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We analyze the competing effects of moderate to strong Coulomb electron-electron interactions
and weak quenched disorder in graphene. Using a one-loop renormalization group calculation con-
trolled within the large-N approximation, we demonstrate that, at successively lower energy (tem-
perature or chemical potential) scales, a type of non-Abelian vector potential disorder always asserts
itself as the dominant elastic scattering mechanism for generic short-ranged microscopic defect dis-
tributions. Vector potential disorder is tied to both elastic lattice deformations (“ripples”) and
topological lattice defects. We identify several well-defined scaling regimes, for which we provide
scaling predictions for the electrical conductivity and thermopower, valid when the inelastic life-
time due to interactions exceeds the elastic lifetime due to disorder. Coulomb interaction effects
should figure strongly into the physics of suspended graphene films, where rs > 1; we expect vector
potential disorder to play an important role in the description of transport in such films.

PACS numbers:

I. INTRODUCTION

The recent experimental realization of graphene,1–3 a
single atomic monolayer of graphite, has refocused atten-
tion upon many fundamental questions regarding elec-
tronic transport in low dimensions. Its remarkable band-
structure at zero doping has made graphene a candidate
solid state analog for high energy particle phenomena,
e.g. that described by the theories of quantum electrody-
namics (QED) or chromodynamics (QCD).

Given the relative simplicity of graphene as solid state
system, it seemed not unreasonable to hope that a com-
plete understanding of its basic electronic properties
would emerge quickly. This expectation has been under-
mined by several puzzling results in the first graphene
experiments.1–3 Perhaps most paradoxical is the “quasi-
ballistic” nature of its electronic transport: at zero mag-
netic field, graphene’s conductivity is a linear, particle-
hole symmetric function of carrier density that varies
little over a temperature range of several orders of
magnitude,1–3 down to the lowest temperatures so far
measured (30 mK).4 At exactly zero doping, a condition
termed the “Dirac point,” the conductivity assumes a
minimum value of order the conductance quantum e2/h;
this “minimum metallic” conductivity varies only weakly
between different samples possessing mobilities spanning
an order of magnitude.1–4

One expects that any disorder present must be play-
ing a crucial role in limiting the low-temperature con-
ductivity of undoped graphene. Potentially important
sources of disorder in the experiments performed in
Refs. 1–5 include remote charged impurities in the SiO2

substrate,6–10 as well as corrugations or “ripples” in
the graphene sheet.5,11–13 A semiclassical computation
within the self-consistent Born approximation (SCBA) at
the Dirac point gives a “bare” minimum metallic conduc-
tivity independent of the disorder strength, and of order
the conductance quantum,14–17 in apparent agreement
with experiment. Unfortunately, the SCBA is known to

be inconsistent for massless Dirac fermions in 2D.18,19

Das Sarma et al.8,9 have employed an alternative mean
field treatment focused upon charged impurity scatter-
ing, and have concluded that the minimum metallic con-
ductivity is in fact not universal, but should exhibit
dependence upon the disorder distribution. Near zero
doping, Cheianov et al.10 have further argued that per-
colation effects become important; these authors used
semiclassical percolation theory to derive a scaling form
of the conductivity in terms of the transmission coeffi-
cient between electron and hole puddles. Other recent
analytical12,19–22 and numerical7,23,24 work has focused
upon the localization physics of massless Dirac electrons
in the presence of various types of disorder. These and
previous18,25–29 studies have demonstrated that Dirac
electrons may evade Anderson localization for certain
fine-tuned disorder distributions, but the relevance of
these results to graphene remains unclear.

All of the references discussed above essentially ig-
nore a potentially important aspect of graphene physics,
that of electron-electron interactions. Carriers native to
the carbon sheet are ineffective at screening the long-
ranged Coulomb potential for a system near zero dop-
ing. The dimensionless strength of the Coulomb inter-
actions rs ∼ e2/ǫ~vF , with vF the Fermi velocity and
ǫ the (effective) dielectric constant, is close to one in
the experiments,1–5 and should exceed two for suspended
films.11 This is not large by the standards of bulk 3D
metals. However, it is important to stress that, near the
Dirac point, Fermi liquid theory is not expected to apply,
at least in the absence of disorder. Instead, the situation
in graphene is analogous to that in the low-energy do-
mains of QED and QCD in 3 + 1 spacetime dimensions;
the smallness of the fine structure constant allows for
a consistent perturbative expansion in QED for length
scales of order or larger than the Compton wavelength.
In the case of QCD, however, the coupling strength is
not small at atomic distances, and in fact grows ever
larger with increasing length scale. It is not apriori clear
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that the Coulomb interparticle interactions in graphene
can be treated using perturbation theory in the coupling
strength.

For weak Coulomb interactions and disorder, one can
use the perturbative renormalization group (RG) to de-
termine whether disorder or interaction effects should be-
come dominant at low temperatures. In this paper, we
employ a large-N generalization of the graphene field the-
ory to treat the effects of moderate to strong Coulomb
interactions; in physical graphene, N = 4 (see Sec. II,
below). We study the resulting theory using a one-loop
RG calculation perturbative in 1/N and in the disorder
strength.

The RG has been used many times before to study
disorder effects in 2D Dirac fermions,19,25,27,28,30 as well
as the competition between disorder and interaction
effects in such systems.31–34 Using a non-interacting
model of graphene, Aleiner and Efetov19 showed that
a particular type of disorder, associated with long-
wavelength potential fluctuations consistent with, e.g.,
screened remote charged substrate impurities, dominates
the flow to strong coupling in the absence of interactions.
Stauber, Guinea, and Vozmediano33 used the RG to treat
both weak disorder and weak Coulomb interactions in
graphene; they recovered results previously obtained by
Ye and Sachdev.31,32 In particular, the weak-coupling RG
for graphene demonstrates that a) in the absence of dis-
order, Coulomb interactions are irrelevant (in the sense of
the RG); the non-interacting, clean Dirac description is
stable, and b) in the presence of generic disorder, the non-
interacting, clean Dirac fixed point becomes unstable, and
the system flows toward strong disorder and interaction
coupling. For weak Coulomb interactions, the flow to
strong coupling is again dominated by scalar potential
disorder, consistent with the formation of local electron
and hole “puddles.” This picture would seem to sug-
gest that the asymptotic low-energy physics in disordered
graphene should be the same as that in an “ordinary,”
diffusive 2D electron gas (but see Refs. 21–24). Multiple
crossover regimes are possible depending upon assump-
tions regarding the microscopic disorder distribution.19,20

Our large-N RG treatment of graphene follows closely
a previous calculation of Ye,31,32 who employed the same
methodology to study strong Coulomb interaction and
weak disorder effects in a Dirac system possessing a sin-
gle Fermi point (generalized to N flavors). Different
from Ye, we treat the case of two inequivalent Fermi
points (valleys); each valley is generalized to N/2 identi-
cal flavors. Our calculational framework therefore main-
tains the important distinction between disorder poten-
tials that scatter particles between inequivalent valleys
and those that do not. Further, we correct a calcula-
tional mistake made in Ref. 32, the correct determina-
tion of which crucially affects our results. (See Sec. III A
and Appendix A for details.) Son35 recently revisited
the problem of Coulomb interactions at large-N for clean
Dirac electrons in graphene; in the limit of vanishing dis-
order, we recover the findings of Ref. 35.

We now summarize our primary results. We show that,
within the large N approximation, disordered graphene
resembles QCD more than QED. The theory becomes
more strongly coupled at lower temperatures and longer
length scales. This eventually leads to a breakdown of
our RG calculation, so that we cannot determine the
ground state phase within the framework employed here.
However, we are able to identify various scaling regimes
which may play a role in future experimental observa-
tions, particularly in suspended graphene films.11 Our
main results are obtained via numerical integration of
the RG flow equations, and are as follows: a) The non-
interacting, non-disordered Dirac fixed point is unstable
upon the incorporation of generic, arbitrarily weak dis-
order. b) For the case of weak (rs ≪ 1) or vanishing
Coulomb interactions, the RG flows to strong scalar po-
tential disorder, consistent with the electron-hole puddle
picture.8–10,19 c) Most importantly, for moderate (rs ∼ 1)
to strong (rs ≫ 1) Coulomb interactions, scalar potential
disorder fluctuations are parametrically cut off via screen-
ing. The system flows to strong interaction and disorder
coupling, but now, the runaway flow is dominated by
different type of disorder, corresponding to a quenched
SU(2) non-Abelian vector potential in the effective Dirac
electron theory. This vector potential is implicated in
ripples,5,11,12,20 as well as the representation of topolog-
ical lattice defects,36 in the low-energy theory. Finally,
we use the RG to predict logarithmic temperature scal-
ing in the dc conductivity within the Drude/Boltzmann
transport regime, and we also discuss thermal transport.

The importance of quenched vector potential disor-
der in the context of graphene has been stressed sev-
eral times before in the literature.5,11,12,20 All of these
previous works neglected interparticle interactions, how-
ever, and overlooked the important fact that there is no
physically plausible way of disordering a graphene sheet
that would produce only non-Abelian vector potential
disorder in isolation (see Sec. II A, below). Our result
establishes that, for moderate to strong Coulomb inter-
actions in the large-N approximation, non-Abelian vec-
tor potential disorder emerges generically as the dom-
inant source of randomness. Finally, it is intriguing
to note that the non-interacting graphene theory sub-
ject only to non-Abelian vector potential disorder con-
stitutes a very unusual, manifestly particle-hole sym-
metric quantum disorder model, for which several ex-
act and/or non-perturbative results are known.18,20,26

This non-Abelian Dirac disorder model is predicted to
avoid Anderson localization, possessing instead a pertur-
batively inaccessible, critical ground state,26 a vanishing
disorder-averaged, single-particle density of states,18 and
a non-zero conductivity of order e2/h, independent of the
disorder strength.20

The outline of this paper is as follows. In Sec. II, we
write down the low energy field theory for disordered, in-
teracting graphene, and generalize it to the case of large-
N in order to treat strong Coulomb interactions. We dis-
cuss the microscopic interpretation of the various types of
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disorder that appear in the low-energy theory, and we re-
view the quantum disorder universality classes obtained
by fine-tuning this distribution. In Sec. III, we perform
a one-loop renormalization group calculation upon the
model defined in Sec. II. In Sec. IV, we present the results
of this calculation, which consist of flow equations for
the various parameters defining the graphene field the-
ory. We analyze these equations and attempt to gleam
information about graphene’s phase diagram in an ab-
stract disorder-interaction coupling constant space. Ex-
perimental consequences of our results in the form of scal-
ing predictions for the dc conductivity and thermopower
are summarized and discussed in Sec. V.
A variety of elaborations and extensions are relegated

to the Appendices. Some technical details of the calcu-
lation presented in Sec. III are relegated to Appendix
A, while a survey of several (unstable) fixed line struc-
tures appearing in the flow equations stated in Sec. IV is
presented in Appendix B. The scaling predictions enu-
merated in Sec. V are derived in Appendix C.

II. MODEL AND SETUP

The plan of this section is as follows: In subsection
IIA, we write down an effective field theory for graphene
incorporating both quenched disorder and Coulomb in-
terparticle interactions, and we discuss (1) the role of dis-
crete symmetries and (2) the different universality classes
of disordered quantum systems that arise by fine-tuning
the details of the impurity or defect distribution. Most
of this material is not new, see e.g. Refs. 19,20; the pur-
pose of this section is to provide a context for the re-
sults discussed in Sec. IV, and to establish notation. In
subsection II B, we construct a large-N generalization of
our graphene model, suitable for studying the effects of
strong Coulomb interactions.

A. Lattice model and effective field theory

The bandstructure of undoped graphene is well-
approximated by the tight-binding Hamiltonian

H0 = −t
∑

〈rr′〉, s

c†As(r)cBs(r
′) + H.c., (2.1)

where c†As(r) and cBjs(r
′) are creation and annihilation

operators for electrons on the A and B sublattices of
the bipartite honeycomb lattice, respectively. The index
s ∈ {↑, ↓} denotes spin-1/2 components of the lattice
electrons. The hopping amplitude t in Eq. (2.1) is purely
real, and the sum on 〈rr′〉 runs over all nearest-neighbor
A − B bonds in the graphene sheet. (Further-neighbor
hopping may be incorporated as a perturbation). Hence-
forth we adopt units such that ~ = kB = 1.
A low-energy effective field theory for undoped

graphene obtains by linearizing the bandstructure of

Eq. (2.1) in the vicinity of the two inequivalentK andK ′

Fermi points (also termed “valleys”), where the particle-
hole symmetric energy bands meet. Retaining only low-
energy modes, we write

cσs(r) ∼ eikF·rψKσs(r) + e−ikF·rψK
′

σs (r), (2.2)

where ±kF locates the K and K ′ points, respectively,
and σ ∈ {A,B} labels the sublattice species.
We assemble the Dirac spinor

ψ(k) ≡




ψKA (k)
ψKB (k)

ψK
′

B (k)

−ψK′

A (k)


 . (2.3)

(The spin index s has been suppressed in this equation.)
In the low-energy theory, we will consider states annihi-
lated by ψ(k) with momentum k ≤ Λ ≪ kF , where Λ is
a hard cutoff.
The Dirac spinor defined by Eq. (2.3) is an eight-

component object, ψ → ψa, with index a ∈ {1, . . . , 8}.
The eight components arise from the direct product
of indices in the 2-dimensional sublattice {A,B}, val-
ley {K,K ′}, and spin 1/2 {↑, ↓} component subspaces.
Later, we will generalize ψa to 2N components in order
to perform an expansion in 1/N . We introduce two com-
muting sets of Pauli matrices: the matrix σ̂α acts in the
sublattice {A,B} space of Eq. (2.3), while the matrix κ̂β
acts in the valley {K,K ′} space, with α, β ∈ {1, 2, 3}.37
Below, we write down the continuum field theory for

graphene that incorporates the effects of both quenched
disorder and Coulomb electron-electron interactions [see
Eq. (2.8)]. The clean model in Eq. (2.1) possesses three
crucial symmetries that might plausibly survive the in-
corporation of disorder: particle-hole symmetry (PH),
time-reversal invariance (TRI), and spin SU(2) rotational
symmetry. In the low-energy theory, the former are en-
coded in the operator level transformations

ψ(r) → −σ̂1κ̂1
[
ψ(r)†

]T
, (PH); (2.4)

ψ(r) → σ̂2κ̂2 ψ(r), (TRI). (2.5)

In this equation, T denotes the ordinary (matrix) trans-
pose. The particle-hole (time-reversal) transformation
defined by these equations is unitary (antiunitary).

[Schematically writingH ≡ ψ†ĥψ, c.f. Eq. (2.8), Eq. (2.5)

implies that TRI imposes the condition σ̂2κ̂2 ĥ
∗ σ̂2κ̂2 = ĥ

upon the single-particle Hamiltonian ĥ.]38 The product
of the operations given by Eqs. (2.4) and (2.5) is a so-
called “chiral” transformation,28,39–42 and was denoted
by the symbol “Cz” in Ref. 20; in this same reference,
the physical TRI [Eq. (2.5)] operation was labeled “T0.”
In addition, it is useful to define two additional trans-

formations, which do not correspond to microscopic sym-
metry operations in the tight-binding honeycomb model
of graphene, but nevertheless may play important roles as
emergent symmetries at a special critical point, or when
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additional restrictions are placed upon the disorder dis-
tribution:

ψ(r) → −σ̂1κ̂2
[
ψ(r)†

]T
, (PH∗); (2.6)

ψ(r) → σ̂2 ψ(r), (TRI∗). (2.7)

The transformation PH∗ is defined to be unitary, while
TRI∗ is antiunitary. The product of PH∗ [Eqs. (2.6)] and
the physical TRI operation [Eq. (2.5)] is another type of
“chiral” transformation, denoted by the symbol “C0” in
Ref. 20; the TRI∗ operation [Eq. (2.7)] was labeled “Tx”
in this reference.
The effective field theory for undoped graphene is en-

capsulated by the Hamiltonian

H =

∫
d2rψ†(r)

[
−ivF σ̂ ·∇+ V̂(r)

]
ψ(r)

+
W
2

∫
d2r d2r′

ψ†ψ(r)ψ†ψ(r′)

|r− r′| . (2.8)

In this equation, vF ∼ 3t/2 is the Fermi velocity, V̂(r)
is a matrix-valued single-particle potential that encodes
the structure of the quenched disorder (discussed below),
andW ∼ e2/ǫ is the microscopic strength of the Coulomb
interactions.
We assume that both TRI [Eq. (2.5)] and spin SU(2)

rotational symmetry survive in every static realization
of disorder. Our study thus excludes the effects of ex-
ternal magnetic fields or spin-flip impurities, but is ap-
propriate to remote charged impurities, “ripples,”5,11–13

non-magnetic interstitial atoms, and topological defects
such as dislocations and bound disclination pairs. We
will be interested in the properties of a graphene system
ensemble-averaged over many realizations of disorder; we
presume that such averaging restores invariance under
PH transformations [Eq. (2.4)], as well as all honeycomb
lattice space group symmetry operations (translations,

rotations, reflections). Then the disorder potential V̂(r)
appearing in Eq. (2.8) is conveniently parameterized as

V(r) ≡u(r) 1̂ +Aβ̄ᾱ(r) σ̂
ᾱκ̂β̄ +A3

ᾱ(r) σ̂
ᾱκ̂3

+mβ̄(r) σ̂3κ̂β̄ + v(r) σ̂3κ̂3. (2.9)

In this equation, the barred indices ᾱ and β̄ are under-
stood to be summed over the “spatial” Pauli matrix com-
ponents

ᾱ, β̄ ∈ {1, 2}. (2.10)

Note that Eq. (2.9) implies that potentials {Aβ̄ᾱ} and

{mβ̄} scatter between inequivalent Fermi nodes (i.e. cou-
ple to the valley space Pauli matrices κ̂1 or κ̂2); u,
{A3

ᾱ}, and v do not. Imposing statistical invariance un-
der particle-hole [Eq. (2.4)] and honeycomb lattice space
group transformations, and assuming white noise (short-
ranged), Gaussian-correlated disorder, we must set the
average value of all disorder potentials in Eq. (2.9) to

zero, while we may assign up to five independent param-
eters {gu, gA, gA3, gm, gv} to characterize their statistical
fluctuations:19

u(r)u(r′) = 2πgu v
2
F δ

(2)(r− r′), (2.11a)

Aβ̄ᾱ(r)A
γ̄

λ̄
(r′) = 2πgA v

2
F δᾱ,λ̄δ

β̄,γ̄δ(2)(r− r′), (2.11b)

A3
ᾱ(r)A

3
λ̄
(r′) = 2πgA3 v

2
F δᾱ,λ̄δ

(2)(r− r′), (2.11c)

mβ̄(r)mγ̄(r′) = 2πgm v
2
F δ

β̄,γ̄δ(2)(r− r′), (2.11d)

v(r) v(r′) = 2πgv v
2
F δ

(2)(r− r′). (2.11e)

Let us now take a brief excursion from setting up our
model to review the physical interpretation of these var-
ious disorder types described by Eqs. (2.9) and (2.11);
see also Refs. 19,20,36. We will emphasize the connec-
tion between the particular types of disorder, the “sym-
metry” operations defined by Eqs. (2.4)–(2.7), and the
different universality classes39–41 of disordered quantum
systems realized by fine-tuning the disorder distribution
in graphene.

1. Scalar potential disorder and the symplectic class AII

Remote charged impurities at or near the substrate
surface may provide the dominant scattering mechanism
for electrons in the experiments of Refs. 1–5. One ex-
pects the potential arising from these impurities to vary
relatively slowly on the graphene lattice scale, and there-
fore to manifest itself primarily through the effective
scalar disorder potential u(r) in the low-energy theory
[Eqs. (2.8)–(2.11)]. We emphasize that the translation
of any lattice-scale disorder potential into the single ef-
fective disorder field u(r) is typically impossible, and
all disorder types consistent with the underlying sym-
metry [i.e. time-reversal invariance, Eq. (2.5)] will ap-
pear in the low-energy theory. Nevertheless, theoreti-
cally we are free to fine-tune the disorder distribution in
Eqs. (2.8), (2.9), and (2.11) by setting to zero all disor-
der parameters except gu, i.e. only u(r) nonzero. The re-
sulting theory possesses a large SU(4) symmetry, present
in every fixed disorder realization, associated with uni-
tary transformations in (valley) ⊗ (spin-1/2) space. In
every realization of u(r), this theory is invariant under
the alternative “time-reversal” transformation TRI∗, de-
fined by Eq. (2.7). The advent of TRI∗ places the non-
interacting system [Eqs. (2.8) and (2.9) with W = 0 and
only u(r) 6= 0] into the “symplectic” or spin-orbit uni-
versality class AII of disordered metals,19–25 rather than
the orthogonal class AI nominally expected on the ba-
sis of spin-1/2 SU(2) rotational symmetry and “physical”
TRI [Eq. (2.5)].43 (We have adopted the nomenclature for
quantum disorder classes employed in Refs. 39–41.) Un-
like the orthogonal class, the symplectic class is known to
possess (in the absence of interactions) a disorder-driven
metal-insulator transition in 2D.44 The (de-)localization
of Dirac electrons subject only to scalar potential disor-
der has been studied in Refs. 21–24.



5

2. Vector potential disorder and ripples, topological defects,
CI and BDI classes

In the context of graphene, the intravalley Abelian
vector potential {A3

ᾱ} in Eqs. (2.8) and (2.9) arises
in the description of elastic lattice deformations or
“ripples.”5,11,12,20 Ripples constitute a potentially im-
portant source of scattering in the electronic transport
of graphene, the presence of which has been directly
observed and indirectly inferred in substrate-supported5

and suspended11 graphene samples, respectively. Topo-
logical lattice defects constitute another class of sample
imperfections. In graphene, lattice dislocations can be
modeled by point flux insertions of the potential {A3

ᾱ} in
the low-energy Dirac theory [Eq. (2.8)], while the descrip-
tion of lattice disclinations requires the intervalley com-

ponents {Aβ̄ᾱ}.36 Taken together, {Aβ̄ᾱ} and {A3
ᾱ} form

a quenched, non-Abelian SU(2) vector potential realized
in valley space.
The graphene field theory [Eqs. (2.8) and (2.9)] pos-

sessing only quenched SU(2) vector potential disorder,

obtained by fine-tuning u(r) = mβ̄(r) = v(r) = 0,
is invariant (in every disorder realization) under the
alternative “particle-hole” transformation PH∗, defined
by Eq. (2.6). In the absence of interparticle interac-
tions [W = 0 in Eq. (2.8)], the corresponding disorder-
averaged Dirac model with gu = gm = gv = 0 in
Eq. (2.11) is a critical (i.e. not Anderson localized)
conformal field theory (CFT), for which several exact
and/or non-perturbative results are known.18,26 This
CFT realizes a (variant of) the non-Wigner-Dyson uni-
versality class CI, typically associated with disordered
superconductors.18,40,41 Intriguingly, the Dirac theory
with only non-Abelian disorder is known to possess a
vanishing density of states,18 and is predicted to ex-
hibit a nonzero conductance, independent of the disor-
der strength.20 We note, however, that the PH∗ sym-
metry transformation given by Eq. (2.6) does not cor-
respond to any local operation in terms of the lattice
electrons appearing in the model defined by Eq. (2.1).
As a consequence, neither elastic deformations nor topo-
logical defects occuring in the lattice-scale description of
graphene translate into pure non-Abelian gauge disorder
in the low-energy Dirac theory. For example, the field
theory description of lattice dislocations and disclinations
incorporates the other disorder types {u(r),mβ̄(r), v(r)}
into the cores of the defects, so that an idealized graphene
sheet subject only to topological disorder does not realize
the CI class CFT.
Potentials {A3

ᾱ} and {mγ̄} preserve both TRI and
(physical) particle-hole symmetry (PH) [Eq. (2.4)].
These particle-hole symmetric potentials can be mapped
to a particular type of “microscopic” disorder consisting
of real, nearest-neighbor random hopping on the honey-
comb lattice. Such disorder might be realized in principle
in a graphene sheet by introducing lattice vacancies, if
the only effect of removing a carbon atom is to sever the
3 nearest-neighbor electronic bonds surrounding the va-

cancy (i.e., treating the vacancy in the unitary limit). In
the presence of TRI [Eq. (2.5)] and spin SU(2) rotational
symmetry, and the absence of interactions (w̄ = 0) and
further-neighbor hopping, such a model with only gA3

and gm non-zero resides in the “chiral” symmetry class
BDI,27,28,41 and is another example of a critical, delocal-
ized disordered-Dirac model in 2D for which exact and/or
non-perturbative results are available.28

3. Staggered on-site potential disorder and class D

Finally, the disorder potential v(r), which couples to
a matrix diagonal in both sublattice (σ) and valley (κ)
spaces [Eq. (2.9)], may arise in concert with u(r), e.g., in
the description of interstitial impurities. The imposition
of a uniform v(r) ≡ v0 potential is consistent with the
application of an on-site, A-B sublattice-staggered chem-
ical potential to the underlying honeycomb lattice model
[Eq. (2.1)]. The non-interacting Dirac theory with only
staggered potential disorder, Eqs. (2.8) and (2.11) with
W = 0 and only gv > 0, realizes the non–Wigner-Dyson
class D, and is formally related to the random bond Ising
model in 2D.25,45–48

We see that by fine-tuning the details of the disor-
der distribution within the confines of a graphene sheet
that possesses, on average, the full space group symme-
try of the honeycomb lattice, several universality classes
of (non-interacting) disordered quantum systems may be
realized. The realization of these classes is essentially
equivalent to imposing various combinations of the dis-
crete symmetries defined by Eqs. (2.4)–(2.7). We em-
phasize, however, that in the current situation of zero-
magnetic field graphene experiments,1–5 only the physical
time-reversal symmetry [Eq. (2.5)] presumably persists,
and the ultimate low-energy, asymptotic physics must be
described by the orthogonal Wigner-Dyson class AI.19

Moreover, the Coulomb interactions are expected to play
a strong role, as we will demonstrate in this paper.

We now complete the formal setup of our graphene
field theory. We employ the zero-temperature, imagi-
nary time path integral formalism, implementing repli-
cas ψ → ψia in order to average over the disorder. (The
index i ∈ {1, 2, . . . , n}, with n→ 0 at the end of the cal-
culation). The post-disorder averaged, imaginary time,
coherent state path integral is

Z̄ =

∫
Dψ̄Dψ e−S̄, (2.12)
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with

S̄ =

∫
dτ d2r ψ̄i (∂τ − ivF σ̂ ·∇)ψi

+
W
2

∫
dτ d2r d2r′

ψ̄iψi(r) ψ̄iψi(r′)

|r− r′|

− 2πguv
2
F

2

∫
dτ dτ ′ d2r ψ̄iψi(τ) ψ̄jψj(τ ′)

−
2πGνµv2F

2

∫
dτ dτ ′ d2r ψ̄iσ̂µκ̂νψ

i(τ) ψ̄j σ̂µκ̂νψ
j(τ ′),

(2.13)

where summation is implied over the repeated replica
{i, j} and disorder vertex {µ, ν} indices (defined below).
The disorder is encoded in the terms on the third and
fourth lines of Eq. (2.13), the latter of which involves the
disorder “metric”

Gνµ →



gA gA gA3

gA gA gA3

gm gm gv


 (2.14)

[c.f. Eqs. (2.9) and (2.11)]. Gνµ couples to the direct prod-
uct σ̂µκ̂ν ⊗ σ̂µκ̂ν , with µ, ν ∈ {1, 2, 3}.
Assuming that frequency carries the (generally scale-

dependent) “engineering” dimension

[ωn] ≡ z, (2.15)

measured in inverse-length units, we assign the dimension
of the ψ field as

[ψ(τ, r)] ≡ 1. (2.16)

Then we find that the Fermi velocity vF and the Coulomb
interaction strength W share the dimension

[vF ] = [W ] = z − 1, (2.17)

while the disorder strengths {gu,Gνµ} are dimensionless.

B. The theory at N = ∞

The field theory given by Eqs. (2.12)–(2.14) was stud-
ied by Stauber et al. in Ref. 33 for the case of weak dis-
order and weak Coulomb interactions. (Their results are
discussed in Sec. IV.) In graphene, the effective Coulomb
interaction strength is of order unity, calling into ques-
tion the usefulness of a perturbative expansion in powers
of W [Eq. (2.13)]. In this paper, we employ a large-
N generalization in order to treat the case of moderate
to strong Coulomb interactions. The expansion param-
eter 1/N = 1/4 for physical graphene, which is at least
smaller than the bare dimensionless Coulomb interaction
strength. Our treatment follows closely that of Ye in
Ref. 32, wherein the author considered a large-N gener-
alization of a Dirac theory possessing a single valley.

D1.1

D1.2

i b
kωn i a

ii
Ωn q

D1.3

i a

i a

i

D1.4

i a j c

i b j d

FIG. 1: Diagrammatic elements of the bare Feynman rules.
The associated amplitudes are summarized in Table I.

We generalize the Dirac spinor ψia [Eq. (2.3)] to 2N ≫
1 components in the index a, with physical graphene cor-
responding to N = 4. [i is the replica index, defined
above Eq. (2.12).] Crucially, we will consider only even

N , retaining the partioning of N into two inequivalent
Fermi point sectors; as above, we will continue to use
the Pauli matrices κ̂m, m ∈ {1, 2, 3}, to address compo-
nents in this valley space. In other words, we may write
N = 2(2s+ 1), where we take the spin s ≫ 1—formally,
this is a large spin expansion. At large N , we consider
only the spin-independent, “physical” disorder potentials
defined by Eqs. (2.9) and (2.11), acting in the product of
sublattice (σ) and valley (κ) spaces.
We begin by decoupling the Coulomb interaction in

Eqs. (2.12) and (2.13) with a Hubbard-Stratonovich
transformation, using the temporal gauge field ai (i is
again the replica index):

z̄ →
∫

Dψ̄DψDa e−S̄ , (2.18)

where

S̄ →
∫
dτ d2r ψ̄i

[
∂τ − i

√
2w

N
ai(r, 0)− ivF σ̂ ·∇

]
ψi

+
1

2

∫
dτ d2r dz


[∇ai(r, z)

]2
+
[
∂za

i(r, z)
]2

− 2πguv
2
F

2

∫
dτ dτ ′ d2r ψ̄iψi(τ) ψ̄jψj(τ ′)

−
2πGνµv2F

2

∫
dτ dτ ′ d2r ψ̄iσ̂µκ̂νψ

i(τ) ψ̄j σ̂µκ̂νψ
j(τ ′).

(2.19)

D2 =      Πψ− )−1−1(

Πψ =

FIG. 2: The fermion propagator at N = ∞.
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D3 = ( −1 −     Πa )−1

Πa =

Ωn q
ii

FIG. 3: The gauge (Coulomb) propagator at N = ∞.

The temporal gauge field ai resides in the full 3+1 space-
time (τ, r, z), while the graphene field theory is confined
to the plane z = 0. As a result, the coefficient in front of
the kinetic term on the second line of Eq. (2.19) cannot
be renormalized, as we check explicitly in Sec. III C. In
Eq. (2.19), we have replaced W → w/2πN ; we keep w
finite and non-zero so as to obtain a well-defined theory
in the limit N → ∞. The bare Feynman rules are stated
in Fig. 1 and in Table I. In this paper, we denote each
diagram and its corresponding amplitude by the same
symbol, Dm.n, where m is the figure number and n is the
particular diagram in question.
The N → ∞ theory, in the absence of disorder, is

completely characterized by the one- and two-particle
self-energies depicted in Figs. 2 and 3, respectively. For
the special case of massless Dirac fermions studied here,
however, particle-hole symmetry prevents the generation
of a chemical potential shift, so that the electronic self-
energy Πψ vanishes at N = ∞ (and zero disorder), and
the large-N fermion propagator is the same as D1.1 (Fig. 1
and Table I).
The gauge field self-energy at N = ∞ is depicted in

Fig. 3; it is given by the expression

Πa(Ωn,q) = (i
√
w/N)2D0(Ωn,q), (2.20)

where the Dirac fermion polarization bubble D0(Ωn,q)
is

D0(Ωn,q) =
N

16

q2√
Ω2
n + v2F q

2
. (2.21)

Incorporating the self-energy from Eq. (2.20), the
propagator for the temporal gauge field at N = ∞ and

TABLE I: Factors associated to bare propagators and vertices
depicted in Fig. 1.

D1.1 =
(iωn + vF σ̂ · k)a,b

ω2
n + vF k2

D1.2 =
1

q

D1.3 = i

r
w

N

D1.4 =
2πguv

2
F δa,bδc,d

+2πGν
µv

2
F (σ̂

µκ̂ν)a,b(σ̂
µκ̂ν)c,d

zero disorder is

D3 =
1

q

√
v2F q

2 +Ω2
n√

v2F q
2 +Ω2

n + w̄vF |q|
, (2.22)

where we have introduced the dimensionless Coulomb in-
teraction strength

w̄ ≡ w

16vF
(2.23)

[c.f. Eq. (2.17)]. For the physical case of N = 4, the di-
mensionless parameter w̄ is essentially the Coulomb in-
teraction constant rs:

w̄ =
π

2

e2

ǫvF
. (2.24)

The scalar potential disorder, characterized by the dis-
order strength gu [Eqs. (2.9) and (2.11), Fig. 1 and Ta-
ble I] is parametrically screened by the Dirac sea in the
large N limit; the screening affects only the scalar poten-
tial disorder, since the other disorder fields in Eq. (2.11)
can be understood as arising from charge-neutral de-
fects that produce potentials lacking a monopole (i.e.
lowest-order multipole) moment. The diagram D4 pic-
tured in Fig. 4 gives the complete dressed disorder vertex
at N = ∞:

D4 ≡2π g̃uv
2
F δa,bδc,d

+ 2π Gνµv2F (σ̂µκ̂ν)a,b(σ̂
µκ̂ν)c,d, (2.25)

where we have defined the screened scalar potential dis-
order strength

g̃u ≡ gu
(1 + w̄)2

. (2.26)

In the large-N theory, it is the screened strength g̃u,
rather than the bare parameter gu, that appears in phys-
ical observables (Sec. V and Appendix C), and there-
fore characterizes the effective strength of scalar potential
fluctuations.
In summary, the Feynman rules for the large-N ver-

sion of graphene are given by D1.1 and D1.3 (Fig. 1 and
Table I), and by D3 and D4 [Figs. 3 and 4, Eqs. (2.22)
and (2.25), respectively].

= +

+

+

i a

i b

j c

j d

D4

FIG. 4: Screening of the scalar potential disorder gu due to
Coulomb interactions in the N = ∞ limit.
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ωn + ω
k + l

lω

ωn l

D5.1 D5.2
l − k

FIG. 5: Corrections to the electronic self-energy at
O

`
1

N
, {fgu,Gν

µ}
´
.

III. PERTURBATIVE EXPANSION

In this section, we perform a one-loop renormalization
group (RG) calculation within the large-N generalization
of graphene defined by Eqs. (2.18) and (2.19). Using the
results derived below, we obtain flow equations for the
disorder and interaction coupling strengths defined by
Eqs. (2.8)–(2.11). These flow equations are stated and
analyzed in Sec. IV.

A. Electronic self-energy

We begin with the renormalization of the electronic
self-energy due to the disorder and Coulomb interactions
(at finite, but large N). The diagrams are depicted in
Fig. 5. We consider first the 1/N correction due to the
interaction, diagram D5.1. Expanding in powers of the
external frequency ωn and momentum k, we find that

D5.1 ∼ −η [w̄f1(w̄)iωn + w̄f2(w̄)vF σ̂ · k] ln Λ, (3.1)

where w̄ is the dimensionless Coulomb interaction
strength defined by Eq. (2.23), Λ is a hard momentum
cutoff, and we have introduced

η ≡ 8

πN
. (3.2)

In Eq. (3.1), the functions f1(w̄) and f2(w̄) denote the
following analytic functions of the interaction strength w̄

f1(w̄) =
1

2

1√
1− w̄2

(
1−

√
1− w̄2

1 +
√
1− w̄2

)

− 2

πw̄2

[
1− w̄2

2√
1− w̄2

arcsin(w̄)− w̄

]
, (3.3a)

f2(w̄) =
1

2

1

1 +
√
1− w̄2

+
1

πw̄2

[√
1− w̄2 arcsin(w̄)− w̄

]
. (3.3b)

It will prove useful to consider the sum

f3(w̄) ≡f1(w̄) + f2(w̄)

=
1

2w̄2




2

π

[
w̄ +

arccos(w̄)√
1− w̄2

]
− 1


 . (3.4)

The electronic self-energy contribution detailed in
Eqs. (3.1)–(3.4) has been considered several times before
in the literature, first by Ye and Sachdev,31,32 and soon
after by González, Guinea, and Vozmediano.49 The in-
teraction self-energy at order 1/N was revisited recently
by Son.35 Our results agree with those of Refs. 35,49, but
disagree with those of Refs. 31,32. We derive Eqs. (3.1)–
(3.4) explicitly in Appendix A.
Next, we turn to the disorder diagram D5.2. We find

D5.2 ∼ G̃siωn ln Λ, (3.5)

where

G̃s ≡g̃u +
∑

µ,ν

Gνµ

=g̃u + 4gA + 2gA3 + 2gm + gv. (3.6)

[g̃u is the screened scalar potential disorder strength, de-
fined by Eq. (2.26)].
The bare irreducible two-point vertex function is

iΓ
(0)
ψψ = iωn − vF σ̂ · k+ D5.1 + D5.2, (3.7)

and the renormalization condition is50

d

d ln Λ

(
Z

2

2

ψ iΓ
(0)
ψψ

)
= 0, (3.8)

where Zψ is the wavefunction renormalization of the ψ
field. Using Eqs. (3.1) and (3.5) in Eq. (3.8), and combin-
ing the result with the dimensional analysis [Eqs. (2.15)–
(2.17)], we obtain the flow equations

d lnZψ
dl

= −ηw̄f1(w̄) + G̃s, (3.9)

d ln vF
dl

= z − 1− G̃s + ηw̄f3(w̄), (3.10)

where l = − lnΛ is the log of the RG length scale, and
z is the (as yet unspecified) “dynamic critical exponent”
[Eq. (2.15)].
Although we are employing a field-theoretic renormal-

ization scheme, Eqs. (3.9) and (3.10) can be equivalently
understood in a Wilsonian framework: after an integra-
tion of high-momentum modes, one acquires corrections
akin to those expressed in Eqs. (3.1) and (3.5). [Consult
the action given by Eq. (2.13).] Rescaling momentum

k → k/b, frequency ωn → ωn/b
z, and field ψ → Z

−1/2
ψ ψ,

one recovers Eqs. (3.9) and (3.10), where b ∼ 1 + dl.

B. Coulomb vertex

One-loop corrections to the Coulomb vertex D1.3

(Fig. 1 and Table I) are depicted in Fig. 6. Most of
these diagrams involve a “3-electron ring,” that is, a
closed electron loop with three nodes. Such structures
are generic to large-N expansions. We note that the
graphene (massless Dirac) theory studied here possesses
two simplifying features:
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D6.1

D6.3

D6.5 D6.6

D6.7 D6.8

D6.2

D6.4

FIG. 6: Coulomb vertex corrections at O
`

1

N
, {fgu,Gν

µ}
´

a) The sum of two counter propagating, but other-
wise identical, m-electron rings vanishes for odd m
whenever all m bilinear insertions involve the iden-

tity matrix 1̂; see Fig. 7a. This result is simply a
consequence of the odd parity nature of the mass-
less Dirac Green’s function Ĝ(r):

Ĝ(r− r′) = −Ĝ(r′ − r). (3.11)

b) An m-electron ring involving m− 1 identity matrix
insertions and a single disorder matrix insertion of
the form M̂µν ≡ σ̂µκ̂ν vanishes trivially by the trace
over valley (κ) space; see Fig. 7b.

As a result of this simplification, only diagrams D6.1

and D6.2 contribute. We find that

D6.1 ∼ −
(
i

√
w

N

)
ηw̄f1(w̄) lnΛ, (3.12)

and

D6.2 ∼
(
i

√
w

N

)
G̃s ln Λ. (3.13)

In these equations, f1(w̄) was defined by Eq. (3.3a),

η by Eq. (3.2), and G̃s by Eq. (3.6). The evalua-
tion of Eq. (3.12) closely parallels that of the electronic
self-energy, the calculation of which is detailed in Ap-
pendix A.
The bare vertex function is

iΓ
(0)
aψψ ∼

(
i

√
w

N

)
1 + lnΛ

[
G̃s − ηw̄f1(ω̄)

]
 . (3.14)

Now, we need to know the wavefunction renormalizations
for both the Dirac (ψ) and gauge (a) fields to proceed;

the latter requires the evaluation of the gauge field self-
energy to one loop. Gauge invariance in fact requires
that

d lnZa
d ln Λ

= 0. (3.15)

We will check Eq. (3.15) in Sec. III C, below.
The renormalization condition is therefore

[
d

d ln Λ
+
d lnZψ
d ln Λ

]
iΓ

(0)
aψψ = 0, (3.16)

which implies the following RG flow equation for the di-
mensionless Coulomb interaction strength w̄ [introduced
in Eq. (2.23)]:

d ln w̄

dl
= G̃s − ηw̄f3(w̄) (3.17)

[l = − lnΛ in this equation]. To obtain Eq. (3.17), we
have used Eqs. (3.4), (3.9), and (3.10).

C. Gauge field self-energy

The diagrammatic corrections to the gauge field self-
energy to are depicted in Figs. 8 and 9. Because of the
properties explicated in Fig. 7, the sum of the diagrams
in Fig. 9 gives zero.
All of the diagrams in Fig. 8 are formally two-loop,

but nevertheless give only contributions to first order in
lnΛ. In other words, one of the two loops in each of these
diagrams is always ultraviolet-finite, and we can obtain
their contributions to the renormalization group using
the hard momentum cutoff scheme implemented above.
We begin with D8.1 and D8.2, which give identical con-

tributions. One finds that

D8.1 + D8.2 ∼2Aw̄
vF q

2

√
Ω2
n + v2F q

2
+ 2Bw̄

16

N
vFJ(Ωn,q),

(3.18)

r3

r3 = 0

r1

r1

r2

r2

+ = 0a)

b)

r3

r2

r1

FIG. 7: a) Cancelation between counter-propagating 3-
electron rings involving only identity matrix (1) insertions
into the trace. b) 3-electron rings involving two identity ma-

trix insertions and one disorder matrix of the form M̂µν =
σ̂µκ̂ν vanish identically.
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D8.2D8.1

D8.5 D8.6

D8.3 D8.4

FIG. 8: Corrections to the gauge (Coulomb) field self-energy
to O

`
1

N
, {fgu,Gν

µ}
´
.

where we have used Eq. (2.21), and the log-divergent
constants A and B follow from Eq. (3.1):

A =
1

2
ηw̄[f2(w̄)− f1(w̄)] lnΛ, (3.19a)

B = −1

2
ηw̄f3(w̄) lnΛ. (3.19b)

In Eq. (3.18), we have defined

J(Ωn,q)

≡
∫
dω d2l

(2π)3

Tr




[i(ω +Ωn) + vF σ̂ · (l + q)]

× [iω + vF σ̂ · l]3




[
ω2 + v2F l

2
]2

[(ω +Ωn)2 + v2F (l+ q)2]

=
N

16

q2Ω2
n

(v2F q
2 +Ω2

n)
3

2

. (3.20)

D9.5

D9.3

D9.1

D9.6

D9.4

D9.2

FIG. 9: Corrections to the gauge (Coulomb) field self-energy
to O

`
1

N
, {fgu,Gν

µ}
´
.

r1 r2 +

rb

r1 r2

ra

ra

rb

r1 r2

rb

ra

~

r1~ r2
rb

ra

+r1

ra

rb

r2 r1 r2
rb

ra

D10.2

D10.1

FIG. 10: Evaluation of “two-loop” diagrams D8.5 and D8.6

in Fig. 8. These graphs can be expressed in terms of prod-
ucts of an ultraviolet-convergent polarization bubble and an
ultraviolet-divergent vertex correction (see Fig. 6).

Next, we evaluate

D8.3+D8.4

= 2A′w̄
vF q

2

√
Ω2
n + v2F q

2
+ 2B′w̄

vF q
2Ω2

n

(Ω2
n + v2F q

2)
3

2

.

(3.21)

In Eq. (3.21), the log-divergent constants A′ and B′ fol-
low from Eq. (3.5):

A′ = B′ =
1

2
G̃s ln Λ. (3.22)

Diagrams D8.5 and D8.6 can be evaluated by simply
multiplying the divergent vertex correction [Eqs. (3.12)
and (3.13)] (evaluated at the left and right sides of the
two-loop graphs, as shown in Fig. 10) by a factor of the
non-divergent polarization bubble, given by the N = ∞
photon self-energy [Eq. (2.20)]. We obtain

D8.5 ∼ 2ηw̄2f1(w̄) lnΛ
vF q

2

√
Ω2
n + v2F q

2
, (3.23a)

D8.6 ∼ −2w̄G̃s ln Λ
vF q

2

√
Ω2
n + v2F q

2
. (3.23b)

Summing the results of Eqs. (3.18), (3.21), and (3.23)
with the inverse N = ∞ gauge propagator [Eq. (2.22)],
and using Eqs. (3.19) and (3.22), we obtain the bare ver-
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D11.3

D11.1 D11.2

D11.4

D11.5 D11.6

FIG. 11: Renormalization of the disorder strength at
O

`
g

N
, g2

´
, where g ∈ {fgu, Gν

µ}.

tex function

iΓ(0)
aa =− |q| − w̄

vF q
2

√
Ω2
n + v2F q

2

+
vF q

2

√
Ω2
n + v2F q

2

[
ηw̄2f3(w̄)− w̄G̃s

]
ln Λ

+
vF q

2Ω2
n

(Ω2
n + v2F q

2)
3

2

[
−ηw̄2f3(w̄) + w̄G̃s

]
ln Λ.

(3.24)

Since there is no correction proportional to |q|, we see
immediately that

d lnZa
d ln Λ

= 0, (3.25)

as assumed above in Eq. (3.15). The renormalization
condition is then

d

d ln Λ
iΓ(0)
aa = 0. (3.26)

Eq. (3.26) recovers the previously-derived results,
Eqs. (3.10) and (3.17).

D. Disorder strength renormalization

Finally, we compute the renormalization of the disor-
der strength, using the diagrams pictured in Fig. 11–13.
These diagrams correct the bare disorder vertex D1.4, pic-
tured in Fig. 1, with the tree-level amplitude given in
Table I.

Diagrams D11.1–D11.4 describe the autorenormaliza-
tion of the disorder at one loop. One finds19

D11.1 + D11.2 + D11.3 + D11.4

=2πv2F
(
1̂⊗ 1̂

) [
2guG̃s + 8gmgA + 4gvgA3

]
ln Λ

+ 2πv2F
(
σ̂ᾱκ̂β̄ ⊗ σ̂ᾱκ̂β̄

) [ 8gA3gA

+ 2gm(g̃u + gv)

]
ln Λ

+ 2πv2F
(
σ̂ᾱκ̂3 ⊗ σ̂ᾱκ̂3

) [
2g2m + 8g2A + 2g̃ugv

]
ln Λ

+ 2πv2F
(
σ̂3κ̂β̄ ⊗ σ̂3κ̂β̄

) [ 2gm(gv − g̃u)

+ 4gA(g̃u + gv)

]
ln Λ

+ 2πv2F
(
σ̂3κ̂3 ⊗ σ̂3κ̂3

)


2gv(2gm − g̃u − gv)

+ 4gA3(g̃u + gv)

+ 8gA(gm − gv)


 ln Λ,

(3.27)

where we have re-introduced the following notation:
barred Greek indices run over the “spatial” Pauli matrix
components

ᾱ, β̄ ∈ {1, 2}, (3.28)

to be distinguished from unbarred Greek indices which
run over all three Pauli matrix components, e.g.

α, β ∈ {1, 2, 3}. (3.29)

Diagrams D11.5 and D11.6 give identical contributions,
involving the dressing of the disorder vertex by the
Coulomb interactions at O (1/N). Their evaluation pro-
ceeds similarly to that of the electronic self-energy (de-
tailed in Appendix A). We obtain

D11.5 + D11.6

=2πguv
2
F

(
1̂⊗ 1̂

)
[−2ηw̄f1(w̄)] lnΛ

+ 2πgAv
2
F

(
σ̂ᾱκ̂β̄ ⊗ σ̂ᾱκ̂β̄

)
[2ηw̄f2(w̄)] lnΛ

+ 2πgA3v
2
F

(
σ̂ᾱκ̂3 ⊗ σ̂ᾱκ̂3

)
[2ηw̄f2(w̄)] lnΛ

+ 2πgmv
2
F

(
σ̂3κ̂β̄ ⊗ σ̂3κ̂β̄

) [ 2ηw̄f2(w̄)
+ 2ηw̄f3(w̄)

]
ln Λ

+ 2πgvv
2
F

(
σ̂3κ̂3 ⊗ σ̂3κ̂3

) [ 2ηw̄f2(w̄)
+ 2ηw̄f3(w̄)

]
ln Λ.

(3.30)

The functions f1(w̄)–f3(w̄) were defined by Eqs. (3.3)
and (3.4).

The remaining diagrams pictured in Figs. 12 and 13
involve 3-electron loops. We consider first the ring dia-
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D12.7

D12.5

D12.3

l’

a

b

c

d

D12.1

D12.4

D12.6

D12.8

D12.2

l’

µ ν

ω l

lω

λ γ
l − l’
ω

FIG. 12: Renormalization of the disorder strength at
O

`
g

N
, g2

´
, where g ∈ {fgu, Gν

µ}.

grams in Fig. 12, beginning with D12.1:

D12.1 =2π Gνµv2F 2π Gγλv2F (σ̂λκ̂γ)c,d
(
i

√
w

N

)2 −1

1 + w̄

×
∫
dω d2l d2l′

(2π)5
[σ̂µκ̂νvF σ̂ · l′]a,b

v2F l
′2

1

|l′|

×

Tr




σ̂µκ̂ν [iω + vF σ̂ · (l − l′)]

× [iω + vF σ̂ · l]σ̂λκ̂γ
× [iω + vF σ̂ · l]




[ω2 + v2F l
2]2[ω2 + v2F (l − l′)2]

. (3.31)

Simplifying, we obtain

D12.1 =(2π)2GνµGνλv2F (σ̂µκ̂ν σ̂ᾱ)a,b(σ̂λκ̂ν)c,d
25iw̄

1 + w̄

×
[
ǫµλβ̄ K

ᾱ,β̄
1 + δβ̄,ξ̄ǫµλη̄K

ᾱ,β̄,η̄,ξ̄
2

−
(
δµ,ξ̄ǫλη̄β̄ + δλ,ξ̄ǫµη̄β̄

)
K ᾱ,β̄,η̄,ξ̄

2

]
, (3.32)

where

K ᾱ,β̄
1 ≡

∫
dω d2l d2l′

(2π)5
l′ᾱ(l− l′)β̄ω2

|l′|3[ω2 + l
2]2[ω2 + (l− l′)2]

,

∼ − 12

210
ln Λ

2π
δᾱ,β̄ , (3.33)

and

K ᾱ,β̄,η̄,ξ̄
2 ≡

∫
dω d2l d2l′

(2π)5
l′ᾱ(l− l′)β̄lη̄lξ̄

|l′|3[ω2 + l
2]2[ω2 + (l− l′)2]

.

∼ 1

210
ln Λ

2π

[
3(δᾱ,η̄δβ̄,ξ̄ + δᾱ,ξ̄δβ̄,η̄)

− 13(δᾱ,β̄δη̄,ξ̄)

]
. (3.34)

Eqs. (3.33) and (3.34) may be obtained by a) perform-
ing the ultraviolet-convergent 3-electron loop momentum
integral over l via Feynman parameters, b) evaluating
the frequency integration over the real line, and c) com-
pleting the final ultraviolet-divergent momentum integral
over l′.
Combining Eqs. (3.32)–(3.34), and carefully summing

barred (unbarred) indices over {1, 2} ({1, 2, 3}), we finally
obtain

D12.1 ∼ v2F w̄

1 + w̄

ln Λ

2




2π
(
σ̂3κ̂β̄ ⊗ σ̂3κ̂β̄

)
[−4gmgA]

+ 2π
(
σ̂3κ̂3 ⊗ σ̂3κ̂3

)
[−4gvgA3]


 .

(3.35)

The remaining diagrams in Fig. 12 give identical con-
tributions. Next, we consider the diagrams shown in
Fig. 13. Each of the diagrams D13.1–D13.4 represents an
autorenormalization of the bare scalar potential disorder
parameter gu, mediated by the Coulomb interaction w̄.
Due to the 3-ring cancelation property encapsulated by
Fig. 7, the sum of these diagrams gives (exactly) zero.
The bare vertex function is

iΓ
(0)
D =2πguv

2
F

(
1̂⊗ 1̂

)

+ 2πGνµv2F (σ̂µκ̂ν)⊗ (σ̂µκ̂ν)

+ D11 + D12, (3.36)

where Dm, m ∈ {11, 12}, denotes the sum of all diagrams
in Fig. m.
The renormalization condition is

[
d

d ln Λ
+ 2

d lnZψ
d ln Λ

]
iΓ

(0)
D = 0, (3.37)

D13.3
D13.4

D13.1 D13.2

FIG. 13: Renormalization of the disorder strength at
O

`
g

N
, g2

´
, where g ∈ {fgu,Gν

µ}.
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which leads to the renormalization group flow equations

dgu
dl

=2gu

[
G̃s − ηw̄f3(w̄)

]
+ 8gmgA + 4gvgA3, (3.38a)

dgA
dl

=8gAgA3 + 2gm(g̃u + gv), (3.38b)

dgA3

dl
=2g2m + 8g2A + 2g̃ugv, (3.38c)

dgm
dl

=2gm(gv − g̃u) + 4gA(g̃u + gv) + 2gmηw̄f3(w̄)

− 16w̄

1 + w̄
gmgA, (3.38d)

dgv
dl

=2gv(2gm − g̃u − gv) + 4gA3(g̃u + gv)

+ 8gA(gm − gv) + 2gvηw̄f3(w̄)−
16w̄

1 + w̄
gvgA3,

(3.38e)

where we have used Eqs. (3.4), Eqs. (3.9), and (3.17). [G̃s
was defined by Eq. (3.6).]

IV. ANALYSIS OF THE RENORMALIZATION
GROUP FLOWS

In this section, we use the results of our one-loop renor-
malization group (RG) study, detailed in Sec. III, to at-
tempt to understand the topology of graphene’s phase
diagram in disorder–interaction coupling strength space.
Our primary goal is to determine what kind of low-energy
theory one should use to understand the macroscopic
electronic properties of a graphene sheet, using the RG
as our guide. If the RG reveals a theoretically tractable
(e.g., perturbatively accessible) phase or critical point,
then we can use that framework to make predictions that
can be tested against experiment. As we will see, the sit-
uation appears to be more complex (at least to lowest
order in 1/N), and the ultimate low-energy physics (at
zero temperature) likely requires a description very differ-
ent from the weakly-perturbed, massless Dirac electron
picture used as our starting point here.

Nevertheless, the RG does allow us to identify several
possible scaling regimes; our most interesting result con-
cerns the apparent robustness of one such scaling regime,
at least as viewed from the vantage point of the weakly-
disordered Dirac electron theory. This (crossover) regime
turns out to be dominated by the non-Abelian vector po-
tential disorder, characterized by the parameters gA and
gA3 [Eqs. (2.9) and (2.11)] which appear, e.g., in the de-
scription of elastic lattice deformations (“ripples”),5,11–13

as well as topological defects in the graphene lattice
(Sec. II A 2 and Refs. 20,36). This principal result is
demonstrated via numerical integration of the RG flows,
and is discussed in subsection IVE, below. Potential ex-
perimental manifestations of our results are discussed in
Sec. V.

A. One-loop flow equations

Using renormalized perturbation theory, we obtained
in the previous section the one-loop flow equations for
the coupling constants of the large-N graphene field the-
ory defined by Eq. (2.19). Six coupling strengths de-
fine that model: the Fermi velocity vF , the dimension-
less Coulomb interaction strength w̄ [Eqs. (2.23) and
(2.24)], the screened scalar potential disorder strength g̃u
[Eq. (2.26)], as well as gA, gA3, gm, and gv [Eqs. (2.8)–
(2.11)]. The latter four disorder parameters were encoded
in the disorder metric Gνµ, defined by Eq. (2.14). From
Eqs. (3.10), (3.17), and (3.38) obtained in Sec. III, the
flow equations to the lowest nontrivial order in the small
parameters 1/N and {g̃u,Gνµ} are given by

d ln vF
dl

= z − 1− G̃s + η w̄f3(w̄), (4.1a)

d ln w̄

dl
= G̃s − η w̄f3(w̄), (4.1b)

dg̃u
dl

=
2g̃u
1 + w̄

[
G̃s − ηw̄f3(w̄)

]
+

8gmgA + 4gvgA3

(1 + w̄)2
,

(4.1c)

dgA
dl

= 8gAgA3 + 2gm(g̃u + gv), (4.1d)

dgA3

dl
= 2g2m + 8g2A + 2g̃ugv, (4.1e)

dgm
dl

= 2gm(gv − g̃u) + 4gA(g̃u + gv) + 2gmηw̄f3(w̄)

−16w̄ gmgA
1 + w̄

, (4.1f)

dgv
dl

= 2gv(2gm − g̃u − gv) + 4gA3(g̃u + gv)

+8gA(gm − gv) + 2gvηw̄f3(w̄)−
16w̄ gvgA3

1 + w̄
.

(4.1g)

In these equations,

G̃s ≡ g̃u + 4gA + 2gA3 + 2gm + gv, (4.2)

and

η ≡ 8

πN
. (4.3)

In Eq. (4.1a), z = z(l) is the (as yet unspecified) dy-
namic critical exponent. The function f3(w̄) appearing
in Eq. (4.1) was defined by Eq. (3.4), repeated below for
convenience:

f3(w̄) =
1

2w̄2




2

π

[
w̄ +

arccos(w̄)√
1− w̄2

]
− 1


 , (4.4)

valid for w̄ ≤ 1. The analytical continuation of f3(w̄) for
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FIG. 14: Plot of w̄f3(w̄).

w̄ ≥ 1 is given by

f3(w̄) =
1

2w̄2




− 1 +
2w̄

π

+
2

π
√
w̄2 − 1

ln
(
w̄ +

√
w̄2 − 1

)



.

(4.5)

In the small and large w̄ limits, f3(w̄) has the behaviors

f3(w̄) ∼
1

4
− 2w̄

3π
+

3w̄2

16
+ . . . 0 ≤ w̄ ≪ 1,

∼ 1

πw̄
+O

(
1

w̄2

)
, w̄ ≫ 1. (4.6)

The function w̄f3(w̄) is plotted in Fig. 14.
Eq. (4.1c) follows from the definition of the screened

scalar potential disorder strength g̃u [Eq. (2.26)], and
the flow equation (3.38a) for the bare scalar potential
strength. We emphasize that it is g̃u that appears in
physical quantities in the large-N theory, as demon-
strated in Sec. V; the renormalization group must there-
fore be formulated in terms of g̃u, the effective scalar
potential strength.

B. Termination of the RG flow for finite
temperatures and chemical potential

The derived RG equations (4.1) are limited by the
regime of the weak disorder strength and usually become
non-usable when l → ∞. There are, however, physi-
cal situations when those equations are adequate to de-
termine the transport properties of the system. Those
are regimes of either sufficiently large doping (charac-
terized by the chemical potential µ), or of sufficiently
high temperature T . At such an energy scale, the log-
arithmic renormalizations must be stopped, and kinetic
coefficients computed, as in Sec. V.
To use Eqs. (4.1) we have to relate the scale l∗ at which

the RG is stopped to the energy scale

ε∗ ≃ max (|µ|, T ) . (4.7)

To achieve this goal, we write a scaling equation

d ln ǫ∗
dl∗

= −z(l∗), (4.8)

and find the scale-dependent dynamic critical exponent
by setting Eq. (4.1a) equal to zero.34,51 It gives us an
implicit function l∗(ǫ∗)

ln
ǫ∗a

v
(a)
F

= −
∫ l∗

0

dlz(l);

z(l) = 1 + G̃s(l)− η w̄(l)f3[w̄(l)],

(4.9)

where v
(a)
F is the Fermi velocity defined on the spatial

scale of the order of lattice constant a.

C. Restricted flow equations: SU(2) valley space
rotation symmetry restored

A useful subset of the RG flow provided by Eq. (4.1) is
to consider the system with SU(2) valley (κ) space rota-
tional symmetry restored on average. Such a restriction
constrains

gA = gA3,

gm = gv. (4.10)

[See Eqs. (2.9) and (2.11).] Imposing Eq. (4.10), the RG
equations reduce to

d ln vF
dl

= z − 1− (g̃u + 6gA + 3gm) + η w̄f3(w̄),(4.11a)

d ln w̄

dl
= (g̃u + 6gA + 3gm)− η w̄f3(w̄), (4.11b)

dg̃u
dl

=
2g̃u
1 + w̄

[g̃u + 6gA + 3gm − η w̄f3(w̄)]

+
12gmgA
(1 + w̄)2

, (4.11c)

dgA
dl

= 8g2A + 2gm(g̃u + gm), (4.11d)

dgm
dl

= 2gm(gm − g̃u) + 4gAg̃u + 4

(
1− 3w̄

1 + w̄

)
gmgA

+2gmηw̄f3(w̄). (4.11e)

As discussed below in Sec. IVE, statistical SU(2) Fermi
space (κ) rotational symmetry is generically restored un-
der integration of the full flow equations, Eq. (4.1); we
will therefore focus upon the restricted flow equations
(4.11) when we discuss our primary results in Sec. IVE.
Note that Eq. (4.11d) implies that the only non-trivial

fixed point structure (a fixed line) occurs in these re-
stricted equations when gA = gm = 0 (since the disor-
der parameters, being variances [Eq. (2.11)], cannot take
negative values).
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D. Graphene with non-generic disorder

Before analyzing graphene subject to generic (short-
range correlated), time-reversal invariant disorder, we
discuss several simpler limiting cases that arise upon fine-
tuning the disorder distribution defined by Eqs. (2.9) and
(2.11). To do so, we specialize the flow Eq. (4.1) to the
quantum disorder universality classes discussed in sub-
sections IIA 1–IIA 3. Although it is typically difficult
to fine-tune the disorder profile experimentally, some of
the limiting cases discussed below may dominate vari-
ous scaling or crossover regimes in graphene. (See also
Sec. V.)

1. Scalar potential disorder and the sympletic class AII

If remote charged impurities provide the principal
scattering mechanism in the experiments discussed in
Refs. 1–4, one would expect fluctuations in the poten-
tial u(r) to dominate over the other disorder types. As
a zeroth order approximation, we may neglect the other
disorder potentials altogether, setting gA = gA3 = gm =
gv = 0 [Eqs. (2.9) and (2.11)]. As discussed in Sec. II A 1,
this is equivalent to enforcing SU(2) valley space rota-
tional symmetry [invariance of Eq. (2.9) under κ-space
rotations] in every realization of the static disorder. This
theory satisfies the effective TRI∗ condition, defined by
Eq. (2.7), and belongs to the symplectic (“spin-orbit”)
ordinary metal class AII.19–24 The flow equations are

d ln w̄

dl
=g̃u − η w̄f3(w̄), (4.12a)

dg̃u
dl

=
2g̃u
1 + w̄

[
g̃u − ηw̄f3(w̄)

]
. (4.12b)

These equations possess an unstable fixed line for ḡu =
ηw̄f3(w̄); moreover,

gu(l) = Cw̄2(l), (4.13)

where C = gu(0)/w̄
2(0), so that the RG flows are

parabolic trajectories in the gu − w̄ plane. [gu = g̃u(1 +
w̄)2 is the unscreened scalar potential disorder strength;
see Eq. (2.26).]
A similar result was found previously for the case of

graphene at weak Coulomb interaction coupling;32,33 in
the case of the large-N generalization, a technical error
in Ref. 32 (see Sec. III A and Appendix A) led to the
prediction that the line parameterized by Eq. (4.13) be-
comes attractive at larger Coulomb interaction strengths.
Instead, Eq. (4.12), coupled with the monotonic behavior
of w̄f3(w̄), [Eqs. (4.4)–(4.6) and Fig. 14], shows that this
line is repulsive for all w̄ ≥ 0. In other words, for the case
of scalar potential disorder only, the physics in both the
weak coupling and large-N pictures is qualitatively the
same. The stability of the g̃u-w̄ fixed line in the full 6-
dimensional disorder-interaction coupling constant space
is analyzed in Appendix B.

2. Particle-hole symmetry and the chiral class BDI

As discussed below Eq. (2.11) in Sec. II A, different
quantum disorder (random matrix) universality classes
may be theoretically realized by enforcing invariance of
the graphene system, in every realization of disorder,
under different combinations of the transformations de-
fined by Eqs. (2.4)–(2.7). If we enforce both particle-
hole symmetry (PH) and time-reversal invariance (TRI)
[Eqs. (2.4) and (2.5)] in every static disorder realization,
consistent with, e.g., the presence of carbon atom vacan-
cies (treated as scattering centers in the unitary, hard-
scattering limit) and the absence of further-neighbor
hopping,52 then the system falls into the “chiral or-
thogonal” class BDI.20,27–29,40,41 The allowed disorder
strengths are gm and gA3, and the one-loop flow equa-
tions are

d ln w̄

dl
=2gA3 + 2gm − η w̄f3(w̄), (4.14a)

dgA3

dl
=2g2m, (4.14b)

dgm
dl

=2gmηw̄f3(w̄). (4.14c)

These equations possess no fixed point for gm 6= 0, and
generically flow to both strong disorder (gA3, gm → ∞)
and strong interaction (w̄ → ∞) coupling. In passing,
we note that, in the absence of Coulomb interactions
(w̄ = 0), Eqs. (4.14) can be extended to all orders in
gm and gA3, using conformal field theory methods.28 One
then finds that disordered graphene with strict particle-
hole symmetry [Eq. (2.4)] and no long- or short-ranged
interparticle interactions34 possesses a critical, delocal-
ized phase, indicative of the existence of extended single-
particle states at zero energy, for arbitrary strength dis-
order.
The theory with gm = 0 does possess an attractive

fixed line in the gA3–w̄ plane. This line has been dis-
cussed before;32,33 it is unlikely to play an important role
in real graphene physics, because it is highly unstable in
other disorder directions, as shown in Appendix B.

3. Vector potential disorder, ripples and topological defects:
class CI

If we enforce both PH∗ and TRI [Eqs. (2.6) and
(2.5)], then the system falls into the CI quantum disor-
der class.20,40,41 Recall from Sec. II A that PH∗ describes
an effective particle-hole transformation, different from
the physical PH transformation defined by Eq. (2.4),
the latter of which is inherited directly from the lattice
model [Eq. (2.1)]. The allowed disorder strengths are gA3

and gA, i.e. the pure Dirac theory perturbed only by a
quenched, SU(2) non-Abelian vector potential.
As discussed in Sec. II A 2, the intravalley (Abelian)

vector potential {A3
ᾱ} appears in the description of

long wavelength “ripples” in the low-energy Dirac
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theory.5,11,12 Both the intravalley and intervalley {Aβ̄ᾱ}
vector potential components play a primary role in the
field theoretic description of honeycomb lattice disloca-
tions and disclinations.36

The RG flow equations are

d ln w̄

dl
=4gA + 2gA3 − η w̄f3(w̄), (4.15a)

dgA
dl

=8gAgA3, (4.15b)

dgA3

dl
=8g2A. (4.15c)

These equations possess no fixed point for gA 6= 0,
and generically flow to both strong disorder and inter-
action coupling. In the absence of interactions, w̄ = 0,
the Dirac theory with only non-Abelian vector poten-
tial disorder flows to strong coupling; the flow termi-
nates at an exactly-solvable conformal field theory fixed
point18,26 [equivalent to the Sp(2n) principal chiral non-
linear sigma model, augmented with a WZW term].40

Like the non-interacting BDI class discussed above, the
fixed point of the non-interacting CI class model (with
both gA and gA3 nonzero) describes a critical, delocal-
ized phase possessing extended wavefunctions near zero
energy.18,26 This disorder class (in the absence of in-
teractions) was discussed specifically in the context of
graphene in Ref. 20; these authors argued that the con-
ductance of the non-interacting CI class model should be
of order the conductance quantum, and independent of
the disorder strength.

E. Graphene: generic disorder

At last, we turn to an analysis of our large-N graphene
field theory, characterized by the full one-loop RG flow
equations (4.1). In the absence of any fine-tuning of the
disorder potentials, our graphene model possesses time-
reversal invariance [Eq. (2.5)] and (physical) spin SU(2)
rotational symmetry in every disorder realization. This
system is in the standard orthogonal metal class AI. In
the absence of interactions, all single particle wavefunc-
tions are expected to be exponentially localized in 2D.44

The full flow Eqs. (4.1b)–(4.1g) possess several fixed
line structures involving a single nonzero disorder pa-
rameter and the Coulomb interaction strength w̄. The
case of scalar potential disorder g̃u was discussed above,
in Sec. IVD 1. Weak coupling analogs of this and other
fixed lines were discussed in Refs. 32,33, while large-N
versions were obtained and analyzed in Ref. 32 [but see
the discussion following Eq. (4.13), above]. We will not
dwell upon these structures here, however, because all of
them are exceedingly unstable in the full 6-dimensional
disorder-interaction coupling constant space. (This fact
is demonstrated explicitly in Appendix B.)
The RG flow equations [Eq. (4.1)] possess no per-

turbatively accessible, isolated fixed points, other than

FIG. 15: Set of 10 RG flow trajectories obtained via numerical
integration for different initial Coulomb interaction strengths
w̄. Here, we study the case with SU(2) valley space symme-
try restored on average, using Eq. (4.11). The initial condi-
tions for the disorder coupling strengths are fgu(0) = gA(0) =
gm(0) = 0.01 for all trajectories shown in the figure. We
have set the expansion parameter η = 0.3 [see Eq. (4.3)]; the
shape of the trajectories is only weakly dependent upon η
(within our one-loop approximation). Lower-case Latin let-
ters label trajectories with different initial Coulomb interac-
tion strengths, given by w̄ = (a) 0.010, (b) 0.079, (c) 0.13, (d)
0.16, (e) 0.20, (f) 0.25, (g) 0.32, (h) 0.40, (i) 0.63 (j) 1.0. We
do not exhibit the RG evolution of the random mass parame-
ter gm [see Eqs. (2.9), (2.11), (4.11)], because we find that its
behavior is always subleading compared to the scalar (fgu) or
vector (gA) potential parameters.

the (trivial) non-interacting, clean (not disordered) Dirac
fixed point, defined by the condition

w̄ = g̃u = gA = gA3 = gm = gv = 0. (4.16)

In order to gleam information about graphene’s low-
energy physics (to order 1/N in our large-N calculational
scheme), it is necessary to integrate the flow equations,
and observe the evolution of the flow trajectories as a
function of initial conditions in coupling constant space.
In doing so, we seek to address two crucial questions that
so far remain unanswered:

1. Over what range of initial conditions, if any, does
the theory flow back to the clean, non-interacting
Dirac fixed point [Eq. (4.16)]. In other words, can
we find a critical manifold of codimension 0, with
the Dirac fixed point as its sink?

2. If the clean, non-interacting Dirac fixed point is
found to be unstable, where does the system flow
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FIG. 16: Same RG trajectories shown in Fig. 15, but pro-
jected into the fgu − gA disorder plane.

to? What is the correct low-energy theory that
we should use to understand disordered, interacting
graphene?

We can easily answer the first question, but we will be
forced to speculate regarding the second.
We have numerically integrated Eqs. (4.1b)–(4.1g) over

a wide range of disorder and interaction coupling strength
initial conditions. In our one-loop approximation, the
resulting flow topology is only weakly dependent upon
the expansion parameter η, defined by Eq. (4.3). We
find that the non-disordered, non-interacting Dirac fixed
point, located by Eq. (4.16), as well as the entirety of
the adjoining clean, but Coulomb-interacting line, 0 ≤
w̄ < ∞ and g̃u = gA = gA3 = gm = gv = 0, is unstable
in the presence of arbitrarily weak, but generic disor-
der [i.e. all five disorder strength parameters in Eq. (4.1)
nonzero, but arbitrarily small]. We stress that the en-
tirety of the clean, interacting line w̄ ≥ 0 is perturba-
tively accessible in the N → ∞ limit, and flows back to
the non-interacting Dirac fixed point in the absence of
disorder.31,35

In the advent of nonzero quenched randomness, the
flow to strong coupling exhibits two key features: a)
SU(2) valley space rotational symmetry is generically
restored on average upon integration of Eq. (4.1) for
general initial conditions, i.e. the differences (|gA −
gA3|)/(gA + gA3) and (|gm − gv|)/(gm + gv) asymptote
to zero as the solutions to the RG equations reach the
limit of their validity. From here on in, we will therefore
restrict our discussion to the flows of the valley space
SU(2)-symmetric system, described by Eq. (4.11). b)
The direction of the diverging RG flows depends strongly
upon the initial strength of the Coulomb interaction pa-
rameter w̄. For weak (or vanishing) Coulomb interactions
w̄ ≪ 1, the flow is dominated by the divergence of the

screened scalar potential disorder parameter g̃u [defined
by Eq. (2.26)]. The ratio of the other disorder strengths
gA and gm to g̃u asymptotes toward zero as the flow
begins to diverge. For stronger values of the Coulomb
interaction strength w̄ & 0.1 (for the choice η = 0.3),
we observe a “crossover” in the flow direction. In the
limit of large Coulomb strength w̄ & 1, we find that the
flow becomes dominated by the divergence of the SU(2)
non-Abelian vector potential disorder parameter gA; in
this regime, the ratio of the other disorder strengths g̃u
and gm to gA asymptotes to zero as the flows leave the
perturbatively accessible regime.

We demonstrate the picture described above with a
selection of RG flow trajectory plots. Figs. 15–18 de-
pict two sets of flow trajectories obtained via numeri-
cal integration of Eqs. (4.11b)–(4.11e) for different initial
Coulomb interaction strengths w̄. Figs. 15 and 17 depict
projections of these flows in the 3D coupling constant
subspace (g̃u, gA, w̄). Figs. 16 and 18 respectively exhibit
2D projections of the same flows represented in Figs. 15
and 17 in the disorder plane (g̃u, gA). We choose not to
exhibit the RG evolution of the random mass parame-
ter gm [Eqs. (2.9), (2.11), and (4.11e)] in these figures,
because we find that gm always plays a subleading role
relative to either the scalar g̃u or non-Abelian vector gA
potential disorder strengths.

In each of Figs. 15–18, all trajectories share a given set
of initial disorder strengths (described in the figure cap-

FIG. 17: As in Fig. 15 but with the initial conditions for the
disorder coupling strengths fgu(0) = gm(0) = 0.1, gA = 0.01.
Lower-case Latin letters label trajectories with different initial
Coulomb interaction strengths, given by w̄ = (a) 0.010, (b)
0.25, (c) 0.40, (d) 0.50, (e) 0.63, (f) 0.79, (g) 1.0, (h) 1.3, (i)
1.6, (j) 2.5, (k) 6.3.
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FIG. 18: Same RG trajectories shown in Fig. 17, but pro-
jected into the fgu − gA disorder plane.

tions). Different trajectories, distinguished by lowercase
Latin letters, correspond to different initial Coulomb in-
teraction strengths w̄(0). Trajectories with successive la-
bels (a), (b), etc. carry successively larger initial values of
w̄; numerical values are stated in the captions of Figs. 15
and 17. Although very weak initial Coulomb interaction
strengths w̄ . 0.1 lead to trajectories that are dominated
by large scalar potential disorder fluctuations g̃u → ∞,
stronger initial interaction strengths bend the trajecto-
ries away from the g̃u-w̄ plane, toward the particle-hole
symmetric gA-w̄ plane. [The effective particle-hole sym-
metry is defined by the PH∗ transformation given by
Eq. (2.6)].

These figures encapsulate our primary result: non-
Abelian vector potential disorder dominates the flow to-
ward strong coupling (gA, w̄ → ∞) for moderate to
strong Coulomb interaction strengths. As stated above,
this result is essentially independent of our expansion pa-
rameter η, defined by Eq. (4.3), for our one-loop flow
equations (4.1) and (4.11), obtained to lowest nontriv-
ial order in 1/N and in the disorder strengths g̃u, gA,
gm. Physically, strong scalar potential disorder fluctu-
ations would favor the accumulation of electrons and
holes in spatially segregated “puddles,” locally violat-
ing charge neutrality. The advent of a second type of
disorder that manifestly preserves a type of particle-hole
symmetry [Eq. (2.6)] allows the system to flow toward a
strongly disordered, interacting regime, while everywhere
preserving electroneutrality. Equivalently, Coulomb in-
terparticle interactions lead to screening effects, which
parametrically curtail the scalar potential disorder fluc-
tuations; the non-Abelian vector potential is not affected
by the interactions because it represents charge-neutral
randomness (such as the vector potential component of
“ripples” ).

FIG. 19: Schematic phase diagram for disordered, interact-
ing graphene, projected into the disorder (fgu, gA) interaction
(w̄) coupling constant space, based in part upon the pertur-
bative RG calculations performed at weak coupling,19,33 and
within the large-N approximation (as detailed in this paper).
The labeled small dots represent “known” phases, while the
large black globes represent “non-linear sigma model (NLσM)
arenas,” wherein the system is described by a well-known (if
poorly understood) model, which may possess multiple phases
in d = 2 spatial dimensions.44,51 Point (a) represents non-
interacting, clean (not disordered) graphene, as located by
Eq. (4.16). This theory is a sink for the clean, Coulomb
interacting line (the vertical axis), as well as a portion of
the fgu − w̄ plane. It is unstable to generic disorder per-
turbations. The dashed line in the fgu − w̄ is the unstable
fixed line located by Eqs. (4.12a) and (4.12b). The point
(b) is the non-interacting, non-Abelian SU(2) vector poten-
tial disorder CFT.18,26 Both points (a) and (b) are embedded
in the particle-hole symmetric plane fgu = gm = 0, repre-
sented by the shaded plane in the figure. Point (c) repre-
sents the non-interacting Anderson insulator for the orthogo-
nal metal class (AI) in 2D. Globe (d) should be described by
the symplectic/spin-orbit class (AII), non-interacting NLσM,
possibly augmented by a topological term.19–24 In princi-
ple, both diffusive metallic and Anderson insulating phases
are possible.44 Globe (e) represents the symplectic class
Finkel’stein non-linear sigma model (FNLσM) for interacting
electrons;51,53,54 globe (f) represents the orthogonal class (AI)
FNLσM.51,55,56 The numerical RG flows exhibited in Figs. 15
and 17 should be “superimposed” upon this figure.

To close this section, we direct the reader’s attention
to Fig. 19. In this figure, we exhibit a putative phase
diagram for graphene, projected into the 3D (g̃u, gA, w̄)
disorder-interaction coupling strength space, based upon
our work here, as well as previous results18,20,51,55,56 re-
garding the zero temperature ground state physics of 2D
disordered and/or interacting electronic systems. The
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most important features of this figure are the points la-
beled (a)–(c) and the “globes” labeled (d)–(f). Points
(a)–(c) label known phases of the graphene model in the
absence of interactions: (a) is the non-disordered, non-
interacting Dirac theory. (b) denotes the critical, delo-
calized phase that occurs at strong non-Abelian vector
potential (“chiral”) disorder, described analytically by
the class CI conformal field theory.18,26 As discussed in
Secs. II A 2 and IVD3, the class CI fixed point is ex-
pected to possess a non-zero conductance at zero tem-
perature that is independent of the disorder strength.20

Finally, (c) denotes the Anderson insulating phase for
the orthogonal normal metal quantum disorder class.
Globe (d) represents a “theory arena” corresponding to
the symplectic (spin-orbit) normal metal class for non-
interacting electrons, described by the symplectic non-
linear sigma model (possibly modified by a topological
term).21–24 The symplectic class may possess both metal-
lic and insulating states in 2D.44

Globes (e) and (f) respectively describe the sym-
plectic and orthogonal normal metal quantum disorder
classes, augmented with long-range Coulomb interpar-
ticle interactions.51,53–56 These globes describe physics
on temperature scales less than the elastic scattering
rate, i.e. T . 1/τel, with τel the elastic transport life-
time due to impurity scattering. The low-energy field
theory description takes the form of a modified non-
linear sigma model that incorporates electron-electron
interactions.51,55 The Drude conductivity computed in
the regime T ∼ τel, discussed in the next section, enters
through the bare diffusion constant of the sigma model.
Arrows in Fig. 19 schematically denote RG flows whose

topology has either been derived in this paper, previous
work,51 or may be inferred by general principles. The
dashed line residing in the g̃u–w̄ plane represents the re-
pulsive fixed line described in Sec. IVD1; the section of
the g̃u–w̄ plane between this line and the Coulomb in-
teraction (w̄) axis drains into the clean, non-interacting
Dirac fixed point (a). This section is, however, highly
unstable in the other disorder (i.e. gA) directions. The
reader should imagine “superimposing” the flow trajec-
tories depicted in Figs. 15 and 17 upon this figure.

V. PHYSICAL RESULTS AND DISCUSSION

In this section, we articulate a number of predictions
for the scaling behavior of the dc electrical conductiv-
ity, as well as the thermal transport, for graphene in its
Drude/Boltzmann transport regime. The predictions are
extracted from the large-N , weak disorder renormaliza-
tion group (RG) analysis performed above. We presup-
pose here that the temperature is sufficiently high so that
quantum interference corrections to the conductivity due
to electronic diffusion (weak localization and Altshuler-
Aronov–type interaction effects) may be ignored.44,57,58

We restore Planck’s constant via h = 2π throughout
this section.

A. Disorder vs. interaction limited transport
coefficients

The kinetic transport coefficients in graphene are ex-
plicit functions of the effective disorder and interaction
strengths, depending upon both the elastic transport life-
time τel due to impurity scattering, and upon the inelas-
tic transport lifetime τin due to electron-electron colli-
sions. Estimates for these are

~

τel
∝ G̃T max(|µ|, T ), (5.1a)

~

τin
∝ 1

N
min(w̄2, 1)min(T,

T 2

|µ| ), (5.1b)

where µ is the chemical potential, T is the temperature,

and G̃T is a certain combination of the disorder parame-
ters in Eq. (2.11)–see Eqs. (5.3) and (5.4), below. [Recall
that w̄ ∝ rs, Eq. (2.24).]
We consider the two limits with large and small τel/τin

in turn:

1. τel > τin: interaction-limited

Real, inelastic electron-electron collisions play an im-
portant role in determining the kinetic coefficients for
τel > τin. In particular, at exactly zero doping µ = 0,
the composite electron-hole fluid is electrically neutral.
Here, electron-hole collisions are enough to set a finite dc
conductivity σdc, which takes the form

σdc ∝
N2e2

h

1

min(w̄2, 1)
. (5.2)

For Coulomb interaction strengths w̄ & 1, Eq. (5.2) pre-
dicts a “minimum metallic conductivity” that is indepen-
dent of both the interaction and disorder strengths (to a
first approximation). The doping dependence of the con-
ductivity is limited by the impurity scattering.
Violations of Mott’s formula [Eq. (5.6)] for the ther-

mopower and of the Wiedemann-Franz law for the ther-
mal conductivity are expected in the interaction-limited
regime. Quantitative results based on the relativistic hy-
drodynamics description of the electron-hole plasma in
graphene will appear elsewhere.59

2. τel < τin: disorder-limited

When τin due to electron-electron collisions exceeds
τel due to the impurities, the situation is simpler. To the
first approximation, we can neglect contributions to the
kinetic coefficients due to inelastic processes. The Drude
conductivity in the ladder approximation then takes the
form

σdc =
Ne2

h
EF τel, (5.3)
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where59

EF τel =
1

πG̃T

, (5.4a)

G̃T ≡ g̃u + 8gA + 4gA3 + 6gm + 3gv. (5.4b)

Note that it is the screened scalar potential disorder
parameter g̃u [Eq. (2.26)] that appears in Eq. (5.4).
The temperature or chemical potential-dependence of
the conductivity follows from combining the scaling pre-
dictions of Sec. IV with Eq. (5.3); Mott’s formula and
Wiedemann-Franz apply for thermotransport. In the re-
mainder of this section, we will use this strategy to iden-
tify three scaling regimes for the transport coefficients in
the disorder-limited case.

B. Scaling predictions for graphene transport

The essential message is as follows: if the disorder
distribution is sufficiently weak and short-range corre-
lated, then the RG generically predicts corrections to
the conductivity that are logarithmic in temperature.
In particular, we have identified three scaling regimes
which may be observed in (future) graphene experiments:
(1) a “QED” regime, wherein the conductivity increases

with decreasing temperature, as well as (2) intermediate
and (3) “QCD” regimes, characterized by a conductivity
that decreases monotonically with decreasing tempera-
ture. Here, the descriptors “QED” and “QCD” refer
to formal analogies between the disordered, interacting
graphene theory in particular scaling regimes, and the
theories of high energy quantum electro- and chromo-
dynamics, respectively; we do not imply a mapping be-
tween experimental phenomena in high energy particle
and graphene physics.
In this subsection, we set N = 4, appropriate to real

graphene. To spare the reader from technical details, the
derivation of the formulae presented below has been rele-
gated to Appendix C. A sketch of our results is pictured
in Fig. 20.

1. “QED” regime: Scalar potential disorder and flow
toward weak coupling

The bare Coulomb interaction strength rs = e2/ǫ~vF
is of order unity in the previous substrate-supported
experiments,1–4 and should exceed two for suspended
films.11 As discussed in Secs. I and IV, an rs ∼ 1 rep-
resents a relatively strong coupling regime for the mass-
less Dirac electrons in undoped graphene. If the disor-
der effects are weak relative to the Coulomb interaction
strength, then the RG predicts the existence of a “QED”
scaling regime, wherein disorder and electron correlation
effects grow ever weaker on larger length or lower en-
ergy scales. This scaling toward weak coupling manifests
itself as a logarithmic-squared increase in the dc conduc-
tivity with decreasing temperature [Eq. (5.5), below]. A

FIG. 20: Sketch of possible logarithmic scaling regimes of
the dc conductivity σdc vs. temperature in undoped graphene.
The labels (1)–(3) identify the qualitative scaling behaviors
pictured here with the three regimes respectively discussed in
subsections VB1–VB3 in the text. Non-monotonic behavior,
i.e. the peak separating the curve segments labeled (1) and
(3) in the figure, can occur if a sample microscopically domi-
nated by strong Coulomb interactions and weak scalar poten-
tial disorder (“QED” regime), distinguished by a conductivity
that increases with decreasing temperature [Eq. (5.5)], crosses
over at lower temperatures to the strong coupling (“QCD”)
regime dominated by non-Abelian vector potential disorder,
characterized by a decreasing conductivity [Eq. (5.10)]. An
intermediate scaling regime (2) is also possible, characterized
by a monotonically decreasing conductivity [Eq. (5.8)]. These
predictions require that τel < τin; see text.

further requirement to reach the “QED” scaling regime
is that scalar potential disorder must provide the domi-
nant scattering mechanism for the Dirac electrons. (Con-
sult Secs. II A 1–IIA 3, IVD 1, and the last paragraph of
Sec. IVE.)
In this “QED” regime, we find that (see Appendix C

for details)

σdc(T ) ∼
4e2

hπ

r2s
16g̃u

ln2

(
TR
T

)
, (5.5)

where TR ≫ T is an arbitrary reference temperature, and
g̃u ≪ rs ∼ 1 is the microscopic strength of the (screened)
scalar potential disorder [Eqs. (2.9)–(2.11), (2.26)].
The behavior described by Eq. (5.5) cannot per-

sist indefinitely, because the presence of other disor-
der parameters will eventually induce a crossover to the
“QCD” regime described below in subsection VB3. This
crossover would be distinguished by a non-monotonicity

of the conductivity, as shown in Fig. 20. We do not pro-
vide here an estimate for the non-universal crossover tem-
perature Tc, which is difficult to extract quantitatively
because it depends upon the details of the full micro-
scopic disorder distribution.60

We also discuss thermotransport. We neglect interac-
tion contributions or corrections to the energy current of
the Dirac electrons; as a result, we find that the thermal
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conductivity is slaved to Eq. (5.5) via the Wiedemann-
Franz law. Within this same approximation, the ther-
mopower S is given by Mott’s formula61 (kB = 1):

S ∼ −π
2

3

T

e

d lnσdc(ǫ)

dǫ
. (5.6)

In this expression, σdc(ǫ) is the scaling form of the con-
ductivity, with temperature replaced by ǫ (i.e. the chem-
ical potential). Using Eq. (5.5), we obtain

S ∼ π2

3

T

e

2

µ ln(µR/µ)
, (5.7)

for |µ| > T , with µR > µ.

2. Intermediate regime: Scalar potential disorder and flow
toward strong coupling

We next consider the case where the strength of the
Coulomb interaction rs is made weaker than that of the
screened scalar potential disorder fluctuations [g̃u & w̄ ∼
rs]. We also require that scalar potential fluctuations
provide the dominant source of scattering for the Dirac
electrons, while not becoming so strong so as to invalidate
our weak disorder assumption (g̃u . 1). Such a scenario
might prove difficult to realize experimentally, but could
be achieved in principle by screening the long-ranged
Coulomb interactions with an external gate (brought into
very close proximity to the graphene layer), or by coating
graphene with a high-k dielectric material.
The scaling behavior of the conductivity in this regime

is given by

σdc(T ) ∼
4e2

hπ

[
1

g̃u
− 2 ln

(
TR
T

)]
, (5.8)

for TR > T (Appendix C).
The thermopower at non-zero chemical potential |µ| >

T is given by

S ∼ −π
2

3

T

e

2g̃u
µ
. (5.9)

3. “QCD” regime: Non-Abelian vector potential disorder
and asymptotic flow toward strong coupling

Non-abelian vector potential disorder provides an-
other potentially important scattering mechanism in
graphene.5,11,12 This disorder type arises in the context
of elastic deformations or “ripples” and in the context
of topological lattice defects.36 (See also Secs. II A 2 and
IVD3.)
Surprisingly, we have found in this paper that

quenched vector potential disorder generically emerges
as the dominant scattering mechanism at long length
scales and low energies for Dirac electrons with a bare

Coulomb interaction parameter rs & 0.1. [See Sec. IVE
for details.] In this regime, the graphene theory becomes
formally analogous to 3+1-D quantum chromodynamics
(QCD), in that the system becomes dominated by strong
non-Abelian vector potential disorder and electron corre-
lation effects (due to the Coulomb interactions). The es-
sential difference between graphene and real QCD is that
in the former (latter) case, it is a static, time-independent
(dynamic, gluon-mediated) non-Abelian gauge potential
that drives the system toward strong coupling at low en-
ergies.
Since rs & 1 in real graphene, we generically expect

to reach the “QCD” regime at some finite temperature
scale. We obtain the following formula for the asymptotic
scaling behavior of the conductivity (Appendix C):

σdc(T ) ∼
4e2

hπ

[
1

12gA
− 2π2

3(π2 − 2)
ln

(
TR
T

)]
, (5.10)

where gA is the (renormalized) strength of the non-
Abelian vector potential disorder, and TR > T .
Eq. (5.10) is not expected to hold down to arbitrarily low
temperatures. As we examine lower and lower energy
scales, the effective vector potential disorder strength
gA(T ) grows ever larger (Sec. IVE); as a result, the
scaling behavior of Eq. (5.10) will mutate as gA evolves.
[A more general scaling formula in the “QCD” regime
is given by Eq. (C3) in Appendix C, which reduces to
Eq. (5.10) in the limit gA ≪ 1.]
The thermopower at finite chemical potential |µ| > T

corresponding to Eq. (5.10) is given by

S ∼ −π
2

3

T

e

8gA
µ

π2

π2 − 2
. (5.11)

Finally, we reiterate the following point: we have
assumed that the inelastic transport lifetime due to
electron-electron collisions, τin, exceeds the elastic life-
time τel due to the disorder. In graphene, the kinetic co-
efficients are sensitive to the value of τin/τel; we will dis-
cuss the implications of the above three scaling regimes
in the limit τin/τel > 1 in a subsequent publication.59
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APPENDIX A: COMPUTATION OF THE
ELECTRONIC SELF-ENERGY TO O

`
1

N

´
.

In this appendix, we derive the amplitude given by
Eq. (3.1) for the diagram D5.1, pictured in Fig. 5. D5.1 is
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the contribution to the electronic self-energy due to the
Coulomb interactions at order 1/N . Using the Feynman
rules from Sec. II B, one has

D5.1 =

(
i

√
w

N

)2 ∫
dω d2l

(2π)3
i(ωn + ω) + vF σ̂ · (k+ l)

(ωn + ω)2 + v2F (k+ l)2

× 1

|l|

√
v2F l

2 + ω2

√
v2F l

2 + ω2 + w̄vF |l|
.

(A1)

Expanding in terms of the external frequency and mo-
mentum, we obtain

D5.1 ∼ −w
vFN

[iωn I1 + vF σ̂ · k I2] , (A2)

where

I1 =

∫
dω d2l

(2π)3
1

|l|

√
l2 + ω2

√
l2 + ω2 + w̄|l|

l
2 − ω2

(
ω2 + l

2
)2 , (A3a)

I2 =

∫
dω d2l

(2π)3
1

|l|

√
l2 + ω2

√
l2 + ω2 + w̄|l|

ω2

(
ω2 + l

2
)2 , (A3b)

and where it is useful to define

I3 ≡ I1 + I2

=

∫
dω d2l

(2π)3
1

|l|

√
l2 + ω2

√
l2 + ω2 + w̄|l|

l
2

(
ω2 + l

2
)2 . (A3c)

After rescaling ω → ω|l|, the momentum integrals are
trivially done, so that

I2 =
lnΛ

2π2

∫ ∞

0

dx

√
1 + x2√

1 + x2 + w̄

x2

(x2 + 1)
2 (A4a)

I3 =
lnΛ

2π2

∫ ∞

0

dx

√
1 + x2√

1 + x2 + w̄

1

(x2 + 1)
2 (A4b)

where we neglect ultaviolet-finite terms associated with
the infrared region of the momentum integration. We
then find that

I1 ≡ ln Λ

2π
f1(w̄), (A5a)

I2 ≡ ln Λ

2π
f2(w̄), (A5b)

I3 ≡ ln Λ

2π
f3(w̄), (A5c)

where the functions f1–f3 were defined by Eqs. (3.3) and
(3.4). Using Eq. (A5) in Eq. (A2), we recover Eq. (3.1).

APPENDIX B: FIXED LINES AND LINEARIZED
FLOW EQUATIONS

The one-loop, large-N flow equations given by
Eq. (4.1) in Sec. IV possess a number of critical fixed line

structures, continuously connected to the non-disordered,
non-interacting Dirac fixed point [Eq. (4.16)]. In this ap-
pendix, we enumerate these structures, and determine
their stability in the six-dimensional coupling strength
space [c.f. Eq. (4.1)]. Each fixed line resides in a plane
formed between the Coulomb interaction axis w̄ and a
single, nonzero disorder parameter.

a. Scalar potential disorder

As discussed in Sec. IVD1, in the case of pure scalar
potential disorder, i.e. only g̃u > 0 among the five dis-
order parameters appearing in Eq. (4.1), the large-N
graphene model exhibits a repulsive fixed line in the g̃u–
w̄ plane. From Eq. (4.12), the fixed line is parameterized
by the conditions

gA = gA3 = gm = gv = 0, (B1a)

g̃u
(0) = ηw̄(0)f3(w̄

(0)). (B1b)

Since g̃u and η = 8/πN are expansion parameters for our
large-N theory, the entirety of the fixed line described by
Eq. (B1) is perturbatively accessible, because the func-
tion w̄f3(w̄) asymptotes to a finite constant as w̄ → ∞;
see Eq. (4.6) and Fig. 14.

Linearizing Eq. (4.1) about the line in Eq. (B1), we ob-
tain the following RG eigenvalues (as a function of w̄(0)):

{0, ηw̄(0)

[
2f3(w̄

(0))

1 + w̄(0)
−F3(w̄

(0))

]
,

− 2
√
2 η w̄(0) f3(w̄

(0)), 2
√
2 η w̄(0) f3(w̄

(0))}, (B2)

where we have introduced the function

F3(w̄) ≡
d

dw̄
[w̄f3(w̄)]

=
1

2w̄2




2

π

1

1− w̄2

×
[
−w̄ +

2w̄2 − 1√
1− w̄2

arccos(w̄)

]
+ 1



.

(B3)

The first two eigenvalues listed in Eq. (B2) respectively
characterize RG flow trajectories along and through the
fixed line within the g̃u − w̄ plane; the latter two eigen-
values listed in this equation characterize the RG flow in
the transverse directions, and are each doubly degener-
ate. The second and fourth eigenvalues listed in Eq. (B2)

are positive for all finite w̄(0) > 0; both the g̃u
(0)(w̄(0))

fixed line, as well as the portion of the g̃u–w̄ plane span-
ning the region between this fixed line and the w̄-axis are
therefore highly unstable.
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b. Abelian vector potential disorder

Next, we consider the following fixed line in the gA3–w̄
plane:

g̃u = gA = gm = gv = 0, (B4a)

g
(0)
A3 =

η

2
w̄(0)f3(w̄

(0)). (B4b)

Linearizing Eq. (4.1) along this line, we obtain the eigen-
values

{0,−η w̄(0) F3(w̄
(0)), 2ηw̄(0) f3(w̄

(0)), 4ηw̄(0) f3(w̄
(0)),

2η w̄(0) f3(w̄
(0))

[
1− w̄(0) ±

√
2 + w̄(0)(w̄(0) − 2)

]

1 + w̄(0)
}.
(B5)

The first two eigenvalues listed in Eq. (B5) respectively
characterize RG flow trajectories along and through the
fixed line within the gA3–w̄ plane, where it serves as a
(locally) attractive, critical extension of the clean Dirac
fixed point [located by Eq. (4.16)]. The latter four eigen-
values appearing in Eq. (B5) characterize the RG flow in
the transverse directions, and show that this fixed line is
highly unstable.

c. Staggered potential disorder

Finally, we consider a fixed line in the gv–w̄ plane,
parameterized by the conditions

g̃u = gA = gA3 = gm = 0, (B6a)

g(0)v = ηw̄(0)f3(w̄
(0)). (B6b)

Linearizing Eq. (4.1) yields the RG eigenvalues

{0,−η w̄(0)
[
2f3(w̄

(0)) + F3(w̄
(0))
]
,

2(1±
√
3)η w̄(0) f3(w̄

(0)),±2
√
2ηw̄(0)f3(w̄

(0))

1 + w̄(0)
}. (B7)

The first two eigenvalues listed in this equation re-
spectively characterize RG flow trajectories along and
through the fixed line within the gv–w̄ plane; the latter
four characterize the RG flow in the transverse directions.
We observe that the g

(0)
v (w̄(0)) critical fixed line is also

unstable for all finite w̄(0) > 0.

APPENDIX C: DERIVATION OF PHYSICAL
RESULTS

In this appendix, we derive the scaling predictions for
the dc conductivity stated in Eqs. (5.5), (5.8), and (5.10)
of Sec. V. These predictions arise in the “QED,” in-
termediate, and “QCD” scaling regimes respectively, as
defined in that section.

FIG. 21: Schematic RG flow diagram, projected into the 3D
coupling constant space formed from the screened scalar po-
tential disorder strength (fgu), the non-Abelian vector poten-
tial disorder strength (gA), and Coulomb interaction strength
(w̄ = πrs/2) [Eq. (2.24)]. This diagram should be com-
pared to the flow plots, obtained via numerical integration
of Eq. (4.11), depicted in Figs. 15 and 17 of Sec. IVE. In
this figure, we have sketched characteristic flows, designated
by the labels (1)–(3), corresponding to the “QED,” interme-
diate, and “QCD” scaling regimes discussed in Sec. V. The
dashed curve represents the unstable fixed line discussed be-
low Eq. (4.12) in Sec. IVD1.

1. “QED” regime: Scalar potential disorder and
flow toward weak coupling

The “QED” regime occurs when the microscopic initial
conditions are such that the (screened) scalar potential
disorder fluctuations are much stronger than that of all
other disorder types: g̃u ≫ Gνµ [see Eqs. (2.9)–(2.11),
(2.26), and (2.14)]. Over some intermediate window of
scaling, we would expect the RG to be dominated by g̃u
and the Coulomb interaction strength w̄; to that end, we
set all other disorder parameters to zero, and integrate
the RG flow described by Eq. (4.12).

As discussed in Sec. IVD1, these flow equations pos-
sess a repulsive fixed line, pictured as the dashed curve
in Figs. 19 and 21. At the end of Sec. IVE, we noted
that this line divides the g̃u–w̄ plane into two portions;
the portion joining the fixed line to the w̄-axis flows back
to the clean, non-interacting Dirac fixed point, while its
complement flows toward strong disorder and interaction
coupling. (The portion that flows back to the clean Dirac
fixed point is destabilized by the other disorder parame-
ters for arbitrarily weak but non-zero disorder strength,
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as shown in Appendix B.) The RG evolves toward weak
(strong) coupling at longer length and lower energy scales
if the “microscopic” disorder and interaction strengths g̃u
and w̄ satisfy g̃u < ηw̄f3(w̄) [g̃u > ηw̄f3(w̄)].
In the case of a flow toward weak coupling (“QED”

regime), the Coulomb interaction w̄ rapidly decreases
toward zero; we therefore take w̄ ≪ 1 without loss of
generality. One obtains the scaling behavior [using RG
Eqs. (4.1a), (4.8), and (4.12), and Eqs. (5.3) and (5.4)
for σdc]

σdc(T ) ∼
Ne2

2π2

(η w̄)2

16gu
ln2
(
TR
T

)
, (C1)

where η = 8/πN and TR ≫ T is an arbitrary reference
temperature. Setting N = 4, gu ∝ g̃u, and replacing
w̄ → πrs/2 [Eq. (2.24)], we obtain Eq. (5.5) in Sec. V.
The evolution towards weak coupling characteristic of

the “QED” regime is represented via the schematic RG
flow labeled (1) in Fig. 21. Although this flow approaches
the clean, non-interacting Dirac fixed point [located by
Eq. (4.16) in Sec. IVE], it is ultimately deflected to-
ward the strong-coupling, “QCD” regime, labeled (3) in
Fig. 21, for any non-zero, but arbitrarily small random
vector potential (gA) or random mass (gm) disorder fluc-
tuations.

2. Intermediate regime: Scalar potential disorder
and flow toward strong coupling

We next consider the case where again g̃u ≫ Gνµ,
but now g̃u > ηw̄f3(w̄), so that the RG flows toward
strong coupling [Eq. (4.12)]. We further restrict w̄ ≪ 1,
since larger values of w̄ induce a crossover to the “QCD”
regime dominated by the vector potential disorder, de-
scribed in the next subsection.
With these assumptions, the intermediate scaling be-

havior of the conductivity is given by

σdc(T ) ∼
Ne2

2π2

[
1

g̃u
− 2 ln

(
TR
T

)]
, (C2)

for TR > T . We recover Eq. (5.8) for N = 4.
The evolution of the RG in this intermediate regime is

represented by the curve labeled (2) in Fig. 21.

3. “QCD” regime: Non-Abelian vector potential
disorder and asymptotic flow toward strong coupling

Finally, we consider the flow toward strong coupling
for moderate to strong Coulomb interactions. This is
the “QCD” regime dominated by the non-Abelian vector
potential disorder parameters gA and gA3. As discussed
in Sec. IVE, valley space SU(2) rotational symmetry is
restored on average as the RG scales toward strong cou-
pling; we may therefore take gA ∼ gA3.
Neglecting all disorder parameters except gA, we inte-

grate Eqs. (4.11a), (4.11b), and (4.11d), and combine the
results with Eqs. (4.8), (5.3), and (5.4). For w̄ & 1, we
obtain the following formula for the asymptotic scaling
behavior of the conductivity:

σdc(T ) ∼
Ne2

2π2

1

12gAφ
W

[
φ eφ

(
T

TR

)4/3
]
, (C3)

for TR > T . In this equation,

φ ≡ 1

6gA

(
1− η

π

)
, (C4)

and W (z) is Lambert’s function, i.e. solves the equation
WeW = z. For gA ≪ 1, Eq. (C3) reduces to

σdc(T ) ∼
Ne2

2π2

[
1

12gA
− 2π

3(π − η)
ln

(
TR
T

)]
, (C5)

which is the same as Eq. (5.10) for N = 4 (η = 2/π).
The curves labeled (3) in Fig. 21 schematically indicate

the flow toward strong coupling associated with the scal-
ing prediction given by Eq. (C5) in this “QCD” regime;
see also Figs. 15–18 in Sec. IVE.
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and M. A. H. Vozmediano, Phys. Rev. B 63, 134421 (2001);
M. A. H. Vozmediano, F. Guinea, M. P. López-Sancho, J.
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49 J. González, F. Guinea, and M. A. H. Vozmediano, Phys.
Rev. B 59, R2474 (1999).

50 See e.g. D. J. Amit, Field Theory, the Renormalization
Group, and Critical Phenomena, 2nd ed. (World Scientific,
Singapore, 1984).

51 For a review, see e.g. D. Belitz and T. R. Kirkpatrick, Rev.
Mod. Phys. 66, 261 (1994).

52 See the discussion in Sec. IIA 2.
53 C. Castellani, C. DiCastro, G. Forgacs, and S. Sorella,

Solid State Commun. 52, 261 (1984).
54 G. Kotliar and S. Sorella in Field Theory in Condensed

Matter Physics, edited by Z. Tesanovic (Addison Wesley,
Redwood City, Calif., 1990).

55 A. M. Finkel’stein, Zh. Eksp. Teor. Fiz. 84, 168 (1983),
Sov. Phys. JETP 57, 97 (1983).

56 C. Castallani et al., Phys Rev. B 30, 1596 (1984).
57 I. L. Aleiner, B. L. Altshuler, and M. E. Gershenson, Waves

Random Media 9, 201 (1999).
58 B. L. Altshuler and A. G. Aronov in Electron-Electron In-

teractions in Disordered Systems, edited by A. L. Efros and
M. Pollak (North-Holland, Amsterdam, 1985).

59 I. L. Aleiner and M. S. Foster, unpublished.
60 The crossover between the “QED” and “QCD” regimes

described in this section occurs through the RG flow equa-
tions [Eqs. (4.1) and (4.11)] in a way that involves all of
the disorder parameters, not just the scalar potential gu
and non-Abelian vector potential {gA, gA3} parameters.

61 See, e.g., G. D. Mahan, Many-Particle Physics, 3rd ed.
(Kluwer Academic/Plenum Press, New York, 2000).


