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Functional integral bosonization for an impurity in a Luttinger liquid
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We use a functional integral formalism developed earlier for the pure Luttinger liguigto find an exact
representation for the electron Green function of the LL in the presence of a single backscattering impurity in
the low-temperature limit. This allows us to reproduce reswsll known from the bosonization techniques
for the suppression of the electron local density of stét€0S) at the position of the impurity and for the
Friedel oscillations at finite temperature. In addition, we have extracted from the exact representation an
analytic dependence of LDOS on the distance from the impurity and shown how it crosses over to that for the
pure LL.
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[. INTRODUCTION we show that it allows us to go further to obtain an analytic
expression for the LDOS at any distance from the impurity,

One of the first exactly soluble models in the problem ofwhich turns out to be a universal power-law dependence on
strongly correlated electrons was formulated in one dimenthis distance. Thus we have described in full a crossover
sion in the seminal papers of Tomoné_md Luttinge? and from the impurity-dominated behavior to that for the pure LL
solved by Mattis and LieB.Considerable further contribu- at large distances from the impurity.
tions to understanding of generic properties of the one-
dimensional (1D) electron liquid have been made in II. EXACT FUNCTIONAL REPRESENTATION
papers ~® In particular, Haldarfehas coined the notion of a FOR GREEN FUNCTION
Luttinger liquid (LL), stressing the generic properties of the . . . o
Luttinger model for 1D Fermi systems, and has formulated. In this _SGCtIOﬂ, stgrtmg fro_m the standard_ fermlon_lc ac-
fundamentals of a modern bosonization technique as one ﬁ)n, we introduce intermediate boson variables via the
the most elegant ways for solving the problem. In this ap- ubbard-Stratonovich transformation and integrate over both

proach, the Fermi creation and annihilation operators are exets of variables, arriving at a formally exact representation

plicitly represented in terms of Bose operators and a fourpf the electron Green function as infinite series, ELj).

fermionic Hamiltonian is eventually diagonalized in the Then we represent this_ serie_s asa _fun_cti(_)nal_ inte_g_ral_ with a
bosonic representation new bosonic action. This derivation is similar in spirit, if not

. 7’ .9 .
There exists an alternative way to bosonize the problerﬁn letter, to 'ghat of Fgrmxjgzet al.” however, the fun9t|ona|
sometimes called “functional bosonization,” which was representation thalned is more general, as described at the
elaborated in Refs. 7—10. In this paper, we will apply such aend of this ;ectlpn. . Lo
functional method in the form developed earlier by one of, T_he Ha_1m|lton|an of I__uttlnger liquid with one backscatter-
us® for the treatment of a single-impurity problem in the IN9 impurity can be written as
Luttinger model. The essence of the method is in the decou- 5
pling of the four-fermion interaction by the standard p_ _ . f 0% AN
Hubbard-Stratonovich transformation, typical for higher- H 'UE dan(x)aan(x)
dimensional problems, and a subsequent elimination of a 1
mixed fermion-boson term in the action by a gauge transfor- +_f dxdX 3 OOTT (X IWalx= XV (X V(X
mation which is exact for the pure 1D Luttinger model and 2 Y7004 (X )Vol V9 (X ¢(X)
gives a convenient starting point for including a single back-
scattering impuriy Foe | BOILO0T 00+ HL00FL 001 @

The problem of a single impurity in the LL has been ac- F " ’
tively investigated by many authot5:*® One of the main + . N
results of these consideratidh&215-14vas the suppressidh Here . and . are the standard creation and annihilation
at low temperatures of the local density of stateBOS) at operatg)irsz for left- and right-moving electrong= /. e'P™
the impurity site and the related suppression of the +z,/;__e_ FX) 7= = and the summation over repeat_ed indi-
conductancél*2and the x-ray edge singulart§-*8Another ~ C€S IS impliedV, is a bare electron-electron interaction. The
prominent result was the dependence of the FriedeiMPurity potential is given byveh(x)=velu(x), where
oscillation§***on the distance from the impurity. u(x) is some form factor of the impurity anN<1 is its

In the present paper, we use the functional bosonizatioftrength. _ ,
approach to build up an exact representation of the electron 1he temperature Green functions of the Hamiltonian
Green function for this problem in the low-temperature limit. ¢@n be represented by the functional integral
First we demonstrate this approach to be workable by ex-
tracting from this representation both the LDOS at the impu- o o1 * e SV
rity site and the Friedel oscillations in a unified way. Then Gy (6:8)=Zy "/”7(5)‘/’7]’(5 ) Dy, 2
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whereé=(x,7), Z,=fe YDy, and the action 1
Sb:if déde’ p(EV HE-E) p(E),
1= [ deusoo O rHE ) ©

Here the integration over the imaginary timegoes from 0 Sf:f A&y, (€)9,1,(8),
to B=1/T, and the “classical” HamiltoniarH is obtained

fromH, Eq.(%), by sgbstituting the Grassmann fielgfs (&) Simp= _UFJ dEN[€2020* (&) (&) +e 2020* (&) ()],
and (&) for ¢ and .

The Green function of real electrons is given as a sum of ©)
all G, taken with appropriate phase factors, The Green functiorf2) can be represented as the functional
average over the fermionic and bosonic fields with the
GEE) =D Gyp(£,€)EPAPTX) (g)  WeIGhES Sy
77’ . . ,
e'ﬁn(f)flen’(f) */ 4 efsimp
The functional bosonization is achieved via the standard g, (&&= (€ l’[/"ig) V(€) >>,
Hubbard-Stratonovich transformation decoupling the four- (e >me))
fermion term in the action. Introducing a new classical
(bosonig field ¢ we arrive at the action j DSDYO[ b, e Sol 41~ Silv)
- (O, y]))= (10)
S[d),l//]:J d§¢f](§)(§n_l¢)‘/’n(§) f D(;’)sze_sb["’]_sf[‘”]
+ %f d§d§’¢(§)vgl(§—§’)¢(§’) The bosonic fieldp enters the preexponential factor in Eq.

(10) only implicitly, via 6( ¢). Before proceeding further it is
convenient to work out correlation functions éfwhich fol-
—vpf dEN)[YL (O Y- (HFYE(E) Y (6)]. (5) |0W(S§faightf0rwardly from(¢(8) #(¢))y=V(§—¢') and
Eqg. (6):
Herevgl is a function inverse t&/, in the operator sense, 1 |sing )
H 1 - “ 1 _ Si ZF_Z
whose 7 dependence is jusé(7— 7'), and the “chiral de (6,(8) 01(5’)>¢=§In F

rivatives” ¢, are defined by |sin(z—2z")|Y0
0.=20,=0,—ivEdy, I_=207=0,+ivgdy. 1 |sinz—2z")|?
<02(§)02(§,)>¢:§|nf1

In order to eliminate the mixed term in the chiral deriva- |sin(ze— ZF)|

tive in Eq. (5), we apply the gauge transformation

(0(&)0,(6) 4= gargome 2 an
, » =-arg——,
Yy, yy— e " 9,0,= ¢, (6) nee ?2 gsm(ZF_ zf)
where 6, is a complex function which depends on the field where
¢. Sinceg is real, , .
ze=aT(7+ix/vg), z=7T(7+ix/v),
0_=05=0=0,+i0,.

T B V(g=0)|"2 ve

This transformation produc¥sthe Jacobian), derived ex- v=vg 1+ TR v 97 v (12)

plicitly in the Appendix, _
Here we assumed that the Fourier transform of the forward-
1 , , , scattering pair interaction only weakly depends on momen-
InJ_—EJ dfdf ¢(§)H(§_§ )¢(§ ), (7) tum, i.e.,V(q<2pF)~V(q=0).
] o ) For the purpose of this paper, the representation given by
wherell is the polarization operator whose Fourier trans-ggs,(9) and(10) is an intermediate step for the bosonization.

form is given by However, in the case of the weak interaction{(d<1) the
2 2 bosonic part of the actiof®) can be treated within the per-
1(q,Q)= LL ®) turbative renormalization-group approach, thus reproducing

the results of Ref. 12.

Now we reduce the partition functiof, =((eSme)) in
whereQ)=2=7nT is a bosonic Matsubara frequency. Eqg. (10) to the product of fermionic and bosonic integrals.
Therefore, after the transformatid@f) the interaction in  This can be done for an arbitrary scattering poterXiat).
the action(5) becomes random-phase-approximati®&PA)  On expandinge™ Smp and keeping only the terms with equal

screened as expectetd’gl'—>V*1=V51+H, and can be numbers ofy’ and ¢, (as well as ofy* and ¢_), we

split into the sumS[ ¢, ¢]1=S{ 1+ S b1+ Singl ¥, &1 obtain

TUE 0%+ 02g?’
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@ 2n N 1
v ’ ’ - 2 2 2
zx=n§=)0 (an)ZkHl Jdgkdgk)\(xk))\(xk) So[ O] swgvjdf[“f@) +v9(340)%]. (20
n To verify the validity of the representatiofi8), (19) one
x{ ] PEQY_(EQPE(ED (&) needs to expand the exponent in Etg) using the fact that
k=1 W the pair-correlation function dd with the actionS, is given
n (with a proper regularizatiorby
x| exp22 [6x(&)—b2(E01]) . (13 , , -
k=1 ¢ Go(£,€")=(0()0(&"))o=—2gIn|sin(z—2")[. (21)
Carrying out the bosonic average with the help of formulasthe sum resulting from such an expansion coincides with
(11), we find that in Eq.(17). We remind that heré stands as a shorthand
n 2?9 P(2)|29 for X,7 with the appropriate indices, while==T(r
<9XF{22 [02(&) — 92(§{<)]}> :ﬁ, (14  +ix/v), Eq.(12). . .
k=1 s @Pn(ze)] On repeating the steps outlined in E¢s3)—(17), we ob-
where tain the following® representation for the Green function of
Eq. (10):
a=7Tleg<1
is a cutoff parameter, anl,(z) is given b G, (&€&)= Spr(272) & (£,
P » N 9 y A 20 palt™ Y2 |Sm(z_z,)|1/29"”’7' =
ﬁ (22
sin(z;—z))sin(z/ —zj) . . ~
i<j where we introduced an auxiliary functi (€8,
Pa(2)=—— . (15 Y functidh, (.6
I sin(z,—z)) G, (£,6)=25 L(e(ia/20(9)~ (1220 (¢ )=S0 X1y (23)

ij=1
The co®d term in actionS, , Eq. (19), is now shifted by the

The parameters andzg, entering with the appropriate indi- phase facton(¢,),

ces, Eq.(14), are defined by Eq.12).

The fermionic average in Eq13) is independent for the T
left- and right-moving electrons and yields S\[O—x]=— ;f déiN(x)codO(&1) —x (€1}, (24
n .
, T\" 1 wherey(£,) parametrically depends on the arguments of the
< IT v_(&0 ¢t(§k)> = (2—> det—————. (1)  Green function22),
k=1 UF sin(zg — zg))
Applying the Cauchy formul&’ sin(z,—2z)
PRYIng Y X0 m)=x(z) =arg (25
-
_ ~1)/
det—sin(zi—zj’) =(—1)"-D2p (7, Iiirlagy, t}he sign factoss,,,, in Eq. (22) is defined(with 7
one sees that the fermionic averddé) canceldP,(zg)[2in ) by
the denominator of Eq.14) so that S,y (z2—2')=exd 3i(n+ 5" )arg sinz—z')].
< 1 T \2" In one particular case,=x" and7=0 (i.e., when describing
Z,=> AY: 1 g the electron density distribution at any distance from impu-
n=0 (n)“\ 2« rity), the representatioi22)—(25) coincides with that ob-

n tained by Fernadezet al® In another particular case, for
% H f d&dEIN (XN (X)|Pn(2)|%9. (A7) =x'=0 and arbitraryr (corresponding to the LDOS energy
k=1 dependence at the impurity Sitdy integrating ouflike in

The result above has been obtained by formally calculatin&?f' 13 ©(x+0), this representation reduces to that ob-

both fermionic and bosonic integrals for the partition func- ained by Oreg and Finkel’;tei‘ﬁ.
tion in Eq. (10). Now we “rebosgnize” this exppression by The full action(22)—(25) is both exact and most general.

presenting it as a result of the integration over a new bosoni!:Is distinctive'feature is the shift of the bosonic fiédin the
field © standard cosine term, E4), by the nonlocal phasg;, Eq.

(25). This action allows one to consider a wider set of prob-
Z,=(e 3%, (18 lems, including the energy dependence of the LDOS at an

where arbitrary distance from the impurity addressed below.

S,[0]=— IJ dén(x)cos® (&) (19 Ill. SPATIAL DEPENDENCE OF LDOS
P ,

The representatio(®2), (23) is exact and further calcula-
and(---)o average is defined with the acti@, tions are only possible after some approximations which we
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vy|ll make below. Note that a rel_at|vely compact representa- G(&,E)=(O(&)O(&))e . (29
tion for the electron Green function at any distance from the

impurity, which was claimed to be exact, has been obtainedn the absence of tha term in action(27), G reduces to the
in Ref. 21. Although the Green functithleads to well- standard bosonic Green functic®y, Eg. (21). The full
known correct limits for the nonoscillating part of the LDOS Green functionG in the presence of impurity is straightfor-
at the impurity k—0) and in the bulk x—), it does not ~Wward to find in the Matsubara frequency representation,
explicitly contain the impurity strength which, as we will

show here, defines the intermediate scale where a crossover Lery ’. —iw(r—1")
, G(&E)=T2, G(x,x";w)e ,

from the impurity-dominated to the bulk behavior takes (&:¢) Ew: ( @)

place.

In this section we aim at obtaining asymptotic expressiond'here it is expressed vi@o(x,x"; ) as follows:
for the Green function at small, intermedidteossover, and ) .
large distances from the impurity. First, we assume the img(x x'; )= Gy(x,x'; @) — AT Go(x,0,0)Go(0X" )
purity to be pointlike, A (x)=\4(x), and weak, i.e.]\<1.
This ensures the spectrum linearization to be valid in the
presence of the impurity and all the relevant energy scales to )
be small compared to the Fermi energy. | R e (el (xl+IxD

It is well known that even such a “weak” impurity leads " o] e  ae] (30)
to strong changes to the single-electron density of states in 5
R - . . . . TgAT
its vicinity. Its influence is perturbative only in the high-
temperature limit\ <a~T/eg. In the low-temperature re- Exponentiating the denominator of the second term above by
gime, \>a, a nonperturbative approach is required. In the1l/D=2fdse 2PS, we obtainG in the x, 7 representation,
present context, it can be developed within the so-called self-

AT
1+ FGO(O,O;w)

consistent harmonic approximatig8CHA).?>% It is based , , = | ,

on the fact that foe<\ <1, the deviation of from y(7,) G(§,&")—Go(&,¢")=49 fo dse “fIn|sin 7TT< T—T

in the action(23) is prohibitive so that their difference can be

presented as small quadratic fluctuations around one of the x[FIXY L as

minima of cos® — x). By minimizing the difference between Tl v g_A 3D

actual cosine-shaped potential and its quadratic(tfie
Feynmann-Vernon variational principleone substitutes the The impurity-induced terms in E428), & and =, which
exact cosine potential by the harmonic one, thus reducing thgre, respectively, linear and quadraticyin Eq. (25), result
action (24) to the following one: from the averaging of the first- and zeroth-order term®in
AT arising from Eq.(26). Noting that for the pointlike impurity
SALO—x]= 2—] d7r[0(0,7)— x(0,7)]% (26) under considerations in this sectigtiz;) — x(71), we find
@ these terms as follows:
where the new “impurity strength’A is chosen to provide

the best fit to the real potential. As a result, one obfitie AT AT
renormalized “self-consistent” impurity strength as A == EJ d7yd7y —=G(0,71;0,70) = 8(7,— 7)
— )\ M(1-q).
Now the action is quadratic i, X x(11)x(72), (32
SO]=S[0]+ A—Tf d702(0,7) (27) AT
2a Y q)vv’:ZJ d7y[ 7G(&,0,7)— 7' G(&";0,71) Ix(71).

so the integral23) for ?,,,,/(g,g’) is reduced to calculating (33
the averages with the actid@7) of linear in® terms in the

exponent, using the standard formulas of the type It should be stressed that bathand® depend on the “ob-

servation points’¢ and¢’ via the appropriate dependence of

b2 the parametey, Eq.(25). All these functions can be calcu-
(eb‘°>®=ex;{?<®2>® : lated for arbitrary¢é and &’. However, since we are only

interested in the local density of stat@ an arbitrary dis-

where (- - - )g stand for the functional averaging with the tance from the impurityand Friedel oscillations, it is suffi-
action(27). The integration thus yields cient to considex=x’" case only;r’ for convenience is set
to zero so that from now on we usg&=(x,7) and &’
=(x,0). Introducing the shorthand notatiorS(x, r;x,0)
=H(x;7), etc., we obtain

5 1 1 nn'
—InG,, (£,6)=gG(£,8)+ gG(&,¢")— =~ G(£,¢")

—i®,,(§E)+E(EE). (28) _ AT2 > . AT
All the terms above can be expressed via the pair-correlation En=5, 2 X(0w)| 1= —=G(0.0w)|,
function of the auxiliary boson® defined by (34
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AT? N Equation(38) combined with the expressions fér Eq.(31),
Py (X7 =5~ > X(0,0)[ 7G(x,0;w)e™ 7 and® andZ, Eq.(37), gives a formal representation for the
¢ electron Green function in the presence of a single impurity
—7'G(0X;w)]. (35) which is asymptotically exact whefi—0. To extract from
_ , this manageable expressions for physical quantities in differ-
Substituting the Fourier transform of E@5), ent regions, we need to get the appropriate asymptotic be-
i _ havior of G, ®, andZ. Using the dimensionless notations
x(0,0)= ngnxe"‘”“‘x"”)[e'“— 1], (36)  X=gxpr andr=ep7, we find
and Eq.(30) into Eqgs.(34) and(35), we carry out the Mat- )
subara summation to obtai and® in the same represen- 2aln @ |~+i§|<A‘1
tation as follows: 9 Asinar T
G(x;7)= e~
_ 1= Sik#Tr sina|r+ix| . .~ .
:(x;r)=—f dse “®In| 1+ , 2gIn————, |7+ix|>A"H
2dJo , as X | sin ar
sink?| —+27T—
gA v
(1 sirf(ar) -
T . |X| —In ——|» A~ t<x
®(x; 7)=sgnx E—ImlnsmTrT r+2|7 . (37 49 sint?(ax)
whered=d, =—d_, , whiled, ,=d__=0. B(xn={ 1 Asinar S Al
Now we have all the ingredients to find the Green func- 29 a
tion (22). Using Eq.(28), we expresgj(£) in terms ofG, @, \ g(AT2N(AT) L, X 7<A L,

and = as follows:

T oY1 For simplicity, we keep here only positiveandr, the latter
G(X;7)= — —————e =D~ (I4G(Xx7=0) changing between 1 and/«. We do not write asymptotics
UF |sinrT 7|2 for d(x,7) explicitly since we will not use it in the present
UM e considerations. The above expressions enable us to find the
X {sgnre@(O — e~ WCEcog 2px+ (O} o functiong(x, 7;x,0=G(x; 7), Eq. (38), at any dis-
(38)  tancex from the impurity:

1/g
W[max(A‘15<)](1’2)(1’9‘9)[1— cod2ppx+®)], maxx,A " H<7
pF SinNat

7)= —— X
Gxin)= 50 21216+ 9) 39

, min(x,A ~1)>7.

sinar |°
—( - ~) cog2ppex+ )
sinhax

(sinaz) X216+ 0)

In the first line of the above expression we have restrigted For x<{y, the amplitude of the Friedel oscillations de-
to the regionX<a~! which is equivalent tox<é; (¢ creased$<|x| 9 while for x>€1/g it is exponentially sup-
— ; . . pressed.

=ve/7@T is the thermal dephasing lengtfThe reason is that The local density of states at a distancom the impu-

we do not need to consider largein this region of energy ity s defined via an appropriate analytical continuation of
(or ) as the influence of the impurity on the LDOS is sup-the Fourier transform of,

pressed at much shorter distances. In the second line we have
kept allx as this allows us to extract a well-known result for
the Friedel oscillation¥*1*By putting =0, we obtain in

1 )
~ = — — —leT, .
the regionx>A 1, v(Xe) 77|mf dre”"G()je=s -

Pra? 1
Ap(x)= o —zgx—gcos(Zp,:erCI)). (40 using asymptotics for the Green functi¢89), we find for
sinh€ g=1/2 explicit expressions for the LDOS smoothed over the
T length scale much larger thasg * in three different regions:
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4 Eq. (410. The crossover between the impurity-dominated
£ and bulk values is governed by a universal power law of Eq.

(41b), v(x)~x216~9)
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APPENDIX

t - + - — The Jacobian of the gauge transformation, @®g. can be
A~ o T written as
FIG. 1. Regions with different behavior of local density of states

v(x,e); herex=gpg|x|, e=elep, a=nT/ep, and A=AM1"0 InJ[p]= > Trin
is the renormalized impurity strength. ==

&”‘77: qs‘ T nzt rgl %Tr(i $9,)"
where the Green function of noninteracting right- or left-
v(X,€) moving electrons, obeying,g,=1, are given by
’él/g—lA—(1/2)(1/g—g), X< A 1< ! (413) - 1
_{ FUe-T32)(1h-9) AT l<R<E ! (41b) 97(5,5’)=gi(§,§’)=ﬁm, (A1)

Z(12)(1g+g) -1 i ALy -1
€ ' min(X,A"H>e"% (419 wherezg is given by Eq(12). Thenth order term ing is the

sum of two vertices made of the loops, andI', with n
external lines corresponding tb's, each loop being built of
the n Green functiongy.., respectively,

These three regions with different behavior of LDOS are
sketched in Fig. 1. Equatiofdla describes LDOS in the
vicinity of impurity, in full correspondence with the original
results of Kane and Fisherobtained for the LDOS ak n n
=0, i.e., exactly at the impurity. In addition, we have estab- Tr(9n¢)n:J H kadiFﬁa)(ZFl; o ;ZFn)H (%, 7)),
lished here the LDOS dependence on the impurity strength k=1 i=1
A=\Y179_ The region of applicability of Eq(41a corre-
sponds to the diagonally hatched region in Fig. 1. @ . N !

Equation (410 gives the LDOS at very large distances I(zey; *ZFn)_iHl 95(Z6~ Zri+1) (A2)
from the impurity. As expectetand has already been noted,
e.g., in Refs. 17 and 21it coincides with a well-known with the boundary conditioreg,,,=2¢. Substitutingg,
result for the LDOS in the homogenous Luttinger liqustte  from Eq. (A1), one finds
for reviews Ref. 24 Its region of applicability is horizon-
tally hatched in Fig. 1. n s, ,

In the intermediate region, vertically hatched in Fig. 1, the F:(Zpli ooze =1 —— ;= e,
LDOS depends both on the energy and the distance from the L e
impurity. This analytic dependence given by E4lb de-  One can rewrite the symmetric part of this vertex, which

scribes the crossover from the impurity-induced dip in thecontributes into the integral in EGA2), as follows:
LDOS to the bulk behavior.

Finally, the unhatched region far<a corresponds to . _ _ Ap(sq, ... ,sn)ﬁ
small energiess <T, where the energy dependence saturates I'n (Ze; - ZFn) e Sk
(by e—T) in all the three lines of Eqg41a—(410). H (si—sj)

i<j

In conclusion, we have demonstrated that the formalism

developed here aIIoweq us to qbtgin in a unified way thPwhereAn is an absolutely antisymmetric polynomial built on
known results for the Friedel oscillations and the LDOS bothy | - i biase By power counting, its order should Ign
(I )

in the vicinity of the impurity and in the bulk. This formal- —3)/2. On the other hand, the minimal possible order of an
ism has also allowed us to obtain not only the limiting Casesabsolutely antisymmetric r,)olynomial of variables isn(n
described above but a full analytic description of the cross-, 1)/2, as follows from the fact that the powers of different
ovc_—:-r between them. We haYe shown that,h‘as afuncUompf variables should be different for any monomial in order the
a fixed energy, »(x) remains constant for=<A"*, then it entire polynomial to be antisymmetric. The two inequalities
increases untik becomes of ordes ~* (which happens be- can only be satisfied fon<2 so thatA,-,=0. Therefore,
fore x overtakes the thermal dephasing length), where all loops containing more than two external lines are Zero.
the LDOS reaches its bulk«{independentvalue, given by Therefore, we are left with the contributions from the
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loops with one or two external lines. The loop with one standard polarization operator in the random-phase approxi-
external line is proportional to the zero-momentum mode ofmation (exact for the LL, given in (,{)) representation by
the Coulomb interaction and is canceled, as always, due tBq.(8) so that the Jacobian is reduced to that in &gin the
electroneutrality. The loop with two external lines is just themain text.
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