ′]ka),

��q = 1

π

∫ π/a

0
dk R2(kx, 0) sin(ka/2)

×
∑
l,l ′

ql ql ′ cos([l − l ′]ka). (27)

The Gaussian fixed point parametrized by the given choice
of R2(k) is then stable provided that there are no nontrivial
choices of {ql} for which at least one of ��q ,��q is less
than 2.

For now, we will only be interested in perturbations which
respect translation symmetry. From the translation action of
(4), it is easy to check that, at generic incommensurate n, any
translation-invariant operator cos(�q) must have zero vortex
dipole moment [such as, e.g., cos(�2

aθ )]. This statement ap-
plies to cosines of integral linear combinations of θ fields. One
may also use explicit coordinate dependence to produce trans-
lation invariant cosines, e.g., as cos(2πnax − �yθ ). However,
as any finite-action field configuration must asymptotically
have �x�yθ → 0, such cosines are always rapidly oscillating

at large distances for incommensurate n and as such can be
ignored [1]. Therefore, translation invariance allows us to
restrict the {ql} in the second line of (27) to those integers
satisfying

∑
l ql = 0.

B. Constant R2(k)

Let us first consider the case where R2(kx, 0) = R2 is a
constant, independent of momentum. In this case there turns
out to always exist a symmetry-allowed relevant perturbation.

To show this, we start by considering the simplest �q oper-
ators which preserve the total boson number, viz. exponentials
of �xφ and �yφ. The dimension of these operators is, reading
off from (27),

��xφ = 1

πR2

∫ π

0
dx sin(x/2) = 2

πR2
. (28)

As d�μφ = 4 (so that ��xφ should be compared to 2 when
determining relevance), stability of the EBL fixed point with
constant R2 requires

R2 < 1/π. (29)

On the other hand, consider translation-invariant operators
�q built from the θ fields. The simplest such operators are
those involving two derivatives, which may be written as
�sx�pxθ for some integers s, p 
= 0. These operators have
scaling dimensions

��sx�pxθ = 4R2

π

∫ π

0
dx

sin2(sx/2) sin2(px/2)

sin(x/2)
. (30)

The right-hand side (RHS) is minimized when one of s, p is
equal to unity, with the other made large. Specifically, if we
set p = 1 (such operators were previously identified in [6]),
we find

��sx�xθ = 4R2

π (1 − 1/4s2)
. (31)

Strictly speaking, the most relevant operator is therefore
�(s→∞)x�xθ . However, on general grounds the bare coupling
constant for cos(�(s→∞)x�xθ ) will decay (usually exponen-
tially fast) with s. Since the variation of the scaling dimension
with s is rather small, we will simply restrict our attention to
s = 1, with the scaling dimension

��2
xθ

= 16R2

3π
. (32)

This operator is therefore only irrelevant provided that

R2 >
3π

8
. (33)

By examining (29) and (33), we see that, no matter the
value of R2, there is always a relevant perturbation. We now
briefly discuss the nature of the RG flows driven by these
perturbations.

1. cos(�μφ) most relevant

If cos(�μφ) is the most relevant perturbation and a term
like

∑
μ=x,y[1 − cos(�μφ)] is added to the action, the flow

drives the model to a regime where �μφ 	 1 on typical
field configurations, so that the aforementioned cosine can
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be Taylor expanded. The resulting
∑

μ=x,y(�μφ)2 term lifts
the degeneracy of the dispersion, and in the IR we obtain the
ordered phase of the 2+1D XY model. In particular, the IR
theory is massless, and the response to a background U (1)
gauge field is that of a superconductor [unlike the response of
the EBL phase described by (7), which is insulating [1]].

2. cos(�2
μθ) most relevant

Now consider the case where cos(�2
μθ ) is the most relevant

perturbation. As was discussed above, technically speaking
cos(�sμ�μθ ) is more relevant for larger s, but will also ap-
pear with a bare coupling constant that is suppressed rather
quickly with large s. Since the effects of these operators
for different small values of s are similar, we will simply
assume that the most important operator for determining the
RG flow is cos(�2

μθ ). These operators break down the group
of subsystem symmetries acting on θ in (9) to the subgroup
corresponding to conservation of total vortex charge and total
vortex dipole moment (also known as momentum).

In this case, when a term like
∑

μ=x,y[1 − cos(�2
μθ )] is

added to the action, we flow to a regime where �μ�νθ 	 1
for all μ, ν = x, y. After Taylor expanding, the free part of the
action can then be written in continuum notation as

S0 =
∫

dτ d2x

(
(∂τ θ )2 + A

∑
μ=x,y

(
∂2
μθ

)2 + B(∂x∂yθ )2

)
(34)

for constants A, B. This is essentially the quantum Lifshitz
model with a square lattice anisotropy,5 with the added pro-
viso that, by translation invariance, all terms must preserve
the vortex dipole moment (viz. must either involve time
derivatives or at least two spatial derivatives). There is no
longer any degeneracy of the dispersion along the coordi-
nate axes. However, since the terms in (34) are all quartic
in spatial derivatives, eiθ has spatial correlation functions go-
ing schematically like ∼ exp(− ∫

d2k 1−cos(k·r)
k2 ), and therefore

cannot develop long-range order. On the other hand, the oper-
ator ei�μθ does have long-range correlators, and consequently
develops long-range order, spontaneously breaking the con-
servation of vortex dipole moment. Since �μθ is charged
under translation, the resulting state spontaneously breaks
translation symmetry and possesses a gapless phonon mode.
That this phase is gapless is in keeping with a general analysis
of the ’t Hooft anomalies present in the fixed point action (7),
with an anomaly being present unless either one subsystem
symmetry is fully broken or both subsystem symmetries are
broken down to their global U (1) subgroups [16].

The exact type of charge ordering that occurs can be de-
termined by writing down a low-energy expression for the
density operator. In the microscopic boson model, the fluctua-
tions in the number density are given by δn = 1

2πa2 �x�yθ , as
written down in (3). By the time enough high-energy degrees
of freedom are integrated so as to land us in the low-energy

5The usual quantum Lifshitz model on the square lattice is gener-
ically unstable [14,15] due to nonlinear terms involving derivatives
like (∂xθ )4 + (∂yθ )4. In the present case such terms are disallowed by
translation invariance.

hydrodynamic description, this expression will be generically
modified to include all other terms involving θ which are
allowed by symmetry. The constraints of D4 symmetry and
the particle-hole symmetry occurring at half-filling mean that
we may write (see, e.g., Refs. [6,17] for related discussions)

δn(r) = 1

2πa2
(�x�yθ )(r)

+
∑
q∈N

ϒq�x�y sin(q[θ + 2πnxy])(r)

+
∑
p∈N

�p({�x sin(p[�yθ + 2πnax])}(r) + (x ↔ y))

+ · · · , (35)

where the ϒq, �p are nonuniversal coefficients and the · · ·
represent subleading contributions to δn(r) involving θ fields
living beyond the four dual lattice sites nearest to r. In the
ordered phase we are interested in, we have 〈ei�μθ 〉 
= 0 and
〈eiθ 〉 = 0. In this case it is the components of the density
involving �p which order, and we may write

〈δn〉 ≈ 2πna2
∑
p∈N

p�p[〈cos(p�xθ )〉 cos(2π pnay)

− 〈sin(p�xθ )〉 sin(2π pnay)] + (x ↔ y). (36)

C. General R2(k)

We now turn to asking whether or not there exist more
complicated choices of R2(kx, 0) that yield phases stable
against the condensation of either particle or vortex dipoles.

In general, this problem can be formulated as a shortest
vector problem, where the task is to identify the length of
the shortest vector in the integral lattices definable from (27).
This problem is generically very difficult (especially as the
dimension of the lattice increases; here the dimension goes
to infinity in the thermodynamic limit) and, in the absence
of more sophisticated constructive approaches like those of
[18], we must resort to a brute-force numerical search. This
is ameliorated somewhat by the fact that a large number of
choices for {ql} can be ruled out from the beginning [for ex-
ample, we may require gcd({ql}) = 1 and

∑
l ql � 0 without

loss of generality], but it still means that we will only at best
be able to provide suggestive evidence for (but not prove) the
existence of a stable phase.

In the following, we perform our numerical search by
restricting ourselves to operators with involve no more than
MaxBody boson/vortex creation and annihilation opera-
tors, with the given operators separated by no more than
MaxRange lattice points. To rigorously demonstrate stabil-
ity, we would need to make arguments for what happens as
MaxBody, MaxRange → ∞. Instead, we will simply con-
tent ourselves with performing a stability analysis for a series
of increasing values of MaxBody, MaxRange, and observ-
ing whether or not any putative choices of R2(k) appear to
be stable as MaxBody, MaxRange are increased. Note that
if the system develops an instability only when MaxBody or
MaxRange are increased past some large value, the EBL with
the given choice of R2(k) may be able to be regarded as stable
in practice, as very high body operators/those that act over a
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FIG. 2. Stability of the EBL for R2(kx, 0) given by (37) and MaxBody = 6, MaxRange = 6. Green regions indicate stability, i.e., the
absence of relevant operators. Left: regions where no relevant cos(�q ) operators exist. Center: regions where no relevant cos(�q ) operators
exist. Right: regions where no relevant operator of either type exists.

large number of sites will generically enter the UV action with
very small coefficients, preventing them from appearing until
the very latest stages of the RG flow (before which in any real
system the flow will be cut off either by finite size effects or
by nonzero temperature).

There are of course an infinite number of functions
R2(kx, 0) to try when searching for a stable phase. One simple
choice which seems to do a good job is

R(kx, 0) = λ1[1 + λ2 cos(akx )]2, (37)

with λ1 > 0 and |λ2| < 1. Note that this meets the require-
ments of being positive and being the Fourier transform of a
reasonably localized function. Microscopically, such a form
for R could arise from (for example) a model with local
on-site density-density interactions (constant U ), but with a
more complicated ring-exchange interaction like that of (23),
with the Fourier transform of δK(r) evaluated at (kx, 0) being
proportional to the fourth power of the expression in (37)
[again, we are not particularly interested in realistic choices
of R2(k)—we just want to know whether or not there exists
some choice which enables stability].

A plot showing the regions in λ1, λ2 parameter space where
(37) yields a stable phase for MaxBody, MaxRange = 6 is
shown in Fig. 2. We see that there exist small regions of
stability (green regions in the rightmost panel of Fig. 2),
which are located near the regions where |λ2| = 1. The fact
that the regions of stability are located near the border of the
allowed parameter space is a common theme in these types of
problems [19–21].

Upon increasing MaxBody, MaxRange, the region of
stability shrinks somewhat (especially at MaxBody = 8),
but does not completely disappear up to the largest val-
ues of MaxBody, MaxRange we have numerically checked.
The evolution of the size of the stable region with
MaxBody, MaxRange is shown in Fig. 3. Whether or not
these curves should be viewed as extrapolating to a nonzero
value in the MaxBody, MaxRange → ∞ limit is a decision
left to the reader, but we remark again that even if the allowed
region of stability vanishes when MaxBody or MaxRange

are very large, the EBL in this parameter range may still be
stable for all practical purposes. In the regions of instability,
the exact RG flow will depend on the form of the most relevant
operators, as well as the strengths of their bare coupling con-
stants. In general though, we expect that the flow will be as in
the constant R2 case, viz. either towards the superfluid phase
of the 2+1D XY model or towards a translation-breaking
crystalline state. These conclusions are summarized in the
impressionistic phase diagram of Fig. 4.

D. Stability for other symmetry groups

So far we have restricted ourselves to perturbations which
respect the symmetries of translation and total boson number
conservation (as well as square lattice symmetry, though the
latter is inessential). Boson number conservation is incon-
sequential to our stability analysis, since as we have seen
operators which do not conserve boson number have infi-
nite scaling dimensions. However, the stability analysis will
indeed change if we relax our imposition of translation sym-
metry or if we impose additional symmetries.

1. No translation symmetry/commensurate density

Suppose now that we ignore the requirement that perturba-
tions to the fixed point theory preserve translation symmetry.
This then forces us to consider perturbations involving any
combinations of θ fields with zero vortex number regardless
of their dipole moment, such as, e.g.,

∑
μ=x,y cos(�μθ ) (op-

erators with nonzero vortex number are still irrelevant, by the
reasoning given earlier). The same type of perturbations are
allowed if we keep translation symmetry but work at a com-
mensurate density with a2n ∈ Z�0, so that on average there
are an integer number of bosons per site. In this case the fac-
tors involving explicit coordinate dependence which appear
in cosines involving θ fields [such as the 2πnx in cos(�yθ +
2πnax)] can all be dropped on account of 2πnax ∈ 2πZ for
all lattice sites x. From the perspective of stability, this case
is therefore equivalent to the one where we ignore translation
symmetry.
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FIG. 3. Size of the region of stability in Fig. 2 near −1 < λ2 < −0.75, 1 < λ1 < 4, as a function of MaxBody and MaxRange. Here
“stability fraction” denotes the area in λ1-λ2 parameter space of the stable region, relative to the area when MaxBody = MaxRange = 4.

In this setting, we may now consider arbitrary sets of inte-
gers {ql} in the second line of (27). Obviously any region of
stability in this case must be a proper subset of the region
of stability found in the case where translation symmetry
was imposed microscopically. We find that, for the choice of
R2(kx, 0) in (37), the region of (apparent) stability is reduced
but not altogether eliminated, as shown in Fig. 5.

Consider the regions of instability where the RG flow is
not towards the superfluid phase. If a2n is not an integer, the
flow will be towards some state with a pattern of charge order
determined by the most relevant perturbation. If instead a2n
is integral, the flow will be towards a translation-invariant
Mott insulator with a2n bosons per site. Either way, the re-

FIG. 4. (Very) schematic phase diagram roughly illustrating the
different possibilities for the model discussed in this paper. The mag-
nitude of R2 increases along the axis marked R2, while the parameter
λ is a loose stand-in for the amount of k dependence present in the
function R2. When λ = 0, so that R2 is independent of momentum,
there are only two phases: at large R2 the system is a superfluid and
at small R2 the system is some form of charge density wave, with the
pattern of charge ordering depending on the value of the density n
(see the discussion in Sec. IV B 2). When R2 has sufficiently strong
k dependence, an intermediate EBL regime may be stabilized, as
indicated by the green region.

sulting phase will be massive, which is allowed by anomaly
constraints due to the dual vortex subsystem symmetry being
completely broken [16].

If translation symmetry is imposed and a2n is not an inte-
ger but some relatively commensurate rational number, more
cosines involving θ operators are allowed, even in the pres-
ence of translation symmetry. The region of stability in this
case will then be somewhere between the regions shown in
Figs. 2 and 5, depending on the value of a2n. In the regions
of instability, if the most relevant operator is a cosine of θ ,
the resulting RG flow will generally be towards some sort of
charge density wave; see [1,6] for a detailed discussion.

2. Dipole conservation

We may also consider a theory with a larger (but still
finite-dimensional) global symmetry group. One symmetry
we may impose is global dipole conservation, which maps
φ �→ φ + αx + βy for constant α, β, and under which oper-
ators like cos(�xφ) carry charge. If we impose this symmetry
in addition to translation, the region of stability in Fig. 2 can
only increase.

Dipole conservation together with translation symmetry is
however not enough to render the theory with constant R2

stable. Indeed, irrelevance of cos(�2
xθ ) still requires that R2 >

3π/8, while the simplest dipole-neutral operator cos(�2
xφ)

has scaling dimension

��2
xφ

= 4

πR2

∫ π

0
dx sin3(x/2) = 16

3πR2
, (38)

and as such is only irrelevant provided R2 < 8/3π . Since
3π/8 > 1, there is still no choice of constant R2 for which
both cos(�2

xφ), cos(�2
xθ ) are irrelevant.

For the choice of R2(kx, 0) in (37), the analog of Fig. 2 in
the presence of dipole symmetry is shown in Fig. 6. We see
that imposing dipole symmetry leads to a slight increase in
the size of the stability region, mostly in the region where λ2

is close to 1.
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FIG. 5. Same as in Fig. 2, but working at integral densities/including operators which break translation symmetry.

Finally, note that the analysis for the case with dipole
conservation but without translation symmetry is the same as
the case with translation symmetry but without dipole sym-
metry, just with R2(kx, 0) ↔ R−2(kx, 0) (as translations act as
a dipole symmetry on the θ fields).

E. Stability in the presence of large marginal deformations

We found above that operators preserving the subsystem
symmetries are always either marginal or irrelevant. For those
operators which are marginal, we can then ask whether or not
our conclusions about stability change if such operators are
explicitly included in the fixed point action.

Focusing on operators built out of φ, we found above that
cos(�n

x�
m
y φ) is marginal provided that min(n, m) = 1. We

may therefore consider adding these terms to the action and
then expanding the cosines to quadratic order, yielding an
action of the form

S = R2

2π

∫
dτ

∑
i

(
1

2ς
(∂τφ)2 + ς (�x�yφ)2

+ ς

∞∑
n=2

[
αx,n

(
�n

x�yφ
)2 + αy,n

(
�x�

n
yφ

)2])
, (39)

where the αa,n are dimensionless constants, whose magni-
tudes we generically expect to be smaller for larger values
of n (since microscopically such terms correspond to 2n+1-
body boson operators). Nevertheless, as the added terms are
marginal, from a field theory perspective it makes sense to
treat them on the same footing as the leading (�x�yφ)2 ring-
exchange term.

The terms in the second line of (39) modify the dispersion
relation of φ to

εk = 4ς | sin(kxa/2) sin(kya/2)|

×
(

1 +
∞∑

n=2

4n−1[αx,n sin2n−2(kxa/2)

+ αy,n sin2n−2(kya/2)]

)1/2

. (40)

Since the added operators preserve all subsystem symmetries,
they do not change the fact that the dispersion vanishes along
the coordinate axes in momentum space. We will assume
that the αa,n are generic enough such that the dispersion
continues to vanish only along the coordinate axes, that the
first derivatives (∂kx ε)(0, ky) and (∂kyε)(kx, 0) continue to be

FIG. 6. Same as in Fig. 2, but excluding cos(�q ) operators which have nonzero dipole moment.
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nonvanishing for all nonzero ky and kx, respectively, and that
(∂kx ∂kyε)(0) 
= 0. With these assumptions the RG eigenval-
ues of operators will still be determined by integrals over
momentum shells surrounding the coordinate axes and can
computed using the same analysis as that appearing below
(22). To leading order in η = �a 	 1 (with the low energy
modes defined as having momentum satisfying εk � ςη2, as
before), we find

��q = a

2π

∫ π/a

k0

(
dkx |q(kx, 0)|2

R2(kx, 0)[(∂kyaε)(kx, 0)]

+ dky |q(0, ky)|2
R2(0, ky)[(∂kxaε)(0, ky)]

)
, (41)

where k0 = �/[(∂kxa∂kyaε)(0)] (which may be sent to zero
when computing the scaling dimensions of the dipole opera-
tors). As a sanity check, note that this more general expression
reduces to (25) upon setting εk = 4| sin(kxa/2) sin(kya/2)|.

By tuning the αa,n appropriately it may very well be pos-
sible to render all of the dipole operators irrelevant, thereby
producing an EBL phase stabilized by (b � 8)-body ring-
exchange terms. We leave a more detailed investigation of this
possibility to the future.

F. Stability in the continuum limit

All of the analysis in this paper has been concerned with
the thermodynamic limit, where the lattice spacing is kept
finite as the system size is sent to infinity. While this is the
limit relevant to doing condensed matter physics, other types
of limits, particularly continuum limits in which the lattice
spacing is sent to zero, can be more natural in field theory
settings.

An interesting aspect of the EBL is that the physics is sen-
sitive to the type of limit which is taken (see, e.g., Refs. [4,5]).
In particular, in the continuum limit taken in Ref. [4], it
was shown that all operators violating the particle and vortex
subsystem symmetries are infinitely irrelevant, in the sense
of having ultralocal correlation functions [4]. Note that this
includes the dipolar operators that we found to be responsible
for destabilizing the R2 = const fixed point in our calcula-
tions. This means that conclusions about stability in the EBL
depend crucially on the type of limit which is taken. It would
be interesting to understand at a deeper level why this is so.

V. EBL ON A TRIANGULAR LATTICE

To think about the ideas put forth above more generally,
it is helpful to consider how things are modified when one
works on different types of spatial lattices. As a case study, in
this section we will explore the generalization of the preceding
sections to the triangular lattice.

The most natural generalization of the square-lattice ring-
exchange Hamiltonian (2) to the triangular lattice would be
one in which bosons hop via four-body ring exchange terms
around the edges of the parallelograms formed by two edge-
sharing triangular plaquettes. Defining the primitive vectors

d1 ≡ ax̂, d2 ≡ ax̂/2 + a
√

3ŷ/2, d3 ≡ d2 − d1, (42)

this Hamiltonian would possess a hopping term of the form

Hhop = K
∑

i

∑
m,l=1,2,3; m 
=l

b(ri )b
†(ri + dl )b(ri + dl + dm)

× b†(ri + dm) + H.c. (43)

This Hamiltonian however does not produce a liquid fixed
point similar to that of the EBL on the square lattice, with
the ultimate reason being that it possesses no subsystem sym-
metry: the (m, n) term in the summand of Hhop preserves the
boson number along the dl and dm directions of the lattice,
but not along the remaining third direction. As a result, if
one assumes a liquid starting point described by the phase
mode φ of b ∼ eiφ , the resulting dispersion for φ has a unique
minimum in the BZ at k = 0.

To obtain a fixed point closer to that of the square-lattice
EBL, one instead must consider higher-order ring-exchange
type terms. The simplest such term is a ring exchange process
around hexagons formed by six adjacent triangular plaquettes,
which conserves the boson number along each of the d1,2,3

directions of the lattice—thereby possessing three different
subsystem symmetries. Using this kinetic term, we consider
the Hamiltonian

H ∼ K
∑

i

b(ri + d1)b†(ri + d2)b(ri + d3)b†(ri − d1)

× b(ri − d2)b†(ri − d3) + H.c. + U
∑

i

[n(ri ) − n]2.

(44)

Following the same logic as in Sec. II, we write

b = eiφ

√
a2n + 1

2π
�1�2�3θ, (45)

with �m the lattice gradient in the dm direction and with the
field θ transforming under translations through δ by

Tδ : θ (r) �→ θ (r + δ) + 2πn
4

9
(δ · d1 r · d2 r · d3

+ δ · d2 r · d3 r · d1 + δ · d3 r · d1 r · d2) + · · · , (46)

where · · · are higher order in δ and where the form of the dot
products on the RHS ensures that the density shifts as n(r) �→
(1 + � · δ)n(r + δ) to first order in δ; cf. the discussion
near (4).

Still following the approach described in Sec. II, we are
then led to consider the free field theory

S =
∫

k,ω

R2(k)

4π
(ω2 + ε2

k )|φ(ω, k)|2,

εk = 8
∏

m=1,2,3

| sin(k · dm/2)|, (47)

with the dispersion εk vanishing along the union of the lines
where k is proportional to a reciprocal lattice vector, with the
expression for εk being derived by Fourier transforming the
kinetic term (�1�2�3φ)2. To facilitate working in reciprocal
space we will define the vectors

b1 = ŷ, b1 =
√

3/2x̂ − 1/2ŷ, b3 = b1 − b2, (48)
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so that, e.g., 4πb1,2/(
√

3a) generate the reciprocal lattice.
Note that dm · bl ∝ 1 − δm,l for all m, l .

RG is performed by setting a momentum-space cutoff �

such that the low-energy theory retains only modes for which

εk < η3, (49)

with η = �a as before, and with the power of 3 on the
RHS coming from the cubic nature of the dispersion at small
k. Scaling dimensions are now computed as GO>

(0, 0) =
6�Odt + O(dt2), so that the scaling dimension of cos(�q)

is

6dt��q = 2π

2η3

∫
dS�

dkx dky

VBZ

|q(k)|2
R2(k)

, (50)

where the Brillouin zone volume is VBZ = (2π/a)22/
√

3 and
where the shell dS� consists of those momenta satisfying
(η′)3 < εk < η3 with η′ = η(1 − dt ) as before. Taking the
function R2(k) to be invariant under all symmetries of the
triangular lattice and taking both q(k) and R2(k) to admit
Taylor expansions near the BZ boundaries in the same way
as for the square lattice case, we have, after dropping terms
subleading in η,

��q =
√

3

16π

∫ 2π/
√

3

0
dk

∑
m=1,2,3

|q(bmk/a)|2
R2(bmk/a)

∏
l 
=m | sin(bm · dl k/2a)|

= 1

8π

∫ π

0

d p

sin2(p/2)R2(2pb1/
√

3a)

(∣∣∣∣∣∑
r

qreipr2

∣∣∣∣∣
2

+
∣∣∣∣∣∑

r

qreipr1

∣∣∣∣∣
2

+
∣∣∣∣∣∑

r

qreip(r1+r2 )

∣∣∣∣∣
2)

, (51)

where the sums in the second line run over all lattice sites with
r = r1d1 + r2d2, r1, r2 ∈ Z, and we have used that R2(kbl )
is independent of l by symmetry. Note that the first sum
vanishes if �q preserves the subsystem symmetry along the d1

direction, since in that case
∑

r1
qr1d1+r2d2 = 0 for all r2. Like-

wise, the second sum vanishes if �q preserves the subsystem
symmetry along the d2 direction and the third vanishes if the
subsystem symmetry along the d3 direction is preserved. We
therefore see that, as in the square lattice case, ��q = 0 for all
operators which preserve all the subsystem symmetries (and
by computing dO for such operators, it is easy to see that none
of them are relevant). Additionally, the factor of sin2(p) in the
denominator tells us again that all operators not conserving
boson number are infinitely irrelevant.

We may thus focus without loss of generality on charge-
neutral operators which transform nontrivially under at least
one of the three subsystem symmetries. It is easy to check
that all such operators have dO = 6, so that their RG
eigenvalues are

yO = 3(2 − �O ), (52)

and hence such operators are relevant if �O < 2. Simple
examples of such operators are cos(�lφ) (invariant under
one subsystem symmetry) and cos(�l�mφ) with l 
= m (in-
variant under two). Considering the case when R2(k) = R2

is independent of momentum, these operators have scaling
dimensions

��1φ = 1

4πR2

∫ π

0
d p

|1 − eip|2
sin2(p/2)

= 1

R2
,

��1�2φ = 1

8πR2

∫ π

0
d p

|1 − 2eip + e2ip|2
sin2(p/2)

= 1

R2
. (53)

Dimensions of cos(�q) operators are obtained by sending
R2 �→ R−2 in (51). From (46) we see that any operator formed
by acting on θ with three or more derivatives is translation
invariant at any density. For example, consider �2

1�2θ , which
is translation invariant and preserves two of the dual subsys-

tem symmetries. For constant R2, the scaling dimension of this
operator is

��2
1�2θ

= R2

8π

∫ π

0
d p

|1 − 3eip + 3e2ip − e4ip|2
sin2(p/2)

= 7R2

2
.

(54)

This operator is therefore irrelevant if R2 > 4/7. However,
the operators in (53) are irrelevant only if R2 < 1/2. Thus,
for constant R2, there is always at least one relevant operator
which destabilizes the free fixed point, although the dimen-
sions of the most relevant operators are somewhat smaller than
in the case of square lattice symmetry. We expect that as in
the square lattice case an appropriate function R2(k) can be
chosen so as to render the free fixed point stable, but we defer
a more detailed numerical search to future work.

VI. GENERALIZATION TO 3d

The discussion of the square lattice EBL in the previous
sections admits a straightforward generalization to a model
bosons’ hopping on a cubic lattice in 3+1D, where we may
consider a Hamiltonian whose kinetic term is dominated by a
cube-exchange term, as studied in Refs. [3,22,23]. The appro-
priate analog of the free action (6) is

S = R2

2π

∫
dτ

∑
i

(
1

2ς
(∂τφ)2 + ς [1 − cos(�x�y�zφ)]

)
,

(55)

where φ is again a field which keeps track of the phase of
the UV bosons, with the boson density being written in terms
of a dual field θ as n = n + 1

2πa3 �x�y�zθ . The action of
translation symmetry on θ is, in analogy to (4),

Tδ : θ (r) �→ θ (r + δ) + 2πn[(x + δx )(y + δy)(z + δz )

− xyz]. (56)
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Again as in the 2+1D case, this model as written has an
infinite-dimensional group of linear subsystem symmetries,
with the boson number being separately conserved along ev-
ery line parallel to one of the coordinate axes. Again as in the
2+1D case, part of our task is to determine whether or not
terms which break this gigantic symmetry group are relevant
(in the technical sense).

If we as before generalize to let R2 be a function of k and
work in the phase where the cube-exchange term dominates
so that the cosine may be Taylor expanded, we obtain the
Gaussian action

S0 =
∫

k,ω

R2(k)

4πς

(
ω2 + ε2

k

)|φ(ω, k)|2, (57)

where we have written
∫

k,ω
= ∫

d2k
(2π/a)3

dω
2π

, and where the dis-
persion is now

εk = 8ς | sin(kxa/2) sin(kya/2) sin(kza/2)|. (58)

The dispersion (58) vanishes along the codimension-1 sur-
face in momentum space spanned by the planes where one
of kx, ky, kz vanishes. Given the analysis of the preceding
sections it should be clear how to set up RG: scaling dimen-
sions are controlled by the function R2(kx, ky, 0) (assuming
cubic symmetry) and the RG proceeds by integrating out
shells with momentum satisfying

(η′)3 < εk/ς < η3, (59)

with η = �a 	 1 and η′ = η(1 − dt ) as before.
We now define the scaling dimension of an operator cos(O)

in terms of the associated fast mode propagator as [cf. (18)]

G>(0, 0) = 6�Odt + O(dt2). (60)

The factor of 6 on the RHS is chosen so that correlation func-
tions of O are functions of space-time distances to the power
of 2�O (as can be shown along the lines of the calculations in
the Appendix). The RG eigenvalue of a coupling g associated
with cos(O) is consequently

yO = dO − 3�O, (61)

with dO determined as before by requiring that, when evalu-
ated on typical field configurations, ηdO times the perturbation
goes as (�x�y�zφ)2 ∼ η6 (for example, if O = �x�yφ, then
dO = 6).

Evaluating G>, we see that the scaling dimension of a
general operator cos(�q) is

��q = 1

6dt · 8π2

∫
dS�

dkx dky dkz

R2(k)�3
|q(k)|2

= 1

32π2

(∫ −�

−π/a
+

∫ π/a

�

)
dky dkz )|2

× |q(0, ky, kz )|2
R2(0, ky, kz )| sin(kya/2) sin(kza/2)| + · · · , (62)

where · · · is a stand-in for analogous integrals over dkx dkz

and dkx dky. From (62) we again see that ��q diverges as η →
0 unless q(0) = 0, i.e., unless cos(�q) is neutral under the
global U (1) boson number conservation. However, unlike the
two-dimensional case, we see that ��q also diverges unless

q(k) vanishes when any two of kx, ky, kz vanish. Any oper-
ator with finite scaling dimension must therefore be neutral
under all planar subsystem symmetries, i.e., must separately
conserve the number of bosons in each lattice plane. Finally,
we see that if q(k) = 0 whenever any one of kx,y,z = 0—i.e.,
if cos(�q) is neutral under the linear subsystem symmetries—
we have ��q = 0. As in the 2+1D case, the latter type of
operators have dO � 0, and as such they are always either
marginal or irrelevant. All of the preceding statements apply
equally well to cos(�q) operators, with the only change being
R2(k) ↔ R−2(k) in (62).

From the above discussion, as long as we are only in-
terested in operators with the potential to destabilize the
Gaussian fixed point, we may without loss of generality
restrict our attention to operators which are invariant un-
der the planar subsystem symmetries and which have, e.g.,
q(0, ky, kz ) = q(kx, 0, kz ) = 0, q(kx, ky, 0) 
= 0 (i.e., operators
which have vanishing dipole moment and have nonzero
quadrupole moment oriented along ẑ). Any �q fitting the bill
may be written as

�q =
∑

i

qi[φ(ri) − φ(ri + x̂a) + φ(ri + x̂a + ŷa)

− φ(ri + ŷa)], (63)

where the {qi} are integers and where the sum is over the sites
of a two-dimensional square lattice. In terms of the {qi}, the
scaling dimensions of interest may then be written as

��q = 1

2π2

∫ π/a

−π/a
dkx dky

| sin(kxa/2) sin(kya/2)|
R2(kx, ky, 0)

×
∑
i, j

qiq j cos([ri − r j] · k),

��q = 1

2π2

∫ π/a

−π/a
dkx dky | sin(kxa/2) sin(kya/2)|

× R2(kx, ky, 0)
∑
i, j

qiq j cos([ri − r j] · k). (64)

These operators all have dO = 6, and hence from (61) their
relevance is determined by comparing �O with 2. Also
note that, by (56), cos(�q) is translation-invariant only if its
(vortex) monopole, dipole, and quadrupole moments vanish.
Therefore, translation symmetry restricts to {qi} such that∑

i qi = 0 in the second line above.

A. Constant R2

Consider first the case where R2 is independent of k.
The simplest potentially relevant cosine of the φ variables is
cos(�x�yφ), which has scaling dimension

��x�yφ = 8

π2R2
, (65)

therefore being irrelevant only when R2 < 4/π2 ≈ 0.4. On
the other hand, the simplest potentially relevant translation-
invariant cosine of the θ variables is, e.g., cos(�2

x�yθ ), with

��2
x�yθ = 64R2

3π2
, (66)
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FIG. 7. Stability regions for the XY-cube model with the choice of R2(k) given in (67); translation symmetry is assumed.

which is irrelevant only if R2 > 3π2/32 ≈ 0.9. Therefore, the
theory with constant R2 is always unstable, as in the 2+1D
case. However, if one imposes a global quadrupole symmetry
on the φ fields, the simplest allowed cos(�q) operator is
then �q = �2

x�yφ, which is irrelevant provided that R2 <

32/(3π2) ≈ 1.1. There is then a small region 0.9 � R2 � 1.1
for which both this operator and cos(�2

x�yθ ) are irrelevant.

B. General R2(k)

For general choices of R2(k) the story is similar to the 2D
case, except with slightly larger regions of stability for choices
of R2(k) analogous to that of (37). An example of the stability
region in the λ1-λ2 plane for the choice

R(k) = λ1{1 + λ2 cos(a[kx + ky + kz])}2 (67)

is shown in Fig. 7.

VII. CONCLUSION

In this paper we have discussed a natural scheme for per-
forming RG in the exciton Bose liquid and related models.
We showed that, although the simplest type of exciton Bose
liquid is unstable within our RG scheme, a certain choice of
marginal deformations can be made such that a stable phase
is likely to be realizable. This last point was argued for on the
basis of a simple numerical search, and it would be nice to
obtain an analytic perspective on this issue, perhaps along the
lines of that developed in [18].

More generally, this way of thinking about RG in models
whose IR fixed points involve the appearance of a micro-
scopic length scale may be useful in other contexts, e.g.,
in studying the 3+1D XY plaquette model [4,22]. It would
also be interesting to study RG flows in these models more
generally, beyond just the rather elementary evaluation of RG
eigenvalues performed here.
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APPENDIX: CORRELATION FUNCTIONS

In this Appendix we will compute a few correlation
functions at the 2+1D EBL fixed point (the appropriate gener-
alization to the 3+1D example of Sec. VI is straightforward).
See [1,4] for a detailed analysis of related correlation func-
tions in various different limits.

We will focus on correlation functions of exponentials of
�q operators defined as in (21); correlators involving the θ

fields can be obtained by inverting R2(k), as usual. Letting
S� denote the low-energy region in momentum space (where
εk � ςη2), the two-point function of ei�q is (working in units
where ς = 1 for simplicity)

− ln〈ei�q (r,τ )e−i�q (0,0)〉

= a2

4π

∫
S�

dkx dky

R2(k)

|q(k)|2
4| sin(kxa/2) sin(kya/2)|

× (1 − [cos(xkx ) cos(yky) − sin(xkx ) sin(yky)]

× e−4τ | sin(kxa/2) sin(kya/2)|), (A1)

where r = (x, y). Consider what needs to happen in order
to cancel the logarithmic divergences that could arise when
kx, ky are small. Sending kx → 0 tells us that the RHS diverges
unless either y = 0 or q(0, ky) = 0 ∀ ky, and likewise with
x ↔ y. Therefore, if r 
= 0 is parallel to x̂ (to ŷ), the corre-
lation function vanishes in the thermodynamic limit unless
�q individually conserves the number of bosons along each
column (each row) of the lattice. If r 
= 0 is not parallel to
either of the coordinate axes, the correlation function vanishes
unless �q respects both subsystem symmetries. In fact, in this
case, the correlator is asymptotically constant. Indeed, at all
points in S�, we may always write q(k) as either q(kx, 0) or
q(0, ky ), up to corrections vanishing as η → 0. As such, if
q(kx, 0) = q(0, ky) = 0 for all kx, ky, the correlator is constant
up to terms that vanish with η → 0.

Consider now for simplicity the equal-time correlator, with
τ = 0. From the comments above, the only interesting case is
one where, e.g., r = (0, y) and q(0, ky ) = 0 ∀ ky, but where
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q(kx, 0) is nontrivial and y 
= 0. Then working up to terms that
vanish as η → 0, we have

− ln
〈
ei�q (r,τ )e−i�q (0,0)

〉
= a2

2π

∫ π/a

�

dkx

×
∫ η2/2a sin(kxa/2)

0
dky

|q(kx, 0)|2[1 − cos(yky)]

R2(kx, 0) sin(kxa/2)kya
. (A2)

We now consider the limit of large spatial separation, where
y/a � 1/η2. In this regime we may perform the integral over
ky to give

− ln
〈
ei�q (r,τ )e−i�q (0,0)

〉
= a

2π

∫ π/a

�

dkx |q(kx, 0)|2
R2(kx, 0) sin(kxa/2)

ln(yη2/a), (A3)

where we have only kept the leading piece in the y/a → ∞
limit. This means that, for large y, we have

〈
ei�q (0,y,0)e−i�q (0,0)

〉 ∼ 1

|ya�2|2��q
, (A4)

where ��q is the scaling dimension as determined by taking
q(0, ky ) = 0 in (25). Note that, as claimed in the main text, our
definition of �O ensures that the correlator is proportional to
|y|−2��q .

On the other hand, consider the case where r = 0, τ 
= 0.
We then have

− ln
〈
ei�q (0,τ )e−i�q (0,0)

〉
= a2

4π

∫
S�

dkx dky

R2(k)

|q(k)|2(1 − e−4τ | sin(kxa/2) sin(kya/2)|)
4| sin(kxa/2) sin(kya/2)|

= a

2π

∫ π/a

�

dkx

∫ η2/2a sin(kxa/2)

0
dky

× |q(kx, 0)|2(1 − e−2τkya sin(kxa/2))

sin(kxa/2)ky
+ (kx ↔ ky). (A5)

In the large τ limit where τ � 1/η2 (recall that we are in units
where ς = 1) we may do the integrals whose upper limits go
as η2, and one can check that we obtain〈

ei�q (0,τ )e−i�q (0,0)〉 ∼ 1

|τ�2|2��q
, (A6)

where ��q is again as in (25). The correlation functions when
both τ and r are nonzero are obtained in a similar way.
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