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Hamiltonian Formalism of de-Sitter Invariant Special Relativity∗
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Abstract The Lagrangian of Einstein’s special relativity with universal parameter c (SRc) is invariant under Poincaré
transformation, which preserves Lorentz metric ηµν . The SRc has been extended to be one which is invariant under
de Sitter transformation that preserves so-called Beltrami metric Bµν . There are two universal parameters, c and R, in
this Special Relativity (denoted as SRcR). The Lagrangian-Hamiltonian formulism of SRcR is formulated in this paper.
The canonic energy, canonic momenta, and 10 Noether charges corresponding to the space-time’s de Sitter symmetry
are derived. The canonical quantization of the mechanics for SRcR-free particle is performed. The physics related to it
is discussed.
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1 Introduction
Einstein’s special relativity is the cornerstone of

physics. The theory indicates that the space-time met-
ric is ηµν = diag {+,−,−,−}. The most general trans-
formation to preserve metric ηµν is Poincaré group (or
inhomogeneous Lorentz group ISO(1,3)). It is well known
that the Poincaré group is the limit of the de Sitter group
with sphere radius R →∞. Thus a natural question aris-
ing from this fact is whether there exists or not another
type of de Sitter transformation with R → finite that also
leads to a special relativity theory. In 1970’s, K.H. Look
(Qi-Keng Lu) and his collaborators pursued this question
and obtained a positive answer.[1,2] In the recent years,
some interesting studies on Lu’s theory in Refs. [3] and
[4] were stimulated by the recent observations which show
that there should be a positive cosmological constant.[5,6]

In Refs. [3] and [4], the length parameter R in Lu’s theory
has been identified as

√
3/Λ, where Λ is the cosmological

constant. In the present paper, we try to study and reex-
amine Lu’s theory in Lagrangian–Hamiltonian formalism.
Lu’s theory will be called as the de-Sitter Invariant Special
Relativity hereafter.

Inertial motion law for free particles is the foundation
of mechanics. This law states that in the inertial reference
frames the free particle (i.e., without any force acting on
it) will move along straight line and with constant coor-
dinate velocities. The Newtonian mechanics is the first
mechanical theory built on this foundation and without
any universal parameters. The Lagrangian for free parti-
cle is

LNewton =
1
2
m0v

2 , (1)

where m0 is the mass of the particle, v = ẋ is the velocity,
and v2 = v2. We may regard it as a parameter-free real-

ization of the inertial motion law. The second mechanic
theory realizing this inertial motion law is the Einstein’s
Special Relativity with one universal parameter c (the ve-
locity of light). Denoting it as SRc, the Lagrangian of
free particle is (e.g., see Ref. [7])

Lc = −m0c
ds

dt
= −m0c

√
ηµν dxµdxν

dt

= −m0c
2

√
1 +

ηij ẋiẋj

c2
= −m0c

2

√
1− v2

c2
, (2)

where Lorentz metric ηµν = diag {+,−,−,−}, dxµ =
{d(ct), dx1, dx2, dx3} and i, j = 1, 2, 3. By means of the
Lagrange–Hamilton mechanics formulation, the particle’s
momentum and Hamiltonian reads

pi =
∂Lc

∂ẋi
=

−m0ẋ
jηij√

1− (v2/c2)
, (3)

H = piẋ
i − Lc = c

√
−ηijpipj + m2

0c
2 . (4)

It is easy to check that when c →∞ the Special Relativity
goes back to the Newtonian mechanics, i.e.,

Lc|c→∞ = LNewton + constant . (5)

An interesting and challenging question is whether a
mechanical realization of the inertial motion law with two
universal parameters can be formulated or not. Surpris-
ingly, the answer to it is confirmative, and actually such a
theory has already existed in literature even though it is
still less known so far. About thirty five years ago, K.H.
Look (Qi-Keng Lu) found out that the velocity of motion
of the free particle along the geodesic line in the de Sit-
ter (dS)-space with Beltrami metric is constant, and the
geodesic is straight line.[1,2] This theory is just the de Sit-
ter invariant special relativity mentioned above. In Lu’s
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theory, there are two universal parameters: the light ve-
locity c and the de Sitter sphere radius R (or original no-
tation λ = 1/R2 used in Refs. [1] and [2]. The coordinate-
transformation to preserve the Beltrami metric has also
been derived in Refs. [1] and [2]. This means that the re-
alization of the inertial motion law with two universal pa-
rameters has been formulated. The theory will be shortly
denoted as SRcR due to the existence of two universal
parameters c and R in the theory. In the present paper,
we try to provide a Lagrangian–Hamiltonian formulation
to illustrate the free-particle mechanics in the de-Sitter
invariant special relativity.

It is well known that the Lagrangian–Hamiltonian for-
mulation in the mechanics theory provides a sound foun-
dation to discuss the particle’s motion, to deduce the par-
ticle’s canonical (or conjugate) momenta and the canon-
ical energy (or Hamiltonian), to derive the Noether’s
charges corresponding to the symmetries, and to over
the classical mechanics for constructing the quantum me-
chanics, and so on. In the previous works on SRcR,[1−4]

the free-particle-motion in the space-time with Beltrami
metric was discussed by means of solving the geodesic
equation, and it has been found that the velocity of the
particle is a constant. This remarkable claim should
be reconfirmed in Lagrangian–Hamiltonian formulation.
Especially, because any reliable quantization procedures
of a classical mechanics theory rely upon the theory’s
Lagrangian–Hamiltonian formulation, it is a basic task
to determine the system’s canonical momenta and the
Hamiltonian. To SRcR, the particle’s canonical momenta
and Hamiltonian are unusual and somewhat subtle, which
have to be derived. Furthermore, the Noether’s charges in
SRcR, which are the quantities in physics, should also be
derived in this formulation. For all these purposes, a sys-
tematic and careful study on the Lagrangian–Hamiltonian
formulation for SRcR is necessary.

Equation (2) shows the Lagrangian of free particle
in SRc (i.e., ordinary Einstein’s special relativity) is
time- and coordinate-independent (or xi are cyclic coor-
dinates). So, both Hamiltonian and canonical momenta
are motion of constants. Furthermore, the most general
space-time transformation preserving ηµν in SRc is sim-
ply the Poincaré transformation group (or inhomogeneous
Lorentz group) ISO(1,3). Therefore conserved Noether
charges are just its Hamiltonian, canonic momenta, the
angular momenta (and plus three Lorentz boost charges).
All of these are well known. To SRcR, however, the sit-
uation is much more complicated than in SRc. Because
the Beltrami metric is time- and coordinate-dependent, we
face a mechanical system with time-dependent Hamilto-
nian and without any cyclic coordinates. The space-time
transformation preserving Beltrami metric is a sort of de-
Sitter transformation. In this case, a careful enough revis-
iting to the classical mechanics with time- and coordinate-
dependent Lagrangian is necessary for getting convincible
conclusions. It will be found out that the Hamiltonian (or
canonical energy), canonical momenta are different from

the conserved Noether charges corresponding to the exter-
nal space-time symmetry of SRcR. The latter are energy
and momenta in physics, and the former are the canonical
quantities which are also useful for mechanics, especially
for the quantization of the system.

Following SRc, in the framework of SRcR, the wave
equation of relativistical quantum mechanics is derived in
this paper by means of the standard canonic quantization
procedure: i) The Hamiltonian mechanics leads to quan-
tum canonic equations, then Hamiltonian operator Ĥ and
canonical momentum operators π̂i are defined; ii) By the
mechanics again, the dispersion relation between Ĥ and
π̂i is obtained, and hence we achieve the wave equation
for the SRcR quantum mechanics. Due to existence of
xiπ̂i-terms in the time-dependent Hamiltonian Ĥ, the op-
erator ordering has to be taken care. In our quantization
scheme a generalized Weyl ordering is taken, in which the
external space-time symmetry of SRcR is preserved. This
indicates that SRcR is consistent with the principle of
quantum mechanics.

The contents of this paper are organized as follows: In
Sec. 2, we show explicitly that the Euler–Lagrangian equa-
tions are equivalent to the geodesic equations for generic
metric gµν . In Sec. 3, we construct the Lagrangian for
SRcR by means of the Beltrami metrics, and solve the
equation of motions of free particle. The Hamiltonian
and the canonical momenta are also derived. Section 4 is
devoted to calculating the Noether charges corresponding
to external space-time symmetry of SRcR. In Sec. 5 we
discuss the quantization of the system. Finally, we sum-
marize our results briefly. In the Appendix, we show how
to derive space-time transformation to preserve Beltrami
metric following Refs. [1] and [2].

2 Equation of Motion for Free Particle in
Space-Time with Metric gµν(x)
The motion of a free material particle is determined in

the special theories of relativity from the principle of least
action,

δS ≡ δ

∫
L(t, xi, ẋi)dt = −m0cδ

∫
ds = 0 , (6)

where S is the action integral, ds =
√

gµν dxµdxν is the
space-time interval. gµν = ηµν for SRc, but for SRcR,
gµν should be Beltrami metric. Generally, from Eq. (6),
we have

L(t, xµ, ẋµ) = −m0c
ds

dt
= −m0c

√
gµν

dxµ

dt

dxν

dt
. (7)

By variation of the action with respect to xµ we get a
four-dimensional Euler–Lagrangian equation, where vari-
ables x0 and ẋ0 emerge as independent variables,

∂L

∂xλ
− d

dt

∂L

∂ẋλ
= 0 , (8)

where t serves as a parameter rather than the physical co-
ordinate time, ẋλ = dxλ/dt, and λ runs over all the space-
time indices including λ = 0. Obviously, they are equa-
tions of motion, but not the standard Euler–Lagrangian
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equations in the Hamiltonian formalism of mechanics be-
cause here t is independent of x0. At this stage, therefore,
we cannot derive the canonical momentum and Hamilto-
nian by means of L, xi and ẋi. If we choose the parameter
t such that

ds = cdt , (9)

and substitute Eqs. (7) into Eqs. (8), we get the standard
geodesic equation,

gλµ
d2xµ

ds2
+ Γλ,µν

dxµ

ds

dxν

ds
= 0 , (10)

where

Γλ,µν = gλρΓρ
µν =

1
2
(∂µgλν + ∂νgλµ − ∂λgµν) . (11)

In order to derive the equations of motion in the Hamil-
tonian framework, we have to fix the parameter

t =
x0

c
or x0 = ct , (12)

and write
S =

∫
L(xi, ẋi, t)dt . (13)

From Eq. (7), it is obvious that

L(xi, ẋi, t) = −m0c
2

√
g00(xi, t) + 2g0j(xi, t)

1
c
ẋj + gjk(xi, t)

1
c2

ẋj ẋk , (14)

where i only runs over the space indices. Then, by varia-
tion of the action with respect to both xi and t, we have
the desired Euler–Lagrangian equations as follows:

∂L

∂xi
=

d
dt

∂L

∂ẋi
, (15)

d
dt

[
L− ∂L

∂ẋi
ẋi

]
=

∂L

∂t
. (16)

These equations are the equations of motion in the time-
dependent Lagrangian–Hamiltonian framework, and the
corresponding Lagrangian can be used to deduce the mo-
mentum and energies of the system. It is easy to check
that under x0 = ct, equations (15) and (16) are consistent
with four-dimensional Euler–Lagrangian equation (8) (or
the geodesic equation (10)).

The equivalence of the two sets of equations comes
from the fact that the original action has a reparametriza-
tion symmetry of t and so the space and time coordinates
are mixed together. That is to say,

L =
∂L

∂ẋλ
ẋλ ,

λ runs over all the space and time indices , (17)

which states that L is homogeneous of degree 1 as a func-
tion of ẋλ. It is a special property of Eq. (7) but also a
general requirement for the action to have parametriza-
tion symmetry of t before x0 is set to be ct. From this we
know that the above discussion for the equivalence of two
sets of Euler–Lagrangian equations does not apply to the
general Hamiltonian system but a special nice relation for
the free particle moving in the space and time described
by theories of special relativity.

3 Lagrangian, Canonic Momentum and
Hamiltonian of Free Particle in de-Sitter
Invariant Special Relativity
According to the discussions in previous sections, sim-

ilar to Lc (see Eq. (3)), the Lagrangian for free particle in
SRcR is

LcR = −m0c
ds

dt
= −m0c

√
Bµν(x)dxµdxν

dt

= −m0c
√

Bµν(x)ẋµẋν , (18)

where ẋµ = dxµ/dt, Bµν(x) is Beltrami metric,[1−4]

Bµν(x) =
ηµν

σ(x)
+

1
R2σ(x)2

ηµληνρx
λxρ

with σ(x) ≡ 1− 1
R2

ηµνxµxν , (19)

where the constant R is the radius of the pseudo-sphere in
dS-space, and it can be related to cosmological constant
via R =

√
3/Λ.[3,4] Setting up the time t = x0/c, Bµν(x)

can be rewritten as follows:

ds2 = Bµν(x)dxµdxν

= g̃00d(ct)2 + g̃ij [(dxi + N id(ct))(dxj +N j d(ct))]

= c2(dt)2
[
g̃00+g̃ij

(1
c
ẋi+N i

)(1
c
ẋj +N j

)]
, (20)

where

g̃00 =
R2

σ(x)(R2 − c2t2)
, (21)

g̃ij =
ηij

σ(x)
+

1
R2σ(x)2

ηilηjmxlxm , (22)

N i =
ctxi

R2 − c2t2
. (23)

Substituting Eqs. (19) ∼ (23) into Eq. (18), we obtain the
Lagrangian for free particle in SRcR,

LcR = −m0c
2

√
g̃00 + g̃ij

(1
c
ẋi + N i

)(1
c
ẋj + N j

)
. (24)

By means of the explicit expressions of Eqs. (21) ∼ (24)
and doing straightforward calculations, we can prove the
following equation:

∂LcR

∂xi
=

∂2LcR

∂t∂ẋi
+

∂2LcR

∂xj∂ẋi
ẋj . (25)

Substituting Eq. (24) into the Euler–Lagrangian equation
(15) and using identity (25), we have

∂2LcR

∂ẋi∂ẋj
ẍj = − m4

0c
6R4

L3
cRR6c2σ3(x)

Mij ẍ
j = 0 , (26)
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where Mij is a matrix that satisfies det [Mij ] 6= 0. We
conclude

ẍj = 0 , ẋj = constant . (27)

This result indicates that the free particle in the Bel-
trami space-time B ≡ {xµ, gµν(x) = Bµν(x)} moves
along straight line and with constant coordinate velocities.
Namely the inertial motion law for free particles holds
true in the space-time B, and hence the inertial reference
frame can be set in B. Thus, by means of solving Euler–
Lagrangian equations in the Lagrangian–Hamiltonian for-
mulation, we have reconfirmed the claim in Refs. [1] and
[2] on the velocity of motion of free-particles based on
solving geodesic equation originally.

As an essential advantage in the Lagrangian–
Hamiltonian formulation over other formulism, both
canonical momentum πi conjugating to the Beltrami-
coordinate xi and canonical energy HcR (or Hamiltonian)
conjugating to the Beltrami-time t for free particles in the
inertial reference frame can be determined rationally by
the mechanism principle. By Eq. (24), the canonical mo-
mentum and the canonical energy (or Hamiltonian) reads

πi =
∂LcR

∂ẋi
= −m0σ(x)ΓBiµẋµ , (28)

HcR =
3∑

i=1

∂LcR

∂ẋi
ẋi − LcR = m0cσ(x)ΓB0µẋµ , (29)

where

Γ−1 = σ(x)
ds

cdt
=

1
R

√
(R2 − ηijxixj)

(
1 +

ηij ẋiẋj

c2

)
+ 2tηijxiẋj − ηij ẋiẋjt2 +

(ηijxiẋj)2

c2
. (30)

Under the motion equation (27), we have the following
relation,

Γ̇|ẍi=0 = 0 , (31)

whose corresponding one in SRc is

γ̇|ẍi=0 ≡
d
dt

( 1√
1− v2/c2

)∣∣∣
v=constant

= 0 . (32)

It is easy to check that

lim
R→∞

Γ = lim
xi→0

Γ = γ ≡ 1√
1− (v2/c2)

. (33)

And, in the R → ∞ limit, πi and HcR go back to the
standard Einstein Special Relativity’s expressions,

πi|R→∞ =
m0vi√

1− (v2/c2)
,

HcR|R→∞=
m0c

2√
1− (v2/c2)

, (34)

where vi = −ηij ẋ
j . Furthermore, at the original point of

space-time coordinates t = xi = 0, but R = finite, we
have also expressions like Eq. (34),

πi|t=xi=0 =
m0vi√

1− (v2/c2)
,

HcR|t=xi=0 =
m0c

2√
1− (v2/c2)

. (35)

In Table 1, we list some results of Lagrange formalism both
in the ordinary special relativity SRc and in the de Sitter
invariant special relativity SRcR. Comparing the results
in SRcR with ones in well-known SRc, we learn that as
an extending theory of SRc, SRcR can simply be formu-
lated by a variable alternating in SRc: i) ηµν ⇒ Bµν ;
ii) γ ⇒ σΓ. This is a natural and nice feature for the
Lagrangian formalism of SRcR.

Table 1 Metric, Lagrangian, equation of motions, canonic momenta, and Hamiltonian in the special rel-
ativity, SRc, and in the de Sitter special relativity, SRcR. The quantities γ−1 =

√
1 + (ηij ẋiẋj/c2) and

Γ−1 = R−1
√

(R2 − ηijxixj)[1 + (ηij ẋiẋj/c2)] + 2tηijxiẋj − ηij ẋiẋjt2 + (ηijxiẋj)2/c2 (see Eq. (30)).

SRc SRcR

Space-time metric ηµν Bµν(x), (Eq. (19))

Lagrangian Lc = −m0c2γ−1 LcR = −m0c2σ−1Γ−1

Equation of motion vi = ẋi = constant, (or γ̇ = 0) vi = ẋi = constant, (or Γ̇ = 0)

Canonic momenta πi = −m0γηiµẋµ πi = −m0σΓBiµẋµ

Hamiltonian Hc = m0cγη0µẋµ HcR = m0cσΓB0µẋµ

Combining Eq. (28) with Eq. (29), the covariant four-
momentum in B is

πµ ≡ (π0, πi) =
(
−HcR

c
, πi

)
= −m0σΓBµν ẋν

= −m0cBµν
dxν

ds
, (36)

and
Bµνπµπν = m2

0c
2 . (37)

From Eqs. (24), (28), (29), and (37), we have

HcR =
√

g̃00

√
m2

0c
4 − c2g̃ijπiπj − cπiN

i , (38)

where g̃00 and N i have been shown in Eqs. (21) and (23),
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and g̃ij = σ(x)[ηij −xixj/(R2− c2t2)] from Eq. (22). It is
straightforward to get the following canonical equations:

ẋi =
∂HcR

∂πi
= {HcR, xi}PB ,

π̇i = −∂HcR

∂xi
= {HcR, πi}PB , (39)

where the Poisson brackets
{xi, πj}PB = δi

j , {xi, xj}PB = 0 ,

{πi, πj}PB = 0 , (40)
are as usual. It is also straightforward to check ẋi =
constant by Eq. (39).

Finally, we would like to mention that generally, the
canonical momenta πi and the Hamiltonian HcR are not

the physical momentum and the energy of the particle
respectively.

4 Space-Time Symmetry of de-Sitter
Invariant Special Relativity and Noether
Charges
The space-time transformations preserving the Bel-

trami metric were discovered about 30 years ago by Lu,
Zou, and Guo (LZG)[1,2] (see also Appendix). When we
transform from one initial Beltrami frame xµ to another
Beltrami frame x̃µ, and when the origin of the new frame
is aµ in the original frame, the transformations between
them with ten parameters are as follows:

xµ LZG−−−−→ x̃µ = ±σ(a)1/2σ(a, x)−1(xν − aν)Dµ
ν , Dµ

ν = Lµ
ν + R−2ηνρa

ρaλ(σ(a) + σ1/2(a))−1Lµ
λ ,

L : = (Lµ
ν ) ∈ SO(1, 3) , σ(x) = 1− 1

R2
ηµνxµxν , σ(a, x) = 1− 1

R2
ηµνaµxν . (41)

It will be called as LZG-transformation hereafter, and we prove it in the Appendix by means of the method in Ref. [2].
Under LZG-transformation, the Bµν(x) and the action of SRcR transfer respectively as follows:

Bµν(x) LZG−−−−→ B̃µν(x̃) =
∂xλ

∂x̃µ

∂xρ

∂x̃ν
Bλρ(x) = Bµν(x̃) , (42)

ScR ≡
∫

dtLcR(t) = −m0c

∫
dt

√
Bµν(x)dxµdxν

dt

LZG−−−−→ S̃cR = ScR . (43)

By the mechanics principle, this action invariance indicates that there are ten conserved Noether charges in SRcR like
the SRc case. For SRc the Noether charges are (e.g., see pp. 581–586 and Part 9 in Ref. [8]):

Noether charges for Lorentz boost : Ki
c = m0γc(xi − tẋi)

Charges for space-transitions (momenta) : P i
c = m0γẋi ,

Charge for time-transition (energy) : Ec = m0c
2γ

Charges for rotations in space (angular momenta) : Li
c = εi

jkxjP k . (44)

Here γ = 1/
√

1− (v2/c2). Note the Noether charges here are the same as the corresponding canonical quantities,
because the Lagrangian for SRc is time-independent and all the coordinates are cyclic, while in SRcR there are no
cyclic coordinates and the Lagrangian is space-time dependent.

When space rotations are neglected temporarily for simplify, the LZG-transformation both due to a Lorentz-like
boost and a space-transition in the x1 direction with parameters β = ẋ1/c and a1 respectively and due to a time
transition with parameter a0 can be explicitly written as follows:

t → t̃ =

√
σ(a)

cσ(a, x)
γ
[
ct− βx1 − a0 + βa1 +

a0 − βa1

R2

a0ct− a1x1 − (a0)2 + (a1)2

σ(a) +
√

σ(a)

]
,

x1 → x̃1 =

√
σ(a)

σ(a, x)
γ
[
x1 − βct + βa0 − a1 +

a1 − βa0

R2

a0ct− a1x1 − (a0)2 + (a1)2

σ(a) +
√

σ(a)

]
,

x2 → x̃2 =

√
σ(a)

σ(a, x)
x2 , x3 → x̃3 =

√
σ(a)

σ(a, x)
x3 . (45)

It is easy to check when R → ∞ the above transformation goes back to Poincaré transformation. Notice that in
the LZG-transformation there are three boost parameters βi = ẋi/c = vi/c, four spacetime transition parameters
(a0, a1, a2, a3) and three rotation parameters θi = 0. Here (a0, a1, a2, a3) is the origin of the resulting Beltrami initial
frame in the original Beltrami frame.

In terms of the standard procedure (e.g., see Ref. [8] pp. 581–586), the Noether charges corresponding to the LZG
transformation (Eq. (41)) invariance can be derived.

(i) Space transitions:

xµ → x̃µ = xµ +
ηija

ixj

R2
xµ − aiδµ

i , Gi
a = −πµxµ

R2
xi+ηijπj = m0Γẋi . (46)
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(ii) Time transition charge:

xµ → x̃µ = xµ +
ctxµ

R2
a0 − a0δµ

0 , Ga0 = x0 πµxµ

R2
− η0µπµ = m0cΓ . (47)

(iii) Lorentz boost charges:

xµ → x̃µ = (γ(ct− βx1), γ(x1 − βct), x2, x3) , Gi
β = −xiπ0 − x0πi = m0cΓ(xi − tẋi) . (48)

(iv) Rotation charges:

xµ → x̃µ = (ct, x1 + θx2, x2 − θx1, x3) , Gi
ω = −m0Γεi

jkxj ẋk . (49)

Some Remarks

(i) For a free particle that moves with a constant speed
ẍi = 0, we have already proved (see Eq. (31))

d
dt

Γ = 0 . (50)

By using Eq. (50), we can check that those charges derived
above are indeed conservative:

d
dt

Gλ|λ=a0,ai,βi,ωi = 0 . (51)

(ii) In the limit R →∞ the Noether charges in SRcR

are the same as those in SRc, see Eq. (44).

(iii) The mechanical (or physical) momenta and en-
ergy in the Lagrangian–Hamiltonian formalism are defined
as the Noether charges corresponding to the space tran-
sitions, therefore the particle’s momenta and energy in
SRcR read

pi
cR ≡ Gi

a = m0Γẋi , (52)

EcR ≡ cp0
cR = cGa0 = m0c

2Γ , (53)

which are conservative quantities. We address that distin-
guishing from the SRc, in SRcR the physical momentum
pi of the particle is different from its canonical momentum
πi. The former is conservative and the latter is space-
time-dependent. Combining Eq. (52) with Eq. (53), we
have the four-momentum in SRcR as follows:

pµ
cR ≡ {p

0
cR, pi

cR} = m0Γẋµ =
m0c

σ(x)
dxµ

ds

= − 1
σ(x)

Bµνπν , (54)

which is consistent with energy-momentum definition in
Ref. [2].

(iv) In general the boost Noether charges for SRcR are

Ki
cR ≡ Gi

β = xip0
cR + x0pi

cR = m0cΓ(xi − tẋi) , (55)

while the angular momentum is

Li
cR ≡ Gi

ω = −m0Γεi
jkxj ẋk . (56)

From Eq. (54) we have the dispersion relation

σ2(x)Bµνpµ
cRpν

cR = m2
0c

2 . (57)

And we can rewrite it using the Noether charges

E2
cR = m2

0c
2 + p2

cR +
c2

R2
(L2

cR −K2
cR) . (58)

Here EcR, pcR, LcR, and KcR are conserved physical en-
ergy, momentum, angular-momentum and boost charges
respectively.

5 Quantum Mechanics for One Particle in
SRcR

Lagrangian–Hamiltonian formulation of mechanics is
the foundation of quantization. When the classical Pois-
son brackets in canonical equations for canonical coordi-
nates and canonical momentum become operator’s com-
mutators, i.e., {x, π}PB ⇒ (1/i~)[x, π̂], the classical me-
chanics will be quantized. In this way, for instance, the or-
dinary relativistic (i.e., SRc) one-particle quantum equa-
tions have been derived. To the particle with spin-0,
that is just the well-known Klein–Gordon equation. In
the canonic quantization formalism for SRcR, the canonic
variable operators are xi, π̂i with i = 1, 2, 3, and due to
Eq. (40) the basic commutators for the free particle quan-
tization theory of SRcR are the same as usual, i.e.,

[xi, π̂j ] = i~δi
j , [π̂i, π̂j ] = 0 , [xi, xj ] = 0 . (59)

The Hamiltonian operator ĤcR ≡ −cπ̂0 represents the
generator of time evolution, i.e.,

[t, ĤcR] = −i~ , or [x0, π̂0] = i~ . (60)

Since the time evolution is independent of the space coor-
dinate displacements whose generators are π̂i, we always
have

[ĤcR, π̂i] = 0 , or [π̂0, π̂i] = 0 , (61)

which is independent of the dynamics (or the dispersion
relation).[9] Combining Eqs. (59), (60), and (61), we have
(hereafter the hat notations for operators are removed)

[xµ, πν ] = i~δµ
ν , [xµ, xν ] = 0 , [πµ, πν ] = 0 . (62)

The general solution of Eq. (62) is

πµ = −i~∂µ + (∂µG(t, x)) , (63)

where G(t, x) is a function of t and xi. Now, the dy-
namical Hamiltonian HcR ≡ −cπ0 is (πx)-product term-
dependent (see Eq. (38)), and the ordering of xi and πi

has to be taken care of. Generally, the most symmetri-
cal ordering (i.e., Weyl ordering) is favored for realistic
quantization scheme. To SRcR, we prefer the quantiza-
tion scheme that protects the de Sitter symmetry SO(1,4).
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This requirement will lead to fix the function G(t, x) in
Eq. (63). By this consideration, we take[10,11]

πµ = −i~D́µ = −i~
(
∂µ+

Γµ

2

)
= −i~B−1/4∂µB1/4 , (64)

where B = det (Bµν), Γµ = Γν
µν . Equation (64) indicates

G(t, x) = −i~ log(B1/4). In contrast with the ordinary
quantization discussions to the theories in curved space
only,[10,11] our treatment presented here is suitable for the
theories in generic curved space-time, in which the four-
dimensional metric is time- and space-dependent. The
classical dispersion relation (37) can be rewritten as sym-
metric version B−1/4πµB1/4BµνB1/4πνB−1/4 = m2

0c
2,

and then the SRcR-one particle wave equation reads

B−1/4πµB1/4BµνB1/4πνB−1/4φ(x, t)=m2
0c

2φ(x, t) , (65)

where φ(x, t) is the particle’s wave function. Substituting
Eq. (64) into Eq. (65), we have

1√
B

∂µ(Bµν
√

B∂ν)φ +
m2

0c
2

~2
φ = 0 , (66)

which is just the Klein–Gordon equation in curved space-
time with Beltrami metric Bµν , and its explicit form is(

ηµν − xµxν

R2

)
∂µ∂νφ− 2

xµ

R2
∂µφ +

m2
0c

2

~2σ(x)
φ = 0 , (67)

which is the desired SRcR-quantum mechanics equation
for free particle.

Substituting Eq. (64) into Eq. (54), we obtain the
physical momentum and energy operators (noting the sub-
scripts cR for pµ

cR, Lµν
cR in Eq. (54) will be moved here-

after),

pµ = i~
[(

ηµν − xµxν

R2

)
∂ν +

5xµ

2R2

]
. (68)

pµ together with operator Lµν = xµpν − xνpµ form an
algebra as follows:

[pµ, pν ] =
1

R2
Lµν ,

[Lµν , pρ] = ηνρpµ − ηµρpν ,

[Lµν , Lρσ] = ηνρLµσ − ηνσLµρ + ηµσLνρ − ηµρLνσ ,

which is just the de-Sitter algebra SO(1,4). This fact
means that the quantization scheme presented in this pa-
per preserves the external space-time symmetry of SRcR.

6 Summery and Discussions
In this paper, we have provided a systemic study to

the de Sitter invariant special relativity with Beltrami
metric in terms of the Lagrangian–Hamiltonian formal-
ism. In this theory there are two universal parameters
c and R, and it was denoted as SRcR. Distinguishing
from the Minkowski metric ηµν , the Beltrami metric is
space-time dependent. Therefore the principle of least ac-
tion for space-time dependent Lagrangian is reexamined
in order to make sure the Lagrangian equation is consis-
tent with the geodesic equation in Beltrami space-time

B. Following standard procedure in the ordinary special
relativity and by means of the Beltrami metric we con-
struct the Lagrangian LcR(t,x, ẋ) for SRcR. The inertial
law has been reconfirmed in SRcR by means of solving
its equation of motion in the Lagrangian–Hamiltonian for-
malism, which leads to well-defined inertial coordinate ref-
erence frame in Beltrami space-time B. The canonic mo-
menta and canonic energy (or Hamiltonian) are derived.
It is found that both of them are space-time dependent,
which is due to that there are no cyclic coordinates in
LcR and the LcR is time-dependent. The canonic equa-
tions and the corresponding Poisson bracket expressions
are obtained. The canonic formulation is useful for quan-
tization of the mechanics in SRcR. The de Sitter trans-
formation in space-time B (i.e., LZG-transformation) has
been used to derive the Noether charges of SRcR. Ten
conservative charges are obtained. They are three boost
charges, four momentum-energy charges, and three angu-
lar momentum charges. In this way and by the symmetry
principle, the physical momenta, the physical energy and
the physical angular momenta in SRcR are determined
in the Lagrangian–Hamiltonian formalism. It has been
found that the Hamiltonian is not equal to the energy,
and the canonical momentum is also different from the
physical momentum, i.e., H 6= E and ~π 6= ~p. This is a
significant property for SRcR. When R → ∞, all results
of the de Sitter invariant special relativity goes back to
the ordinary special relativity.

By means of the canonic formulation, the quantum
mechanics of SRcR is achieved. The one particle quan-
tum equation is just the Klein–Gordon equation in curved
space-time with Beltrami metric Bµν . The quantization
scheme with proper (π−x)-ordering preserves the external
space-time symmetry of SRcR. When R → ∞ or x → 0,
the theory goes back to ordinary one particle quantum
equation of the Einstein’s special relativity, i.e., the or-
dinary Klein–Gordon equation in flat space-time. A fur-
ther discussion on the solutions of the equation of SRcR-
quantum mechanics would be interesting, which, however,
is left to be in our coming works.

Physically, since R in the SRcR could be a very large
distance parameter, say the “radius of universe horizon”,
the existing experiments cannot justify or rule out SRcR.
Therefore, how to design experiments to detect the ef-
fects of the de Sitter invariant special relativity would be
remarkable. We speculate that careful studies on the solu-
tions of SRcR-quantum mechanics may bring us ideas for
this aim. For instance, the master equation for the pho-
tons emitted from very far away star should be the equa-
tion of SRcR-quantum mechanics Eq. (67) with m0 = 0
instead of the ordinary KG-equation of SRc, because the
distance |x| ∼ R. This difference may lead to reveal some
effects to distinguish SRcR from SRc.
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Finally, we would like to briefly mention the Double
Special Relativity (DSR)[12] in comparison with SRcR.
DSR is an interesting theory, and is another modified spe-
cial relativity with also two universal constants: c and
Planck length lP ≡

√
~GN/c3 (or a length l = ~/(κc)

near lP , where κ ∼ mP ≡
√

~c/GN ). Obviously, the
length parameter of DSR is drastically smaller than one
of SRcR: lP /R ∼ 10−120. This indicates that the physics
discussed in DSR is very different from one in SRcR:
DSR is inspired by quantum gravity and by a space-time
quantization treatment for over the ultraviolet tragedy in
quantum field theory,[13] while SRcR is motived by nat-
urally extending the space-time and the dynamics theory
of Einstein’s special relativity SRc, and the correspond-
ing remarkable physics is related to the cosmology, say
the propagation of photons emitted from far away stars
with distance |x| ∼ R. In other words, like SRc, SRcR

preserves a specific space-time metric (i.e., Bµν) and the
inertial frames are well-defined. And then like SRc fur-
ther, SRcR has well-defined Lagrangian–Hamiltonian for-
mulation too. Consequently, a consistent quantum me-
chanics of SRcR exists and can be derived by means of
the standard quantization procedures relied on the first
principle of quantum theory. However, the models of
DSR are all different from SRcR in these aspects. Ba-
sically, DSR theories can be understood as particular
realizations of deformed κ-Poincaré algebra in momen-
tum spaces,[14] or of a de Sitter geometry in momentum
space.[15] Due to this structure, the space coordinates in
DSR are non-commutative, i.e., [x̂µ, x̂ν ] 6= 0, (which is in

conflict with the principle requirement of quantum me-
chanics (see Eqs. (59) and (62)), and hence there are no
Lagrangian–Hamiltonian formulations for DSR yet, which
can be constructed consistently. If the length scale for
both DSR and SRcR were denoted as R, then DSR is a
theory for |x| > R (≡ lP ), and SRcR is for |x| < R (≡ R)
(see Eq. (A11)). Therefore, there is no overlapping part
for DSR and SRcR, and the theory structures of two the-
ories must be independent each other.

Appendix: Space-Time Transformation to
Preserve Beltrami Metric

Now we prove that under the LZG space-time trans-
formation Eq. (41) in the text the Beltrami metric is in-
variant.

We define the field Dλ(m,n) to be all m×n matrix X

such that
I − λXJX ′ > 0 . (A1)

Here, I is an m × m identity matrix, J = diag [1,
−1, . . . ,−1] is an n × n matrix, λ = 1/R2 6= 0 is a real
number. A real matrix A > 0 means that A is positive-
definite. Let A, B, C, and D be m ×m, n ×m, m × n,
n× n matrices respectively, satisfying(

A C

B D

) (
I 0
0 −λJ

) (
A C

B D

)′
=

(
I 0
0 −λJ

)
. (A2)

Writing the entries we get

AA′ − λCJC ′ = I , AB′ = λCJD′ ,

BB′ − λDJD′ = −λJ . (A3)

Equation (A2) is also equivalent to

(
A C

B D

) (
I 0
0 −λJ

) (
A C

B D

)′(
I 0
0 −λ−1J

)
=

(
I 0
0 I

)
⇔

(
I 0
0 −λJ

) (
A C

B D

)′(
I 0
0 −λ−1J

) (
A C

B D

)
=

(
I 0
0 I

)
⇔

(
A C

B D

)′(
I 0
0 −λ−1J

) (
A C

B D

)
=

(
I 0
0 −λ−1J

)
⇔

(
A C

B D

)′(
λI 0
0 −J

) (
A C

B D

)
=

(
λI 0
0 −J

)
.

Writing the entries we get

λA′A−B′JB = λI , λA′C = B′JD , λC ′C −D′JD = −J . (A4)

Therefore, equations (A3) and (A4) are equivalent. Observing that equation (A1) can be written as

( I X )
(

I 0
0 −λJ

) (
I

X ′

)
> 0 , (A5)

we use Eq. (A2) and get

( I X )
(

A C

B D

) (
I 0
0 −λJ

) (
A C

B D

)′(
I

X ′

)
> 0

⇔ (A + XB) ( I Y )
(

I 0
0 −λJ

) (
I

Y ′

)
(A + XB)′ > 0
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⇔ ( I Y )
(

I 0
0 −λJ

) (
I

Y ′

)
> 0 .

Here
Y = (A + XB)−1(C + XD) . (A6)

Therefore the transformation (A6) maps Dλ(m,n) to itself and is an automorphism. We can define a metric on
Dλ(m,n)

ds2 = tr {(I − λXJX ′)−1dX(J − λX ′X)−1dX ′} . (A7)

We claim that this metric is invariant under the transformation (A6).

Proof Note that from the above discussion we have

(I − λXJX ′) = (A + XB)(I − λY JY ′)(A + XB)′ . (A8)

Since X = (AY − C)(D −BY )−1, we also have

J − λY ′Y = (Y ′ −I )
(
−λI 0

0 J

) (
Y

−I

)
= (Y ′ −I )

(
A C

B D

)′(−λI 0
0 J

) (
A C

B D

) (
Y

−I

)
= (D −BY )′ ( X ′ −I )

(
−λI 0

0 J

) (
X

−I

)
(D −BY ) = (D −BY )′(J − λX ′X)(D −BY ) ,

dY = d((A + XB)−1(C + XD)) = [−(A + XB)−1d(A + XB)(A + XB)−1(C + XD) + (A + XB)−1d(C + XD)]

= [−(A + XB)−1dXBY + (A + XB)−1dXD] = (A + XB)−1dX(D −BY ) ,

dY ′ = d((A + XB)−1(C + XD))′ = (D −BY )′dX ′(A + XB)′−1 .

Hence

tr {(I − λY JY ′)−1dY (J − λY ′Y )−1dY ′}

= tr {(A + XB)′(I − λXJX ′)−1(A + XB)(A + XB)−1dX(D −BY )
× (D −BY )−1(J − λX ′X)−1(D −BY )′−1(D −BY )′dX ′(A + XB)′−1}

= tr {(I − λXJX ′)−1dX(J − λX ′X)−1dX ′} ,

which states that the metric (A7) is invariant under transformation (A6). �
If we let X0 = −CD−1, then

Y = (A + XB)−1(C + XD) = A−1(I + XBA−1)−1(X + CD−1)D .

The conditions in Eq. (A4) are equivalent to the following:

BA−1 = (λCD−1J)′ = λJX ′
0 , (AA′)−1 = A′−1(A′A− λ−1B′JB)A−1 = (I − λX0JX ′

0) ,

(DJD′)−1 = D′−1JD−1 = D′−1(D′JD − λC ′C)D−1 = J − λX ′
0X0 .

We get the formula
Y = A−1(I − λXJX0)−1(X −X0)D , (A9)

where the matrices A and D satisfy

AA′ = (I − λX0JX ′
0)
−1 , DJD′ = (J − λX ′

0X0)−1 . (A10)

For the special case Dλ(1, 4) in our paper, X = (X0, X1, X2, X3), Dλ(1, 4) is just

1− ληµνxµxν > 0 . (A11)

The metric (A7) now takes the form

ds2 =
dX(J − λX ′X)−1dX ′

1− λXJX ′ = gµν dxµdxν , gµν =
ηµν

1− ληλρxλxρ
+

ληµληνρx
λxρ

(1− ληαβxαxβ)2
. (A12)

Comparing Eq. (A7) with Eq. (19) in the text, we see gµν

is just the Beltrami metric, i.e., gµν = Bµν(x). By our
claim, this metric is invariant under the transformation
(A9), which now becomes

yµ =
√

1− ληλρaλaρ
(xν − aν)Dµ

ν

1− ληαβaαxβ
, (A13)

where we denote X0 = (a0, a1, a2, a3) and {Dµ
ν } are con-

stants, satisfying

ηλρD
λ
µDρ

ν = ηµν +
ληµληνρa

λaρ

1− ληαβaαaβ
. (A14)

By using the notations in the text: x̃µ = yµ, σ(x) = 1 −
ληαβxαxβ , σ(a, x) = 1−ληαβaαxβ , we rewrite Eqs. (A13)
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and (A14) as follows:

x̃µ =
√

σ(a)
(xν − aν)Dµ

ν

σ(a, x)
, (A15)

ηλρD
λ
µDρ

ν = ηµν +
ληµληνρa

λaρ

σ(a)
. (A16)

Taking ansatz
Dµ

ν = ±(Lµ
ν + AληνλaλaρLµ

ρ ) , (A17)
where A is a constant which is determined by the normal-
ization constraint Eq. (A16),

A =
1

σ(a) +
√

σ
. (A18)

Substituting Eqs. (A16), (A17), and (A19) into Eq. (A15),

we finally obtain

x̃µ = ±
√

σ(a)σ(a, x)−1(xν − aν)

×
(
Lµ

ν + R−2 1
σ(a) +

√
σ

ηνρa
ρaλLµ

λ

)
, (A19)

where λ = R−2 has been used. Equation (A19) is just
Eq. (41) in the text.
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π̂ = −i~∂x are always true to any dynamics system with
H = π2/2m+V (x, t, π). As commutator between genera-
tors of space-time displacements, [Ĥ, π̂] = ~2[∂t, ∂x] = 0.
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