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Dynamic scaling in the quenched disordered classical N-vector model
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We revisit the effects of short-ranged random quenched disorder on the universal scaling properties of the
classical N-vector model with cubic anisotropy. We set up the nonconserved relaxational dynamics of the model,
and study the universal dynamic scaling near the second-order phase transition. We extract the critical exponents
and the dynamic exponent in a one-loop dynamic renormalization group calculation with short-ranged isotropic
disorder. We show that the dynamics near a critical point is generically slower when the quenched disorder
is relevant than when it is not, independent of whether the pure model is isotropic or cubic anisotropic. We
demonstrate the surprising thresholdless instability of the associated universality class due to perturbations from
rotational invariance breaking quenched disorder-order parameter coupling, indicating breakdown of dynamic
scaling. We speculate that this may imply a novel first-order transition in the model, induced by a symmetry-
breaking disorder.
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I. INTRODUCTION

The large-scale, macroscopic effects of disorder in sta-
tistical models and related condensed matter systems have
been active fields of theoretical research for a long time
by now. In general, there are two kinds of disorders that
can exist in a system, viz., annealed and quenched disor-
ders, which are distinguished by their respective timescales.
In systems with annealed disorders the impurities can dif-
fuse freely, eventually reaching the states with equilibrium
distributions. In contrast, for systems with a quenched disor-
ders the impurities are fixed in particular positions and have
no time-dependence. Consequently, the disorder distribution
cannot not reach thermodynamic equilibrium, or does not
“thermalize.” Past studies on the effects of random quenched
disorders on pure model systems, e.g., the O(N ) model [1–3]
and self-avoiding walks on random lattices [4–7] clearly illus-
trate the modifications in the universal critical behavior due to
the quenched impurities. The relevance of quenched disorders
on the universal scaling properties of the pure system, is
decided by the well-known Harris criterion [8]. Perturbative
renormalization group (RG) calculations on O(N ) symmetric
models have shown that the universal scaling properties have
no dependence on the amplitude of the disorder variance. For
instance, with short-ranged disorder, the scaling exponents,
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even when they are affected by the disorder, are independent
of the strength of the disorder variance [9–11].

In this paper, we revisit the issue of the effects of the
short-ranged random quenched disorder on the classical N-
vector model with cubic anisotropy. In particular, we study
the nonconserved relaxational dynamics of the model near its
second-order transition with generic couplings between the
quenched disorder and the order parameter. We concentrate
on the random critical temperature disorder which arises due
to the presence of a small amount of impurities or random
bonding and which, in the event of a second-order transition,
can cause a variation in the critical transition temperature Tc

locally [9–12]. We first construct a Landau mean-field theory
to study the generic phase transitions in the model, and look
at the role of the symmetry-breaking disorder distribution in
these transitions. We then systematically set up a renormal-
ized dynamic perturbation theory to study the time-dependent
correlation functions near the critical point. We then calculate
the dynamic renormalization group (RG) fixed points with
isotropic disorder - order parameter coupling, and extract the
corresponding critical scaling exponents and the dynamic ex-
ponent within a one-loop perturbation theory, or equivalently,
at the linear order in ε ≡ 4 − d , where d is the dimensionality
of the space.

The principal results from this work are as follows. (i) We
show that when the disorder is relevant (in a RG sense), i.e.,
with N < 4, the dynamics near the second-order transition is
generically slower than that in the pure model: We find that
the dynamic exponent z = 2 + O(ε), making it larger than its
value in the corresponding pure model where z = 2 + O(ε2)
[13] for small ε. Thus disorder makes the dynamics slower
near the critical point. This holds whether or not the model
in its pure limit is isotropic or cubic anisotropic. The static
critical exponents that we obtain from our perturbative dy-
namic RG agree with those obtained Refs. [9,14]. (ii) We
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then show that quenched disorder with rotational symmetry
breaking couplings between the disorder and the order param-
eter are relevant perturbations on the RG fixed points, with
the RG flow trajectories running off to infinity, making the
universality class of the model with isotropic disorder - order
parameter coupling unobservable. Again this is generally true
whether the corresponding pure model is isotropic or cubic
anisotropic. This instability indicates breakdown of dynamic
scaling and is found to be thresholdless, i.e., any amplitude
of the perturbation, however small, distabilizes the RG fixed
point for isotropic disorder with the RG flow lines running
off to infinity, without the appearance of any new stable fixed
point. (iii) Lastly, we construct a mean-field argument to spec-
ulate that this may imply a first-order phase transition.

The remainder of this article is organized as follows. In
Sec. II, we specify the relaxational equation of motion and
the associated disorder distribution. Next in Sec. III, we con-
struct a Landau mean-field theory. Then in Sec. IV, we set
up a dynamic renormalization group analysis of the model to
extract the universal scaling near the critical point. We also
obtain the dynamic exponent at the stable RG fixed points,
which describes the dynamic scaling of the time-dependent
correlation functions. We show that a rotational symmetry
breaking disorder order parameter coupling distabilizes this
stable fixed point for any nonzero amplitude of the symmetry
breaking coupling. We then construct a mean-field argument
in Sec. IV C that in the presence of a symmetry breaking
coupling, In Sec. V, we discuss and summarize our results.
We provide some technical details in Appendix for interested
readers.

II. MODEL

We start from the quenched disordered version of the
well-known classical N-vector model with cubic anisotropy
[15,16]. The Ginzburg-Landau free energy F = ∫

dd x f ,
where the free energy density f is given by [14]

f =
N∑

i=1

[
1

2

{
ri(x)φ2

i + (∇φi )
2
} + u

(
φ2

i

)2 + vφ4
i

]
, (1)

where φi is the N-component (i = 1, . . . , N) field. Further,
u > 0 and v > 0 are the bare nonlinear coupling constants in
the model. The cubic anisotropic terms represent the breaking
of the O(N ) symmetry by the underlying crystal lattice, in par-
ticular, when in the ordered phase the magnetization prefers
either one of the diagonals or the edges of a hypercubic lattice
[15,16]. In order to expand the scope of our study, we allow
the quenched disorder to couple with the order parameter
field φi in a nonrotationally invariant way. For simplicity,
we model this by considering the disorder as a sum of two
parts—one part ψ (x) that couples with φ2

i (x) in a rotationally
invariant way, whereas the other part δri(x) depends on the
index i; this manifestly breaks the microscopic rotational in-
variance in the order parameter space, that is broken also by
the vφ4

i -term in Eq. (1). We set ri(x) = r0 + ψ (x) + δri(x),
r0 = (T − Tc)/Tc with T and Tc being the temperature and
the mean-field critical temperature, respectively. Stochastic
function ri(x) represents the coupling of the field φi with
the disorder, such that T L

c = Tc − ψ (x) − δri(x) is the local

fluctuating critical temperature for φi. For v = 0 and for all
δri(x) = 0, the microscopic rotational invariance in the order
parameter space is restored and we get back the usual O(N )
model with quenched disorder. On the other hand, if all ri = 0
and v �= 0, it reduces to the well-known pure cubic anisotropic
model [15,16]. Notice that even when the pure limit of our
model is isotropic (v = 0), the disordered model breaks the
rotational symmetry due to the presence of δri.

In order to completely define the model, we now specify
the disorder distribution. We assume ψ (x) and δri(x) to be
Gaussian-distributed with zero mean and variances

〈ψ (x)ψ (0)〉 = 2Dδd (x),

〈δri(x)δri(0)〉 = 2D̂δd (x). (2)

Thus the quenched disorder is short-ranged. Disorder distri-
butions (2) are a variant of what was used in Ref. [17]. If D̂ =
0, the above distribution reduces to those used in Refs. [9,14];
see also Ref. [11] in this context. The form of the variances
in Eq. (2) ensures that both D and D̂ are equally relevant in a
scaling sense. Clearly, that both nonzero v and D̂ > 0 imply
that the rotational invariance in the order parameter space is
manifestly broken.

III. MEAN-FIELD THEORY

It is instructive to first consider a Landau mean-field like
description for this disordered system. We start from the free
energy (1). The corresponding partition function

Z =
∫

Dφi exp[−βF ]. (3)

Systematic investigations of the properties of systems with
quenched disorder requires averaging of the free energy func-
tional over the disorder distribution. This is conveniently done
using the replica method [10] resulting in an effective free
energy functional Feff , that consists of M replicas of the
original order parameter fields. The average free energy is
then obtained from this Feff in the limit of M → 0. Then
the thermodynamic free energy averaged over the disorder
distribution can be written as

F ≡ −〈ln Z〉 = lim
m→0

[ 〈Zm〉 − 1

m

]
avg

= lim
m→0

〈[∏M
α=1

∏N
i=1 D

{
φα

i

}
exp

[ − βF
(
φα

i

)] − 1

m

]〉
.

(4)

Here, angular brackets 〈..〉 represents averages over disorder
distributions, α = 1, 2, . . . ., M are the replica indices and
{φα

i } represents M replications of the order parameters φi;
suffix avg refers to averaging over the disorder distribution.
The effective free energy functional then reads

exp[−βFeff ] =
〈∏

α

Dφα
i exp

[ − βF
(
φα

i

)]〉
avg

. (5)
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The corresponding M-replicated disorder averaged partition
function Z is written as

〈ZM〉 =
M∏

α=1

N∏
i=1

∫
Dφiα exp

[
−β

∫
dd x frep

+β

∫
dd x fdis−rep

]
,

frep = 1

2

N∑
i=1

M∑
α=1

[
r0φ

2
iα + (∇φiα )2

]

+ u
M∑

α=1

(
N∑

i=1

φ2
iα

)2

+ v

N∑
i=1

M∑
α=1

φ4
iα,

fdis−rep =
N∑

i, j=1

M∑
α,β=1

φiα (x)2Dφ jβ (x)2

+
N∑

i=1

M∑
αβ=1

φiα (x)2D̂φiβ (x)2. (6)

With D̂ = 0, the above disorder-averaged free energy unsur-
prisingly reduces to that given in Ref. [14]. With D̂ > 0, (6)
naturally does not have any rotational invariance, but instead
is cubic anisotropic [11].

In a mean-field description, φi(x) is spatially constant.
We assume below Tc (r0 < 0) φ1 = m �= 0 orders; all other
φi, i = 2, . . . , N vanish. In this mean-field approximation,

favg = M

[
r0

2
m2 + um4 + vm4

]
, (7)

fdis−avg = M(M + 1)

2
[Dm4 + D̂m4]. (8)

Now using the standard result LtM→0
ZM−1

M = ln Z , we for the
Landau mean-field energy fL

fL = r0

2
m2 + ũm4, (9)

where ũ = u + v − (D + D̂)/2. Thus ũ can be positive, neg-
ative or zero. Following the standard argument [16], we find
that (9) implies a second-order transition at T = Tc, that is
identical to the pure mean-field Ising universality class for
ũ > 0. This holds for small D and D̂. If ũ < 0, fL is un-
bounded from below and hence thermodynamically unstable.
To stabilize, as is usual, we add a u6m6 term in Eq. (9) [16]:
fL = r0

2 m2 − |ũ|m4 + u6m6. This gives a first-order transition

at T ∗ = Tc + ũ2

16u6
[16] and a tricritical point at ũ = 0. Thus,

within this simple mean-field theory, by tuning D̂ and with
u, v, D fixed, i.e., by tuning the degree of rotational symme-
try breaking in the disorder distribution, the phase transition
can be changed from a second-order to a first-order transi-
tion through a tricritical point. Of course, these predictions
may not hold, as we know that in general fluctuations could
be important below the upper critical dimension, changing
the universal properties near the critical point. Fluctuations
can also change a mean-field second-order transition to a
first-order one [18]. To study this, we need to systematically
account for the fluctuations that we set out to do below.

IV. UNIVERSAL DYNAMICAL SCALING NEAR
SECOND-ORDER TRANSITION

We note that for sufficiently small D, D̂, the mean-field
theory above predicts a second-order transition at r0 = 0. We
are interested in the time-dependent statistical mechanics of
the spins φ(x, t ), for which we must start from an appropriate
dynamical equation of motion. For simplicity, we focus on
the nonconserved relaxational dynamics of the spins φ(x, t ),
and in the absence of any other hydrodynamic degree of
freedom, we construct model A (in the language of Ref. [13];
see Ref. [19] for more recent review on critical dynamics)
equation of motion for φi(x, t ):

∂φi

∂t
= −	

δF
δφi

+ ηi, (10)

where 	 > 0 is the kinetic coefficient and ηi is a thermal noise
that is assumed to be Gaussian-distributed with zero mean.
Since the system is in equilibrium, the variance of ηi can be
fixed by using the fluctuation-dissipation theorem (FDT) [16].
We find

〈ηi(x, t )η j (0, 0)〉 = 2	T δi jδ
d (x)δ(t ), (11)

where we have set the Boltzmann constant kB = 1. By using
(1), the explicit form of (10) becomes

1

	

∂φi

∂t
= −

[
ri(x)φi − ∇2φi + 4u

∑
j

φiφ
2
j + 4vφ3

i

]
+ ηi

	
,

(12)
i, j = 1, . . . , N . Equation (12) together with the disorder dis-
tribution variance (2) fully specify the dynamical model.

A. Second-order transition: universal critical exponents

Classical cubic anisotropic N-vector model with free
energy (1) without any quenched disorder undergo a second-
order phase transition at the critical temperature, which in
a mean-field description is at T = Tc or r0 = 0. The model
exhibits universal scaling for the thermodynamic quantities
and the equal-time correlation function of the spin fluctuations
at the vicinity of the critical point. The critical exponents
have been evaluated within perturbative dynamic RG frame-
works [16]. Further, near the critical point the time-dependent
spin response function and spin correlation function display
universal dynamical scaling as well; see, e.g., Refs. [13,19].
Short-ranged quenched disorder is known to affect the univer-
sal scaling of the thermodynamic quantities and equal-time
correlation functions [5,9], consistent with the Harris criteria
[8] for the present model.

We take the dynamical route to study the effects of short-
ranged quenched disorder on the dynamic universality of the
classical N-vector model near its critical point. This allows
us to find whether or not quenched disorder affects the dy-
namic scaling exponent of the pure (i.e., without any quenched
disorder) model. It may be noted that this dynamic approach
no longer necessitates introduction of the replica method to
calculate the universal critical exponents. In addition, this
method directly gives the dynamic exponent z.

B. Dynamic RG analysis

It is convenient to express (12) as the generating functional
of the correlation functions and then average over the disorder
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distribution. The resulting disorder averaged generating func-
tional has the form

Z =
∫

DφiDφ̂i exp(−S), (13)

where the action functional S reads

S =
∫

dd xdt

[
(φ̂(x, t ))2 T

	
+ φ̂i

{
∂tφi

	
+ r0φi

−∇2φi + 4vφ3
i + 4uφiφ

2
m

}]

−
∫

dd xdt1dt2[φi(x, t1)φ̂i(x, t1)Dφ j (x, t2)φ̂ j (x, t2)

+φi(x, t1)φ̂i(x, t1)D̂φi(x, t2)φ̂i(x, t2)], (14)

with i, j, m = 1, . . . , N . Here, φ̂i(x, t ) is the dynamic conju-
gate field of φi(x, t ) [20]. Clearly, the disorder term D̂ violates
the rotational invariance of S , so does the v term in Eq. (14).
The presence of the anharmonic terms [i.e., the u, v, D, D̂
terms in Eq. (14)] precludes any exact enumeration of the cor-
relation function. This necessitates a perturbative approach. It
turns out that the naïve perturbative theory actually produces
diverging corrections to the model parameters in Eq. (14).
This calls for a systematic dynamic RG analysis.

The momentum shell dynamic RG procedure is well-
documented in the literature [13,21]; see also Ref. [22]
for a detailed exposition of the applications of the dy-
namic RG techniques for critical phenomena and critical
dynamics, including effects of quenched disorders. We nev-
ertheless give below a brief outline of it for the convenience
of the reader. It consists of tracing over the short wave-
length Fourier modes of φi(x, t ) and φ̂i(x, t ), followed by
a rescaling of lengths and time. More precisely, we fol-
low the usual approach of initially restricting wave vectors
to be confined in a d-dimensional Brillouin zone: |q| < �,
where � is an ultra-violet cutoff, which should be of or-
der the inverse of the lattice spacing a. The precise value
of a should have no effect on the universal scaling of the
model. The fields φ̂i(x, t ) and φi(x, t ) are separated into high
and low wave vector parts φi(x, t ) = φ>

i (x, t ) + φ<
i (x, t ) and

φ̂i(x, t ) = φ̂>
i (x, t ) + φ̂<

i (x, t ), where φ>
i (x, t ) and φ̂>

i (x, t )
have support in the large wave vector (short wavelength)
range �e−δl < |q| < �, while φ<

i (x, t ) and φ̂<
i (x, t ) have

support in the small wave vector (long-wavelength) range
|q| < e−δl�; here, δl 	 1, b ≡ exp(δl ) ≈ 1 + δl . We then
integrate out φ>

i (x, t ) and φ̂>
i (x, t ). This integration is done

perturbatively in the anharmonic couplings in Eq. (14). It
is well-known that this perturbative expansion can be repre-
sented by Feynmann diagrams [13,21,22], with the order of
perturbation theory reflected by the number of loops in the
diagrams we consider. After this perturbative step, we rescale
lengths with x = x′eδl , in order to restore the UV cutoff back
to �, and also time with t = t ′ezδl . This procedure is then
followed by usual rescaling of the long-wavelength parts of
the fields φ(x, t ) and φ̂(x, t ); see Appendix. The Feynman
graphs (or “vertices”) representing the anharmonic couplings
4uφ̂iφiφ

2
j , 4vφ̂iφ

3
i , φ̂iφiDφ̂ jφ j, φ̂iφiD̂φ̂iφ̂i are shown in Fig. 3

in Appendix.

The bare propagator and the correlation function in the
Fourier space are

〈φ̂i(−k,−ω)φ j (k, ω)〉 = δi j
−iω
	

+ r0 + k2
, (15)

〈φi(k, ω)φ j (−k,−ω)〉 = δi j
2T
	

ω2

	2 + (r0 + k2)2
, (16)

where k is a Fourier wavevector and ω is a frequency.
We restrict ourselves here to a one-loop approximation. At

this order the propagator receives four fluctuation corrections,
originating from nonzero u, v, D, and D̂ respectively; the
relevant Feynman diagrams are given in Fig. 4 in Appendix.

Evaluation of the Feynman diagrams in Fig. 4 in Appendix
allows us to extract the following fluctuation corrected model
parameters:

r<
0 = r0 − [u{12 + 4(N − 1)} + 12v]

∫
dd q

(2π )d

1

r0 + q2

+ 2(D + D̂)
∫

dd q

(2π )d

1

r0 + q2
, (17)(

1

	

)<

= 1

	
+ 2

D + D̂

	

∫
dd q

(2π )d

1

(r0 + q2)2
. (18)

Notice that there are nonvanishing disorder-induced fluctua-
tion corrections to 	 already at the one-loop, unlike in the pure
model, where such corrections appear only at the two-loop
order (we do not show that here).

Likewise, u, v, D, and D̂ are each renormalized at the one-
loop order by the Feynman diagrams as shown in Figs. 5–8,
respectively, in Appendix. The calculations of the Feynman
graphs in Figs. 4–8 are given in Appendix. The resulting
fluctuation-corrected parameters u<, v<, D<, and D̂< are
given in Eqs. (19)–(22), respectively, below.

u< = u − u2[36 + 4(N − 1)]
∫ �

�/b

dd q

(2π )d

1

(r0 + q2)2

− 24uv

∫ �

�/b

dd q

(2π )d

1

(r0 + q2)2

+ u(12D + 4D̂)
∫ �

�/b

dd q

(2π )d

1

(r0 + q2)2
, (19)

v< = v − [48uv + 36v2]
∫ �

�/b

dd q

(2π )d

1

(r0 + q2)2

+ 12v(D + D̂)
∫ �

�/b

dd q

(2π )d

1

(r0 + q2)2
, (20)

D< = D − D[8(N + 2)u + 24v]
∫ �

�/b

dd q

(2π )d

1

(r0 + q2)2

− 8uD̂
∫ �

�/b

dd q

(2π )d

1

(r0 + q2)2

+ (8D + 4D̂)D
∫ �

�/b

dd q

(2π )d

1

(r0 + q2)2
, (21)

D̂< = D̂ − (16u + 24v)D̂
∫ �

�/b

dd q

(2π )d

1

(r0 + q2)2

+ (12D + 8D̂)D̂
∫ �

�/b

dd q

(2π )d

1

(r0 + q2)2
. (22)
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After rescaling space, time and the fields φi (see Appendix),
Eqs. (17)–(22) result into the following RG recursion relations

dr0

dl
= 2r0 + 4(N + 2)u + 12v − 2(D + D̂), (23)

d	

dl
= 	[z − 2 − 2(D + D̂)], (24)

du

dl
= u[ε − 4(N + 8)u − 24v + 12D + 4D̂], (25)

dv

dl
= v[ε − 48u − 36v + 12D + 12D̂], (26)

dD

dl
= D[ε − 8(N + 2)u − 24v + 8D + 4D̂] − 8uD̂,

(27)

dD̂

dl
= D̂[ε − 16u − 24v + 12D + 8D̂]. (28)

Here, ε ≡ 4 − d . At the RG fixed point, du/dl = 0 =
dv/dl = dD/dl = dD̂/dl . Notice that with D̂ = 0, the above
RG recursion relations unsurprisingly reduce to those reported
in Refs. [9,14]. First we revisit the fixed points with D̂ = 0
and discuss the associated dynamic scaling. The RG fixed
points are well-known [9,14], that we reproduce for the sake
of completeness and for the convenience of the reader. We
here focus on the following three stable fixed points given by
u∗, v∗, D∗ [9,10,14].

(1) Cubic anisotropic pure fixed point: u∗ =
ε/(12N ), v∗ = (N − 4)ε/(36N ), D = 0 to the linear order
in ε. Disorder is irrelevant. Unsurprisingly, at this fixed point
z = 2 + O(ε)2.

(2) Isotropic random fixed point: u∗ = ε/[16(N −
1)], D∗ = (4 − N )ε/[16(N − 1)], v = 0. Since D∗ should be
positive, this fixed point exists for N < 4. At this fixed point,
z = 2 + 2(4 − N )ε/[16(N − 1)] at this linear order in ε [12],
and larger than 2, its value in the noninteracting (harmonic)
theory. In contrast, z = 2 + O(ε)2 for N � 4. Since in the
pure model, z = 2 + O(ε)2, the dynamic exponent when
the disorder is relevant is larger than both when it is not for
sufficiently small ε, and the value of z in the noninteracting
(Gaussian) theory. Thus the corresponding relaxational
dynamics is slower.

(3) Cubic anisotropic random fixed point: u∗ =
ε

24(N−2) , v∗ = (N − 4)u∗/4, D∗ = (4 − N )u∗. Since D∗

should be positive, this fixed point exists for N < 4. At this
fixed point, dynamic exponent z = 2 + 2(4 − N )ε/[24(N −
2)] > 2 for N < 4. On the other hand, for N � 4, D∗ = 0, and
hence z = 2 + O(ε)2. Again we conclude that the dynamic
exponent when the disorder is relevant is larger than both
when it is not for sufficiently small ε, and the value of z in the
noninteracting (Gaussian) theory.

The correlation function exponent η remains zero at this
order at all the three RG fixed points discussed above. Overall,
thus disorder is irrelevant for N � 4, in agreement with the
results of Refs. [9,14].

We now study the case with D̂ > 0. Let us examine the
stability of the nontrivial fixed point. For that, we define

FIG. 1. Schematic RG flow diagrams in the (a) u-D̂ plane, and
(b) D-D̂ plane. In each of these diagrams, RG trajectories starting
with any nonzero D̂ (vertical lines with arrows) run off to infinity (see
text). Symbols u∗ and D∗ represent the fixed point values of u and D,
respectively, for D̂ = 0; these fixed points are stable (attractive) with
N < 4 (see text). That the RG flow lines starting with finite D̂ are
shown to be parallel to each other is only for easier representation.

dimensionless numbers μ1 = D̂/D, μ2 = D̂/u and also μ3 =
D̂/v (if the pure model is cubic anisotropic). Then

dμ1

dl
= 1

D

dD̂

dl
− D̂

D2

dD

dl

= μ1[ε − 16u − 24v + 12D + 8D̂]

− μ1[ε − 8(N + 2)u − 24v − 8uμ1 + 8D + 4D̂]

= μ1[4D + 4D̂ + 8Nu + 8uμ1] > 0, (29)

dμ2

dl
= 1

v

dD̂

dl
− D̂

v2

du

dl

= μ2[ε − 16u − 24v + 12D + 8D̂

+ (32 + 4N )u + 24v − 12D − 4D̂]

= μ2[(16 + 4N )u + 4D̂] > 0. (30)

Thus μ1 = 0 and μ2 = 0 are the only fixed points of (29)
and (30), respectively, both of which are, however, unstable.
Therefore, unless μ1 and μ2 are exactly zero (i.e., D̂ = 0,
corresponding to a perfectly isotropic disorder distribution),
D̂ continues to grow under coarse-graining and the associated
RG trajectories eventually run off to infinity in the thermo-
dynamic limit. In Fig. 1, we show schematic plots of the RG
trajectories flowing off to infinity for finite D̂ in the u − D̂ and
D − D̂ (for N < 4) planes. From (24), a diverging μ (or D̂)
implies z → ∞, indicating breakdown of dynamic scaling.
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FIG. 2. Schematic flow diagram in the v-D̂ plane. Here, v∗ is the
RG fixed point value of v with u = 0 = D = D̂. The stable fixed line
D̂ = 3v, or μ3 = 3 is shown (see text).

Notice that when v �= 0, the flow of μ3 reveals more inter-
esting behavior. We find

dμ3

dl
= 1

v

dD̂

dl
− D̂

v2

dv

dl

= μ3[ε − 16u − 24v + 12D + 8D̂]

− μ3[ε − 48u − 36v + 12D + 12D̂]

= μ3[36u + 12v − 4D̂]. (31)

Thus at the RG fixed point

D̂ = 9u + 3v, (32)

μ3 ≡ D̂

v
= 3 (33)

at this stable RG fixed point: Using the fact that μ1 ≡ D̂/u
diverges, i.e., D̂  u, we get D̂ = 3v at the RG fixed point.
Notice that we can arrive at the above condition directly by
using either (26) or (28) above and setting u = 0 = D at the
RG fixed point. In other words, if u = 0 = D then any D̂ > 0
and v > 0 satisfying D̂ = 3v are fixed point values, or equiv-
alently, μ3 = D̂/v appears as a fixed ratio in the problem, i.e.,
the precise bare (unrenormalized) or microscopic values of
D̂ and v may affect the large scale scaling behavior. In fact,
we apparently find from (24) that the dynamic exponent z
may now vary continuously with D̂, a scenario usually not ob-
served in equilibrium systems. How these results may change
beyond the one-loop calculation employed here remains to be
seen. A schematic plot of the RG flow trajectories in the v-D̂
plane is shown in Fig. 2 below.

C. A first-order transition?

Let us ask when D̂ > 0, what does the RG flow lines run-
ning off to infinity imply? Such runaway RG flow trajectories
indicate breakdown of dynamic scaling that is a hallmark
of second-order transitions. We here heuristically speculate
that this may actually indicate a first-order transition. We
analyze this by using the effective disorder-averaged Landau
mean-field theory for the system constructed in Sec. III. We
note that for a very large D̂ = 3v and with both of u and
D ∼ O(1), ũ < 0 definitely. This then is known to describe a

FIG. 3. Vertices for the Feynman diagrams: (a) 4uφ̂iφ
2
j ,

(b) 4vφ̂iφ
3
i , (c) φ̂iφiDφ̂ jφ j, and (d) φ̂iφiD̂φ̂iφ̂i.

first-order transition for ũ < 0 and a tricritical point at ũ = 0
[16]. At this simple mean-field level treatment, the scaling
properties at the tricritical point of this disordered system
is indistinguishable from a pure system with tricritical point
with the same structure but without any disorder. Fluctuations
are expected to modify the universal scaling with possibly an
imprint of the disorder in the form of a new universality class.
The basic question that remains is whether D̂ really becomes
infinity, as predicted by the flow equations above, which
would make the effective Landau free energy unbounded from
below even in the presence of a u6m6 term with a finite
u6. This is clearly unphysical. This is however an unlikely
scenario given that near a first-order transition, fluctuations
are bounded and moreover there should be other higher-order
terms in the order parameter which are likely to saturate any
growing D̂ > 0. On the other hand, we could alternatively
interpret diverging μ1 and μ2 as u → 0 and D → 0 along with
finite D̂ = 3v in the long-wavelength limit. In that case, ũ < 0
and a finite u6 suffices to stop the effective Landau free en-
ergy getting unbounded from below. With ũ < 0, a first-order
transition then automatically follows. Now if indeed we can
neglect u, D in favour of v, D̂, we should end up having N
identical decoupled quenched disordered Ising models in the

FIG. 4. One-loop Feynman diagrams for the propagator.
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FIG. 5. One-loop Feynman diagrams giving fluctuation corrections for u.

long-wavelength limit, each of which undergoes a first-order
transition. Further investigations should be done to investigate
this prediction. In this context, it will be interesting to explore
any connections between our speculation of a first-order tran-
sition here and the prediction of the possibility of first-order
transitions in the two-dimensional classical XY model in a
random symmetry breaking field [23]. We do not discuss this
here any further. We end this section with a note of caution.
While it is often suggested that such an absence of a stable
RG fixed point essentially implies a first-order transition, al-
though some studies [24–26] have demonstrated that this lack
of a stable RG fixed point is a problem of perturbative RG,
valid strictly for small (bare) coupling constants. Applying
duality transformations, Refs. [24–26] did eventually found
stable RG fixed points corresponding to second-order phase
transitions in the respective models. Whether and how such
a duality transformation can be applied to the present model,
and whether the dual model will have stable RG fixed points
restoring second-order transitions remain open questions, that
we hope will be addressed in the future. We would like to add
here that our speculation for a first-order transition is based
only on mean-field like arguments. Alternatively, it could also
be a smeared transition; see discussions in Ref. [9].

V. SUMMARY AND OUTLOOK

We have studied the nonconserved relaxational dynam-
ics of the classical N-vector model with cubic anisotropy in
the presence of quenched disorder. We focus on the short
range random critical temperature, and allow for rotational
symmetry breaking disorder distribution. We set up a dy-
namic renormalized perturbation theory. We first extract the
critical scaling exponents and the dynamic scaling exponent
near the critical point without any symmetry breaking dis-
order order parameter coupling within a one-loop dynamic
RG calculation. We show that when the disorder is relevant
(i.e., for N < 4) the dynamic exponent z is larger than two,
i.e., the quenched disorder slows down the relaxation vis-a-
vis the noninteracting theory; z is also found to be larger
than its value in the pure model. This implies a generic
disorder-induced slowing of the relaxational dynamics near
the critical point. This holds independent of whether the

pure model is isotropic or cubic anisotropic. Notice that if
we had imposed conserved relaxational dynamics, we would
have found z = 4 − η [12,13]. Since η = 0 at the linear order
in ε, z = 4 at the lowest order, for conserved relaxational
dynamics, unchanged from its noninteracting limit value or
its value in the associated pure model. Thus quenched dis-
order affects the dynamic exponent differently in different
dynamics, a result directly testable in relevant experiments
or numerical simulations of appropriate lattice-based spins
models. Unsurprisingly, the static critical exponents obtained
from our calculations match with the known results obtained
from the standard static perturbation theory. We have thus
established a direct one-to-one correspondence between the
dynamic perturbation theory that we have constructed and the
known static perturbation theory. We further show that the a
nonzero amplitude D̂ of a symmetry-breaking disorder order
parameter coupling without any threshold makes the stable
RG fixed point that controls the critical scaling with isotropic
disorder as mentioned above unstable, possibly leading to
breakdown of dynamic scaling. If the pure model is isotropic
(i.e., v = 0), then we show that a nonzero D̂ leads to the RG
flow trajectories running off to infinity without the appearance

FIG. 6. One-loop Feynman diagrams giving fluctuation correc-
tions for v.
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FIG. 7. One-loop Feynman diagrams giving fluctuation corrections for D.

of any new stable RG fixed point. On the other hand, if
the corresponding pure model is cubic anisotropic (v �= 0),
then D̂ = 3v appears as a RG fixed line, with D̂/u, D̂/D
diverging in the long-wavelength limit. We then construct
a disordered averaged Landau mean-field theory to heuristi-
cally argue that such an instability may imply a first-order
transition. Thus a novel symmetry-breaking disorder induced
first-order transition, that is otherwise second-order in nature,
is an intriguing possibility in this model. The instability asso-
ciated with the amplitude of the symmetry-breaking disorder
is found to be thresholdless. Whether or not there is indeed
a first-order transition for D̂ > 0 and if so, whether it is
thresholdless, can be investigated by Monte Carlo simula-
tions of suitably-constructed lattice models with appropriate
quenched disorders systematically. On the analytical front,
whether applications of the duality transformation provide
any insight to the phase transitions remain important open
issues.

The present study can be extended in several ways. For
instance, the role of an additional hydrodynamic degree of
freedom, noncritical or critical (model C and model D, re-
spectively, in the nomenclature of Ref. [13]), and its interplay
with a symmetry-breaking disorder could be investigated. We

have confined ourselves here with short-ranged quenched dis-
order. It would also be interesting to explore how long range
quenched disorder may affect the results from this study [3]. It
would be interesting to see how nonperturbative RG, applied
in the related problem of dilute Ising model [27] and confor-
mal field theory methods [28], apply to the current model. For
the N = 3 case, i.e., for the classical Heisenberg model, the
conserved dynamics of the spin model includes mode cou-
pling terms [13,16], which affects the dynamic scaling near
the critical point, but not the static critical exponents. Whether
or how quenched disorder can couple with the mode coupling
term in a “relevant” way (in a RG sense) should be explored.
The present study has been confined to thermal equilibrium,
for which the structure of the dynamical equation is restricted
so as to maintain the conditions of detailed balance. It would
be interesting to consider the issues studied here in the context
of nonequilibrium or active systems. Nonequilibrium systems
are known to be more prone to generic symmetry-breaking
perturbations, opening up the possibilities of richer and more
complex phase transitions and phase behavior. For instance,
how random quenched disorder can affect the scaling of aging
[29] and steady states of an active or nonequilibrium O(N )
model should be an interesting future question to study.

FIG. 8. One-loop Feynman diagrams giving fluctuation corrections for D̂.
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FIG. 9. One-loop diagram proportional to D̂ correcting r0 in the
static RG on the disorder-averaged free energy.
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APPENDIX A: DERIVATION
OF THE ACTION FUNCTIONAL

We start from the equation of motion (12). This may be
cast as a generating functional

Zdis =
∫

Dφi Dφ̂i exp[−Sdis], (A1)

where

Sdis = −
∫

dd xdt[φ̂i(x, t )]2 T

	
+

∫
dd xdt φ̂i

×
[

1

	
∂tφi + (r0 + ψ + δri )φi − ∇2φi

+ 4uφiφ
2
j + 4vφ3

i

]
, (A2)

with i, j = 1, . . . , N .
We now average Zdis over the Gaussian distributed ψ and

δri having variances (2). Noting that the quenched disorder
fields ψ (x) and δri(x) are time independent, and so are the
variances (2), averaging over the Gaussian distributions of ψ

and δri directly yield action (14). The double time integrals in
the terms with coefficients D and D̂ in Eq. (14) are due to the
time independence of the variances (2).

1. Details of the dynamic RG calculations

Expressions for the different diagrams; rescaling of space,
time and the fields; scaling of the model parameters. Upper
critical dimensions.

The two-point correlation functions in the harmonic theory
(i.e., after setting u = 0 = v = D = D̂ in Eq. (14) can be
directly read off (14):

〈φi(q, ω)φ̂ j (−q,−ω)〉 = δi j

−iω + r0 + q2
, (A3)

〈φi(q, ω)φ j (−q,−ω) = 2	δi j

ω2 + (r0 + q2)2
. (A4)

Once the fields having support in the wave-vector range �/b
to � are integrated out, we obtain “new” model parameters
corresponding to a modified action S< having �/b as the
wave-vector upper cutoff. This procedure yields Eqs. (17)–
(22). In the next step, we scale wave vectors and frequencies:

FIG. 10. One-loop diagram proportional to D̂ correcting u in the
static RG on the disorder-averaged free energy.

q → bq, ω → bzω. Together with the rescaling of space(or
momentum) and time(or frequency), long-wavelength parts of
the fields are rescaled:

φi(q, ω) = ξφi(bq, bzω), (A5)

φ̂i(q, ω) = ξ̂ φ̂i(bq, bzω). (A6)

We can now get the rescaling factors of the model parameters
as follows:

r′
0 = b2r<

0 , (A7)

	′ = bz−2	<, (A8)

u′ = u<bε, (A9)

v′ = v<bε, (A10)

D′ = D<bε, (A11)

D̂ = D̂<bε . (A12)

To get rescaling factors in Eq. (A12), we have demanded
that the coefficients of the

∫
dd q dω iωφ̂i(q, ω)φi(q, ω) and∫

dd q dω q2φ̂i(−q,−ω)φi(q, ω) to unity, giving ξ̂ = ξb−z

and ξ 2 = bd+2z+2. Here, ε ≡ 4 − d . Thus dc = 4 is the upper
critical dimension of all the coupling constants u, v, D,
and D̂.

FIG. 11. One-loop diagram proportional to D̂ correcting v in the
static RG on the disorder-averaged free energy.
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FIG. 12. One-loop diagrams proportional to D̂ correcting D in
the static RG on the disorder-averaged free energy.

We now list the expressions for the Feynman diagrams in
the main text along with their respective symmetry factors.
In Fig. 3, we give the graphical representations for the anhar-
monic vertices in Eq. (6).

Next we give the one-loop graphical corrections to the
propagator in Fig. 4 below.

We note that the diagrams (a) and (b) exist in the pure
model, where as diagrams (c) and (d) appear due to the
disorder. Evaluating these diagrams allow us to calculate the
one-loop fluctuation corrections to r0 and 	.

We now give below the one-loop diagrams for u in Fig. 5.
The values of the one-loop diagrams in Fig. 5 are listed

below.
(1) Diagrams (a) + (b) + (c) = −u2[36 + 4(N −

1)]
∫ dd q

(2π )
1

(r0+q2 )2 .

(2) Diagram (d) = −24uv
∫ dd q

(2π )
1

(r0+q2 )2 .

(3) Diagrams (e) + (f) = 12Du
∫ dd q

(2π )
1

(r0+q2 )2 .

(4) Diagram (g) = 4D̂u
∫ dd q

(2π )
1

(r0+q2 )2 .

We now give below the one-loop diagrams for v in Fig. 6.
The values of the one-loop diagrams in Fig. 6 are listed

below.
(1) Diagram (a) = −48uv

∫ dd q
(2π )

1
(r0+q2 )2 .

(2) Diagram (b) = −36v2
∫ dd q

(2π )
1

(r0+q2 )2 .

(3) Diagram (c) = 12vD
∫ dd q

(2π )
1

(r0+q2 )2 .

(4) Diagram (d) = 12vD̂
∫ dd q

(2π )
1

(r0+q2 )2 .

We now give below the one-loop diagrams for D in Fig. 7.
The values of the one-loop diagrams in Fig. 7 are listed

below.

(1) Diagram (a)=−8(N + 2)u
∫ dd q

(2π )
1

(r0+q2 )2 .

(2) Diagram (b) = −24v
∫ dd q

(2π )
1

(r0+q2 )2 .

(3) Diagrams (c) + (d) + (e) = 8D2
∫ dd q

(2π )
1

(r0+q2 )2 .

(4) Diagram (f) = 4DD̂
∫ dd q

(2π )
1

(r0+q2 )2 .

(5) Diagram (g) = −8uD̂
∫ dd q

(2π )
1

(r0+q2 )2 .

We now give below the one-loop diagrams for −̂D in
Fig. 8.

The values of the one-loop diagrams in Fig. 8 are listed
below.

(1) Diagram (a) = −16uD̂
∫ dd q

(2π )
1

(r0+q2 )2 .

(2) Diagrams (b) + (c) + (d) = 12DD̂
∫ dd q

(2π )
1

(r0+q2 )2 .

(3) Diagrams (e) + (f) + (g) = 8D̂2
∫ dd q

(2π )
1

(r0+q2 )2 .

(4) Diagram (h) = −24vD̂
∫ dd q

(2π )
1

(r0+q2 )2 .

APPENDIX B: CALCULATION OF THE STATIC CRITICAL
EXPONENTS FROM THE PARTITION FUNCTION

For the sake of completeness and the convenience of the
reader, we now outline calculation of the static RG calculation
on the partition function of the model. In the disorder-
averaged harmonic theory, i.e., with u = 0 = v = D = D̂, the
correlation function of φiα in the Fourier space reads

〈φiα (k)φ jβ (−k) = T δi jδαβ

r0 + k2
. (B1)

In the presence of u, v, D, and D̂, the correlation function
of φiα cannot be calculated exactly. Further, naïve perturbation
theory produces diverging corrections to the results from the
harmonic theory at the critical point. This difficulty can be
circumvent by using standard perturbative RG calculations.
The detailed calculation with D̂ = 0 is available in Ref. [14].
We provide below the additional one-loop graphical correc-
tions for r0, u, v, D, and D̂ from a nonzero D̂ in Figs. 9–13
below. The resulting flow equations are identical to those
obtained above. This establishes the equivalence and direct
correspondence of the dynamic perturbation theory with the
static one at the one-loop order.

FIG. 13. One-loop diagrams proportional to D̂ correcting D̂ in the static RG on the disorder-averaged free energy.
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