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Functional integral bosonization for an impurity in a Luttinger liquid

Alex Grishin, Igor V. Yurkevich, and Igor V. Lerner
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We use a functional integral formalism developed earlier for the pure Luttinger liquid~LL ! to find an exact
representation for the electron Green function of the LL in the presence of a single backscattering impurity in
the low-temperature limit. This allows us to reproduce results~well known from the bosonization techniques!
for the suppression of the electron local density of states~LDOS! at the position of the impurity and for the
Friedel oscillations at finite temperature. In addition, we have extracted from the exact representation an
analytic dependence of LDOS on the distance from the impurity and shown how it crosses over to that for the
pure LL.
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I. INTRODUCTION

One of the first exactly soluble models in the problem
strongly correlated electrons was formulated in one dim
sion in the seminal papers of Tomonaga1 and Luttinger2 and
solved by Mattis and Lieb.3 Considerable further contribu
tions to understanding of generic properties of the o
dimensional ~1D! electron liquid have been made
papers.4–6 In particular, Haldane6 has coined the notion of a
Luttinger liquid ~LL !, stressing the generic properties of t
Luttinger model for 1D Fermi systems, and has formula
fundamentals of a modern bosonization technique as on
the most elegant ways for solving the problem. In this a
proach, the Fermi creation and annihilation operators are
plicitly represented in terms of Bose operators and a fo
fermionic Hamiltonian is eventually diagonalized in th
bosonic representation.

There exists an alternative way to bosonize the prob
sometimes called ‘‘functional bosonization,’’ which wa
elaborated in Refs. 7–10. In this paper, we will apply suc
functional method in the form developed earlier by one
us10 for the treatment of a single-impurity problem in th
Luttinger model. The essence of the method is in the dec
pling of the four-fermion interaction by the standa
Hubbard-Stratonovich transformation, typical for highe
dimensional problems, and a subsequent elimination o
mixed fermion-boson term in the action by a gauge trans
mation which is exact for the pure 1D Luttinger model a
gives a convenient starting point for including a single ba
scattering impurity.

The problem of a single impurity in the LL has been a
tively investigated by many authors.11–18 One of the main
results of these considerations11,12,16–18was the suppression19

at low temperatures of the local density of states~LDOS! at
the impurity site and the related suppression of th
conductance,11,12and the x-ray edge singularity.16–18Another
prominent result was the dependence of the Frie
oscillations9,13,14on the distance from the impurity.

In the present paper, we use the functional bosoniza
approach to build up an exact representation of the elec
Green function for this problem in the low-temperature lim
First we demonstrate this approach to be workable by
tracting from this representation both the LDOS at the im
rity site and the Friedel oscillations in a unified way. Th
0163-1829/2004/69~16!/165108~7!/$22.50 69 1651
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we show that it allows us to go further to obtain an analy
expression for the LDOS at any distance from the impur
which turns out to be a universal power-law dependence
this distance. Thus we have described in full a crosso
from the impurity-dominated behavior to that for the pure L
at large distances from the impurity.

II. EXACT FUNCTIONAL REPRESENTATION
FOR GREEN FUNCTION

In this section, starting from the standard fermionic a
tion, we introduce intermediate boson variables via
Hubbard-Stratonovich transformation and integrate over b
sets of variables, arriving at a formally exact representat
of the electron Green function as infinite series, Eq.~17!.
Then we represent this series as a functional integral wi
new bosonic action. This derivation is similar in spirit, if n
in letter, to that of Ferna´ndezet al.;9 however, the functional
representation obtained is more general, as described a
end of this section.

The Hamiltonian of Luttinger liquid with one backscatte
ing impurity can be written as

Ĥ52 ihvFE dxĉh
†~x!

]

]x
ĉh~x!

1
1

2E dxdx8ĉh
†~x!ĉh8

†
~x8!V0~x2x8!ĉh8~x8!ĉh~x!

1vFE dxl~x!@ĉ1
† ~x!ĉ2~x!1ĉ2

† ~x!ĉ1~x!#. ~1!

Here c6
† and c6 are the standard creation and annihilati

operators for left- and right-moving electrons (c5c1eipFx

1c2e2 ipFx), h56 and the summation over repeated ind
ces is implied;V0 is a bare electron-electron interaction. Th
impurity potential is given byvFl(x)5vFlu(x), where
u(x) is some form factor of the impurity andl!1 is its
strength.

The temperature Green functions of the Hamiltonian~1!
can be represented by the functional integral

Ghh8~j;j8!5Zl
21E ch~j!ch8

* ~j8!e2S[c]Dc, ~2!
©2004 The American Physical Society08-1
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wherej[(x,t), Zl5*e2S[c]Dc, and the action

S@c#5E dj@ch* ~j!]tch~j!1H~c* ,c!#. ~3!

Here the integration over the imaginary timet goes from 0
to b51/T, and the ‘‘classical’’ HamiltonianH is obtained
from Ĥ, Eq. ~1!, by substituting the Grassmann fieldsc* (j)
andc(j) for ĉ† and ĉ.

The Green function of real electrons is given as a sum
all Ghh8 taken with appropriate phase factors,

G~j,j8!5 (
h,h8

Ghh8~j,j8!eipF(hx2h8x8). ~4!

The functional bosonization is achieved via the stand
Hubbard-Stratonovich transformation decoupling the fo
fermion term in the action. Introducing a new classic
~bosonic! field f we arrive at the action

S@f,c#5E djch* ~j!~]h2 if!ch~j!

1
1

2E djdj8f~j!V0
21~j2j8!f~j8!

2vFE djl~x!@c1* ~j!c2~j!1c2* ~j!c1~j!#. ~5!

HereV0
21 is a function inverse toV0 in the operator sense

whoset dependence is justd(t2t8), and the ‘‘chiral de-
rivatives’’ ]h are defined by

]1[2]z5]t2 ivF]x , ]2[2] z̄5]t1 ivF]x .

In order to eliminate the mixed term in the chiral deriv
tive in Eq. ~5!, we apply the gauge transformation

ch°cheiuh, ch* °ch* e2 iuh, ]huh5f, ~6!

whereuh is a complex function which depends on the fie
f. Sincef is real,

u25u1* [u[u11 iu2 .

This transformation produces10 the JacobianJ, derived ex-
plicitly in the Appendix,

ln J52
1

2E djdj8f~j!P~j2j8!f~j8!, ~7!

where P is the polarization operator whose Fourier tran
form is given by

P~q,V!5
1

pvF

vF
2q2

V21vF
2q2

, ~8!

whereV52pnT is a bosonic Matsubara frequency.
Therefore, after the transformation~6! the interaction in

the action~5! becomes random-phase-approximation~RPA!
screened as expected,V0

21°V215V0
211P, and can be

split into the sumS@c,f#5Sf@c#1Sb@f#1Simp@c,f#:
16510
f

d
-
l

-

Sb5
1

2E djdj8f~j!V21~j2j8!f~j8!,

Sf5E djch* ~j!]hch~j!,

Simp52vFE djl@e2u2c1* ~j!c2~j!1e22u2c2* ~j!c1~j!#.

~9!

The Green function~2! can be represented as the function
average over the fermionic and bosonic fields with t
weight Sb1Sf :

Ghh8~j;j8!5
^^eiuh(j)2 iuh8(j8)ch~j!ch8

* ~j8!e2Simp&&

^^e2Simp&&
,

^^O@f,c#&&[
E DfDcO@f,c#e2Sb[f] 2Sf [c]

E DfDce2Sb[f] 2Sf [c]

. ~10!

The bosonic fieldf enters the preexponential factor in E
~10! only implicitly, via u(f). Before proceeding further it is
convenient to work out correlation functions ofu which fol-
low straightforwardly from^f(j)f(j8)&f5V(j2j8) and
Eq. ~6!:

^u1~j!u1~j8!&f5
1

2
ln

usin~zF2zF8!u
usin~z2z8!u1/g,

^u2~j!u2~j8!&f5
1

2
ln

usin~z2z8!ug

usin~zF2zF8!u
,

^u1~j!u2~j8!&f5
1

2
arg

sin~z2z8!

sin~zF2zF8!
, ~11!

where

zF5pT~t1 ix/vF!, z5pT~t1 ix/v !,

v5vFS 11
V~q50!

pvF
D 1/2

, g5
vF

v
. ~12!

Here we assumed that the Fourier transform of the forwa
scattering pair interaction only weakly depends on mom
tum, i.e.,V(q!2pF)'V(q50).

For the purpose of this paper, the representation given
Eqs.~9! and~10! is an intermediate step for the bosonizatio
However, in the case of the weak interaction (12g!1) the
bosonic part of the action~9! can be treated within the per
turbative renormalization-group approach, thus reproduc
the results of Ref. 12.

Now we reduce the partition functionZl5^^e2Simp&& in
Eq. ~10! to the product of fermionic and bosonic integra
This can be done for an arbitrary scattering potentiall(x).
On expandinge2Simp and keeping only the terms with equ
numbers ofc1* and c1 ~as well as ofc2* and c2), we
obtain
8-2
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Zl5 (
n50

` vF
2n

~n! !2)k51

n E djkdjk8l~xk!l~xk8!

3K )
k51

n

c1* ~jk!c2~jk!c2* ~jk8!c1~jk8!L
c

3K expF2(
k51

n

@u2~jk!2u2~jk8!#G L
f

. ~13!

Carrying out the bosonic average with the help of formu
~11!, we find

K expF2(
k51

n

@u2~jk!2u2~jk8!#G L
f

5
a2gnuPn~z!u2g

a2nuPn~zF!u2
, ~14!

where

a[pT/«F!1

is a cutoff parameter, andPn(z) is given by

Pn~z!5

)
i , j

n

sin~zi2zj !sin~zi82zj8!

)
i , j 51

n

sin~zi2zj8!

. ~15!

The parametersz andzF , entering with the appropriate indi
ces, Eq.~14!, are defined by Eq.~12!.

The fermionic average in Eq.~13! is independent for the
left- and right-moving electrons and yields

K )
k51

n

c2~jk!c2* ~jk8!L 5S T

2vF
D n

det
1

sin~zFi2zFj8!
. ~16!

Applying the Cauchy formula,20

det
1

sin~zi2zj8!
5~21!n(n21)/2Pn~z!,

one sees that the fermionic average~16! cancelsuPn(zF)u2 in
the denominator of Eq.~14! so that

Zl5 (
n50

`
1

~n! !2 S T

2a12gD 2n

3)
k51

n E djkdjk8l~xk!l* ~xk8!uPn~z!u2g. ~17!

The result above has been obtained by formally calcula
both fermionic and bosonic integrals for the partition fun
tion in Eq. ~10!. Now we ‘‘rebosonize’’ this expression b
presenting it as a result of the integration over a new boso
field Q,

Zl5^e2Sl[Q]&0 , ~18!

where

Sl@Q#52
T

aE djl~x!cosQ~j!, ~19!

and ^•••&0 average is defined with the actionS0,
16510
s

g
-

ic

S0@Q#5
1

8pgvE dj@~]tQ!21v2~]xQ!2#. ~20!

To verify the validity of the representation~18!, ~19! one
needs to expand the exponent in Eq.~18! using the fact that
the pair-correlation function ofQ with the actionS0 is given
~with a proper regularization! by

G0~j,j8![^Q~j!Q~j8!&0522g lnusin~z2z8!u. ~21!

The sum resulting from such an expansion coincides w
that in Eq.~17!. We remind that herej stands as a shorthan
for x,t with the appropriate indices, whilez5pT(t
1 ix/v), Eq. ~12!.

On repeating the steps outlined in Eqs.~13!–~17!, we ob-
tain the followingQ representation for the Green function
Eq. ~10!:

Ghh8~j,j8!5
T

2vFa
121/2g

shh8~z2z8!

usin~z2z8!u1/2g
G̃hh8~j,j8!,

~22!

where we introduced an auxiliary functionG̃hh8(j,j8),

G̃hh8~j,j8!5Zl
21^e( ia/2)Q(j)2( ia8/2)Q(j8)e2Sl[Q2x]&0 . ~23!

The cosQ term in actionSl , Eq. ~19!, is now shifted by the
phase factorx(j1),

Sl@Q2x#52
T

aE dj1l~x1!cos$Q~j1!2x~j1!%, ~24!

wherex(j1) parametrically depends on the arguments of
Green function~22!,

x~x1 ,t1![x~z1!5arg
sin~z12z!

sin~z12z8!
. ~25!

Finally, the sign factorshh8 in Eq. ~22! is defined~with h
561) by

shh8~z2z8!5exp@ 1
2 i ~h1h8!arg sin~z2z8!#.

In one particular case,x5x8 andt50 ~i.e., when describing
the electron density distribution at any distance from imp
rity!, the representation~22!–~25! coincides with that ob-
tained by Ferna´ndezet al.9 In another particular case, forx
5x850 and arbitraryt ~corresponding to the LDOS energ
dependence at the impurity site!, by integrating out~like in
Ref. 11! Q(xÞ0), this representation reduces to that o
tained by Oreg and Finkel’stein.15

The full action~22!–~25! is both exact and most genera
Its distinctive feature is the shift of the bosonic fieldQ in the
standard cosine term, Eq.~24!, by the nonlocal phase,x, Eq.
~25!. This action allows one to consider a wider set of pro
lems, including the energy dependence of the LDOS at
arbitrary distance from the impurity addressed below.

III. SPATIAL DEPENDENCE OF LDOS

The representation~22!, ~23! is exact and further calcula
tions are only possible after some approximations which
8-3
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will make below. Note that a relatively compact represen
tion for the electron Green function at any distance from
impurity, which was claimed to be exact, has been obtai
in Ref. 21. Although the Green function21 leads to well-
known correct limits for the nonoscillating part of the LDO
at the impurity (x→0) and in the bulk (x→`), it does not
explicitly contain the impurity strength which, as we w
show here, defines the intermediate scale where a cross
from the impurity-dominated to the bulk behavior tak
place.

In this section we aim at obtaining asymptotic expressi
for the Green function at small, intermediate~crossover!, and
large distances from the impurity. First, we assume the
purity to be pointlike,l(x)5ld(x), and weak, i.e.,l!1.
This ensures the spectrum linearization to be valid in
presence of the impurity and all the relevant energy scale
be small compared to the Fermi energy.

It is well known that even such a ‘‘weak’’ impurity lead
to strong changes to the single-electron density of state
its vicinity. Its influence is perturbative only in the high
temperature limit,l!a;T/«F . In the low-temperature re
gime, l@a, a nonperturbative approach is required. In t
present context, it can be developed within the so-called s
consistent harmonic approximation~SCHA!.22,23 It is based
on the fact that fora!l!1, the deviation ofQ from x(t1)
in the action~23! is prohibitive so that their difference can b
presented as small quadratic fluctuations around one of
minima of cos(Q2x). By minimizing the difference betwee
actual cosine-shaped potential and its quadratic fit~the
Feynmann-Vernon variational principle!, one substitutes the
exact cosine potential by the harmonic one, thus reducing
action ~24! to the following one:

SL@Q2x#5
LT

2a E dt1@Q~0,t1!2x~0,t1!#2, ~26!

where the new ‘‘impurity strength’’L is chosen to provide
the best fit to the real potential. As a result, one obtains22 the
renormalized ‘‘self-consistent’’ impurity strengthL as L
5l1/(12g).

Now the action is quadratic inQ,

S@Q#5S0@Q#1
LT

2a E dtQ2~0,t!, ~27!

so the integral~23! for G̃hh8(j,j8) is reduced to calculating
the averages with the action~27! of linear in Q terms in the
exponent, using the standard formulas of the type

^ebQ&Q5expFb2

2
^Q2&QG ,

where ^•••&Q stand for the functional averaging with th
action ~27!. The integration thus yields

2 lnG̃hh8~j,j8!5
1

8
G~j,j!1

1

8
G~j8,j8!2

hh8

4
G~j,j8!

2 iFhh8~j,j8!1J~j,j8!. ~28!

All the terms above can be expressed via the pair-correla
function of the auxiliary bosonsQ defined by
16510
-
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G~j,j8!5^Q~j!Q~j8!&Q . ~29!

In the absence of theL term in action~27!, G reduces to the
standard bosonic Green functionG0, Eq. ~21!. The full
Green functionG in the presence of impurity is straightfor
ward to find in the Matsubara frequency representation,

G~j;j8!5T(
v

G~x,x8;v!e2 iv(t2t8),

where it is expressed viaG0(x,x8;v) as follows:

G~x,x8;v!5G0~x,x8;v!2
LT

a

G0~x,0;v!G0~0,x8;v!

11
LT

a
G0~0,0;v!

5
2pg

uvu F e2(uvu/v)ux2x8u2
e2(uvu/v)(uxu1ux8u)

auvu
2pgLT

11 G . ~30!

Exponentiating the denominator of the second term above
1/D52*dse22Ds, we obtainG in the x,t representation,

G~j,j8!2G0~j,j8!54gE
0

`

dse22slnUsinFpTS t2t8

1 i
uxu1ux8u

v D1 i
as

gLGU. ~31!

The impurity-induced terms in Eq.~28!, F andJ, which
are, respectively, linear and quadratic inx, Eq. ~25!, result
from the averaging of the first- and zeroth-order terms inQ
arising from Eq.~26!. Noting that for the pointlike impurity
under considerations in this sectionx(z1)→x(t1), we find
these terms as follows:

J5
LT

2a E dt1dt2FLT

a
G~0,t1 ;0,t2!2d~t12t2!G

3x~t1!x~t2!, ~32!

Fhh85
LT

2a E dt1@hG~j;0,t1!2h8G~j8;0,t1!#x~t1!.

~33!

It should be stressed that bothJ andF depend on the ‘‘ob-
servation points’’j andj8 via the appropriate dependence
the parameterx, Eq. ~25!. All these functions can be calcu
lated for arbitraryj and j8. However, since we are only
interested in the local density of states~at an arbitrary dis-
tance from the impurity! and Friedel oscillations, it is suffi-
cient to considerx5x8 case only;t8 for convenience is se
to zero so that from now on we usej5(x,t) and j8
5(x,0). Introducing the shorthand notationsJ(x,t;x,0)
[J(x;t), etc., we obtain

J~x;t!5
LT2

2a (
v

ux~0,v!u2F12
LT

a
G~0,0;v!G ,

~34!
8-4
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Fhh8~x;t!5
LT2

2a (
v

x~0,v!@hG~x,0;v!e2 ivt

2h8G~0,x;v!#. ~35!

Substituting the Fourier transform of Eq.~25!,

x~0,v!5
ip

v
sgnxe2uvu(uxu/v)@eivt21#, ~36!

and Eq.~30! into Eqs.~34! and ~35!, we carry out the Mat-
subara summation to obtainJ andF in the same represen
tation as follows:

J~x;t!5
1

2gE0

`

dse22slnF 11
sin2pTt

sinh2S as

gL
12pT

uxu
v D G ,

F~x;t!5sgnxFp2 2Im ln sinpTS t12i
uxu
v D G , ~37!

whereF[F1252F21 , while F115F2250.
Now we have all the ingredients to find the Green fun

tion ~22!. Using Eq.~28!, we expressG(j) in terms ofG, F,
andJ as follows:

G~x;t!5
T

vF

a1/2g21

usinpTtu1/2g
e2J(j)e2(1/4)G(x,x;t50)

3$sgnte(1/4)G(j)2e2(1/4)G(j)cos@2pFx1F~j!#%.

~38!
d

t

p-
ha

or

16510
-

Equation~38! combined with the expressions forG, Eq.~31!,
andF andJ, Eq. ~37!, gives a formal representation for th
electron Green function in the presence of a single impu
which is asymptotically exact whenT→0. To extract from
this manageable expressions for physical quantities in dif
ent regions, we need to get the appropriate asymptotic
havior of G, F, andJ. Using the dimensionless notation
x̃[gxpF and t̃[«Ft, we find

G~x;t!55 2g ln
a

L sin at̃
, u t̃1 i x̃u!L21

2g ln
sin au t̃1 i x̃u

sin at̃
, u t̃1 i x̃u@L21,

J~x,t!55
1

4g
lnF11

sin2~at̃ !

sinh2~a x̃!
G , L21! x̃

1

2g
ln

L sinat̃

a
, x̃!L21! t̃

g~Lt̃!2ln~Lt̃!21, x̃,t̃!L21.

For simplicity, we keep here only positivex̃ and t̃, the latter
changing between 1 andp/a. We do not write asymptotics
for F(x,t) explicitly since we will not use it in the presen
considerations. The above expressions enable us to find
Green functionG(x,t;x,0)[G(x;t), Eq. ~38!, at any dis-
tancex from the impurity:
G~x;t!5
pF

2p
35

a1/g

~sinat̃!1/g
@max~L21,x̃!# (1/2)(1/g2g)@12cos~2pFx1F!#, max~ x̃,L21!! t̃

a (1/2)(1/g1g)

~sinat̃!(1/2)(1/g1g) F12S sinat̃

sinha x̃
D g

cos~2pFx1F!G , min~ x̃,L21!@ t̃.

~39!
-

of

the
In the first line of the above expression we have restrictex̃

to the region x̃!a21 which is equivalent tox!,T (,T

[vF /pT is the thermal dephasing length!. The reason is tha
we do not need to consider largerx in this region of energy
~or t) as the influence of the impurity on the LDOS is su
pressed at much shorter distances. In the second line we

kept all x̃ as this allows us to extract a well-known result f
the Friedel oscillations.9,13,14 By putting t50, we obtain in

the regionx̃@L21,

Dr~x!5
pFa

g

2p

1

Usinh
2gx

,T
Ugcos~2pFx1F!. ~40!
ve

For x!,T , the amplitude of the Friedel oscillations de
creases}uxu2g while for x@,T /g it is exponentially sup-
pressed.

The local density of states at a distancex from the impu-
rity is defined via an appropriate analytical continuation
the Fourier transform ofG,

n~x,«!52
1

p
ImE dte2 i etG~j!u i e5« .

Using asymptotics for the Green function~39!, we find for
g>1/2 explicit expressions for the LDOS smoothed over
length scale much larger thanpF

21 in three different regions:
8-5
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n~x,e!

;H «̃1/g21L2(1/2)(1/g2g), x̃!L21! «̃21 ~41a!

«̃1/g21x̃(1/2)(1/g2g), L21! x̃! «̃21 ~41b!

«̃ (1/2)(1/g1g)21, min~ x̃,L21!@ «̃21. ~41c!

These three regions with different behavior of LDOS a
sketched in Fig. 1. Equation~41a! describes LDOS in the
vicinity of impurity, in full correspondence with the origina
results of Kane and Fisher11 obtained for the LDOS atx
50, i.e., exactly at the impurity. In addition, we have esta
lished here the LDOS dependence on the impurity stren
L[l1/(12g). The region of applicability of Eq.~41a! corre-
sponds to the diagonally hatched region in Fig. 1.

Equation ~41c! gives the LDOS at very large distance
from the impurity. As expected~and has already been note
e.g., in Refs. 17 and 21!, it coincides with a well-known
result for the LDOS in the homogenous Luttinger liquid~see
for reviews Ref. 24!. Its region of applicability is horizon-
tally hatched in Fig. 1.

In the intermediate region, vertically hatched in Fig. 1, t
LDOS depends both on the energy and the distance from
impurity. This analytic dependence given by Eq.~41b! de-
scribes the crossover from the impurity-induced dip in
LDOS to the bulk behavior.

Finally, the unhatched region for«̃,a corresponds to
small energies,«&T, where the energy dependence satura
~by «→T) in all the three lines of Eqs.~41a!–~41c!.

In conclusion, we have demonstrated that the formal
developed here allowed us to obtain in a unified way
known results for the Friedel oscillations and the LDOS b
in the vicinity of the impurity and in the bulk. This formal
ism has also allowed us to obtain not only the limiting ca
described above but a full analytic description of the cro
over between them. We have shown that, as a function ofx at
a fixed energy«, n(x) remains constant forx̃&L21, then it
increases untilx̃ becomes of order«̃21 ~which happens be
fore x overtakes the thermal dephasing length,,T), where
the LDOS reaches its bulk (x-independent! value, given by

FIG. 1. Regions with different behavior of local density of sta

n(x,«); here x̃[gpFuxu, «̃[«/«F , a[pT/«F , and L5l1/(12g)

is the renormalized impurity strength.
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Eq. ~41c!. The crossover between the impurity-dominat
and bulk values is governed by a universal power law of E
~41b!, n(x); x̃(1/2)(1/g2g).
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APPENDIX

The Jacobian of the gauge transformation, Eq.~6!, can be
written as

ln J@f#5 (
h56

Tr lnU]h2 if

]h
U52 (

h56
(
n51

`
1

n
Tr~ ifgh!n,

where the Green function of noninteracting right- or le
moving electrons, obeying]hgh51, are given by

g2~j,j8!5g1* ~j,j8!5
T

2vF

1

sin~zF2zF8!
, ~A1!

wherezF is given by Eq.~12!. Thenth order term inf is the
sum of two vertices made of the loopsGn

1 and Gn
2 with n

external lines corresponding tof ’s, each loop being built of
the n Green functionsg6 , respectively,

Tr~ghf!n5E )
k51

n

dxkdtkGn
(a)~zF1

; . . . ;zFn!)
i 51

n

f~xi ,t i !,

Gn
(a)~zF1

; . . . ;zFn!5)
i 51

n

gh~zFi2zFi 11! ~A2!

with the boundary conditionzFn115zF1
. Substituting gh

from Eq. ~A1!, one finds

Gn
1~zF1

; . . . ;zFn!})
i 51

n
si

si2si 11
, si5e2izFi.

One can rewrite the symmetric part of this vertex, whi
contributes into the integral in Eq.~A2!, as follows:

Gn
1~zF1

; . . . ;zFn!}
An~s1 , . . . ,sn!

)
i , j

n

~si2sj !

)
k51

n

sk ,

whereAn is an absolutely antisymmetric polynomial built o
n variablessi . By power counting, its order should ben(n
23)/2. On the other hand, the minimal possible order of
absolutely antisymmetric polynomial ofn variables isn(n
11)/2, as follows from the fact that the powers of differe
variables should be different for any monomial in order t
entire polynomial to be antisymmetric. The two inequaliti
can only be satisfied forn<2 so thatAn.250. Therefore,
all loops containing more than two external lines are zer4

Therefore, we are left with the contributions from th
8-6
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loops with one or two external lines. The loop with on
external line is proportional to the zero-momentum mode
the Coulomb interaction and is canceled, as always, du
electroneutrality. The loop with two external lines is just t
h

16510
f
to

standard polarization operator in the random-phase appr
mation ~exact for the LL!, given in (q,V) representation by
Eq. ~8! so that the Jacobian is reduced to that in Eq.~7! in the
main text.
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