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Preface to the second
edition

Let me thank everyone who over the past decade has provided me with
suggestions and corrections for improving the first edition of this book. I
am extraordinarily grateful. Although I have not always followed these many
pieces of advice and criticism, I have thought carefully about them all. So
many people have helped me out that it is unfortunately no longer feasible to
list all their names. I have also received extraordinary help from everyone at
the AMS, especially Sergei Gelfand, Stephen Moye and Arlene O’Sean. The
NSF has generously supported my research during the writing of both the
original edition of the book and this revision. I will continue to maintain
lists of errors on my homepage, accessible through the math.berkeley.edu
website.

When you write a big book on a big subject, the temptation is to include
everything. A critic famously once imagined Tolstoy during the writing of
War and Peace: “The book is long, but even if it were twice as long, if
it were three times as long, there would always be scenes that have been
omitted, and these Tolstoy, waking up in the middle of the night, must have
regretted. There must have been a night when it occurred to him that he
had not included a yacht race...” (G. Moore, Avowals).

This image notwithstanding, I have tried to pack into this second edition
as many fascinating new topics in partial differential equations (PDE) as I
could manage, most notably in the new Chapter 12 on nonlinear wave equa-
tions. There are new sections on Noether’s Theorem and on local minimizers
in the calculus of variations, on the Radon transform, on Turing instabili-
ties for reaction-diffusion systems, etc. I have rewritten and expanded the

L]
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xviii PREFACE TO THE SECOND EDITION

previous discussions on blow-up of solutions, on group and phase velocities,
and on several further subjects. T have also updated and greatly increased
citations to books in the bibliography and have moved references to research
articles to within the text. There are countless further minor modifications
in notation and wording. Most importantly, I have added about 80 new
exercises, most quite interesting and some rather elaborate. There are now
over 200 in total.

And there is a yacht race among the problems for Chapter 10.

LCE
January, 2010
Berkeley



Preface to the first
edition

I present in this book a wide-ranging survey of many important topics in
the theory of partial differential equations (PDE), with particular emphasis
on various modern approaches. I have made a huge number of editorial
decisions about what to keep and what to toss out, and can only claim
that this selection seems to me about right. I of course include the usual
formulas for solutions of the usual linear PDE, but also devote large amounts
of exposition to energy methods within Sobolev spaces, to the calculus of
variations, to conservation laws, etc.

My general working principles in the writing have been these:

a. PDE theory is (mostly) not restricted to two independent vari-
ables. Many texts describe PDE as if functions of the two variables (z,y)
or (z,t) were all that matter. This emphasis seems to me misleading, as
modern discoveries concerning many types of equations, both linear and
nonlinear, have allowed for the rigorous treatment of these in any number
of dimensions. I also find it unsatisfactory to “classify” partial differential
equations: this is possible in two variables, but creates the false impression
that there is some kind of general and useful classification scheme available
in general.

b. Many interesting equations are nonlinear. My view is that overall
we know too much about linear PDE and too little about nonlinear PDE. I
have accordingly introduced nonlinear concepts early in the text and have
tried hard to emphasize everywhere nonlinear analogues of the linear theory.

Xix
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c. Understanding generalized solutions is fundamental. Many of the
partial differential equations we study, especially nonlinear first-order equa-
tions, do not in general possess smooth solutions. It is therefore essential to
devise some kind of proper notion of generalized or weak solution. This is
an important but subtle undertaking, and much of the hardest material in
this book concerns the uniqueness of appropriately defined weak solutions.

d. PDE theory is not a branch of functional analysis. Whereas
certain classes of equations can profitably be viewed as generating abstract
operators between Banach spaces, the insistence on an overly abstract view-
point, and consequent ignoring of deep calculus and measure theoretic esti-
mates, is ultimately limiting.

e. Notation is a nightmare. I have really tried to introduce consistent
notation, which works for all the important classes of equations studied.
This attempt is sometimes at variance with notational conventions within a
given subarea.

f. Good theory is (almost) as useful as exact formulas. I incorporate
this principle into the overall organization of the text, which is subdivided
into three parts, roughly mimicking the historical development of PDE the-
ory itself. Part I concerns the search for explicit formulas for solutions, and
Part IT the abandoning of this quest in favor of general theory asserting
the existence and other properties of solutions for linear equations. Part III
is the mostly modern endeavor of fashioning general theory for important
classes of nonlinear PDE.

Let me also explicitly comment here that I intend the development
within each section to be rigorous and complete (exceptions being the frankly
heuristic treatment of asymptotics in §4.5 and an occasional reference to a
research paper). This means that even locally within each chapter the topics
do not necessarily progress logically from “easy” to “hard” concepts. There
are many difficult proofs and computations early on, but as compensation
many easier ideas later. The student should certainly omit on first reading
some of the more arcane proofs.

I wish next to emphasize that this is a textbook, and not a reference
book. I have tried everywhere to present the essential ideas in the clearest
possible settings, and therefore have almost never established sharp versions
of any of the theorems. Research articles and advanced monographs, many
of them listed in the Bibliography, provide such precision and generality.
My goal has rather been to explain, as best I can, the many fundamental
ideas of the subject within fairly simple contexts.
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I have greatly profited from the comments and thoughtful suggestions
of many of my colleagues, friends and students, in particular: S. Antman,
J. Bang, X. Chen, A. Chorin, M. Christ, J. Cima, P. Colella, J. Cooper,
M. Crandall, B. Driver, M. Feldman, M. Fitzpatrick, R. Gariepy, J. Gold-
stein, D. Gomes, O. Hald, W. Han, W. Hrusa, T. Ilmanen, I. Ishii, I. Israel,
R. Jerrard, C. Jones, B. Kawohl, S. Koike, J. Lewis, T.-P. Liu, H. Lopes,
J. McLaughlin, K. Miller, J. Morford, J. Neu, M. Portilheiro, J. Ralston,
F. Rezakhanlou, W. Schlag, D. Serre, P. Souganidis, J. Strain, W. Strauss,
M. Struwe, R. Temam, B. Tvedt, J.-L.. Vazquez, M. Weinstein, P. Wolfe,
and Y. Zheng.

I especially thank Tai-Ping Liu for many years ago writing out for me
the first draft of what is now Chapter 11.

I am extremely grateful for the suggestions and lists of mistakes from
earlier drafts of this book sent to me by many readers, and I encourage others
to send me their comments, at evans@math.berkeley.edu. I have come to
realize that I must be more than slightly mad to try to write a book of
this length and complexity, but I am not yet crazy enough to think that I
have made no mistakes. I will therefore maintain a listing of errors
which come to light, and will make this accessible through the
math.berkeley.edu homepage.

Faye Yeager at UC Berkeley has done a really magnificent job typing
and updating these notes, and Jaya Nagendra heroically typed an earlier
version at the University of Maryland. My deepest thanks to both.

I have been supported by the NSF during much of the writing, most
recently under grant DMS-9424342.
LCE
August, 1997
Berkeley



Chapter 1

INTRODUCTION

1.1 Partial differential equations
1.2 Examples
1.3 Strategies for studying PDE
1.4 Overview
1.5 Problems

1.6 References

This chapter surveys the principal theoretical issues concerning the solv-
ing of partial differential equations.

To follow the subsequent discussion, the reader should first of all turn
to Appendix A and look over the notation presented there, particularly the
multiindex notation for partial derivatives.

1.1. PARTIAL DIFFERENTIAL EQUATIONS

A partial differential equation (PDE) is an equation involving an unknown
function of two or more variables and certain of its partial derivatives.

Using the notation explained in Appendix A, we can write out symbol-
ically a typical PDE, as follows. Fix an integer k¥ > 1 and let U denote an
open subset of R™.

DEFINITION. An expression of the form
(1) F(D*u(z), D tu(z),..., Du(z),u(z),z) =0 (z € U)
is called a k*™-order partial differential equation, where

F R xR ' x.-.xR*"xRxU—R

'-—*I



2 1. INTRODUCTION

is given and
u:U—->R
is the unknown.

We solve the PDE if we find all u verifying (1), possibly only among those
functions satisfying certain auxiliary boundary conditions on some part T’
of OU. By finding the solutions we mean, ideally, obtaining simple, explicit
solutions, or, failing that, deducing the existence and other properties of

solutions.
DEFINITIONS.
(i) The partial differential equation (1) is called linear if it has the form
> ta(@)Du = f(x)
lo|<k
for given functions aq (Ja| < k), f. This linear PDE is homogeneous
if f=0.
(ii) The PDE (1) is semilinear if it has the form
Z ao(z)D%u + ag(D*tu, ..., Du,u,z) = 0.
la|=k
(i) The PDE (1) is quasilinear if it has the form
Z ao(D* Y, ..., Du,u,z) D% + ag(D* tu, ..., Du,u,z) = 0.
|a|=k

(iv) The PDE (1) is fully nonlinear if it depends nonlinearly upon the
highest order derivatives.

A system of partial differential equations is, informally speaking, a col-
lection of several PDE for several unknown functions.

DEFINITION. An expression of the form
(2) F(D*u(z), D*"tu(z),...,Du(z),u(z),z) =0 (z € U)
is called a k*P-order system of partial differential equations, where
F:R™ xR™ 7 x ... x R™ x R™ x U — R™
is given and
u:U—-R™ u=(ul,...,u™)

is the unknown.

Here we are supposing that the system comprises the same number m
of scalar equations as unknowns (u!,... ,u™). This is the most common
circumstance, although other systems may have fewer or more equations
than unknowns. Systems are classified in the obvious way as being linear,
semilinear, etc.
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NOTATION. We write “PDE” as an abbreviation for both the singular
“partial differential equation” and the plural “partial differential equations”.

1.2. EXAMPLES

There is no general theory known concerning the solvability of all partial
differential equations. Such a theory is extremely unlikely to exist, given
the rich variety of physical, geometric, and probabilistic phenomena which
can be modeled by PDE. Instead, research focuses on various particular
partial differential equations that are important for applications within and
outside of mathematics, with the hope that insight from the origins of these
PDE can give clues as to their solutions.

Following is a list of many specific partial differential equations of in-
terest in current research. This listing is intended merely to familiarize the
reader with the names and forms of various famous PDE. To display most
clearly the mathematical structure of these equations, we have mostly set
relevant physical constants to unity. We will later discuss the origin and
interpretation of many of these PDE.

Throughout = € U, where U is an open subset of R”, and ¢ > 0. Also
Du = Dyu = (ug,,...,us,) denotes the gradient of u with respect to the
spatial variable x = (z1,...,2,). The variable ¢ always denotes time.

1.2.1. Single partial differential equations.
a. Linear equations.

1. Laplace’s equation

n
Au = E Ug,z; = 0.
i=1

2. Helmholtz’s (or eigenvalue) equation

—Au = du.

3. Linear transport equation

n
U + Zbiuxi =0.

=1

4. Liouville’s equation

n

U — Z(blu)zz =0.

i=1
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5. Heat (or diffusion) equation
— Ay =0.
6. Schrodinger’s equation
ug + Au=0.

7. Kolmogorov’s equation

Z a® Uz,z, + szuwl =0.

4,j=1

8. Fokker—Planck equation

Z (69u) g, — Z(b’u)zi =0.

1,j=1 =1

9. Wave equation
Ut — Au = 0.

10. Klein—-Gordon equation

ur — Au + m2u = 0.
11. Telegraph equation

Ut + 2dus — Ugy = 0.

12. General wave equation

U — Z a u:pi:z] + Zb’uwz 0.

1,y=1
13. Airy’s equation
Ut + Ugze = 0.
14. Beam equation

Ugt + Ugzze = 0.
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b. Nonlinear equations.

1. Eikonal equation
|Du| = 1.

2. Nonlinear Poisson equation
—Au = f(u).
3. p-Laplacian equation
div(|Du|P~2Du) = 0.

4. Minimal surface equation

Du
o () =
5. Monge—Ampeére equation
det(D?u) = f.
6. Hamilton-Jacobi equation
ut + H(Du,z) = 0.
7. Scalar conservation law
ut + divF(u) = 0.
8. Inviscid Burgers’ equation
U + uugy = 0.
9. Scalar reaction-diffusion equation
ur — Au = f(u).
10. Porous medium equation
ug — A(u”) = 0.
11. Nonlinear wave equation
uy — Au+ f(u) = 0.
12. Korteweg-deVries (KdV) equation
Ut + Uy + Ugge = 0.

13. Nonlinear Schridinger equation

iug + Au = f(|ul?)u.
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1.2.2. Systems of partial differential equations.
a. Linear systems.
1. Equilibrium equations of linear elasticity
pAu+ (A + p)D(divu) = 0.
2. FEvolution equations of linear elasticity
uy — pAu — (A + p)D(divu) = 0.
3. Mazwell’s equations

E; =curl B
B; = —curlE
divB =divE = 0.

b. Nonlinear systems.
1. System of conservation laws
u; + divF(u) = 0.
2. Reaction-diffusion system
u; — Au = f(u).

3. FEuler’s equations for incompressible, inviscid flow

{ut+u~Du:—Dp
divu = 0.

4. Navier-Stokes equations for incompressible, viscous flow

{ut+u~Du—Au=—Dp
divu = 0.

See Zwillinger [Zw] for a much more extensive listing of interesting PDE.

1.3. STRATEGIES FOR STUDYING PDE

As explained in §1.1 our goal is the discovery of ways to solve partial differ-
ential equations of various sorts, but—as should now be clear in view of the
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many diverse examples set forth in §1.2—this is no easy task. And indeed
the very question of what it means to “solve” a given PDE can be subtle,
depending in large part on the particular structure of the problem at hand.

1.3.1. Well-posed problems, classical solutions.

The informal notion of a well-posed problem captures many of the desir-
able features of what it means to solve a PDE. We say that a given problem
for a partial differential equation is well-posed if

(i) the problem in fact has a solution;

(ii) this solution is unique;
and
(ili) the solution depends continuously on the data given in the problem.

The last condition is particularly important for problems arising from
physical applications: we would prefer that our (unique) solution changes
only a little when the conditions specifying the problem change a little. (For
many problems, on the other hand, uniqueness is not to be expected. In
these cases the primary mathematical tasks are to classify and characterize
the solutions.)

Now clearly it would be desirable to “solve” PDE in such a way that
(i)—(iii) hold. But notice that we still have not carefully defined what we
mean by a “solution”. Should we ask, for example, that a “solution” u must
be real analytic or at least infinitely differentiable? This might be desirable,
but perhaps we are asking too much. Maybe it would be wiser to require a
solution of a PDE of order & to be at least k times continuously differentiable.
Then at least all the derivatives which appear in the statement of the PDE
will exist and be continuous, although maybe certain higher derivatives will
not exist. Let us informally call a solution with this much smoothness a
classical solution of the PDE: this is certainly the most obvious notion of
solution.

So by solving a partial differential equation in the classical sense we mean
if possible to write down a formula for a classical solution satisfying (i)—(iii)
above, or at least to show such a solution exists, and to deduce various of
its properties.

1.3.2. Weak solutions and regularity.

But can we achieve this? The answer is that certain specific partial
differential equations (e.g. Laplace’s equation) can be solved in the classical
sense, but many others, if not most others, cannot. Consider for instance
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the scalar conservation law
ut + F(u); = 0.

We will see in §3.4 that this PDE governs various one-dimensional phenom-
ena involving fluid dynamics, and in particular models the formation and
propagation of shock waves. Now a shock wave is a curve of discontinuity
of the solution u; and so if we wish to study conservation laws, and recover
the underlying physics, we must surely allow for solutions u which are not
continuously differentiable or even continuous. In general, as we shall see,
the conservation law has no classical solutions but is well-posed if we allow
for properly defined generalized or weak solutions.

This is all to say that we may be forced by the structure of the par-
ticular equation to abandon the search for smooth, classical solutions. We
must instead, while still hoping to achieve the well-posedness conditions (i)—
(iii), investigate a wider class of candidates for solutions. And in fact, even
for those PDE which turn out to be classically solvable, it is often most
expedient initially to search for some appropriate kind of weak solution.

The point is this: if from the outset we demand that our solutions be very
regular, say k-times continuously differentiable, then we are usually going
to have a really hard time finding them, as our proofs must then necessarily
include possibly intricate demonstrations that the functions we are building
are in fact smooth enough. A far more reasonable strategy is to consider as
separate the ezistence and the smoothness (or regularity) problems. The idea
is to define for a given PDE a reasonably wide notion of a weak solution, with
the expectation that since we are not asking too much by way of smoothness
of this weak solution, it may be easier to establish its existence, uniqueness,
and continuous dependence on the given data. Thus, to repeat, it is often
wise to aim at proving well-posedness in some appropriate class of weak or
generalized solutions.

Now, as noted above, for various partial differential equations this is
the best that can be done. For other equations we can hope that our weak
solution may turn out after all to be smooth enough to qualify as a classical
solution. This leads to the question of regularity of weak solutions. As we
will see, it is often the case that the existence of weak solutions depends
upon rather simple estimates plus ideas of functional analysis, whereas the
regularity of the weak solutions, when true, usually rests upon many intricate
calculus estimates.

Let me explicitly note here that once we are past Part I (Chapters 2—4),
our efforts will be largely devoted to proving mathematically the existence
of solutions to various sorts of partial differential equations, and not so much
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to deriving formulas for these solutions. This may seem wasted or misguided
effort, but in fact mathematicians are like theologians: we regard existence
as the prime attribute of what we study. But unlike theologians, we need
not always rely upon faith alone.

1.3.3. Typical difficulties.

Following are some vague but general principles, which may be useful to
keep in mind:

(i) Nonlinear equations are more difficult than linear equations; and,
indeed, the more the nonlinearity affects the higher derivatives, the
more difficult the PDE is.

(ii) Higher-order PDE are more difficult than lower-order PDE.
(iii) Systems are harder than single equations.

(iv) Partial differential equations entailing many independent variables
are harder than PDE entailing few independent variables.

(v) For most partial differential equations it is not possible to write out
explicit formulas for solutions.

None of these assertions is without important exceptions.

1.4. OVERVIEW

This textbook is divided into three major Parts.

PART I: Representation Formulas for Solutions

Here we identify those important partial differential equations for which
in certain circumstances explicit or more-or-less explicit formulas can be had
for solutions. The general progression of the exposition is from direct formu-
las for certain linear equations to far less concrete representation formulas,
of a sort, for various nonlinear PDE.

Chapter 2 is a detailed study of four exactly solvable partial differen-
tial equations: the linear transport equation, Laplace’s equation, the heat
equation, and the wave equation. These PDE, which serve as archetypes for
the more complicated equations introduced later, admit directly computable
solutions, at least in the case that there is no domain whose boundary geom-
etry complicates matters. The explicit formulas are augmented by various
indirect, but easy and attractive, “energy”-type arguments, which serve as
motivation for the developments in Chapters 6, 7 and thereafter.

Chapter 3 continues the theme of searching for explicit formulas, now
for general first-order nonlinear PDE. The key insight is that such PDE
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can, locally at least, be transformed into systems of ordinary differential
equations (ODE), the characteristic equations. We stipulate that once the
problem becomes “only” the question of integrating a system of ODE, it
is in principle solved, sometimes quite explicitly. The derivation of the
characteristic equations given in the text is very simple and does not require
any geometric insights. It is in truth so easy to derive the characteristic
equations that no real purpose is had by dealing with the quasilinear case
first.

We introduce also the Hopf-Lax formula for Hamilton—Jacobi equa-
tions (83.3) and the Lax—Oleinik formula for scalar conservation laws (§3.4).
(Some knowledge of measure theory is useful here but is not essential.) These
sections provide an early acquaintance with the global theory of these im-
portant nonlinear PDE and so motivate the later Chapters 10 and 11.

Chapter 4 is a grab bag of techniques for explicitly (or kind of explicitly)
solving various linear and nonlinear partial differential equations, and the
reader should study only whatever seems interesting. The section on the
Fourier transform is, however, essential. The Cauchy—Kovalevskaya Theo-
rem appears at the very end. Although this is basically the only general exis-
tence theorem in the subject, and thus logically should perhaps be regarded
as central, in practice these power series methods are not so prevalent.

PART II: Theory for Linear Partial Differential Equations

Next we abandon the search for explicit formulas and instead rely on
functional analysis and relatively easy “energy” estimates to prove the ex-
istence of weak solutions to various linear PDE. We investigate also the
uniqueness and regularity of such solutions and deduce various other prop-
erties.

Chapter 5 is an introduction to Sobolev spaces, the proper setting for
the study of many linear and nonlinear partial differential equations via en-
ergy methods. This is a hard chapter, the real worth of which is only later
revealed, and requires some basic knowledge of Lebesgue measure theory.
However, the requirements are not really so great, and the review in Ap-
pendix E should suffice. In my opinion there is no particular advantage in
considering only the Sobolev spaces with exponent p = 2, and indeed in-
sisting upon this obscures the two central inequalities, those of Gagliardo—
Nirenberg—Sobolev (§5.6.1) and of Morrey (§5.6.2).

In Chapter 6 we vastly generalize our knowledge of Laplace’s equation to
other second-order elliptic equations. Here we work through a rather com-
plete treatment of existence, uniqueness and regularity theory for solutions,
including the maximum principle, and also a reasonable introduction to the
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study of eigenvalues, including a discussion of the principal eigenvalue for
nonselfadjoint operators.

Chapter 7 expands the energy methods to a variety of linear partial
differential equations characterizing evolutions in time. We broaden our
earlier investigation of the heat equation to general second-order parabolic
PDE and of the wave equation to general second-order hyperbolic PDE. We
study as well linear first-order hyperbolic systems, with the aim of motivat-
ing the developments concerning nonlinear systems of conservation laws in
Chapter 11. The concluding section 7.4 presents the alternative functional
analytic method of semigroups for building solutions.

(Missing from this long Part II on linear partial differential equations is
any discussion of distribution theory or potential theory. These are impor-
tant topics, but for our purposes seem dispensable, even in a book of such
length. These omissions do not slow us up much and make room for more
nonlinear theory.)

PART III: Theory for Nonlinear Partial Differential Equations

This section parallels for nonlinear PDE the development in Part II but
is far less unified in its approach, as the various types of nonlinearity must
be treated in quite different ways.

Chapter 8 commences the general study of nonlinear partial differential
equations with an extensive discussion of the calculus of variations. Here
we set forth a careful derivation of the direct method for deducing the ex-
istence of minimizers and discuss also a variety of variational systems and
constrained problems, as well as minimax methods. Variational theory is
the most useful and accessible of the methods for nonlinear PDE, and so
this chapter is fundamental.

Chapter 9 is, rather like Chapter 4 earlier, a gathering of assorted other
techniques of use for nonlinear elliptic and parabolic partial differential equa-
tions. We encounter here monotonicity and fixed point methods and a vari-
ety of other devices, mostly involving the maximum principle. We study as
well certain nice aspects of nonlinear semigroup theory, to complement the
linear semigroup theory from Chapter 7.

Chapter 10 is an introduction to the modern theory of Hamilton—Jacobi
PDE and in particular to the notion of “viscosity solutions”. We encounter
also the connections with the optimal control of ODE, through dynamic
programming.
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Chapter 11 picks up from Chapter 3 the discussion of conservation laws,
now systems of conservation laws. Unlike the general theoretical develop-
ments in Chapters 5-9, for which Sobolev spaces provide the proper abstract
framework, we are forced to employ here direct linear algebra and calculus
computations. We pay particular attention to the solution of Riemann’s
problem and to entropy criteria.

Chapter 12, an introduction to nonlinear wave equations, is new with
this edition. We provide long time and short time existence theorems for
certain quasilinear wave equations and an in-depth examination of semilinear
wave equations, especially for subcritical and critical power nonlinearities in
three space dimensions. To complement these existence theorems, the final
section identifies various criteria ensuring nonexistence of solutions.

Appendices A-E provide for the reader’s convenience some background
material, with selected proofs, on inequalities, linear functional analysis,
measure theory, etc.

The Bibliography is an updated and extensive listing of interesting PDE
books to consult for further information. Since this is a textbook and not
a reference monograph, I have mostly not attempted to track down and
document the original sources for the myriads of ideas and methods we will
encounter. The mathematical literature for partial differential equations is
truly vast, but the books cited in the Bibliography should at least provide
a starting point for locating the primary sources. (Citations to selected
research papers appear throughout the text.)

1.5. PROBLEMS

1. Classify each of the partial differential equations in §1.2 as follows:
(a) Is the PDE linear, semilinear, quasilinear or fully nonlinear?
(b) What is the order of the PDE?

2. Let k be a positive integer. Show that a smooth function defined on
R™ has in general
n+k—-1\ (n+k-1
k N n—1

distinct partial derivatives of order k.

(Hint: This is the number of ways of inserting n — 1 dividers | within
a row of k symbols o: for example, oco|[ooo|o|ooo]|loooo|
Explain why each such pattern corresponds to precisely one of the
partial derivatives of order k.)
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The next exercises provide some practice with the multiindex notation
introduced in Appendix A.

3. Prove the Multinomial Theorem:
a
@1+ z) =) (’ |)Ia,
|a|=k @
where (|g|) = %, al =olag!. .. ap!, and 2% = z7* ... 2%". The sum
is taken over all multiindices o = (a1, ..., a,) with |a| = k.
4. Prove Leibniz’s formula:
e
D*(uv) = ( )D'BuDO‘_'Bv,
(wv) ﬁ;a 8
where u,v : R — R are smooth, (g) = Wlﬁ)" and f < a means

Bi<ai(i=1,...,n).
5. Assume that f : R® — R is smooth. Prove

f@) =3 épaf(ow +0(zfF)  asz— 0

|| <k

for each k =1,2,.... This is Taylor’s formula in multiindex notation.

(Hint: Fix z € R™ and consider the function of one variable g(t) :=

f(tz).)

1.6. REFERENCES

Klainerman’s article [Kl] is a nice modern overview of the field of partial
differential equations.

Good general texts and monographs on PDE include Arnold [Ar2],
Courant—Hilbert [C-H], DiBenedetto [DB1], Folland [F'1], Friedman [Fr2].
Garabedian [G], John [J2], Jost [Jo], McOwen [MO], Mikhailov [M], Petro-
vsky [Py], Rauch [R], Renardy-Rogers [R-R], Smirnov [Sm], Smoller [S],
Strauss [St2], Taylor [Ta|, Thoe-Zachmanoglou [T-Z|, Zauderer [Za], and
many others. The prefaces to Arnold [Ar2] and to Bernstein [Bt] are in-
teresting reading. Zwillinger’s handbook [Zw] on differential equations is a
useful compendium of methods for PDE.
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Chapter 2

FOUR IMPORTANT
LINEAR PARTIAL
DIFFERENTIAL
EQUATIONS

2.1 Transport equation
2.2 Laplace’s equation
2.3 Heat equation

2.4 Wave equation

2.5 Problems

2.6 References

In this chapter we introduce four fundamental linear partial differen-
tial equations for which various explicit formulas for solutions are available.
These are

the transport equation  u¢+b-Du =0 (§2.1),
Laplace’s equation Au=0 (§2.2),
the heat equation up—Au =0 (§2.3),
the wave equation Uy — Au =10 (§2.4)

Before going further, the reader should review the discussions of inequal-
ities, integration by parts, Green’s formulas, convolutions, etc., in Appen-
dices B and C and later refer back to these as necessary.
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2.1. TRANSPORT EQUATION

One of the simplest partial differential equations is the transport equation
with constant coefficients. This is the PDE

(1) ut+b-Du=0 inR" x (0,00),

where b is a fixed vector in R™, b = (b1,...,b,), and u : R™ x [0,00) — R
is the unknown, u = u(z,t). Here z = (x1,... ,z,) € R™ denotes a typical
point in space, and ¢ > 0 denotes a typical time. We write Du = Dyu =
(ugyy - -, Uug,) for the gradient of u with respect to the spatial variables z.

Which functions u solve (1)? To answer, let us suppose for the moment
we are given some smooth solution u and try to compute it. To do so, we
first must recognize that the partial differential equation (1) asserts that a
particular directional derivative of u vanishes. We exploit this insight by
fixing any point (z,t) € R™ x (0,00) and defining

z(s) == u(z + sb,t+s) (se€R).

We then calculate

. d
2(s) = Du(z + sb,t +s) - b+ ut(x + sb,t +5) =0 ( = £> ,
the second equality holding owing to (1). Thus z(-) is a constant function of
s, and consequently for each point (z,t), u is constant on the line through
(z,t) with the direction (b,1) € R**1. Hence if we know the value of u at
any point on each such line, we know its value everywhere in R™ x (0, c0).

2.1.1. Imitial-value problem.

For definiteness therefore, let us consider the initial-value problem

@) {ut+b~Du:O in R” x (0, 0)

u=g onR"x {t=0}
Here b € R™ and g : R®™ — R are known, and the problem is to compute
u. Given (z,t) as above, the line through (z,t) with direction (b,1) is
represented parametrically by (z + sb,t + s) (s € R). This line hits the
plane I' := R™ x {t = 0} when s = —¢, at the point (z — tb,0). Since u is
constant on the line and u(z — tb,0) = g(z — tb), we deduce

(3) u(z,t) = g(z —tb) (z € R™,t>0).

So, if (2) has a sufficiently regular solution w, it must certainly be given
by (3). And conversely, it is easy to check directly that if g is C*, then u
defined by (3) is indeed a solution of (2).
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Weak solutions. If g is not C*, then there is obviously no C! solution of
(2). But even in this case formula (3) certainly provides a strong, and in
fact the only reasonable, candidate for a solution. We may thus informally
declare u(z,t) = g(z —tb) (z € R™, t > 0) to be a weak solution of (2), even
should g not be C'. This all makes sense even if g and thus u are discontin-
uous. Such a notion, that a nonsmooth or even discontinuous function may
sometimes solve a PDE, will come up again later when we study nonlinear
transport phenomena in §3.4.

2.1.2. Nonhomogeneous problem.
Next let us look at the associated nonhomogeneous problem

() ug+b-Du=f in R™ x (0,00)
u=g onR"x {t=0}.

As before fix (z,t) € R**! and, inspired by the calculation above, set z(s) :=
u(z + sb,t + s) for s € R. Then

2(s) = Du(z + sb,t 4+ s) - b+ u(xz + sb,t + s) = f(z + sb,t + s).

Consequently
0
u(z,t) — g(z — tb) = z(0) — 2(—t) = /_t z(s)ds

0
:/ f(z+ sb,t+s)ds
—t

= / f(z+ (s—1t)b,s)ds,
0

and so
6)  u(z,t) =gz —tb) -I-/O flz+ (s—1t)b,s)ds (x€R", t>0)

solves the initial-value problem (4).

We will later employ this formula to solve the one-dimensional wave
equation, in §2.4.1.

Remark. Observe that we have derived our solutions (3), (5) by in effect
converting the partial differential equations into ordinary differential equa-
tions. This procedure is a special case of the method of characteristics,
developed later in §3.2.
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2.2. LAPLACE’S EQUATION

Among the most important of all partial differential equations are undoubt-
edly Laplace’s equation

(1) Au=0

and Poisson’s equation

*

(2) —Au = f.

In both (1) and (2), € U and the unknown is u : U — R, u = u(z),
where U C R" is a given open set. In (2) the function f : U — R is also

given. Remember from §A.3 that the Laplacian of u is Au = Y"1 | ug,q,.

DEFINITION. A C? function u satisfying (1) is called a harmonic func-
tion.

Physical interpretation. Laplace’s equation comes up in a wide variety
of physical contexts. In a typical interpretation uw denotes the density of
some quantity (e.g. a chemical concentration) in equilibrium. Then if V is
any smooth subregion within U, the net flux of u through 0V is zero:

/ F.-vdS =0,
ov

F denoting the flux density and v the unit outer normal field. In view of
the Gauss—Green Theorem (§C.2), we have

/didea::/ F-vdS=0,
14 1%

and so
(3) divF=0 1inU,

since V' was arbitrary. In many instances it is physically reasonable to as-
sume the flux F is proportional to the gradient Du but points in the opposite
direction (since the flow is from regions of higher to lower concentration).
Thus

(4) F=—-aDu (a>0).

*I prefer to write (2) with the minus sign, to be consistent with the notation for general
second-order elliptic operators in Chapter 6.
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Substituting into (3), we obtain Laplace’s equation
div(Du) = Au = 0.

If u denotes the ) )
chemical concentration
temperature
electrostatic potential,

equation (4) is

Fick’s law of diffusion
Fourier’s law of heat conduction

Ohm’s law of electrical conduction.

See Feynman-Leighton-Sands [F-L-S, Chapter 12] for a discussion of the
ubiquity of Laplace’s equation in mathematical physics. Laplace’s equa-
tion arises as well in the study of analytic functions and the probabilistic
investigation of Brownian motion.

2.2.1. Fundamental solution.

a. Derivation of fundamental solution. One good strategy for inves-
tigating any partial differential equation is first to identify some explicit
solutions and then, provided the PDE is linear, to assemble more compli-
cated solutions out of the specific ones previously noted. Furthermore, in
looking for explicit solutions, it is often wise to restrict attention to classes
of functions with certain symmetry properties. Since Laplace’s equation is
invariant under rotations (Problem 2), it consequently seems advisable to
search first for radial solutions, that is, functions of r = |z|.

Let us therefore attempt to find a solution u of Laplace’s equation (1)
in U = R", having the form
u(z) =v(r),

where r = |z| = (27 4 --- + 22)Y/2 and v is to be selected (if possible) so
that Au = 0 holds. First note for ¢ = 1,...,n that

or
8:61'

We thus have

2 -1/2

1
:§(x1+~-+x,%)

2z; = % (x #0).

2 2
Z; x; 1z
Ug;, = v/(r)f, Ugz; = v”(r)r—; +/(r) (F — _l)
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fori=1,...,n, and so
-1
Au=1"(r) + o V(7).
Hence Au = 0 if and only if
-1
(5) '+ =0
T
If v’ # 0, we deduce
" 1 —-n
l 11\/ — U_ —
og(vly =% =",

and hence v'(r) = 721 for some constant a. Consequently if r > 0, we have

()_{blogr+c (n=2)
Tl e (n>3),

where b and c are constants.

These considerations motivate the following

DEFINITION. The function

{ — 5 log |z (n=2)
—'n(n—%)cx(n) _|:v|71‘_2 (n>3),

(6) d(z) :=

defined for x € R™, x # 0, is the fundamental solution of Laplace’s equation.

The reason for the particular choices of the constants in (6) will be
apparent in a moment. (Recall from §A.2 that a(n) denotes the volume of
the unit ball in R™.)

We will sometimes slightly abuse notation and write ®(z) = ®(|z|) to
emphasize that the fundamental solution is radial. Observe also that we
have the estimates

C C
(7) |D®(z)| < 2T |D?®(z)| < iz (z #0)
for some constant C' > 0.

b. Poisson’s equation. By construction the function z — &®(z) is har-
monic for z # 0. If we shift the origin to a new point y, the PDE (1) is
unchanged; and so z +— ®(z — y) is also harmonic as a function of z, x # y.
Let us now take f : R” — R and note that the mapping z — ®(z — y) f(y)
(x # y) is harmonic for each point y € R™, and thus so is the sum of finitely
many such expressions built for different points y.
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This reasoning might suggest that the convolution
u(z)= [gn @(z —y)f(y) dy
(8) - {—2% Jgelog(lz —y))f(v)dy (n=2
et Jer A Ay (123)

will solve Laplace’s equation (1). However, this is wrong. Indeed, as inti-
mated by estimate (7), D?®(x — y) is not summable near the singularity at
y = x, and so naive differentiation through the integral sign is unjustified
(and incorrect). We must proceed more carefully in calculating Au.

Let us for simplicity now assume f € C2(R"™); that is, f is twice contin-
uously differentiable, with compact support.

THEOREM 1 (Solving Poisson’s equation). Define u by (8). Then
(i) u € C?(R")
and
(ii) —Au=f inR™
We consequently see that (8) provides us with a formula for a solution

of Poisson’s equation (2) in R™.

Proof. 1. We have
© =] - 0iwd= [ ewie-y)d

hence

u(x+heii)-u(x) :/nq)(y) [f(w+hei—z)—f(x—y) dy,

where h # 0 and e; = (0,...,1,...,0), the 1 in the i*h-slot. But

f(z + he; _Z) —flz-y) | forlz —v)

uniformly on R™ as h — 0, and thus

un(@) = [ SWfnle—w)dy (=1,....n),

Similarly

(10) Uz;z; (:C) = /n (I)(y)fwiwj ("1j - Z/) dy (i,7=1,...,n).
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As the expression on the right-hand side of (10) is continuous in the variable
z, we see u € C?(R").

2. Since ® blows up at 0, we will need for subsequent calculations to
isolate this singularity inside a small ball. So fix € > 0. Then

D)= /B o, 2OAS D)y /R o, 0Ty
= I. + J..

Now

Ce?|1 -9
(12)  |L| < ClID* | poo ey /B(o @(y),dyg{ e?loge| (n=2)

Ce? (n > 3).
An integration by parts (see §C.2) yields

Je = / O(y)Ayf(z —y)dy
R™—B(0,¢)

) = [, PO Dl dy
of
o, 205 0 S
=: K¢ + L,

v denoting the inward pointing unit normal along 9B(0, ). We readily check

Cell n=2
(14)  |Le| < HDfllLoo(lr\m/‘9 [2(y)[dS(y) < { cj e En > 3;

0,e

3. We continue by integrating by parts once again in the term K¢, to
discover

FoL]
K. = A®(y)f(z—y)dy — / 5, W)f(z—y)dS(y)
R"—B(0,) 8B(0,e) OV
a9
=—/ 5, Wf(z—y)dS(),
9B(0,e) OV
since ® is harmonic away from the origin. Now D®(y) = _( lyL (y 7& 0)
andv = i = —% on 9B(0,¢). Consequently ‘g—f( )=v-D®(y W

on 0B(0,¢). Slnce na(n)e™ ! is the surface area of the sphere B(0,¢), we
have
1

K. = —W /83(0,5) f(z—y)dS(y)

(15)
_ ][ f@)dS(y) —» —f(z) ase— 0.
OB(z\€)



2.2. LAPLACE’S EQUATION 25

(Remember from §A.3 that a slash through an integral denotes an average.)
4. Combining now (11)—(15) and letting ¢ — 0, we find —Au(z) = f(z),
g

as asserted.

Theorem 1 is in fact valid under far less stringent smoothness require-
ments for f: see Gilbarg-Trudinger [G-T)|.

Interpretation of fundamental solution. We sometimes write
—Ad = (50 in Rn,

Jop denoting the Dirac measure on R™ giving unit mass to the point 0. Adopt-
ing this notation, we may formally compute

—Au(z) = - —A;®(z —y)f(y) dy
- / ) dy=f() (ceR),

in accordance with Theorem 1. This corrects the faulty calculation (9).

2.2.2. Mean-value formulas.

Consider now an open set U C R™ and suppose u is a harmonic function
within U. We next derive the important mean-value formulas, which declare
that u(z) equals both the average of u over the sphere dB(z,r) and the
average of u over the entire ball B(z,r), provided B(z,r) C U. These
implicit formulas involving u generate a remarkable number of consequences,
as we will momentarily see.

THEOREM 2 (Mean-value formulas for Laplace’s equation). Ifu € C?(U)
s harmonic, then

(16) u(z) = ][ udS = udy
8B(z,r) B(z,r)
for each ball B(z,7) C U.
Proof. 1. Set
60)=f  u@dSw=f  ule+r2)ds().
8B(z,r) 0B(0,1)
Then

&(r) = ][ Du(z +r2) - 2dS(2),
8B(0,1)
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and consequently, using Green’s formulas from §C.2, we compute

/ o u y—x
#(r) = J[aB@,,D () Y =2 ds(y)

) r

ou
- 9 4s
][BB(z,r) ov (y)

= 1][ Au(y)dy = 0.
B(

"J B(azr)

Hence ¢ is constant, and so

¢(r) = lim¢(t) = lim u(y) dS(y) = u(z).
- - OB(z,t)

2. Observe next that our employing polar coordinates, as in §C.3, gives

/ udyz/ (/ udS) ds
B(z,r) 0 9B(z,s)

= u(z) /OT na(n)s" 1ds = a(n)r"u(z). O

THEOREM 3 (Converse to mean-value property). If u € C%(U) satisfies

u(z) = ][ udS
8B(z,r)

for each ball B(z,r) C U, then u is harmonic.

Proof. If Au # 0, there exists some ball B(z,r) C U such that, say, Au > 0
within B(z,r). But then for ¢ as above,

0=¢'(r)= 3][3( Au(y) dy > 0,

n z,r)

a contradiction. g

2.2.3. Properties of harmonic functions.

We now present a sequence of interesting deductions about harmonic
functions, all based upon the mean-value formulas. Assume for the following
that U C R™ is open and bounded.
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a. Strong maximum principle, uniqueness. We begin with the asser-
tion that a harmonic function must attain its maximum on the boundary
and cannot attain its maximum in the interior of a connected region unless
it is constant.

THEOREM 4 (Strong maximum principle). Suppose u € C2(U) N C(U)
1s harmonic within U.
(i) Then

max 4 = max u.
U oU

(ii) Furthermore, if U is connected and there exists a point zo € U such
that
u(zp) = max wu,
(20) = ma

then

u 18 constant within U.

Assertion (i) is the mazimum principle for Laplace’s equation and (ii) is
the strong mazimum principle. Replacing u by —u, we recover also similar
assertions with “min” replacing “max”.

Proof. Suppose there exists a point zp € U with u(zg) = M := maxg u.
Then for 0 < r < dist(zp, 0U), the mean-value property asserts

M:u(azo)z][ udy < M.

B(zo,r)

As equality holds only if u = M within B(zo,r), we see u(y) = M for all
y € B(zo,r). Hence the set {z € U | u(z) = M} is both open and relatively
closed in U and thus equals U if U is connected. This proves assertion (ii),
from which (i) follows. g

Positivity. The strong maximum principle asserts in particular that if U
is connected and u € C?(U) N C(U) satisfies

Au=0 inU
u=g ondU,

where g > 0, then u is positive everywhere in U if g is positive somewhere
on OU.

An important application of the maximum principle is establishing the
uniqueness of solutions to certain boundary-value problems for Poisson’s
equation.
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THEOREM 5 (Uniqueness). Letg € C(0U), f € C(U). Then there exists
at most one solution u € C2(U) N C(U) of the boundary-value problem

—Au=f iU
(17) { u=g ondU.

Proof. If v and @ both satisfy (17), apply Theorem 4 to the harmonic
functions w := £(u — ). O

b. Regularity. Next we prove that if 4 € C? is harmonic, then necessarily
u € C®. Thus harmonic functions are automatically infinitely differentiable.
This sort of assertion is called a regularity theorem. The interesting point
is that the algebraic structure of Laplace’s equation Au = Y ;" | Ug,z, = 0
leads to the analytic deduction that all the partial derivatives of u exist,
even those which do not appear in the PDE.

THEOREM 6 (Smoothness). If u € C(U) satisfies the mean-value prop-
erty (16) for each ball B(z,r) C U, then

u e C®({U).

Note carefully that « may not be smooth, or even continuous, up to oU.

Proof. Let n be a standard mollifier, as described in §C.4, and recall that
n is a radial function. Set uf := 7. *xu in U, = {z € U | dist(z, dU) > €}.
As shown in §C.4, u® € C®(Uy,).

We will prove u is smooth by demonstrating that in fact u = u® on Uk.
Indeed if z € U, then

u(z) = /U ne(@ — y)uly) dy

w L ()
= — n| —= | u(ly)d

= . . (y) dy

1 /¢ /r /
= — - udS | dr

en 0 77(5) ( 8B(z,r) )
1 € ur el
= 6—nu(x)/0 n (E) na(n)r" “dr by (16)
= u(a:)/ Ne dy = u(z).

B(0,¢e)

Thus u¢ = u in U, and so u € C*(U,) for each € > 0. O
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c. Local estimates for harmonic functions. Now we employ the mean-
value formulas to derive careful estimates on the various partial derivatives
of a harmonic function. The precise structure of these estimates will be
needed below, when we prove analyticity.

THEOREM 7 (Estimates on derivatives). Assume u is harmonic in U.
Then

C
(18) |D*u(z0)| < — e llull 1 (B(zo,r)

for each ball B(zg,r) C U and each multiindex o of order |a| = k.
Here
1 (2n+1nk)k

(19) Co=——, Cp= )

=) (k=1,...).

Proof. 1. We establish (18), (19) by induction on k, the case k = 0 being
immediate from the mean-value formula (16). For £k = 1, we note upon
differentiating Laplace’s equation that ug, (¢ =1,...,n) is harmonic. Con-
sequently

una) = [f s, daf
B(:l?o,T/?)
2’n
(20) ~ | / wv; dS)|
a(n)r™ JaB(zo,r/2)

2n
< THUHLw(aB(wo,g))'

Now if z € B(zg,r/2), then B(z,r/2) C B(zo,7) C U, and so

1 2\"
) = 25 (2) Hulls oteomy

a(n)
by (18), (19) for k = 0. Combining the inequalities above, we deduce

2n+1n 1

|D%u(z0)| < 1 ullz1(B(zor))

a(n)
if |a| = 1. This verifies (18), (19) for k = 1.

2. Assume now k > 2 and (18), (19) are valid for all balls in U and each
multiindex of order less than or equal to k — 1. Fix B(zo,7) C U and let «
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be a multiindex with |a| = k. Then D*u = (DPu),, for some i € {1,...,n},
|3] = k — 1. By calculations similar to those in (20), we establish that

nk
|D%u(zo)| < T”Dﬁulle(aB(zo,%))'

If z € OB(zo, L), then B(z, ¥1r) C B(zo,r) C U. Thus (18), (19) for
k — 1 imply

(2" n(k — 1)
)'n-l-k—l ”u”Ll(B(wOﬂ'))'

| DPu(@)| <
a(n) (%r

Combining the two previous estimates yields the bound

N 2nHink)k
(21) | D%u(zo)| < WHUHLI(B@O,T))’

This confirms (18), (19) for |a| = k. O

d. Liouville’s Theorem. We assert now that there are no nontrivial
bounded harmonic functions on all of R™.

THEOREM 8 (Liouville’s Theorem). Suppose u : R™ — R is harmonic
and bounded. Then u is constant.

Proof. Fix zg € R", r > 0, and apply Theorem 7 on B(zg,r):

V/nC
[Du(zo)| < 7 lull 2 (Bao)
nCia(n
< YO iy =,

as r — o0o0. Thus Du =0, and so u is constant. d

THEOREM 9 (Representation formula). Let f € C2(R"), n > 3. Then
any bounded solution of
—Au=f nR"

has the form

ue)= [ Be-9fWdr+C (@R

for some constant C.
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<

Proof. Since ®(z) — 0 as |z| — oo for n > 3, @(x) := [p. ®(z —y)f(y)d

is a bounded solution of —Awu = f in R™. If u is another solution, w := u—1%
is constant, according to Liouville’s Theorem. O
Remark. If n = 2, ®(z) = —5 log|z| is unbounded as |z| — oo and so

may be [p, ®(z —y)f(y) dy.

e. Analyticity. We refine Theorem 6:

THEOREM 10 (Analyticity). Assume u is harmonic in U. Then u is
analytic in U.

Proof. 1. Fix any point zp € U. We must show u can be represented by a
convergent power series in some neighborhood of zg.

Let r:= § dist(z0,0U). Then M := grirwllull i (B(ao.2r) < -

2. Since B(z,r) C B(zo,2r) C U for each z € B(zg,r), Theorem 7
provides the bound

on+1,\ 1 o
o e

Now ’fc—],c < € for all positive integers k, and hence
la)lel < elol |t
for all multiindices . Furthermore, the Multinomial Theorem (§1.5) implies

|af!

k_ k_ lof*
nF=1+---+1) _|;k R

whence
la]! < nl%¥lal.

Combining the previous inequalities yields the estimate

2'n-|-ln26 lo)
) al.
r

(22) I D%ul| Lo (B(zo,r)) < CM (
3. The Taylor series for u at zq is

> DQZEIO) (z — 20)%,
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the sum taken over all multiindices. We assert this power series converges,
provided
r

(23) |$—ZCO| < m

To verify this, let us compute for each N the remainder term:
N-1
D*u(zo)(z — x9)”
Ry(z) = u(z) — Z Z o
k=0 |o|=k ’

_ Z D%u(zg + t(z a—! z0))(z — z9)*

la|=N

for some 0 <t <1, t depending on z. We establish this formula by writing
out the first NV terms and the error in the Taylor expansion about 0 for the
function of one variable g(t) := u(zo + t(z — z9)), at t = 1. Employing (22),
(23), we can estimate

gntlp2e\ Y r N
<
|By(@)| < CM ( . ) (57552

1 CM

See §4.6.2 for more on analytic functions and partial differential equa-
tions.

f. Harnack’s inequality. Recall from §A.2 that we write V. CC U to
mean V C V C U and V is compact.

THEOREM 11 (Harnack’s inequality). For each connected open set V
CC U, there exists a positive constant C, depending only on V', such that

supu < Cinfu
% |4

for all nonnegative harmonic functions u in U.

Thus in particular

Su(y) < u(@) < Culy)

for all points xz,y € V. These inequalities assert that the values of a non-
negative harmonic function within V are all comparable: u cannot be very
small (or very large) at any point of V unless u is very small (or very large)
everywhere in V. The intuitive idea is that since V is a positive distance
away from OU, there is “room for the averaging effects of Laplace’s equation
to occur”.
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Proof. Let r := §dist(V,8U). Choose z,y € V, |z — y| < r. Then

1
u(z) = udz > 7/ udz
(@) ][ B(z,2r) a(n)2"r™ Jp(y.r

1 1
= — udz = —u(y).
2" J Bly.r) 2
Thus 2"u(y) > u(z) > swuly) ifz,y €V, |z —y| < 7.
Since V is connected and V is compact, we can cover V by a chain of
finitely many balls {B;}¥,, each of which has radius § and B; N B;—1 # 0
fori=2,...,N. Then

1
u(z) > WU(Z/)

forall z,y e V. O

2.2.4. Green’s function.

Assume now U C R™ is open, bounded, and U is C'. We propose
next to obtain a general representation formula for the solution of Poisson’s
equation

—Au=f inU,
subject to the prescribed boundary condition

u=g on OU.

a. Derivation of Green’s function. Suppose u € C%(U) is an arbitrary
function. Fix z € U, choose € > 0 so small that B(z,e) C U, and apply
Green’s formula from §C.2 on the region V, := U — B(z,¢) to u(y) and
®(y — z). We thereby compute

/ u(y)A(y — z) — @(y — z) Au(y) dy

0o ou

(24)
_ /WE u(y) 5 (y —2) = Oy — 2) =" (1) dS(y),

v denoting the outer unit normal vector on dV.. Recall next A®(z —y) =0
for  # y. We observe also

ou
Oy — z)=—(y) dS(y)| < Ce™ ! max |®| = o(1
], 205w s Jmax 9] = o(1)

as € — 0. Furthermore the calculations in the proof of Theorem 1 show

oo
/BB(z,e) u(y)g(y — ) dS(y) = ][ u(y) dS(y) — u(zx)

3B(z€)
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as € — 0. Hence our sending € — 0 in (24) yields the formula
ou 0P
uw) = [ 8- ) - uln) G (v 2)dS()

(25)
- /U B(y — z) Auly) dy.

This identity is valid for any point z € U and any function u € C%(U).

Now formula (25) would permit us to solve for u(z) if we knew the
values of Au within U and the values of u,0u/0v along OU. However, for
our application to Poisson’s equation with prescribed boundary values for u,
the normal derivative du/0v along AU is unknown to us. We must therefore
somehow modify (25) to remove this term.

The idea is now to introduce for fixed z a corrector function ¢* = ¢*(y),
solving the boundary-value problem

Ag® =0 in U
¢* =®(y—x) on OU.

Let us apply Green’s formula once more, to compute

| - /U ¢° (y)Au(y) dy = /a . u(y)%(f (y)—aﬁ‘”(y)%(y) dS(y)

ol ou
- /a )5, W) — 2l — )5 () dS)

(26)

(27

We introduce next this
DEFINITION. Green’s function for the region U is
G(.’I},y) = (I)(y_x)_¢z(y) (I’ye U’ m#y)

Adopting this terminology and adding (27) to (25), we find

@) )=~ [ w3 @0 dse) - [ ety @ev)

where oG
E(x, y) = DyG(z,y) - v(y)

is the outer normal derivative of G with respect to the variable y. Observe
that the term Ou/0v does not appear in equation (28): we introduced the
corrector ¢* precisely to achieve this.

Suppose now u € C?(U) solves the boundary-value problem

—Au=f inU
(29) { u=g ondU,

for given continuous functions f, g. Plugging into (28), we obtain
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THEOREM 12 (Representation formula using Green’s function). If
u € C?(U) solves problem (29), then

(30) u<r>=—/w<> (z,) dS(y) /f Gy dy (zeU).

Here we have a formula for the solution of the boundary-value problem
(29), provided we can construct Green’s function G for the given domain U.
This is in general a difficult matter and can be done only when U has simple
geometry. Subsequent subsections identify some special cases for which an
explicit calculation of G is possible.

Interpreting Green’s function. Fix x € U. Then regarding G as a
function of y, we may symbolically write

-AG=6, InU
G=0 ondU,

0z denoting the Dirac measure giving unit mass to the point z.

Before moving on to specific examples, let us record the general assertion
that G is symmetric in the variables z and y:

THEOREM 13 (Symmetry of Green’s function). For allz,y € U, z # vy,
we have

G(y,z) = G(z,y).
Proof. Fix z,y € U, z # y. Write
v(z) := Gz, 2), w(z) :=G(y,z) (z€U).

Then Av(z) = 0 (2 # z), Aw(z) =0 (2 # y) and w = v = 0 on
OU. Thus our applying Green’s identity on V := U — [B(z,€) U B(y, €)] for
sufficiently small € > 0 yields

ov ow ow ov
31 / —w — —vdS(z :/ —v— —wdS
(31) 8B(z,c) OV ov (2) 8B(ye) OV ov (2),

v denoting the inward pointing unit vector field on 8B (z,e)U0B(y,€). Now
w is smooth near z, whence

|/ 8—wvd5‘ <Ce™ ! sup |v|=0(1) ase—0.
8B(z,e) ov 0B(z,e)
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On the other hand, v(z) = ®(z — z) — ¢®(z), where ¢” is smooth in U. Thus

lim @w dS = lim 8_<I>(x - 2)w(z)dS = w(z),
€=0 JoB(z,e) ov €0 J5B(z,e) ov

by calculations as in the proof of Theorem 1. Thus the left-hand side of (31)
converges to w(z) as € — 0. Likewise the right-hand side converges to v(y).
Consequently

Gy z) = w(z) =v(y) = G(z,y). O

b. Green’s function for a half-space. In this and the next subsection
we will build Green’s functions for two regions with simple geometry, namely
the half-space R} and the unit ball B(0,1). Everything depends upon our
explicitly solving the corrector problem (26) in these regions, and this in
turn depends upon some clever geometric reflection tricks.

First let us consider the half-space
R} = {z = (z1,...,2z,) € R" | z, > 0}.

Although this region is unbounded, and so the calculations in the previous
section do not directly apply, we will attempt nevertheless to build Green’s
function using the ideas developed earlier. Later of course we must check
directly that the corresponding representation formula is valid.

DEFINITION. Ifz = (z1,...,Zn-1,Zn) € RY, its reflection in the plane
ORY is the point
= (z1,...,Tn-1,—Tn).

We will solve problem (26) for the half-space by setting

() =2y —-2) =21 — 1, ,Yn—1 — Tn—1,Yn + 2n) (z,y € RY).

The idea is that the corrector ¢* is built from ® by “reflecting the singular-
ity” from z € R} to = ¢ R. We note

¢°(y) =@y —z) ifye Ry,
and thus

AP® =0 in R%}
¢* = ®(y—z) on dRY,

as required.
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DEFINITION. Green’s function for the half-space R’} is

G(z,y):=0(y—2)-2@y—1) (z,yeRY, z#y).

Then

Gyn (a:,y) = <I)yn(y - 55) - (I)yn (y - 55)
=1 |yn—Tn Yntzn

na(n) [y —z|®  |y—2Z|"

Consequently if y € OR?,

oG 2z, 1
20 () = ~Cunla) = -

na(n) |z —y*’
Suppose now u solves the boundary-value problem

(32) {AuzO in R}

u=g onOR%.

Then from (30) we expect

(33) u(z) = 22n /a 9v) dy (zeRY)

na(n) Jorn |z —y|
to be a representation formula for our solution. The function

2%y, 1

Hed = et =

(x € RY,y € ORY)

is Poisson’s kernel for R%, and (33) is Poisson’s formula.

We must now check directly that formula (33) does indeed provide us
with a solution of the boundary-value problem (32).

THEOREM 14 (Poisson’s formula for half-space). Assume g € C(R*1)N
L®(R™ 1Y), and define u by (33). Then
() ue C=(RY) N L2(®Y),
(i) Au=0 1nR7,
and
(iii) lim u(z) = g(z°) for each point z° € ORT.

:12—>In
w€R+



38 2. FOUR IMPORTANT LINEAR PDE

Proof. 1. For each fixed z, the mapping y — G(z,y) is harmonic, except

fory =z. As G(z,y) = G(y,z), z — G(z,y) is harmonic, except for z = y.

Thus z — —%%(a:,y) = K(z,y) is harmonic for z € R%, y € OR%.

2. A direct calculation, the details of which we omit, verifies

(34) 1= K(z,y)dy
8RT

for each z € R%}. As g is bounded, u defined by (33) is likewise bounded.
Since z — K (z,vy) is smooth for z # y, we easily verify as well u € C®(R?%),
with

Au(z) = - ALK (z,y)g(y)dy=0 (z€RY).

3. Now fix 20 € OR%, € > 0. Choose § > 0 so small that
(35) l9(y) —g(z°)| < if ly—2° <6, y € IRY.

Then if |z — 20| < %, z € R7,
lulz) - 9(a)] = \ [ Kwio) - s dy
oR™

<

/ K(@,)lo(w) — 9(") dy
ORTNB(z9,6)

+ / K(z,y)lg(y) — 9(z°)| dy
6R1—B($0)6)

=I14+J
Now (34), (35) imply

(36)

I<e K(z,y)dy =e.
8RT

Furthermore if |z — z°| < g and |y — 2% > §, we have
) 1
ly = 2% <ly—al+ 5 <ly -zl + Sly - 2,

and so |y — z| > 1|y — 2°|. Thus
7 < 2l [ K(z,y) dy
8RT —B(x9,6)
22| g|| oo
”g”L Tn / |y_ xol—n dy
na(n) OR™ —B(0,0)

—0 asz,—0".
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Combining this calculation with estimate (36), we deduce |u(x)—g(z%)| < 2¢,
provided |z — 20| is sufficiently small. O

c. Green’s function for a ball. To construct Green’s function for the
unit ball B(0,1), we will again employ a kind of reflection, this time through
the sphere 6B(0,1).

DEFINITION. If xz € R™ — {0}, the point

T

SNET

is called the point dual to x with respect to B(0,1). The mapping  — %
is inversion through the unit sphere 0B(0,1).

We now employ inversion through the sphere to compute Green’s func-
tion for the unit ball U = B%(0,1). Fix z € B%(0,1). Remember that we
must find a corrector function ¢* = ¢*(y) solving

Ag* =0 in B%0,1)
(37) { ¢* = ®(y—z) on OB(0,1);

then Green’s function will be

(38) Gz,y) =2y —z) — ¢" (1)

The idea now is to “invert the singularity” from z € B°(0,1) to Z ¢
B(0,1). Assume for the moment n > 3. Now the mapping y — ®(y — %) is
harmonic for y # Z. Thus y — |z|>""®(y — Z) is harmonic for y # Z, and so

(39) ¢ (y) := & (|zl(y — Z))
is harmonic in U. Furthermore, if y € dB(0,1) and z # 0,
2y - 1
2, =12 (2 2 _“4y-r L1
ol — 2l = of? (1 - 222 + 1)
=z -2y-z+1=|z -y
Thus (|z|ly — Z|)~"2 = |z — y|~»2). Consequently

(40) ¢°(y) =@y —z) (yedB(0,1)),

as required.
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DEFINITION. Green’s function for the unit ball s

(41) G(Iay) = @(y - .’I)) - <I’(|a:|(y - 57)) (xay € B(07 1)7 z 79 y)'

The same formula is valid for n = 2 as well.

Assume now u solves the boundary-value problem

Au=0 in B(0,1)
(42) { u=g indB(0,1).

Then using (30), we see

“3) ue) =~ /63(0 1)

According to formula (41),

Gy (2, y) = @y (y — 2) — (|z[(y = 7))y

)2 (2,) dS ).

Q

But

(Dyi (y - :C) =
and furthermore
- -1 yilz|® — = 1 yilz]? -z
O(|z|(y — 2))y;- = =
el =20 = o) Qelly =27 ~ natn) o=l
if y € 0B(0,1). Accordingly

oG -
a—y(x’y) = Z%Gyz(x,y)
= |ZC _ y|” Zyl yz|$| + "131)
-1 1—|z)?

na(n) |z —y™
Hence formula (43) yields the representation formula

22
u(z) = - II/a 9(v) ds().

na(n) Japo,) Iz —yI”

Suppose now instead of (42) u solves the boundary-value problem

{ Au=0 in B%(0,r)

(44) u=g ondB(0,r)
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for r > 0. Then @(z) = u(rz) solves (42), with g(z) = g(rz) replacing g.
We change variables to obtain Poisson’s formula

Rl il 9(v) 0
@) ="k o ey ASW) @ B0

The function

r2—|z|2 1

na(n)r |z -yl

K(z,y) := (z € B%0,r), y € B(0,1))

is Poisson’s kernel for the ball B(0,r).

We have established (45) under the assumption that a smooth solution
of (44) exists. We next assert that this formula in fact gives a solution:

THEOREM 15 (Poisson’s formula for ball). Assume g € C(0B(0,r)) and
define u by (45). Then

(i) u e C=(B°(0,r)),
(ii) Au=0 in B%0,r),

and
(iii)  lim wu(z) = g(z°) for each point z° € 8B(0,r).
wea:B_(;fO,r)

The proof is similar to that for Theorem 14 and is left as an exercise.
2.2.5. Energy methods.

Most of our analysis of harmonic functions thus far has depended upon
fairly explicit representation formulas entailing the fundamental solution,
Green’s functions, etc. In this concluding subsection we illustrate some
“energy” methods, which is to say techniques involving the L?-norms of
various expressions. These ideas foreshadow later theoretical developments
in Parts II and III.

a. Uniqueness. Consider first the boundary-value problem

(16) {—Au:f in U

u=g¢g ondU.

We have already employed the maximum principle in §2.2.3 to show
uniqueness, but now we set forth a simple alternative proof. Assume U is
open, bounded, and 0U is C*.
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THEOREM 16 (Uniqueness). There erists at most one solution u €
C?(U) of (46).

Proof. Assume # is another solution and set w := v — @. Then Aw =0 in
U, and so an integration by parts shows

Oz—/wAwd:cz/ | Dw|? dz.
U U

Thus Dw =0 in U, and, since w = 0 on U, we deduce w = u — 4 =0 in
U. O

b. Dirichlet’s principle. Next let us demonstrate that a solution of the
boundary-value problem (46) for Poisson’s equation can be characterized as
the minimizer of an appropriate functional. For this, we define the energy
functional

Iuw] ::/ L Dwl? = wf da,
v 2

w belonging to the admissible set

A:={weC*U)|w=gondU}.

THEOREM 17 (Dirichlet’s principle). Assume u € C%(U) solves (46).
Then

(47) Iu] = glelﬁ Iw].

Conversely, if u € A satisfies (47), then u solves the boundary-value problem
(46).

In other words if u € A, the PDE —Au = f is equivalent to the statement
that w minimizes the energy I[-].

Proof. 1. Choose w € A. Then (46) implies

0= / (—Au - f)(u —w) dz.
U
An integration by parts yields

Oz/UDu‘D(u—w)—f(u—w)da:,
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and there is no boundary term since u —w =g — g =0 on OU. Hence
/ |Du|2—ufda:=/ Du-Dw— wfdzx
U U
1 9 1 9
< | =|Dul*dz+ | =|Dw|*—wfdx,
U2 U2
where we employed the estimates
1 2, 1 2
|Du - Dw| < |Du||Dw| < §|Du| + §|Dw| ,

following from the Cauchy-Schwarz and Cauchy inequalities (§B.2). Rear-
ranging, we conclude

(48) Iu) < Iw] (w € A).
Since u € A, (47) follows from (48).

2. Now, conversely, suppose (47) holds. Fix any v € C®(U) and write
i(r) :=Iu+71v] (7 €R).
Since u + 7v € A for each 7, the scalar function i(-) has a minimum at zero,

and thus p
-/ _ r_ 4

provided this derivative exists. But
. 1 2
i(r)= | =|Du+7Dv|* — (u+7v)fdx
U 2
1 2 72 2
= §|Du| +TDU*D'U+?’D’U| — (u+7v)f dz.
U
Consequently
0 =14'(0) =/ Du-Dv—vfdzx =/(—Au—f)vda:.
U U

This identity is valid for each function v € C®(U) and so —Au = f in
U. O

Dirichlet’s principle is an instance of the calculus of variations applied
to Laplace’s equation. See Chapter 8 for more.
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2.3. HEAT EQUATION
Next we study the heat equation

(1) Ut — Au=20
and the nonhomogeneous heat equation
(2) Ut — Au = fa

subject to appropriate initial and boundary conditions. Here ¢ > 0 and
z € U, where U C R™ is open. The unknown is u : U x [0,00) — R, u =
u(z, t), and the Laplacian A is taken with respect to the spatial variables z =
(@1, .-, Zn): Au=Agu =73 1 | Ug,z,. In (2) the function f : Ux[0,00) — R
is given.

A guiding principle is that any assertion about harmonic functions yields
an analogous (but more complicated) statement about solutions of the heat
equation. Accordingly our development will largely parallel the correspond-
ing theory for Laplace’s equation.

Physical interpretation. The heat equation, also known as the diffusion
equation, describes in typical applications the evolution in time of the density
u of some quantity such as heat, chemical concentration, etc. If V C U is
any smooth subregion, the rate of change of the total quantity within V
equals the negative of the net flux through oV

[ wdz=— [ F-vas,
dt Jy ov

F being the flux density. Thus
(3) Uy = — divF y

as V was arbitrary. In many situations F is proportional to the gradient
of u but points in the opposite direction (since the flow is from regions of
higher to lower concentration):

F =—-aDu (a>0).
Substituting into (3), we obtain the PDE
ut = adiv(Du) = aAu,

which for a = 1 is the heat equation.

The heat equation appears as well in the study of Brownian motion.
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2.3.1. Fundamental solution.

a. Derivation of the fundamental solution. As noted in §2.2.1 an
important first step in studying any PDE is often to come up with some
specific solutions.

We observe that the heat equation involves one derivative with respect
to the time variable t, but two derivatives with respect to the space vari-
ables z; (1 = 1,...,n). Consequently we see that if u solves (1), then so
does u(\z, A\?t) for A € R. This scaling indicates the ratio % (r =|z|) is
important for the heat equation and suggests that we search for a solution
of (1) having the form u(z,t) = v(é) = v(@) (t >0, z € R"), for some
function v as yet undetermined.

Although this approach eventually leads to what we want (see Problem
13), it is quicker to seek a solution u having the special structure

(4) u(z,t) = t—i—v(t%) (z eR™, t >0),

where the constants «, 8 and the function v : R® — R must be found. We
come to (4) if we look for a solution u of the heat equation invariant under
the dilation scaling

u(z,t) — Xu(Nz, \t).

That is, we ask that
u(z,t) = Xu(Nz, At)

forall A\ > 0, z € R™, ¢t > 0. Setting A = t~1, we derive (4) for v(y) :=
u(y,1).
Let us insert (4) into (1) and thereafter compute

(5) at= @y (y) + gty . Du(y) + 7@+ Av(y) = 0
for y := tPz. In order to transform (5) into an expression involving the

variable y alone, we take 8 = % Then the terms with ¢ are identical, and
so (5) reduces to

1
(6) av+§y-Dv+Av=O.

We simplify further by guessing v to be radial; that is, v(y) = w(|y|) for
some w : R — R. Thereupon (6) becomes

1 —1
aw + Erw' +w” + nTw' =0,
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forr=lyl,’ = %. Now if we set o = %, this simplifies to read

(Tn—lw’)l 4 %( nw)/ =0.

Thus

_ 1
vl 4 §r”w =a

for some constant a. Assuming lim, ., w, w' = 0, we conclude a = 0,
whence

But then for some constant b

(7) w = be”

|2

Combining (4), (7) and our choices for a,, we conclude that tn%e— i
solves the heat equation (1).

This computation motivates the following

DEFINITION. The function

1 _l=1? .
3(z,1) ‘:{ e (zERY, 1> 0)

0 (z eR™, t<0)
is called the fundamental solution of the heat equation.

Notice that @ is singular at the point (0,0). We will sometimes write
®(z,t) = ®(|z|,t) to emphasize that the fundamental solution is radial in
the variable z. The choice of the normalizing constant (47)~™?2 is dictated
by the following

LEMMA (Integral of fundamental solution). For each time t > 0,

/n ®(z,t)dz = 1.

Proof. We calculate

1 |z|?
d(z,t)de = ——— Tae d
/n (z )dx (47rt)”/2 /Rne it dx
1 2
= —lzI* g4
7n/2 ‘/Rne z

1 & [ _.:
= — e %dz =1. g
7Tn/2 E /—oo ’




2.3. HEAT EQUATION 47

A different derivation of the fundamental solution of the heat equation
appears in §4.3.1.

b. Initial-value problem. We now employ ® to fashion a solution to the

initial-value (or Cauchy) problem

(8) u—Au=0 inR" x (0,00)
u=g onR"x {t=0}.

Let us note that the function (z,t) — ®(z,t) solves the heat equation

away from the singularity at (0,0), and thus so does (z,t) — ®(z — y, t) for
each fixed y € R™. Consequently the convolution

u(z,t) = /n ®(z —y,t)9(y) dy

(9) 1 lz—y|2
- W/Rne' % g(y)dy (z€R" t>0)

should also be a solution.

THEOREM 1 (Solution of initial-value problem). Assume g € C(R™) N
L>®(R™), and define u by (9). Then
(i) we C®(R™ x (0,00)),

(i) w(z,t) — Au(z,t) =0 (z € R™, t > 0),

and

(iii) lim  u(z,t) = g(z°) for each point z° € R™.
(z,t)—(z°,0)
zeR™, t>0

z 2
Proof. 1. Since the function tn%e'% is infinitely differentiable, with uni-
formly bounded derivatives of all orders, on R™ x [§, 00) for each § > 0, we
see that u € C*°(R™ x (0, 00)). Furthermore

w(et) = Au(a,t) = [ (@ A:0)(@ - Dla(0) dy
=0 (zeR"t>0),

(10)

since @ itself solves the heat equation.

2. Fix 20 € R?, € > 0. Choose § > 0 such that

(11) lg(y) — 9(z%)| <e if |y—2° <4, yeR™
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Then if |z — 2°| < %, we have, according to the lemma,
e )~ o) = | [ #a—3.0l606) ~ o) ]
<[ ®e-u.0lsl) - 9 dy
B(z0,9)

4 / (z —y,0)l9(y) — 9(c°)| dy
n—B(z9,8)
=1+ J

Igs/ O(z—y,t)dy =¢,

owing to (11) and the lemma. Furthermore, if |z — 20| < % and |y —2°| > ¢,
then

5 1
ly = 2% <ly—al+ 5 <ly—a|+ Sy — 2°].

Thus |y — z| > %|y — z°|. Consequently

J < 2||g] / Bz —y,6) dy
R —B(z0,5)

C _lz—y|? yl2
<5 dy
t/ Rn-B(zO,é)

C _ly=292
< v e 16t dy
"% JRn—B(29,5)

12
=C e_%dz—>0 ast— 0T,
R™—B(z9,6/+/7)

Hence if |z —2°| < § and ¢ > 0 is small enough, |u(z,t) — g(2°)| < 2e. O

Interpretation of fundamental solution. In view of Theorem 1 we
sometimes write

O — AP =0 inR"x (0,00)
® =4 onR"x{t=0},

do denoting the Dirac measure on R™ giving unit mass to the point 0.

Infinite propagation speed. Notice that if g is bounded, continuous,
g2>0,g%#0, then

@0 = s [ e g)d
ulz, _W Rne 9(y) dy
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is in fact positive for all points z € R™ and times ¢ > 0. We interpret this
observation by saying the heat equation forces infinite propagation speed
for disturbances. If the initial temperature is nonnegative and is positive
somewhere, the temperature at any later time (no matter how small) is
everywhere positive. (We will learn in §2.4.3 that the wave equation in
contrast supports finite propagation speed for disturbances.)

c. Nonhomogeneous problem. Now let us turn our attention to the
nonhomogeneous initial-value problem

{ut—Au:f in R™ x (0, c0)

(12) u=0 onR"x {t=0}.

How can we produce a formula for the solution? If we recall the moti-
vation leading up to (9), we should note further that the mapping (z,t) —
®(z—y,t—s) is a solution of the heat equation (for given y € R", 0 < s < t).
Now for fixed s, the function

u=u(z,t;9) =/Rncl>(x—y,t—s)f(y,s)dy

solves
(125) {ut('; s) — Au(;s) =0 in R™ x (s,00)

s u(;8) = f(,8) onR™x {t=s},
which is just an initial-value problem of the form (8), with the starting time
t = 0 replaced by ¢t = s and g replaced by f(-,s). Thus u(-;s) is certainly
not a solution of (12).

However Duhamel’s principle* asserts that we can build a solution of
(12) out of the solutions of (12;), by integrating with respect to s. The idea
is to consider

t
u(z,t) = / u(z,t;8)ds (x € R™, ¢t > 0).
0

Rewriting, we have

u(z, t) :/Ot/n ®(z—y,t—s)f(y,s)dyds
t 1

le—y|?
= | —— s ~EE9 f(y, s) dyds,
/o (4 (t — 5))™/2 /Rne f(y, s) dyds
forz € R™, t > 0.

To confirm that formula (13) works, let us for simplicity assume f €
C?(R™ x [0,00)) and f has compact support.

(13)

*Duhamel’s principle has wide applicability to linear ODE and PDE and does not depend
on the specific structure of the heat equation. It yields, for example, the solution of the nonho-
mogeneous transport equation, obtained by different means in §2.1.2. We will invoke Duhamel’s
principle for the wave equation in §2.4.2.
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THEOREM 2 (Solution of nonhomogeneous problem). Define u by (13).
Then
(i) v e CER™ x (0,00)),

(i) w(z,t) — Au(z,t) = f(z,t) (z €R? t>0),

and

(iii) lim  wu(z,t) =0 for each point z° € R™.
(z,t)—(°,0)
zeR™, t>0

Proof. 1. Since ® has a singularity at (0,0), we cannot directly justify
differentiating under the integral sign. We instead proceed somewhat as in
the proof of Theorem 1 in §2.2.1.

First we change variables, to write

t
u(z,t) =/0 /n D(y,s)f(z —y,t — s) dyds.

As f € C?(R™ x [0,00)) has compact support and ® = ®(y, s) is smooth
near s =t > 0, we compute

t
u(z,t) = /0 /n D(y, s)fi(z —y,t — s) dyds
+ /n <I>(y,t)f(r - yao) dy

and

t
uzia?j(x’t) = /0 /]R" é(y7 S)fwi:vj(x - y7t - 5) dyds ('l,] = 17 c ~7n)'

Thus ut, D2u, and likewise u, Dyu, belong to C(R™ x (0, 00)).

2. We then calculate
(14)

wiot) — tuw.) = [ [ 29D - 80—, 5) dyis
+ /Rn @(y, t)f (x —y,0) dy
= [ [ 29l 2~ )5y, ) dyis
[ ] ez — st — vt — o) dyds

+/ 2(y,t)f(z —y,0) dy.
=I.+J.+ K.
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Now
15) 1] < (Ifillz= + 1D*Fllo) /0 /R B(y, s) dyds < £C,

by the lemma. Integrating by parts, we also find

I—//n ——A d(y, )]f(:c—y,t—s)dyds
+/n<1>(y,6)f(x—y,t—s) &y
—/nq)(y,t)f(:c—y,O)dy

= / o(y,e)f(x—y,t —€)dy — K,
since @ solves the heat equation. Combining (14)—(16), we ascertain
w(z,t) — Au(z,1) = lir%/ (y,e)f(z—y,t —e)dy
E—> Rn
= f(z,t) (z€R", t>0),

the limit as € — 0 being computed as in the proof of Theorem 1. Finally
note [u(-, )z < t]fll= — 0. 0

Solution of homogeneous problem with general initial data. We
can of course combine Theorems 1 and 2 to discover that

¢
07 w(et) = [ oy [ [ o@—ut=of0) duds
is, under the hypotheses on g and f as above, a solution of

(18) {ut—Au=f in R™ x (0, o)

u=g onR"x {t=0}.

2.3.2. Mean-value formula.

First we recall some useful notation from §A.2. Assume U C R" is open
and bounded, and fix a time T > 0.
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——-

g \/rr

The region Up

DEFINITIONS.
(i) We define the parabolic cylinder

Ur:=U x (0,7
(ii) The parabolic boundary of Ur is

Tr:=Ur — Ur.

We interpret Ur as being the parabolic interior of U x [0, T): note care-
fully that Ur includes the top U x {t = T'}. The parabolic boundary I'r
comprises the bottom and vertical sides of U x [0, 7], but not the top.

We want next to derive a kind of analogue to the mean-value property for
harmonic functions, as discussed in §2.2.2. There is no such simple formula.
However let us observe that for fixed x the spheres B(z,r) are level sets of
the fundamental solution ®(z—y) for Laplace’s equation. This suggests that
perhaps for fixed (z,t) the level sets of fundamental solution ®(z — y,t — s)
for the heat equation may be relevant.

DEFINITION. For fizedz € R, t € R, r > 0, we define

1
. o +1
E(z,t;r) := {(y,s) ER™ |s<t, O(z—y,t—s) > r—n}~
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(x,t)

E(x,t;r)

A “heat ball”

This is a region in space-time, the boundary of which is a level set of
®(z—y,t—s). Note that the point (z,t) is at the center of the top. E(z,t;7)
is sometimes called a “heat ball”.

THEOREM 3 (A mean-value property for the heat equation). Let u €
C%(Ur) solve the heat equation. Then

1 |z —yl?
19 u(x,t =—// u(y, s dyds
(19) (z,0) = 3 ) (y )(t_8)2 y

for each E(z,t;r) C Ur.

Formula (19) is a sort of analogue for the heat equation of the mean-value
formulas for Laplace’s equation. Observe that the right-hand side involves
only u(y, s) for times s < ¢. This is reasonable, as the value u(z,t) should
not depend upon future times.

Proof. Shift the space and time coordinates so that z = 0 and t = 0. Upon
mollifying if necessary, we may assume u is smooth. Write E(r) = E(0,0;7)

and set
2
/ / ’yl dyds
r'n
2
// u(ry, r? s) | l dyds.

2
¢ (r) = // Z Uy Y g ly’ dyds
2 2
:rn+1/ Z sy !yl Iyl dyds

E(r)z 1
=: A+ B.

(20)

We compute
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Also, let us introduce the useful function

(21) P = —g log(—4ms) + =—

and observe ¢ = 0 on JE(r), since ®(y,—s) = r~™ on dF(r). We utilize
(21) to write

1 n
B= / / dus Yy yithy, dyds
E(r) i=1
) n
= -r—n-!-_l // dnugp + 4 Z Usyiyi"/" dyds;
E(r) i=1

there is no boundary term since 1 = 0 on OE(r). Integrating by parts with
respect to s, we discover

1 n
= — // —4dnusyp + 4 E Uy, Yi s dyds
T E(r) i=1

_ 1 4 ¢+4i‘ (= ZBEY 4
T gy LMY\ Tog T ger ) WY
(r) =1
1 2N —
= //E( )—4nus1/) - Zuyiyi dyds — A
r i=1

Consequently, since u solves the heat equation,

¢(r)=A+B

1 // 2N w—

= —AnAuyp — — Uy, Yi dyds
=~ 1 2n

=2 Al / /E . Anuy by, — —uyyi dyds

i=1
=0, according to (21).

Thus ¢ is constant, and therefore

¢(r) = lim o(t) = (lim — //E lyl® dyds) = 4u(0,0),

1 2 2
—n// 'yde_// 1 s = a.
t E(t) S E(1) S

We omit the details of this last computation. O

as
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RN

Strong maximum principle for the heat equation

2.3.3. Properties of solutions.

a. Strong maximum principle, uniqueness. First we employ the mean-
value property to give a quick proof of the strong maximum principle.

THEOREM 4 (Strong maximum principle for the heat equation). Assume
u € C2(Ur) N C(Ur) solves the heat equation in Ur.
(i) Then

maxX u = max u.
UT I‘kT

(ii) Furthermore, if U is connected and there exists a point (xg,ty) € Ur
such that
U(I07 tO) = maxu,
Ur

then
u 1s constant in Uy,.

Assertion (i) is the mazimum principle for the heat equation and (ii)
is the strong mazimum principle. Similar assertions are valid with “min”
replacing “max”.

Interpretation. So if u attains its mazimum (or minimum) at an interior
point, then u is constant at all earlier times. This accords with our strong
intuitive understanding of the variable ¢ as denoting time: the solution will
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be constant on the time interval [0,%p] provided the initial and boundary
conditions are constant. However, the solution may change at times ¢t > tg,
provided the boundary conditions alter after tg. The solution will however
not respond to changes in boundary conditions until these changes happen.

Take note that whereas all this is obvious on intuitive, physical grounds,
such insights do not constitute a proof. The task is to deduce such behavior
from the PDE.

Proof. 1. Suppose there exists a point (zg,t9) € Ur with u(zg,t) = M :=
maxg,, u. Then for all sufficiently small r > 0, E(zo,to;r) C Ur; and we
employ the mean-value property to deduce

4rm (to — s)?

2
// |lmo —yl* dyds.
E(zo,to;r) tO - S)

Equality holds only if w is identically equal to M within E(zg,tp;r). Con-
sequently

1 — 2
M=u(xo,to>=—//E( s 0= gyas <
Zo,l0;

since

u(y7 s)=M for all (y’ S) € E(.'Ilo,to;’r‘).

Draw any line segment L in Ur connecting (g, to) with some other point
(yo, s0) € Ur, with sg < tg. Consider

ro :=min{s > so | u(z,t) = M for all points (z,t) € L, s <t < tp}.

Since u is continuous, the minimum is attained. Assume rg > sg. Then
u(z0,70) = M for some point (29, r9) on LNUr and so u = M on E(zg, ro;7)
for all sufficiently small » > 0. Since E(zp,7o;7) contains LN{rg—o <t <
o} for some small o > 0, we have a contradiction. Thus ry = sg, and hence
u =M on L.

2. Now fix any point € U and any time 0 < ¢ < ty. There exist points
{zo,z1,...,Zm = x} such that the line segments in R” connecting z;_1 to z;
liein U for i = 1,...,m. (This follows since the set of points in U which can
be so connected to zg by a polygonal path is nonempty, open and relatively
closed in U.) Select times tg > t; > -+ > t,, = t. Then the line segments in
R™*1 connecting (w;_1,ti—1) to (zi,t;) (i = 1,...,m) lie in Up. According
to step 1, u = M on each such segment and so u(z,t) = M. O
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Infinite propagation speed again. The strong maximum principle im-
plies that if U is connected and u € C%(Ur) N C(Ur) satisfies

u — Au =0 in Ur
u=0 ondU x[0,T)
u=g onU x {t=0}

where g > 0, then u is positive everywhere within Ur if g is positive some-
where on U. This is another illustration of infinite propagation speed for
disturbances.

An important application of the maximum principle is the following
uniqueness assertion.

THEOREM 5 (Uniqueness on bounded domains). Let g € C(I'r), f €
C(Ur). Then there exists at most one solution u € C(Ur) N C(Ur) of the
initial/boundary-value problem

u—Au=f inUp
(22) { u=g9 onlT.

Proof. If v and @ are two solutions of (22), apply Theorem 4 to w :=
+(u —a). O

We next extend our uniqueness assertion to the Cauchy problem, that
is, the initial-value problem for U = R™. As we are no longer on a bounded
region, we must introduce some control on the behavior of solutions for large
|z|.

THEOREM 6 (Maximum principle for the Cauchy problem). Suppose
u € C}(R™ x (0,T]) NC(R™ x [0,T]) solves

(23) {ut—Auzo in R™ x (0,T)

u=g onR"x{t=0}
and satisfies the growth estimate

(24) u(z,t) < A’ (z eR™, 0<t<T)
for constants A,a > 0. Then

sup u =supg.
R x[0,T] R™
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Proof. 1. First assume

(25) 4aT < 1,

in which case

(26) 4a(T +¢) <1

for some € > 0. Fix y € R”, u > 0, and define
U lz—y|®

v(z,t) = u(z,t) — edT+-9 (z € R", t>0).

(T 4 —t)n/?
A direct calculation (cf. §2.3.1) shows
vy—Av=0 inR" x (0,T).

Fix r > 0 and set U := B%(y,r), Ur = B%(y,r) x (0, T]. Then according to
Theorem 4,

(27) maxv = maxuv.
Ur I'r

2. Now if z € R,

U lz—y|?
_—64(T+5)
(T +e)n/2

< u(z,0) = g(z);
and if [z —y|=7,0<t <T, then

(28) v(z,0) = u(z,0) —

2

p, T
v(z,t) = u(z,t) — me«ﬂ-s-_t)
2
S L p——— = B S )
B (T +e—t)n/2
< Al _ B
= (T + o)/ ‘

Now according to (26), m = a+y for some vy > 0. Thus we may continue
the calculation above to find

(29) v(z,t) < A" — (4(a + )" < supy,
R
for r selected sufficiently large. Thus (27)-(29) imply
v(y,t) < supg
R”
for all y € R, 0 < ¢ < T, provided (25) is valid. Let . — 0.

3. In the general case that (25) fails, we repeatedly apply the result
above on the time intervals [0, T3], [T1, 271, ], etc., for T} = 8—1(1. O
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THEOREM 7 (Uniqueness for Cauchy problem). Let ¢ € C(R"), f €

C(R™x [0,T]). Then there exists at most one solution u € CZ(R™ x (0,T])N

C(R™ x [0,T]) of the initial-value problem

(30) w—Au=f mnR"x(0,7T)
u=g onR"x {t=0}

satisfying the growth estimate
(31) lu(z,t)| < 4e®** (z e R", 0<t<T)

for constants A, a > 0.

Proof. If u and % both satisfy (30), (31), we apply Theorem 6 to w :=
+(u — ). O

Nonphysical solutions. There are in fact infinitely many solutions of

(32) {ut-Au:O in R™ x (0,7)

u=0 onR"x {t=0}

see for instance John [J2, Chapter 7]. Each of these solutions besides u = 0
grows very rapidly as |z| — oo.

There is an interesting point here: although u = 0 is certainly the “physi-
cally correct” solution of (32), this initial-value problem in fact admits other,
“nonphysical”, solutions. Theorem 7 provides a criterion which excludes the
“wrong” solutions. We will encounter somewhat analogous situations in our

study of Hamilton-Jacobi equations and conservation laws, in Chapters 3,
10 and 11.

b. Regularity. We next demonstrate that solutions of the heat equation
are automatically smooth.

THEOREM 8 (Smoothness). Suppose u € C?(Ur) solves the heat equa-
tion in Up. Then
(RS COO(UT).

This regularity assertion is valid even if u attains nonsmooth boundary
values on I'r.

Proof. 1. Recall from §A.2 that we write

Clz,t;r) ={(y,8) ||z —y| <, t—r* < s <t}
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— (x9,to) e ———

e R—

CII
S—

CI

to denote the closed circular cylinder of radius r, height 72, and top center
point (z,t).

Fix (zo,to) € Ur and choose r > 0 so small that C := C(zo, to; ) C Ur.
Define also the smaller cylinders C’ := C(xzo, to; 31), C" := C(xo, to; %r),
which have the same top center point (zg, tp).

Choose a smooth cutoff function { = {(z,t) such that
{OSCSI, (=1lon(,
¢ = 0 near the parabolic boundary of C.

Extend ¢ =0 in (R™ x [0,%]) — C.
2. Assume temporarily that v € C*°(Ur) and set

v(z,t) := ((z,t)u(z,t) (xeR™ 0<t<t).

Then
v = Cup + Gu, Av = _Au+ 2D( - Du+ uAl.
Consequently
(33) v=0 onR"x {t=0},
and
(34) v — Av = Gu— 2D¢ - Du — uAl =: f

in R™ x (0,tp). Now set

t ~
o(z, 1) r=/ / ®(z —y,t — s)f(y, s) dyds.
0 n
According to Theorem 2
(35) {vt-A%:]S in R™ x (0,t0)
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Since |v|, |9| < A for some constant A, Theorem 7 implies v = ¥; that is,

t
(36) v(z,t) = /0 [ @ =t —9)7(w.s) duds.

Now suppose (z,t) € C”. As { =0 off the cylinder C, (34) and (36) imply

ulz, 1) = / /C (z -yt — )¢5 5) — Ay, 5))uly, s)
—2D((y, s) - Du(y, s)] dyds.

Note in this equation that the expression in the square brackets vanishes in
some region near the singularity of ®. Integrate the last term by parts:

(e ) = [[ [0 = .t = 5)(Gulwr9) + B¢(0:5)
(37) c
+2D,®(z — y,t — s) - D{(y, )]u(y, s) dyds.
We have proved this formula assuming v € C*°. If u satisfies only the

hypotheses of the theorem, we derive (37) with u® = 7. * u replacing u, 7.
being the standard mollifier in the variables z and ¢, and let € — O.

3. Formula (37) has the form

(38)  u(zt) = //C K(z,t,9,s)u(y, s) dyds  ((z,1) € C"),

where
K(z,t,y,s) =0 for all points (y, s) € C’,

since { =1 on C’. Note also K is smooth on C — C’. In view of expression
(38), we see u is C* within C” = C(zo, to; 37)- O

c. Local estimates for solutions of the heat equation. Let us now
record some estimates on the derivatives of solutions to the heat equa-
tion, paying attention to the differences between derivatives with respect
toz; (i =1,...,n) and with respect to ¢.

THEOREM 9 (Estimates on derivatives). There exists for each pair of

integers k,l = 0,1,... a constant Cx; such that

k Kl
o, 1Dz Diul < ez el @en)

for all cylinders C(z,t;r/2) C C(z,t;r) C Ur and all solutions u of the heat
equation in Ur.
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Proof. 1. Fix some point in Ur. Upon shifting the coordinates, we may
as well assume the point is (0,0). Suppose first that the cylinder C(1) :=
C(0,0;1) lies in Ur. Let C(%) = C (0,05 %) Then, as in the proof of
Theorem 8,

uwt) = [[ Kty ouys)duds (@) € C(})
c@)
for some smooth function K. Consequently

Dk Du(z, 1)) < / /C DDA (e, t,3,9) |y, ) i
1

< Crllullicqy)

(39)

for some constant C;.

2. Now suppose the cylinder C(r) := C(0,0;r) lies in Ur. Let C(r/2) =
C(0,0;7/2). We rescale by defining

v(z, t) == u(rz, r’t).
Then v; — Av = 0 in the cylinder C(1). According to (39),
|DEDw(z,t)| < Crllvlizicay ((z,t) € C(3)).

But DEDMw(z,t) = r2+*DEDlu(rz, r%t) and ||v||L1(C(1)) = ﬁHuHLl(C(T».
Therefore

max |DEDly| <

Kl
S m”U”LI(C(r))- O

If u solves the heat equation within Ur, then for each time 0 < ¢t < T,
the mapping = — wu(z,t) is analytic. (See Mikhailov [M].) However the
mapping t — u(z,t) is not in general analytic.

2.3.4. Energy methods.

a. Uniqueness. We investigate again the initial/boundary-value problem

ug— Au=f in Up
(40) { u=g onl7p.
We earlier invoked the maximum principle to show uniqueness and now—
by analogy with §2.2.5—provide an alternative argument based upon inte-
gration by parts. We assume as usual that U C R™ is open and bounded
and that AU is C!. The terminal time 7' > 0 is given.
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THEOREM 10 (Uniqueness). There ezists only one solution u € C?(Ur)
of the initial/boundary-value problem (40).

Proof. 1. If 4 is another solution, w := u — 4 solves

wy— Aw =0 in Ur
(41) { w=0 onl7p.
2. Set
e(t) :== / w?(z,t)dz (0<t<T).
U
Then
. . d
é(t) =2/watdx (: E)
= 2/ wAwdz
U
= —2/ |Dw|? dz < 0,
U
and so
e(t)<e(0)=0 (0<t<T).
Consequently w =u — 4 =0 in Ur. O

Observe that the foregoing is a time-dependent variant of the proof of
Theorem 16 in §2.2.5.

b. Backwards uniqueness. A rather more subtle question asks about
uniqueness backwards in time for the heat equation. For this, suppose u
and 4 are both smooth solutions of the heat equation in Ur, with the same
boundary conditions on OU:

u — Au=0 in Ur

(42) { u=g ondU x[0,T],
ﬂt—Aﬁ:O in UT

(43) { @=g ondU x[0,T],

for some function g. Note carefully that we are not supposing v = % at time
t=0.
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THEOREM 11 (Backwards uniqueness). Suppose u,% € C?(Ur) solve
(42), (43). If
wz,T) =u(z,T) (z€U),

then
u=u within Ur.

In other words, if two temperature distributions on U agree at some time
T > 0 and have had the same boundary values for times 0 < ¢t < T, then
these temperatures must have been identically equal within U at all earlier
times. This is not at all obvious.

Proof. 1. Write w := u — % and, as in the proof of Theorem 10, set

e(t) := /Uwz(:c,t) dz (0<t<T).

As before
. 9 . d

(44) é(t)=-2 [ |Dw|*dzx =—.

U dt
Furthermore

é(t) = —4/ Dw - Dw; dz
U

(45) =4 / Aww, dz

U

= wzw .
_4/U(A 2dz by (41)

Now since w = 0 on 0U,

wl*dz = — | wAwdzx
Duwl|*d Awd
U U
1/2 1/2
< (/ wzdr> (/ (Aw)2d:c> .
U U

Thus (44) and (45) imply
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Hence
(46) Et)e(t) > (e(t)? (0<t<T).

2. Now if e(t) =0 for all 0 <t < T, we are done. Otherwise there exists
an interval [t1,t2] C [0, 7], with

(47) e(t) >0 fort; <t<ty, e(tg) =0.

3. Now write

(48) f(t) :==loge(t) (t1 <t<ta).
Then S0 et
Fo) =S5 - S 20 by (40)

and so f is convex on the interval (¢1,t2). Consequently if 0 < 7 < 1,
t1 <t < tg, we have

F(L =71 +7t) < (A =7)f(t2) + 7£(2).
Recalling (48), we deduce
e((1 = 1)ty 4+ 7t) < e(t1) e(t)T,

and so
0 <e((l—7)t1 +7t2) <e(t1) Te(ta)” (0<7<1).

But in view of (47) this inequality implies e(t) = 0 for all times t; <t < t3,
a contradiction. O

2.4. WAVE EQUATION

In this section we investigate the wave equation
(1) Uy — Au=0
and the nonhomogeneous wave equation

(2) u — Au = f,

subject to appropriate initial and boundary conditions. Here ¢ > 0 and
z € U, where U C R" is open. The unknown is w : U x [0,00) — R,
u = u(z,t), and the Laplacian A is taken with respect to the spatial variables
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z = (z1,...,%n). In (2) the function f : U x[0,00) — R is given. A common
abbreviation is to write
Ou := uy — Au.

We shall discover that solutions of the wave equation behave quite differ-
ently than solutions of Laplace’s equation or the heat equation. For example,
these solutions are generally not C°, exhibit finite speed of propagation, etc.

Physical interpretation. The wave equation is a simplified model for a
vibrating string (n = 1), membrane (n = 2), or elastic solid (n = 3). In
these physical interpretations u(z,t) represents the displacement in some
direction of the point z at time ¢ > 0.

Let V represent any smooth subregion of U. The acceleration within V'

is then
i d / d
— | udzr = Uz AT

and the net contact force is

—/ F-vdS,
ov

where F denotes the force acting on V through 0V and the mass density is
taken to be unity. Newton’s law asserts that the mass times the acceleration

equals the net force:
/uttdx:—/ F-vdS.
v v

This identity obtains for each subregion V' and so
uy = —divF.
For elastic bodies, F is a function of the displacement gradient Du, whence
uy + div F(Du) = 0.
For small Du, the linearization F(Du) ~ —aDu is often appropriate; and so
uy — aldu = 0.

This is the wave equation if a = 1.

This physical interpretation strongly suggests it will be mathematically
appropriate to specify two initial conditions, on the displacement v and the
velocity ug, at time ¢ = 0.
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2.4.1. Solution by spherical means.

We began §§2.2.1 and 2.3.1 by searching for certain scaling invariant
solutions of Laplace’s equation and the heat equation. For the wave equation
however we will instead present the (reasonably) elegant method of solving
(1) first for n = 1 directly and then for n > 2 by the method of spherical
means.

a. Solution for n = 1, d’Alembert’s formula. We first focus our atten-
tion on the initial-value problem for the one-dimensional wave equation in
all of R:

3) { U —uze =0 in R x (0, c0)

u=g, uu=h onRx{t=0},

where g, h are given. We desire to derive a formula for u in terms of g and
h.

Let us first note that the PDE in (3) can be “factored”, to read

0 0 0 0
(4) (aﬂ‘%) (a—%)u:utt_uaﬂ:—o'

Write
(5) v(z,t) = (a - %) u(z,t).
Then (4) says

vi(z,t) + vz(z,t) =0 (z €R, t>0).

This is a transport equation with constant coefficients. Applying formula
(3) from §2.1.1 (with n =1, b= 1), we find

(6) v(z,t) = a(z —t)
for a(z) := v(z,0). Combining now (4)—(6), we obtain
ut(z,t) — ug(z,t) = a(z —t) in R x (0,00).
This is a nonhomogeneous transport equation; and so formula (5) from §2.1.2

(withn=1,b= -1, f(z,t) = a(z — t)) implies for b(z) := u(z,0) that

u(z,t) :/0 alz+ (t—s)—s)ds+ bz +1t)

(7) T+t
= %/w_j a(y) dy + b(z +t).
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We lastly invoke the initial conditions in (3) to compute a and b. The
first initial condition in (3) gives

b(z) = g(z) (z€R),
whereas the second initial condition and (5) imply
a(z) = v(z,0) = ut(z,0) — ugy(z,0) = h(z) — ¢'(z) (z €R).
Our substituting into (7) now yields
1 [t
wwt) =5 [ hw) - @yt +0).
Hence

T+t
(8) u(m»f)z%[g<x+t>+g<x—t>1+§/_t hy)dy (z€R, t>0).

This is d’Alembert’s formula.

We have derived formula (8) assuming u is a (sufficiently smooth) solu-
tion of (3). We need to check that this really is a solution.

THEOREM 1 (Solution of wave equation, n = 1). Assume g € C%(R),
h € C}(R), and define u by d’Alembert’s formula (8). Then

(i) u € C*(R x [0,00)),
(ll) Utt — Uggy = 0 inR x (O, OO),

and
vee l. ,t — 0 , l. ,t — h 0
(iii) o (,mu(ﬂrj ) =g(z°) g O’O)Ut(x ) = h(z")
t>0 t>0

for each point z° € R.
The proof is a straightforward calculation.

Remarks. (i) In view of (8), our solution u has the form
u(z,t) = F(z+t) + G(z — 1)

for appropriate functions F' and G. Conversely any function of this form
solves uy — ugzz = 0. Hence the general solution of the one-dimensional wave
equation is a sum of the general solution of uy — u; = 0 and the general
solution of us + u; = 0. This is a consequence of the factorization (4). See
Problem 19.
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(ii) We see from (8) that if g € C*¥ and h € C*~1, then u € C* but is not
in general smoother. Thus the wave equation does not cause instantaneous
smoothing of the initial data, as does the heat equation.

A reflection method. To illustrate a further application of d’Alembert’s
formula, let us next consider this initial/boundary-value problem on the
half-line Ry = {z > 0}:

Ut — Ugg =0 in Ry x (0, 00)
9) u=g, uu=h onRi x {t=0}
u=0 on {z =0} x(0,00),
where g, h are given, with ¢(0) = h(0) = 0.

We convert (9) into the form (3) by extending u, g, h to all of R by odd
reflection. That is, we set

B [ u(=,?) (x>0, t>0)
i) = { —u(—z,t) (x<0,t>0),

L {s@)  (@20)
i@ ={ " <o
- | h(z) (z >0)
i ={ 5 <o,
Then (9) becomes
{ ﬂtt = aww in R x (O, OO)
%=g, 4 =h onRx{t=0}.

Hence d’Alembert’s formula (8) implies

e = 3o+ 0 +3@ -0+ [ Ry

2 Ja—t

N~

Recalling the definitions of 4, g, h above, we can transform this expression
to read for z > 0, t > 0:

gl +t) +g@ -6+ 1 [ hiy)dy itz>t>0
(10) u(z,t)=14 > —t |
slg(z +1) —g(t - ]+2fa:+t y)dy if0<z<t

If h = 0, we can understand formula (10) as saying that an initial dis-
placement g splits into two parts, one moving to the right with speed one
and the other to the left with speed one. The latter then reflects off the
point x = 0, where the vibrating string is held fixed.

Note that our solution does not belong to C?, unless g”(0) = 0. O
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b. Spherical means. Now suppose n > 2, m > 2, and u € C™(R" x
[0,00)) solves the initial-value problem

a1) { up —Au=0 in R™ x (0, 00)

u=g, ut=h onR" x {t=0}.

We intend to derive an explicit formula for u in terms of g, h. The plan
will be to study first the average of u over certain spheres. These averages,
taken as functions of the time ¢t and the radius r, turn out to solve the
Euler-Poisson—Darboux equation, a PDE which we can for odd n convert
into the ordinary one-dimensional wave equation. Applying d’Alembert’s
formula, or more precisely its variant (10), eventually leads us to a formula
for the solution.

NOTATION. (i) Let z € R", ¢ > 0, r > 0. Define

(12) Uz ) = ][33( u(y, 1) dS(y),

z,r)

the average of u(-,t) over the sphere dB(z, ).
(ii) Similarly,

Gir):= 1 g)dst)
(1 3) B(z,r)

Hsm) = f - h)dst)

For fixed z, we hereafter regard U as a function of r and ¢ and discover
a partial differential equation that U solves:

LEMMA 1 (Euler~Poissorl—Darboux equation). Fiz z € R™, and let u
satisfy (11). Then U € C™(R4 x [0,00)) and

{Utt—UW— ol =0 in Ry x (0, 00)

T

(14)
U=G, Uy=H onR; x {t=0}.

The partial differential equation in (14) is the Fuler—Poisson—-Darbouz
equation. (Note that the term Uy, + "T_IUT is the radial part of the Laplacian
A in polar coordinates.)

Proof. 1. As in the proof of Theorem 2 in §2.2.2 we compute for r > 0

(15) Ur(x;r,w:ﬁf Au(y, 1) dy.
nJ B(z,r)
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From this equality we deduce lim,_,g+ U (z;7,t) = 0. We next differentiate
(15), to discover after some computations that

1
(16) Upr(z;7,t) = ][ AudS + (— — 1) Audy.
OB(x,r) n B(z,r)

Thus lim, g+ Urr(z;7,t) = 2 Au(z, t). Using formula (16), we can similarly
compute Uy, etc., and so verify that U € C™ (R4 x [0, 00)).

2. Continuing the calculation above, we see from (15) that

Ur = Z][ ug dy by (11)
B(z,r

n )

1 / J
B na(n) rn-l B(z,r)uu v

Thus 1
U, = / uy dy,
na(n) B(z,r)
and so
(T‘n-lUT)T = ;/ Ut ds
’I’LOé(’I’L) OB(z,r)
= Tn_l][ Utt ds = T‘n_lUtt. O
8B(z,r)

c. Solution for n = 3,2, Kirchhoff’s and Poisson’s formulas. The
plan in the ensuing subsections will be to transform the Euler-Poisson—
Darboux equation (14) into the usual one-dimensional wave equation. As
the full procedure is rather complicated, we pause here to handle the simpler
cases n = 3,2, in that order.

Solution for n = 3. Let us therefore hereafter take n = 3, and suppose
u € C%(R3 x [0,00)) solves the initial-value problem (11). We recall the
definitions (12), (13) of U, G, H and then set

(17) U:=rU,

(18) G:=rG, H:=rH.

We now assert that U solves

~Utt - Urr = q in R+ X (O, OO)
(19) U=G, Uy=H onRy x{t=0}
U=0 on{r=0}x(0,00).
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Indeed
Uyt = rUy
=r [UW + %UT} by (14), with n =3
= rUpr + 2U, = (U + U,y = Upp.

Notice also that G,.(0) = 0. Applying formula (10) to (19), we find for
0<r<t
- - 1 [rtt .
[G(r+t)—G(t—r)]+§ H(y)dy.

—r+t

(20) Ulz;r,t) =

N | =

Since (12) implies u(z,t) = lim, o+ U(z;7,t), we conclude from (17), (18),
(20) that

u(z,t) = lim Ylairt)
r—0t T
|G+ -Gt—r) 1 [t
B rl_l>r(IJl+ 2r 2r /t_T Hy) dy
=G'(t) + H(¢).
Owing then to (13), we deduce
0
(21) u(z,t) = — t][ gdS | + t][ hdsS.
ot 8B(z,t) 8B(z,t)
But
fswasw)=f g+ dse
8B(a,t) 8B(0,1)
and so

o ][ gdS :][ Dg(z +tz) - 2dS(z)
0t \ J 8B(z,t) 8B(0,1)
— X
= 1., pat)- (155) asw).
O0B(x,t)

Returning to (21), we therefore conclude

(22) u(z,t) = ][83( t)th(y)+g(y)+Dg(y)-(y—w) dS(y) (z€R? t>0).

This is Kirchhoff’s formula for the solution of the initial-value problem (11)
in three dimensions.
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Solution for n = 2. No transformation like (17) works to convert the
Euler—Poisson-Darboux equation into the one-dimensional wave equation
when n = 2. Instead we will take the initial-value problem (11) for n = 2
and simply regard it as a problem for n = 3, in which the third spatial
variable x3 does not appear.

Indeed, assuming u € C?(R? x [0, 0)) solves (11) for n = 2, let us write
(23) (zy, z2, 23, t) := u(z1, 22, ).
Then (11) implies

(24) ﬂtt—ATL:Q inR3x(0,oo)
=9, 44 =h onR3x {t=0},

for
g(z1, 2, 23) := g(x1,72), h(21,72,73) = h(z1, T2).

If we write z = (z1,72) € R? and Z = (z1,72,0) € R3, then (24) and
Kirchhoff’s formula (in the form (21)) imply

u(z, t) = u(z,t)

25 _ _
(25) _9 t][ §ds +t][ hds,
ot 8B(z,0) 0B(z,1)

where B(z,t) denotes the ball in R3 with center z, radius t > 0 and where
dS denotes two-dimensional surface measure on 0B(Z,t). We simplify (25)
by observing

1 _
gds = — / gds
][ 0B(z,t) 4mt? JoB(z,0)

2
- 1 D 2\1/2
s /B (w’t)g(y)( +1Dv(y)|") 7/~ dy,

where v(y) = (2 — |y — z|)2 fory € B(z,t). The factor “2” enters
since dB(z,t) consists of two hemispheres. Observe that (1 + |Dv|?)!/2 =
t(t? — |y — z|?)~Y/2. Therefore

o1 9(y)
as = —/ d
][89(5:,6(] 2mt B(z,t) (t2 — |y — I|2)1/2 Y

t 9(y)
= - dy.
2][3@,0 (t2 — |y — z[2)1/2
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Consequently formula (25) becomes

10 [ o 9(y)
- d
ulot) =55 (t / Bt (2 — y — 22 Y

(26)
L h(y) dy
2J) Blag (2 — |y —x2)1/2 7
e © (o +t2)
t2][ A dy = t][ _g\zTiz) dz,
B(at) (12 — |y — z[?)1/2 B, (1 — [2]?)1/2
and so

0 (.2 9(y)
Z ¢ d
ot ( ][B(a:,t) @y a2

g(z +tz) ][ Dg(z +tz)- 2
— T gt A RN P
][ B, (1 —[2[2)1/2 By (1—|z2)1/2

9(y) f Dyg(y) - (y — z)
=t dy+t dy.
][B(a:,t) @ —ly—ap)2 " B(zt) (12 — |y — z|?)1/2

Hence we can rewrite (26) and obtain the relation

1 ¢ t2h tDa(y) - (y — z
0 ulert) = 5][B(a: D) s (t2 (—y)l?j— at:lgz()zll32 =

for z € R?, ¢ > 0. This is Poisson’s formula for the solution of the initial-
value problem (11) in two dimensions.

dy

The trick of solving the problem for n = 3 first and then dropping to
n = 2 is the method of descent.

d. Solution for odd n. In this subsection we solve the Euler—Poisson—
Darboux PDE for odd n > 3. We first record some technical facts.

LEMMA 2 (Some useful identities). Let ¢ : R — R be C**1. Then for
k=12 ...

0 (&) G5 0%760) = () (*20),

.. k-1 _ _ @
(@) (7d)" (*716(n) = S0 AFr T G2 (),
where the constants BJ’? (j=0,...,k—1) are independent of ¢.

Furthermore,
(i) g =1-3-5---(2k —1).



2.4. WAVE EQUATION 75

The proof by induction is left as an exercise.

Now assume
n > 3 is an odd integer

and set
n=2k+1 (k>1).

Henceforth suppose u € C*+1(R™ x [0, 00)) solves the initial-value prob-
lem (11). Then the function U defined by (12) is C**1.

NOTATION. We write
(28) G(r) = A2 (r?1G(z; 1)) (r>0,t>0).

Then
(29) U(r,0) = G(r), Us(r,0) = H(r).

Next we combine Lemma 1 and the identities provided by Lemma 2 to
demonstrate that the transformation (28) of U into U in effect converts the
Euler-Poisson-Darboux equation into the wave equation.

LEMMA 3 (U solves the one-dimensional wave equation). We have

~Utt~_ o= q inR+X (0,00)
U=G, Uy=H onRyx{t=0}
0 on{r=0}x(0,00).

(r**U,) by Lemma 2(i)

T
I

[rzk_l Urr + 2kr2k‘2Ur]

k—1 n—1
|:T'2k_1 (Urr + - Ur):| (n =2k + 1)

o o 9o 9o
N—— N N NS

Q
3
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the next-to-last equality holding according to (14). Using Lemma 2(ii) we
conclude as well that U = 0 on {r = 0}. a

In view of Lemma 3, (29), and formula (10), we conclude for 0 < r <'¢
that

t+r

(30) U(r,t) = 5[G0+0) - G-+ [ H)dy

t—r

for all » € R, ¢ > 0. But recall u(z,t) = lim, o U(z;r,t). Furthermore
Lemma 2(ii) asserts

T(r,t) = (%%)H (P50 (g, 1))

and so

U(r,t
lim (I:’ ) = lim U(z;r,t) = u(z,t).
r—0 ﬂor r—0

Thus (30) implies

Glt+r)—G(t—r) 1 [t

— H
o o) (y)dy]

-
u(z,t) = ﬂ—gll_r%

1 2 | =
= GO+ HO)

Finally then, since n = 2k + 1, (30) and Lemma 2(iii) yield this repre-
1
u(z,t) = —

sentation formula:
n—3
0 10\ 2z 9 ][
— - t" ds
Yn (8t) (t 0 > ( ot )
31 23
Y + GQ) ) t”_Z][ hdS
t ot 8B(z,t)

{  wherenis oddand v, =1-3-5---(n —2),

for x € R", t > 0.

We note that 3 = 1, and so (31) agrees for n = 3 with (21) and thus
with Kirchhoff’s formula (22).

It remains to check that formula (31) really provides a solution of (11).
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THEOREM 2 (Solution of wave equation in odd dimensions). Assume n
is an odd integer, n > 3, and suppose also g € C™1(R™), h € C™(R™), for
m= "TH Define u by (31). Then

(i) u € C?(R™ x [0,00)),
(11) uyg —Au=0 in R™ x (O, OO),

and
iii lim 1) =g(z%), lim ,t) = h(z®
(iii) (z’t)_)(xo,o)u(r ) = g(z") (wvt)ﬁ(zoyo)m(w ) = h(z°)
zeR™, t>0 zeR™, t>0

for each point z° € R™.

Proof. 1. Suppose first g =0, so that

1 (10\" 7, _
(32) u(z,t) = o (ZE) (t 2H(x;t)) .

Then Lemma 2(i) lets us compute

n—1
1 /10\ 2
Ut = — (——) (t”_lHt) .

From the calculation in the proof of Theorem 2 in §2.2.2, we see as well that

=1 ][ Ahdy.
nJ B(zt)

Consequently

1 10\ %z
=—— |73 A
Ut ()7 (t 8t> </B(x,t) hdy>

n—3
:_(l§> ’ l/ AhdS | .
na(n)y, \t ot t JoB(ayt)

On the other hand,

AH(z;t) = A, h(z + ) dS(y) = ][ AhdS.
8B(0,t) 0B(z,t)
Consequently (32) and the calculations above imply uy = Aw in R™ x (0, 00).
A similar computation works if h = 0.

2. We leave it as an exercise to confirm, using Lemma 2(ii)—(iii), that u
takes on the correct initial conditions. O
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Remarks. (i) Notice that to compute u(z, t) we need only have information
on g, h and their derivatives on the sphere dB(z,t), and not on the entire
ball B(z,t).

(ii) Comparing formula (31) with d’Alembert’s formula (8) (n = 1), we
observe that the latter does not involve the derivatives of g. This suggests
that for n > 1, a solution of the wave equation (11) need not for times ¢ > 0
be as smooth as its initial value g: irregularities in g may focus at times
t > 0, thereby causing u to be less regular. (We will see later in §2.4.3 that
the “energy norm” of u does not deteriorate for ¢ > 0.)

(iii) Once again (as in the case n = 1) we see the phenomenon of finite
propagation speed of the initial disturbance.

(iv) A completely different derivation of formula (31) (using the heat
equation!) is in §4.3.3. O

e. Solution for even n. Assume now

n is an even integer.
Suppose u is a C™ solution of (11), m = ”T” We want to fashion a repre-
sentation formula like (31) for u. The trick, as above for n = 2, is to note
that
(33) w(z1,y ..., Tnt1,t) = u(z1, ..., 2, t)
solves the wave equation in R"*1 x (0, 00), with the initial conditions
i=g, @t =h onR"™ x {t=0},

where

(34)

{ 9(z1, ... Tny1) == g(21, ...y Tp)
h(z1,. .., Znt1) := h(z1, ..., Tn).

Asn +1is odd, we may employ (31) (with n + 1 replacing n) to secure
a representation formula for @ in terms of g, h. But then (33) and (34) yield
at once a formula for u in terms of g, h. This is again the method of descent.

To carry out the details, let us fix x € R", ¢ > 0, and write z =
(z1,...,%n,0) € R*"1. Then (31), with n + 1 replacing n, gives

n—2
9 /18\ 7T _1][ -
= |- t" as
ot (t 815) ( BB(:E,t)g )
n—2
1o\ [, ][ o
+ |- A hdS ||,
( t 815) ( 0B(z,t) ) ]

1
Tn+1

u(z,t) =

(35)
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B(z,t) denoting the ball in R"*! with center Z and radius ¢ and dS denoting
n-dimensional surface measure on 0B(Z,t). Now

_ 1 _
36 ][ gdS = / gdS.
(36) BB(:E,t)g (n+ Da(n+ 1)t" Japz, g

Note that dB(z,t) N {yn+1 > 0} is the graph of the function v(y) :=
(t? — |y — z|)V? for y € B(z,t) C R™. Likewise 0B(z,t) N {yn+1 < 0}
is the graph of —y. Thus (36) implies

G 2
37 ][ gdS = / 1+|D 212 gy
BN f smn? B = A DR T ey 100 IPTO)

the factor “2” entering because 0B(Z,t) comprises two hemispheres. Note
that (14 |Dy(y)|?)/? = t(t> — |y — z|*)~1/2. Our substituting this into (37)
yields

][ 8B(z,t)

QI

= 2 9(y)
dS = d
(n+Da(n + 1)tn—t /B(:c,t) @ —y—a)2Y

__ 2ta(n) 9(y)
= (n+1a(n+1) ][B(a;,t) (82 — |y — x[2)1/2 dy.

We insert this formula and the similar one with & in place of g into (35)
and find

u(z,t) =
1 2a(n)
Ynt1 (0 + Da(n +1)

19 9(y)
ot <¥3—> ( B(a: o (82— |y — z2)1/2 dy)

h(y)
<t3t> ( zt)( Iy—wlz)l/zdyﬂ'

Since Y41 = 1-3-5---(n — 1) and a(n) = PE’L), we may compute
2

’yn:2.4...(n_2).n
Hence the resulting representation formula for even n is

o)=L [(g) G%) o (:fmt) . dy>
(38) + (%%) o (tn][B(z,t) (2 — |Z(i/)a;|2)1/2 dy)] ’

\  wherenis evenandy,=2-4---(n—2)-n
forz € R", t > 0.

Since 72 = 2, this agrees with Poisson’s formula (27) if n = 2.
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THEOREM 3 (Solution of wave equation in even dimensions). Assumen
is an even integer, n > 2, and suppose also g € C™T1(R™), h € C™(R"),
form = ”T“ Define u by (38). Then

(i) u€ C*R™ x [0,0)),

(ii) ug — Au=0 inR™ x (O, OO),

and
iii lim  wu(z,t) =g(z%, lim w(z,t) = h(z°
(iif) w)ﬂ(moyo)( ) = g(z°) e o t(z, 1) = h(z")
z€R™, t>0 z€R™, t>0

for each point z° € R™.

This follows from Theorem 2. Observe, in contrast to formula (31), that
to compute u(z,t) for even n we need information on u = g, uy = h on all
of B(z,t) and not just on 0B(z,t).

Huygens’ principle. Comparing (31) and (38), we observe that if n is odd
and n > 3, the data g and h at a given point z € R™ affect the solution u only
on the boundary {(y,t) | t > 0, |z — y| = t} of the cone C = {(y,t) | t > 0,
|z—y| < t}. On the other hand, if n is even, the data g and h affect v within
all of C. In other words, a “disturbance” originating at x propagates along
a sharp wavefront in odd dimensions, but in even dimensions it continues
to have effects even after the leading edge of the wavefront passes. This is
Huygens’ principle.

2.4.2. Nonhomogeneous problem.

We next investigate the initial-value problem for the nonhomogeneous
wave equation

(39) {utt—Au: f in R™ x (0,00)
u=0, uu=0 onR"”x {t=0}.

Motivated by Duhamel’s principle (introduced earlier in §2.3.1), we define
u = u(z,t; s) to be the solution of

ue(58) — Au(;8) = 0 in R™ x (s,00)
(40) {u(‘;s) =0, u(;s) = f(,s) onR"x {t=s}

Now set
t
(41) u(z,t) == / u(z,t;s)ds (z € R™,t > 0).
0

Duhamel’s principle asserts this is a solution of

(42) u —Au=f in R™ x (0,00)
u=0, uy =0 onR"x {t=0}.
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THEOREM 4 (Solution of nonhomogeneous wave equation). Assume that
n>2 and f € CIM/A+L(R™ x [0, 00)). Define u by (41). Then

(i) u € C?*(R™ x [0,00)),
(i) ug — Au=f inR" x (0,00),

and
(iii) lim  wu(z,t) =0, lim w(x,t)=0 for each point z° € R™.
(z,t)—(0,0) (z,t)—(«,0)
zeR™, t>0 zeR™, t>0

Proof. 1. If n is odd, [%] +1= ”T“ According to Theorem 2, we have

u(-,-;8) € C%(R™ x [s,00)) for each s > 0, and so u € C%(R™ x [0,0)). If n

is even, [2]+1 = 22, Hence u € C?(R™ x [0, 00)), according to Theorem 3.
2. We then compute

t t
ut(z,t) = u(z, t; 1) +/ ut(z, t;8) ds = / ut(zx, t; 8) ds,
0 0
t t
u(z,t) = ue(z, t;t) +/ u(z, t;s)ds = f(z,t) +/ ugt(z,t; 8) ds.
0 0
Furthermore
t t
Au(z,t) = | Au(z,t;s)ds = / u(z,t;8) ds
0 0

Thus
u(z,t) — Au(z, t) = f(z,t) (xz € R™,t > 0),

and clearly u(z,0) = u(z,0) = 0 for z € R™. a

The solution of the general nonhomogeneous problem is consequently
the sum of the solution of (11) (given by formulas (8), (31) or (38)) and the
solution of (42) (given by (41)).

Examples. (i) Let us work out explicitly how to solve (42) for n = 1. In
this case d’Alembert’s formula (8) gives

1 [rtt—s z+t— 3
uetis) =3 [ w9y, / I 5) dyds.
T—t+s z—t+s

That is,

(43) u(z,t) = %/t /rc+s fly,t —s)dyds (z €R, t>0).
0 Jz—s
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(ii) For n = 3, Kirchhoff’s formula (22) implies

w(z, tys) = (£ — s) ][ f(y,5)dS

OB(z,t—s)
so that
t
u(z,t) = /(t—s) <][ f(y,s)dS | ds
BB(wt s)
/ / de
8B(z,t— s) t— s)
47T 8B(z,r) o
Therefore
1 fly,t —ly —=|) 3
44 u:c,t:—/ dy (zeR’ t>0
4 @0 = G B(z,) ly — z| ( )

solves (42) for n = 3. The integrand on the right is called a retarded potential.
g

2.4.3. Energy methods.

The explicit formulas (31) and (38) demonstrate the necessity of making
more and more smoothness assumptions upon the data g and h to ensure
the existence of a C? solution of the wave equation for larger and larger
n. This suggests that perhaps some other way of measuring the size and
smoothness of functions may be more appropriate. Indeed we will see in this
subsection that the wave equation is nicely behaved (for all n) with respect
to certain integral “energy” norms.

a. Uniqueness. Let U C R™ be a bounded, open set with a smooth
boundary 0U, and as usual set Ur = U x (0,T], T'r = Ur — Ur, where
T>0.

We are interested in the initial/boundary-value problem
uge — Au = f in Ur

(45) u=g onlr
ut=h onU x {t=0}.

THEOREM 5 (Uniqueness for wave equation). There exists at most one
function u € C%(Ur) solving (45).
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[ "|\
/ \ B(Xclz to-t)

Cone of dependence

Proof. If 4 is another such solution, then w := u — @ solves

wy —Aw =0 in Up
w=0 on FT
we=0 onU x {t=0}.
Define the “energy”

B(t) = 1/ wi(z,t) + |Dw(z, )Pz (0 <t <T).
U

b2

We compute

. - d
E(t) :/ wiwy + Dw - Dw; dx (: ——)
- dt

= / 'wt(wu = Aw) dz = 0.
U

There is no boundary term since w = 0, and hence w; = 0, on 9U x [0, 7.
Thus for all 0 < ¢t < T, E(t) = E(0) = 0, and so w;, Dw = 0 within Up.
Since w = 0 on U x {t = 0}, we conclude w = u — @ = 0 in Up. W]

b. Domain of dependence. As another illustration of energy methods,
let us examine again the domain of dependence of solutions to the wave
equation in all of space. For this, suppose u € C? solves

uge — Au=0 in R™ x (0, 00).
Fix g € R™, tp > 0 and consider the backwards wave cone with apex (zg, to)

K(zo,t0) == {(z,t) | 0 <t < to, |z — zg| < to —t}.
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THEOREM 6 (Finite propagation speed). If u = u; = 0 on B(xo,tg) X
{t = 0}, then u = 0 within the cone K(xo,to)-

In particular, we see that any “disturbance” originating outside B(zo, to)
has no effect on the solution within K(zo,ty) and consequently has finite
propagation speed. We already know this from the representation formulas
(31) and (38), at least assuming g = u and h = u; on R™ x {t = 0} are suf-
ficiently smooth. The point is that energy methods provide a much simpler
proof.

Proof. Define the local energy

1
e(t) == —/ u?(z,t) + |Du(z,t)[*dz (0 <t <tp).
2 B(:Bo,to—t)
Then
1
/ uguyt + Du - Dug dx — —/ u? + |Dul? dS
B(zo,to—t) OB(zo,to—t)
/ ut Utt — Au) dzx
(46) B(:Bo,to t) 8u .
+/ —uydS — —/ u? + |Dul? dS
8B(z0,to—t) OV 2 JoB(zo,to—t)
1 2
U — —u - —|D I dS
/33($0,t0—t) 81/ 2 t
Now
ou 1 1
(47) ‘gut < |w||Dul < éuf + §|Du|2,

by the Cauchy-Schwarz and Cauchy inequalities (§B.2). Inserting (47) into
(46), we find é(t) < 0; and so e(t) < e(0) = 0 for all 0 < t < t5. Thus wuy,
Du = 0, and consequently u = 0 within the cone K (zo, o). O

A generalization of this proof to more complicated geometry appears
later, in §7.2.4. See also §12.1 for a similar calculation for a nonlinear wave
equation.

2.5. PROBLEMS

In the following exercises, all given functions are assumed smooth, unless
otherwise stated.
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1.

Write down an explicit formula for a function u solving the initial-
value problem

u+b-Du+cu=0 inR" x (0,00)
u=yg onR"x {t=0}.

Here ¢ € R and b € R™ are constants.

Prove that Laplace’s equation Au = 0 is rotation invariant; that is, if
O is an orthogonal n X n matrix and we define

v(z) :==u(0Oz) (z€R"™),

then Av = 0.

Modify the proof of the mean-value formulas to show for n > 3 that

1 1 1
u0=][ ds+—/ (———)fdx,
© BB(O,r)g n(n —2)a(n) Jpoy \|z[*=2  rm2

provided
~Au=f in B°(0,r)
u=g ondB(0,r).

Give a direct proof that if u € C?(U) N C(U) is harmonic within a
bounded open set U, then

max 4 = max u.
U U

(Hint: Define u := u + €|z|? for € > 0, and show u. cannot attain its
maximum over U at an interior point.)

We say v € C?(U) is subharmonic if

-Av <0 inU.

(a) Prove for subharmonic v that
v(z) < ][ vdy for all B(z,r) C U.
B(z,r)

(b)  Prove that therefore maxy; v = maxay v.

(¢) Let ¢: R — R be smooth and convex. Assume u is harmonic
and v := ¢(u). Prove v is subharmonic.

(d) Prove v := |Du|? is subharmonic, whenever u is harmonic.
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6. Let U be a bounded, open subset of R™. Prove that there exists a
constant C, depending only on U, such that
<C
max |u| < C(max|g| + max|f])
whenever u is a smooth solution of
—Au=f inU
u=g ondU.
(Hint: —A(u+ %)\) <0, for X := maxg |f].)
7. Use Poisson’s formula for the ball to prove
n—2 r— le n—2 T+ |.’I)|
————u(0) < < ———u(0
G faly O =) =)
whenever u is positive and harmonic in B%(0,7). This is an explicit
form of Harnack’s inequality.
8.  Prove Theorem 15 in §2.2.4. (Hint: Since u = 1 solves (44) for g =1,
the theory automatically implies
[ K@yase =1
8B(0,1)
for each z € B°(0,1).)
9. Let u be the solution of
Au=0 in R}
u=g on JR}
given by Poisson’s formula for the half-space. Assume g is bounded
and g(z) = |z| for z € OR%, |z| < 1. Show Du is not bounded near
z = 0. (Hint: Estimate M)
10.  (Reflection principle)

(a) Let UT denote the open half-ball {z € R" | |z| < 1, zn, >
0}. Assume u € C%(U+) is harmonic in U, with v = 0 on
oU*T N {z, =0}. Set

(@) { u(z) ifx, >0
v(z) =
—u(z1,..., Tn—1,—2Zn) fz, <0

for z € U = B%(0,1). Prove v € C?(U) and thus v is harmonic
within U.
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11.

12.

13.

14.

15.

(b) Now assume only that u € C2(UT) N C(UT). Show that v is
harmonic within U. (Hint: Use Poisson’s formula for the ball.)

(Kelvin transform for Laplace’s equation) The Kelvin transform Ku =
@ of a function u : R® — R is

a(z) = w(@)|z"? = ulz/l)[«* (@ #0),

where Z = z/|z|2. Show that if u is harmonic, then so is .

(Hint: First show that D,z(D,Z)T = |Z|*I. The mapping z — Z is
conformal, meaning angle preserving.)

Suppose u is smooth and solves us — Au = 0 in R™ x (0, 00).

(a) Show wuy(z,t) := u(\z, A\%t) also solves the heat equation for
each A € R.

(b)  Use (a) to show v(z,t) := z- Du(z, t) + 2tus(x, t) solves the heat
equation as well.

Assume n =1 and u(z, ) = v(7).

(a) Show
Ut = Ugg
if and only if
(+) o+ gv' =0.

Show that the general solution of (x) is
v(z) = c/ e~ 5/4ds + d.
0

(b) Differentiate u(z,t) = v(%) with respect to z and select the
constant ¢ properly, to obtain the fundamental solution ® for
n = 1. Explain why this procedure produces the fundamental
solution. (Hint: What is the initial condition for u?)

Write down an explicit formula for a solution of

u—Au+cu=f inR" x (0,0c0)
u=g onR" x {t =0},

where c € R.
Given g : [0,00) — R, with ¢g(0) = 0, derive the formula

z t 1 _—?
= 4(t—s)
u(z,t) o /0 = 8)3/26 g(s)ds
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16.

17.

18.

19.

for a solution of the initial/boundary-value problem

ut —uge = 0 in Ry x (0,00)
u= 0 onR; x{t=0}
u= g on{z=0}x][0,00).

(Hint: Let v(z,t) := u(z,t) — g(t) and extend v to {z < 0} by odd
reflection.)

Give a direct proof that if U is bounded and u € C?(Ur) N C(Ur)
solves the heat equation, then

max u = max Uu.
UT 1—‘T

(Hint: Define ue := u — €t for € > 0, and show u, cannot attain its
maximum over Ur at a point in Ur.)

We say v € C?(Ur) is a subsolution of the heat equation if

’Ut—AUSO in UT.

(a) Prove for a subsolution v that

1 // |z — yl?
vz, t) < — v(y, s dyds
(@) < 1= . (y )(t W

for all E(z,t;r) C Up.
(b)  Prove that therefore max, v = maxr, v.

(c) Let¢:R — R besmooth and convex. Assume u solves the heat
equation and v := ¢(u). Prove v is a subsolution.

(d) Prove v := |Dul? + u? is a subsolution, whenever u solves the
heat equation.

(Stokes’ rule) Assume u solves the initial-value problem
{ ug —Au=0 in R™ x (0, 0)
u=0, uy=h onR"x {t=0}.
Show that v := u; solves
{ vy —Av =0 in R™ x (0, 00)
v=nh, vy =0 onR"x {t=0}.
This is Stokes’ rule.
(a) Show the general solution of the PDE ugy = 0 is

u(z,y) = F(z) + G(y)
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20.

21.

22.

for arbitrary functions F,G.

(b) Using the change of variables £ = z +¢, n = z — ¢, show
Ut — Uze = 0 if and only if ue, = 0.

(¢) Use (a) and (b) to rederive d’Alembert’s formula.

(d) Under what conditions on the initial data g, h is the solution u
a right-moving wave? A left-moving wave?

Assume that for some attenuation function a = a(r) and delay func-
tion B = B(r) > 0, there exist for all profiles ¢ solutions of the wave
equation in (R™ — {0}) x R having the form

w(z,t) = a(r)g(t = B(r)).

Here r = |z| and we assume §(0) = 0.

Show that this is possible only if n = 1 or 3, and compute the form of
the functions «, g.

(T. Morley, STAM Review 27 (1985), 69-71)
(a) Assume E = (E', E?, E?) and B = (B!, B2, B?) solve Maxwell’s
equations
E;=curlB, B; =—curlE
divB =divE =0.

Show
Ett—AEZO, Btt—ABIO.

(b)  Assume that u = (u!,u?, u?) solves the evolution equations of
linear elasticity

wy — pAu — (A + p)D(divu) =0 in R? x (0, 00).
Show w := divu and w := curlu each solve wave equations,

but with differing speeds of propagation.
Let u denote the density of particles moving to the right with speed
one along the real line and let v denote the density of particles moving
to the left with speed one. If at rate d > 0 right-moving particles
randomly become left-moving, and vice versa, we have the system of
PDE
{ ut + ugz = d(v —u)
vt — vy = d(u —v).

Show that both w := uw and w := v solve the telegraph equation

wy + 2dws — wyy = 0.
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23.

24.

Let S denote the square lying in R x (0, 0c0) with corners at the points
(0,1),(1,2),(0,3),(—1,2). Define
-1 for (z,t) e SN{t>xz+2}
f(z,t) = 1 for (z,t) e SN{t<z+2}
0 otherwise.

Assume u solves
Ut — Uz = fin R x (0, 00)
{ u=0,uy =0 onR x {t=0}.
Describe the shape of u for times t > 3.
(J. G. Kingston, STAM Review 30 (1988), 645-649)
(Equipartition of energy) Let u solve the initial-value problem for the
wave equation in one dimension:
Ut — Ugz =0 in R x (0, 00)
{uzg,utzh on R x {t =0}.
Suppose g,h have compact support. The kinetic energy is k(t) =

1 [% u?(z,t) dz and the potential energy is p(t) == 3 [*0_ uZ(z,t) dz
Prove

(a)  k(t) + p(t) is constant in ¢,
(b)  k(t) = p(t) for all large enough times ¢.
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Chapter 8

NONLINEAR
FIRST-ORDER PDE

3.1 Complete integrals, envelopes

3.2 Characteristics

3.3 Introduction to Hamilton—Jacobi equations
3.4 Introduction to conservation laws

3.5 Problems

3.6 References

In this chapter we investigate general nonlinear first-order partial differ-
ential equations of the form

F(Du,u,z) =0,
where z € U and U is an open subset of R™. Here
F:R"xRxU—R
is given, and u : U — R is the unknown, u = u(z).
NOTATION. Let us write
F=F(p,z,z)=F(P1,---,Pn, % T1,.--,%n)

forp e R* z € R, x € U. Thus “p” is the name of the variable for which
we substitute the gradient Du(z), and “2” is the variable for which we
substitute u(z). We also assume hereafter that F' is smooth and set

D,F = (Fy,..., Fp.)
D.F =F,
DoF = (Fy,,..., Fy).

O
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We are concerned with discovering solutions u of the PDE F(Du,u, z) =
0 in U, usually subject to the boundary condition

u=g¢9 onl,
where I' is some given subset of U and g : ' — R is prescribed.

Nonlinear first-order partial differential equations arise in a variety of
physical theories, primarily in dynamics (to generate canonical transforma-
tions), continuum mechanics (to record conservation of mass, momentum,
energy, etc.) and optics (to describe wavefronts). Although the strong
nonlinearity generally precludes our deriving any simple formulas for so-
lutions, we can, remarkably, often employ calculus to glean fairly detailed
information about solutions. Such techniques, discussed in §§3.1 and 3.2,
are typically only local. In §§3.3 and 3.4 we will for the important cases

of Hamilton—Jacobi equations and conservation laws derive certain global
representation formulas for appropriately defined weak solutions.

3.1. COMPLETE INTEGRALS, ENVELOPES
3.1.1. Complete integrals.

We begin our analysis of the nonlinear first-order PDE
(1) F(Du,u,z) =0

by describing some simple classes of solutions and then learning how to build
from them more complicated solutions.

Suppose first A C R™ is an open set. Assume for each parameter a =
(a1,--.,an) € A we have a C? solution u = u(z;a) of the PDE (1).

NOTATION. We write

Ugy  Ugiay --- Ugpay
(2) (Dgu, Dgau) =

Uan u:l?llln s uwnan nX('n+1)

DEFINITION. A C? function v = u(x;a) is called a complete integral in
U x A provided

(1) u(z;a) solves the PDE (1) for eacha € A

(ii) rank(Dgu, D2,u) =n (z €U, a € A).
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Interpretation. Condition (ii) ensures u(z;a) “depends on all the n inde-
pendent parameters ai,...,a,”. To see this, suppose B C R®! is open,
and for each b € B assume v = v(z;b) (x € U) is a solution of (1). Suppose
also there exists a C! mapping ¥ : A — B, ¥ = (¢!,...,%™ 1), such that

(3) u(z;a) = v(z;v(a)) (x €U, ac€ A).

That is, we are supposing the function u(z;a) “really depends only on the
n — 1 parameters by, ..., b,—1”. But then

Ug;a, (T; @) szzbk z;p(a 1/1aj(a) (i,7=1,...,n).

Consequently
kl kl
n—1 a1 P an
det(D2Z,u) = Z Vzybg, - - - Vanby, det =0,
ki, kn=1 kn kn,
R /e
since for each choice of ki,...,k, € {1,...,n — 1}, at least two rows in the

corresponding matrix are equal. As

Uq; (; @) Evbkxv,b 7,[1%,(0,) (G=1,...,n),

a similar argument shows that the determinant of each n x n submatrix of
(Dgu, D%, u) equals zero, and thus this matrix has rank strictly less than n.

Example 1. Clairaut’s equation from differential geometry is the PDE

(4) z - Du+ f(Du) = u,

where f : R™ — R is given. A complete integral is

(5) u(z;a) =a-z+ f(a) (ze€U)

for a € R™. O

Example 2. The eikonal* equation from geometric optics is the PDE

(6) |Du| = 1.

A complete integral is

(7) u(z;a,b) =a-z+b (zeU)

forz € U, a € 0B(0,1), beR. O

*eukwr = image (Greek).
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Example 3. The Hamilton-Jacobi equation from mechanics is in its sim-
plest form the partial differential equation

(8) us + H(Du) = 0,

where H : R® — R. Here u depends on z = (z1,...,z,) € R and t € R.
As before we have set ¢t = 41 and written Du = Dyu = (ug,, ..., Uz, ). A
complete integral is

9) u(z,t;a,b) =a-z—tH(a)+b (z€R™, t>0)

where a € R, b € R. O

3.1.2. New solutions from envelopes.

We next demonstrate how to build more complicated solutions of our
nonlinear first-order PDE (1), solutions which depend on an arbitrary func-
tion of n— 1 variables and not just on n parameters. We will construct these
new solutions as envelopes of complete integrals or, more generally, of other
m-parameter families of solutions.

DEFINITION. Letu = u(z;a) be a C! function of z € U, a € A, where
U CR"™ and A CR™ are open sets. Consider the vector equation

(10) Dou(z;a) =0 (z €U, ac A).

Suppose that we can solve (10) for the parameter a as a C' function of ,
(11) a = ¢(z);

thus

(12) Dou(z; ¢(z)) =0 (z € U).

We then call

(13) v(@) == u(w; 6(z)) (w € U)

the envelope of the functions {u(-;a)}aca-

By forming envelopes, we can build new solutions of our nonlinear first-
order partial differential equation:

THEOREM 1 (Construction of new solutions). Suppose for each a € A
as above that u = u(-;a) solves the partial differential equation (1). Assume
further that the envelope v, defined by (12) and (13) above, ezists and is a
C! function. Then v solves (1) as well.

The envelope v defined above is sometimes called a singular integral of

(1).
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Proof. We have v(z) = u(z; ¢(z)); and so fori =1,...,n

Vg, (T) = ug, (z; Pp(x +Zua1 z, ¢(z ( )

= ug, (z; ¢(x)), accordlng to (12).
Hence for each z € U,
F(Dv(z),v(z),z) = F(Du(z; ¢(z)), u(z; ¢(x)),z) = 0. a

The geometric meaning is that for each z € U, the graph of v is tangent
to the graph of u(-; a) for a = ¢(z). Thus Dv = Dyu(-;a) at z, for a = ¢(z).
Example 4. Consider the PDE
(14) u?(1 + | Duf?) =
A complete integral is

u(z,a) = +(1 — |z —a/)Y?  (jz —a| <1).

We compute

F(z—a)
Dyu = =0
SO ERF DR
provided a = ¢(z) = z. Thus v = +1 are singular integrals of (14). a

To generate still more solutions of the PDE (1) from a complete integral,
we vary the above construction. Choose any open set A’ ¢ R*"! and any
C! function h : A’ — R, so that the graph of h lies within A. Let us write

a=(ay...,a,) = (d,a,) forad = (ai1,...,an_1) € R"L

DEFINITION. The general integral (depending on h) is the envelope v’ =
v'(z) of the functions

' (z;d') = u(z;ad h(a)) (zeU, ded),
provided this envelope exists and is C*.

In other words, in computing the envelope we are now restricting only
to parameters a of the form a = (d/, h(a)), for some explicit choice of the
function h. Thus from a complete integral, which depends upon n arbitrary
constants aj, ..., an,, we build (whenever the foregoing construction works)
a solution depending on an arbitrary function h of n — 1 variables.
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Example 5. Let H(p) = |p|?, h = 0 in Example 3 above. Then
u'(z,t;0) =z - a— tlal?

We calculate the envelope by setting D,u’ = z — 2ta = 0. Hence a = =
and so

' z z2_ |z? n
) = ~——t‘—’=— R", ¢ > 0
Viz,t) =z 57 5 P (z e > 0)
solves the Hamilton—Jacobi equation v; + |Dv'|? = 0. a

Remark. It is tempting to believe that once we can find as above a solution
of (1) depending on an arbitrary function h, we have found all the solutions
of (1). But this need not be so. Suppose our PDE has the structure

F(Du,u,z) = Fi(Du,u,z)Fa(Du,u,z) = 0.

If uy (z, a) is a complete integral of the PDE F (Du, u, z) = 0 and we succeed
in finding a general integral corresponding to any function h, we will still
have missed all the solutions of the PDE F»(Du,u,z) = 0.

3.2. CHARACTERISTICS

3.2.1. Derivation of characteristic ODE.

We return to our basic nonlinear first-order PDE
(1) F(Du,u,z) =0 inU,
subject now to the boundary condition
(2) u=g onl,

where I' C 9U and g : T' — R are given. We hereafter suppose that F, g are
smooth functions.

We develop next the method of characteristics, which solves (1), (2) by
converting the PDE into an appropriate system of ODE. This is the plan.
Suppose u solves (1), (2) and fix any point z € U. We would like to calculate
u(z) by finding some curve lying within U, connecting = with a point z° € T"
and along which we can compute u. Since (2) says u = g on I', we know
the value of u at the one end z°. We hope then to be able to calculate u all
along the curve, and so in particular at z.
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Finding the characteristic ODE. How can we choose a path in U so all
this will work? Let us suppose the curve is described parametrically by the

function x(s) = (z!(s),...,z"(s)), the parameter s lying in some subinterval
I C R. Assuming u is a C? solution of (1), we define also

(3) 2(s) = u(x(s))-

In addition, set

(4) p(s) := Du(x(s));

that is, p(s) = (p*(s),...,p"(s)), where

(5) P'(s) = ug, (x(s)) (i=1,...,n).

So z(-) gives the values of u along the curve and p(-) records the values of
the gradient Du. We must choose the function x(-) in such a way that we
can compute z(-) and p(-).

For this, first differentiate (5):
4 $ j . d
©) $(5) = D e, () (5) (= ).
j=1

This expression is not too promising, since it involves the second derivatives
of u. On the other hand, we can also differentiate the PDE (1) with respect
to z;:

(7) ZFM (Du, u, Z)ug;z; + Fz(Du,u, z)ug; + Fr;(Du,u,z) = 0.
j=1

We are able to employ this identity to get rid of the second derivative terms
in (6), provided we first set

(8) &7 (s) = Fp, (p(s), 2(s),x(s)) (G=1,...,n).

Assuming now (8) holds, we evaluate (7) at z = x(s), obtaining thereby
from (3), (4) the identity:

Fp;(p(8), 2(8), %X(5)) Uz, (x(5))
1

J

n

+ Fo(p(s), 2(5), x(5))p*(s) + Fa,(p(s), 2(s), X(5)) = 0.



98 3. NONLINEAR FIRST-ORDER PDE

Substitute this expression and (8) into (6):

P(s) = —Fu,(p(s), 2(s),x(s))
— E(p(s), (), x(8))pi(s) (i=1,...,n).

Finally we differentiate (3):

9)

n n

(10)  2(s5) = D uq, (x(5))2(s) = D_ P! (5)Fp, (B(s), 2(s), x(5)),

j=1 j=1
the second equality holding by (5) and (8).

The characteristic equations. We summarize by rewriting equations
(8)—(10) in vector notation:

(a) p(s) = =Dz F(p(s), 2(s),x(s)) — D-F(p(s), 2(s), %(5))p(s)
(11) ¢ (b) 2(s) = DpF(p(s), 2(s), x(s)) - p(s)
(c) %(s) = DpF(p(s), 2(s), %(5))-

Furthermore,

(12) F(p(s),2(s),x(s)) = 0.
These identities hold for s € I.

The important system (11) of 2n + 1 first-order ODE comprises the
characteristic equations of the nonlinear first-order PDE (1). The functions
p() = (P'(),...,p™()), 2(-), x(-) = (z(-),...,z"(-)) are called the charac-
teristics. We will sometimes refer to x(-) as the projected characteristic: it
is the projection of the full characteristics (p(-), z(-),x(+)) C R?"*! onto the
physical region U C R™.

We have proved:

THEOREM 1 (Structure of characteristic ODE). Let u € C?(U) solve
the nonlinear, first-order partial differential equation (1) in U. Assume x(-)
solves the ODE (11)(c), where p(-) = Du(x(")), z(-) = u(x(-)). Then p(-)
solves the ODE (11)(a) and z(-) solves the ODE (11)(b), for those s such
that x(s) e U.

We still need to discover appropriate initial conditions for the system
of ODE (11), in order that this theorem be useful. We accomplish this in
§3.2.3 below.
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Remark. The characteristic ODE are truly remarkable in that they form
an exact system of equations for x(-), z(-) = u(x(-)), and p(-) = Du(x(")),
whenever u is a smooth solution of the general nonlinear PDE (1). The
key step in the derivation is our setting x = D,F', so that—as explained
above—the terms involving second derivatives drop out. We thereby obtain
closure and in particular are not forced to introduce ODE for the second
and higher derivatives of u.

3.2.2. Examples.

Before continuing our investigation of the characteristic equations (11),
we pause to consider some special cases for which the structure of these
equations is especially simple. We illustrate as well how we can sometimes
actually solve the characteristic ODE and thereby explicitly compute solu-
tions of certain first-order PDE, subject to appropriate boundary conditions.

a. F linear. Consider first the situation that our PDE (1) is linear and
homogeneous and thus has the form

(13) F(Du,u,z) = b(z) - Du(z) + c(z)u(z) =0 (z € U).
Then F(p, z,z) = b(z) - p + ¢(z)z, and so
D,F = b(z).
In this circumstance equation (11)(c) becomes
(14) x(s) = b(x(s)),

an ODE involving only the function x(-). Furthermore equation (11)(b)
becomes

(15) (s) = b(x(5)) - B(s).
Then equation (12) simplifies (15), yielding
(16) 2(s) = —c(x(s))(s)-

This ODE is linear in z(-), once we know the function x(-) by solving (14).
In summary,

- (@ Ko =bete)

(b)  2(s) = —c(x(s))z(s)

comprise the characteristic equations for the linear, first-order PDE (13).
(We will see later that the equation for p(-) is not needed.) a
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Example 1. We demonstrate the utility of equations (17) by explicitly
solving the problem

(18) {xluzz — ToUz, =u inU

u=g onl,

where U is the quadrant {z; > 0,22 > 0} and I' = {21 > 0,22 = 0} C 9U.
The PDE in (18) is of the form (12), for b = (—z2,;) and ¢ = —1. Thus
the equations (17) read

(19)

Accordingly we have

z'(s) = 20 cos s, z%(s) = 2¥sinss
2(s) = 2%° = g(z0) e

where 20 >0, 0<s< 5. Fix a point (z1,72) € U. We select s > 0,
20 > 0 so that (z1,22) = (z!(s),z%(s)) = (2% cos s, 2%sin s). That is, 20 =
(z3 4 23)1/2, s = arctan ( Z ) Therefore

u(z) = u(@}(s), 2%(s)) = 2(5) = g(a®) * = g((a] + a§)/2) o= (F),
a

b. F quasilinear. The partial differential equation (1) is quasilinear should
it have the form
(20) F(Du,u,z) = b(z,u(z)) - Du(z) + c(z,u(z)) =
In this circumstance F(p, z,z) = b(z, 2) - p + ¢(z, z), whence
DpF = b(z, 2).

Hence equation (11)(c) reads

and (11)(b) becomes

z(s) = b(x(s), z(s)) - p(s) = —c(x(s), 2(s)), by (12).
Consequently
on (@ 30 =bix(9.200)

(b)  2(s) = —c(x(s), 2(s))
are the characteristic equations for the quasilinear first-order PDE (20).
(Once again we do not require the equation for p(-).) 0O
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Example 2. The characteristic ODE (21) are in general difficult to solve,
and so we work out in this example the simpler case of a boundary-value
problem for a semilinear PDE:

2 .
Ug, +Ug, = u InU
(22) { u=g onl.

Now U is the half-space {z2 > 0} and I' = {z32 = 0} = OU. Here b = (1,1)
and ¢ = —z2. Then (21) becomes

Consequently

{xl(s) =20+s, 2%(s) = s
_ 20 g9
Z(S) - 1_2320  1-sg(x0)?
where z° € R, s > 0, provided the denominator is not zero.
Fix a point (z1,z2) € U. We select s > 0 and z° € R so that (z1,z2) =
(z1(s),z%(s)) = (2° + s, 5); that is, 2° = z1 — x2, s = 2. Then

— wl(zl(s). 22(s)) = 2(s) — 9(370) _ g(z1 — z2)
u(z) = u(z(s),z°(s)) = ()—l_sg(xo)—l_mg(m_m).

This solution of course makes sense only if 1 — z9g(z1 — z2) # 0. d
c. F fully nonlinear. In the general case, we must integrate the full
characteristic equations (11), if possible.

Example 3. Consider the fully nonlinear problem

Ug Uz, =u DU
(23) { u=u1x3 onT,

where U = {z; > 0}, T = {1 = 0} = OU. Here F(p,z,z) = p1p2 — 2, and
hence the characteristic ODE (11) become

-2 p2

p p

'2 1

3
2
j =p.

We integrate these equations to find

zt(s )—pz(e "~ z?(s) = ¥ + p(e* - 1)
2(s) = 20 + p{pY (e 1
p'(s) = nle’, p*(s) = poe®

)
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where 2° € R, s € R, and 20 = (xo)z.

We must determine p° = (p?,p9). Since u = 2 on F P9 = ug,(0,2°) =

210, Furthermore the PDE ug, ug, = u itself implies pdp) = 2° = (z°)2, and
so pd = 2 . Consequently the formulas above become

z}(s) = 220(e° — 1),22(s) = L (e° + 1)
2(s) = (2°)%€*

pi(s) = & e®, p(s) = 2a0¢".

Fix a point (:cl, z2) € U. Select s and z° so that (:cl, 12) = (z(s), 2%(s))
= (22%(e* - 1), % 22 (e® 4 1)). This equality implies z° = dm2h s — %;
and so

_ 1 _ _ s _ (I +4I )2
u(z) = u(z(s),2%(s)) = 2(s) = (2°)%e* = 11—62

3.2.3. Boundary conditions.

We return now to developing the general theory and intend in the sec-
tion following to invoke the characteristic ODE (11) actually to solve the
boundary-value problem (1), (2), at least in a small region near an appro-
priate portion I" of OU.

a. Straightening the boundary. To simplify subsequent calculations,
it is convenient first to change variables, so as to “flatten out” part of the
boundary 8U. To accomplish this, we first fix any point z° € dU. Then
utilizing the notation from §C.1, we find smooth mappings ¢, ¥:R* >R
such that ¥ = &1 and ® straightens out OU near z°. (See the illustration
in §C.1.)

Given any function u : U — R, let us write V := ®(U) and set

(24) v(y) =uw(¥(y) eV).
Then
(25) u(z) =v(®(z)) (z€U).

Now suppose that u is a C! solution of our boundary-value problem (1), (2)
in U. What PDE does v then satisfy in V7

According to (25), we see

U, (@) = Y vy, (B(@)@E (2) (i=1,...,n);

k=1
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that is,
Du(z) = Dv(y)D®(z).

Thus (1) implies
(26)  F(Dv(y)D2(¥(y)),v(y), ¥(y)) = F(Du(z), u(z), z) = 0.
This is an expression having the form
G(Dv(y),v(y),y) =0 inV.
In addition v = h on A, where A := ®(T') and h(y) := g(¥(y)).

In summary, our problem (1), (2) transforms to read

G(Dv,v,y) =0 inV
v=~h onA,
for G, h as above. The point is that if we change variables to straighten out

the boundary near z°, the boundary-value problem (1), (2) converts into a
problem having the same form.

(27)

b. Compatibility conditions on boundary data. In view of the fore-
going computations, if we are given a point z° € T', we may as well assume
from the outset that T is flat near 2°, lying in the plane {z, = 0}.

We intend now to utilize the characteristic ODE to construct a solution
(1), (2), at least near z°, and for this we must discover appropriate initial
conditions

(28) p(0) = p°, 2(0) = 2°, x(0) = 2°.
Now clearly if the curve x(-) passes through z°, we should insist that
(29) 2 = g(°).
What should we require concerning p(0) = p°? Since (2) implies
u(zy,...n_1,0) = g(z1,...,2,_1) near z°, we may differentiate to find
g, (2°) = gz,(z°) (G =1,...,n—1).

As we also want the PDE (1) to hold, we should therefore insist p° =
(p(l’, ...,pY) satisfies these relations:

p?:ga:i(wo) (i=1,...,n-1)
(30) 0,0 .0
F(p°,2°,2°) = 0.
These identities provide n equations for the n quantities p° = (pJ,...,2).

We call (29) and (30) the compatibility conditions. A triple (p, 2°0,z°) €
R27+1 verifying (29), (30) is admissible. Note 2° is uniquely determined
by the boundary condition and our choice of the point z°, but a vector p°
satisfying (30) may not exist or may not be unique.
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c. Noncharacteristic boundary data. So now assume as above that
20 € T, that T near z° lies in the plane {z, = 0}, and that the triple
(p°, 2%, 2%) is admissible. We are planning to construct a solution u of (1),
(2) in U near z° by integrating the characteristic ODE (11). So far we
have ascertained x(0) = z°, z(0) = 2°, p(0) = p° are appropriate boundary
conditions for the characteristic ODE, with x(-) intersecting T' at z°. But
we will need in fact to solve these ODE for nearby initial points as well
and must consequently now ask if we can somehow appropriately perturb
(p°, 29, 20), keeping the compatibility conditions.

In other words, given a point y = (y1,...,yn—1,0) € I', with y close to
, we intend to solve the characteristic ODE

(a) p(s) = =Dz F(p(s), 2(s), x(5)) = D-F(p(s), 2(s), x(s))p(s)
(31) (b) 2(s) = DpF(p(s), 2(s),%(s)) - P(s)
(¢) x(s) = DpF(p(s), 2(s), %(s)),

20

with the initial conditions
(32) p(0) = q(y), 2(0) = g(y), x(0) =v.
Our task then is to find a function q(-) = (¢*(-),...,q™(")), so that
(33) q(z") =p°
and (q(y), 9(y),y) is admissible; that is, the compatibility conditions
{ ¢y =9sy) (=1,...,n-1)
F(a(y),9(y),y) =0
hold for all y € T close to z°.

(34)

LEMMA 1 (Noncharacteristic boundary conditions). There erists a unique
solution q(-) of (33), (34) for all y € T sufficiently close to z°, provided

(35) Fpn(pO’ZO,IO) # 0.

We say the admissible triple (p°, 20, 2°) is noncharacteristic if (35) holds.
We henceforth assume this condition.

Proof. Our problem is to find ¢"(y) so that

F(a(y),9(y),y) =0,

where ¢*(y) = gz, (y) fori = 1,...,n—1. Since F(p°, 2%, 2%) = 0, the Implicit
Function Theorem (§C.7) implies we can indeed locally and uniquely solve
for ¢"(y), provided that the noncharacteristic condition (35) is valid. a
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General noncharacteristic condition. If T is not flat near z°, the con-
dition that I" be noncharacteristic reads

(36) DPF(pOa zO’xO) . V(‘ro) 7é 0’

v(z%) denoting the outward unit normal to U at z2°. See Problem 7.

3.2.4. Local solution.

Remember that our aim is to use the characteristic ODE to build a
solution u of (1), (2), at least near I'. So as before we select a point z° € T
and, as shown in §3.2.3, may as well assume that near z° the surface I is flat,
lying in the plane {z,, = 0}. Suppose further that (p°, 20, 2°) is an admissible
triple of boundary data, which is noncharacteristic. According to Lemma 1
there is a function q(-) so that p® = q(z°) and the triple (q(y),g(y),v) is
admissible, for all 3 sufficiently close to z°.

Given any such point y = (y1,...,¥Yn-1,0), we solve the characteristic
ODE (31), subject to initial conditions (32).

NOTATION. Let us write
p(s) =p(y,8) =P(Y1;-- -, ¥Yn-1,5)
z(s) = z(y,8) = z(y1, - - -, Yn-1, )
x(s) = x(y, 8) = x(y1,- -, Yn-1,5)

to display the dependence of the solution of (31), (32) on s and y. Also, we
will henceforth when convenient regard z° as lying in R*~1. 0O

LEMMA 2 (Local invertibility). Assume we have the noncharacteristic
condition Fp, (p°,2°,2%) # 0. Then there exist an open interval I C R
containing 0, a neighborhood W of z° in T' C R™!, and a neighborhood V
of ° in R™, such that for each x € V there exist unique s € I, y € W such
that

z = x(y, s).

The mappings x — s,y are C?.

Proof. We have x(z°,0) = z°. Consequently the Inverse Function Theorem
(§C.6) gives the result, provided det Dx(z°,0) # 0. Now

x(y,0) = (y,0) (y€T);
andsoifi=1,...,n—1,

; di; (J=1,...,n—-1)
I{M(xo,o):{ 6 (]:n)
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Furthermore equation (31)(c) implies

I.J;(I07 0) = ij (pO, ZO,‘,EO)‘

Thus
10 Fp (9% 20 2%

Dx(azo, 0) = N ,
0 1 :
0---0 Fp, (p° 2% 2°)

nxn

whence det Dx(z°,0) # 0 follows from the noncharacteristic condition (35).
a

In view of Lemma 2 for each x € V, we can locally uniquely solve the
equation

(37) {w=M%%

for y=y(x), s =s(z).
Finally, let us define

u(z) = 2(y(z), s(x))
(#8) o p(y(2), 5(2))
for x € V and s,y as in (37).

We come finally to our principal assertion, namely, that we can locally
weave together the solutions of the characteristic ODE into a solution of the
PDE.

THEOREM 2 (Local Existence Theorem). The function u defined above
is C? and solves the PDE

F(Du(z),u(z),z) =0 (zeV),
with the boundary condition
u(z) =g(z) (zelNnV).
Proof. 1. First of all, fix y € T close to z° and, as above, solve the charac-
teristic ODE (31), (32) for p(s) = p(y, s), 2(s) = 2(y, 5), and x(s) = x(y, s).

2. We assert that if y € T is sufficiently close to z°, then

(39) fy,5) == F(p(y, ), 2(y, ), x(y,5)) =0 (s € ).



3.2. CHARACTERISTICS 107

To see this, note

(40)  f(y,0) = F(p(y,0), 2(y,0),x(y,0)) = F(a(y),9(y),y) =0,

by the compatibility condition (34). Furthermore

fs(y,s) = ZFPJp]+FZ+ZF%w

j=1 3=1
:ZFPj(—Fw, _szj)-l'Fz(Zijpj)
7j=1 7=1

+ Z Fy,(Fpj) according to (31)
j=1
This calculation and (40) prove (39).

3. In view of Lemma 2 and (37)-(39), we have
F(p(z),u(z),z) =0 (zeV).
To conclude, we must therefore show
(41) p(z) = Du(z) (z€V).

In order to prove (41), let us first demonstrate for s € I, y € W that

(42) zs(y, 5) = Zp](ya S)ZC‘g(y, ’S)
j=1
and

n

(43) zyi(y,s)=2p7(y,s):c§i(y,s) (7::17---777'—1)'

=1

These formulas are obviously consistent with the equality (41) and will later
help us prove it. The identity (42) results at once from the characteristic
ODE (31)(b),(c). To establish (43), fix y €T, ¢ € {1,...,n — 1}, and set

(44) ri(s) =2z, (y,8) = >_ P (y,5)2],(y,9).
j=1
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We first note r°(0) = g,,(y) — ¢*(y) = 0 according to the compatibility
condition (34). In addition, we can compute

(45) 7(s) = zys Zpngz +p73:

Jj=1
To simplify this expression, let us first differentiate the identity (42) with
respect to y;:

(46) sy, = Zp] .’I)] -'_p]msyz

j=1
Substituting (46) into (45), we discover

n

n

(47)  it(s) = )_pjad = pla, =D PPy, — (- Fe, — Fap)al,,
j=1 j=1

according to (31)(a). Now differentiate (39) with respect to y;:

n n
ZFPjp:Z/i + Fzzyi + ZF%xilz =0

We employ this identity in (47), thereby obtaining
(48) (s) = Zp%cj — z,,) = —F,r'(s).

Hence 7(-) solves the linear ODE (48), with the initial condition 7¢(0) = 0.
Consequently 7¢(s) =0 (s € I, i = 1,...,n — 1), and so identity (43) is
verified.

4. We finally employ (42) (43) in proving (41). Indeed, if j = 1,...,n,

= 258z, + Z z%;yz by (38)

n n—1 n
= Z ¥ sSz; + ZZPk ’;,yiJ by (42), (43)
k=1 i=1 k=1

pg: EM:

.'17 SZJ + Z yzyz]
k=Y =
k=1

This assertion at last establishes (41) and so finishes up the proof. o

>
Il

1
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3.2.5. Applications.

We turn now to various special cases, to see how the local existence
theory simplifies in these circumstances.

a. F linear. Recall that a linear, homogeneous, first-order PDE has the
form

(49) F(Du,u,z) = b(z) - Du(z) + c(z)u(z) =0 (z €U).
Our noncharacteristic assumption (36) at a point 2% € T as above becomes
(50) b(z%) - (%) # 0

and thus does not involve 2z or p° at all. Furthermore if we specify the
boundary condition

(51) u=g onl,

we can uniquely solve equation (34) for q(y) if y € T is near z°. Thus we can
apply the Local Existence Theorem 2 to construct a unique solution of (49),
(51) in some neighborhood V containing z°. Note carefully that although we
have utilized the full characteristic equations (31) in the proof of Theorem
2, once we know the solution exists, we can use the reduced equations (17)
(which do not involve p(-)) to compute the solution. Observe also that the
projected characteristics x(-) emanating from distinct points on I" cannot

cross, owing to uniqueness of solutions of the initial-value problem for the
ODE (17)(a).

Example 4. Suppose the trajectories of the ODE
(52) x(s) = b(x(s))
are as drawn for Case 1. We are thus assuming the vector field b vanishes

within U only at one point, which we will take to be the origin 0, and b-v < 0
onI' :=aU.

Case 1: flow to an attracting point
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Can we solve the linear boundary-value problem

(53) {b-Du:O inU

u=g¢g onl?

Invoking Theorem 2, we see that there exists a unique solution u defined
near I' and indeed that u(x(s)) = u(x(0)) = g(z°) for each solution of the
ODE (52), with the initial condition x(0) = 2° € . However, this solution
cannot be smoothly continued to all of U (unless g is constant): any smooth
solution of (53) is constant on trajectories of (52) and thus takes on different
values near z = 0.

Case 2: flow across a domain

But now suppose the trajectories of the ODE (52) look like the illustra-
tion for Case 2. We are assuming that each trajectory of the ODE (except
those through the characteristic points A, B) enters U precisely once, some-
where through the set

I':={z €0U | b(z) - v(z) < 0},

and exits U precisely once. In this circumstance we can find a smooth
solution of (53) by setting u to be constant along each flow line.

Assume finally the flow looks like Case 3. We can now define u to be
constant along trajectories, but then u will be discontinuous (unless g(B) =
g(D)). Note that the point D is characteristic and that the local existence
theory fails near D. O
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Case 3: flow with characteristic points

b. F quasilinear. Should F be quasilinear, the PDE (1) is
(54) F(Du,u,z) =b(z,u) - Du+ c(z,u) = 0.

The noncharacteristic assumption (36) at a point z° € T reads b(z?, 2°) -
v(z0) # 0, where 20 = g(z°). As in the preceding example, if we specify the
boundary condition

(55) u=g onl,

we can uniquely solve the equations (34) for q(y) if y € T near z°. Thus
Theorem 2 yields the existence of a unique solution of (54), (55) in some
neighborhood V of z°. We can compute this solution in V using the reduced
characteristic equations (21), which do not explicitly involve p(-).

In contrast to the linear case, however, it is possible that the projected
characteristics emanating from distinct points in T’ may intersect outside V;
such an occurrence usually signals the failure of our local solution to exist
within all of U.

Example 5 (Characteristics for conservation laws). As an instance of a
quasilinear first-order PDE, we turn now to the scalar conservation law

G(Du,ut, u, z,t) = ut + divF(u)

(56) =u+F'(u)-Du=0

in U = R" x (0, 00), subject to the initial condition

(57) u=g onl=R"x{t=0}
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Here F : R — R™ F = (F!,...,F"), and, as usual, we have set t =
ZTnt1. Also, “div” denotes the divergence with respect to the spatial variables
(z1,...,Zn), and Du = Dyu = (ug,, - .., Uz, )-

Since the direction ¢t = x,,+1 plays a special role, we appropriately modify
our notation. Writing now ¢ = (p, pn+1) and y = (z,t), we have

G(q’ 2, y) =DPn+1+ F/(Z) - P,
and consequently
DqG = (Fl(z)a 1)’ DyG = 0, DZG = F//(Z) - p.

Clearly the noncharacteristic condition (35) is satisfied at each point y° =
(z0,0) € T. Furthermore equation (21)(a) becomes

(58) { #(s) = F'(z(s)) (i=1,...,n)

" tl(s) = 1.

Hence z"™!(s) = s, in agreement with our having written z,.; = t above.
In other words, we can identify the parameter s with the time ¢.

Equation (21)(b) reads 2(s) = 0. Consequently
(59) 2(s) = 2° = g(a°);
and (58) implies
(60) x(s) = F'(g(z°))s + 2°.

Thus the projected characteristic y(s) = (x(s),s) = (F'(g(z°))s + 2°,s)
(s > 0) is a straight line, along which u is constant.

Crossing characteristics. But suppose now we apply the same reasoning
to a different initial point 2° € T, where g(z°) # g(2°). The projected char-
acteristics may possibly then intersect at some time t > 0. Since Theorem 1
tells us u = g(z°) on the projected characteristic through z° and u = g(2°)
on the projected characteristic through 2°, an apparent contradiction arises.
The resolution is that the initial-value problem (56), (57) does not in general
have a smooth solution, existing for all times t > 0. O

We will discuss in §3.4 the interesting possibility of extending the local
solution (guaranteed to exist for short times by Theorem 2) to all times
t > 0, as a kind of “weak” or “generalized” solution.
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An implicit formula. We can eliminate s from equations (59), (60) to
derive an implicit formula for u. Indeed given z € R™ and ¢t > 0, we see that
since s =t,

u(x(t),t) = 2(t) = g(x(t) — tF'(2%)) = g(x(t) — tF ' (u(x(t),1)))-
Hence
(61) u=g(z —tF'(u)).

This implicit formula for u as a function of z and ¢ is a nonlinear analogue of
equation (3) in §2.1. Tt is easy to check that (61) does indeed give a solution,
provided

1+tDg(z —tF'(u)) - F"(u) #0.

In particular if n = 1, we require
1+tg (z —tF'(u))F"(u) # 0.

Note that if F” > 0, but ¢’ < 0, then this will definitely be false at some
time ¢ > 0. This failure of the implicit formula (61) reflects also the failure
of the characteristic method. O

c. F fully nonlinear. The form of the full characteristic equations can
be quite complicated for fully nonlinear first-order PDE, but sometimes a
remarkable mathematical structure emerges.

Example 6 (Characteristics for the Hamilton—-Jacobi equation). We look
now at the general Hamilton—Jacobi PDE

(62) G(Du,ut,u, z,t) = us + H(Du,z) =0,

where Du = Dgu = (ug,, ..., Ug,). Then writing ¢ = (p, pn+1), ¥ = (,1),
we have

G(q,2,y) = pnt1+ H(p, x);

and so
DyG = (DpH(p,z),1), DyG = (DzH(p,z),0), D,G =0.
Thus equation (11)(c) becomes

(63) {x &(s) = f{pi(p(s),X(s)) (i=1,...,n)
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In particular we can identify the parameter s with the time ¢. Equation
(11)(a) for the case at hand reads

{ pl(s) = _Hxi(p(s)’x(s)) (Z =1,.. .,’I’L)
P (s) = 0;
the equation (11)(b) is
2(s) = DpH(p(s),x(s)) - p(s) + p"(s)
= DpH(p(s),x(s)) - P(s) — H(p(s), x(s))-

In summary, the characteristic equations for the Hamilton—Jacobi equation
are

(a) P(s) =—D:H(p(s),x(s))
(64) { (b) z(s) = DpH(p(s),x(s)) - p(s) — H(p(s),x(s))
(c) x(s) = DpH(p(s),x(s))
for p(-) = (p'(),---,p"(")), 2(-), and x(-) = (z*("),...,2"(")).
The first and third of these equalities,

{ x = DpH (p, X)
p = _D:::H(Pax),

)
)

(65)

are called Hamilton’s equations. We will discuss these ODE and their rela-
tionship to the Hamilton—Jacobi equation in much more detail, just below
in §3.3. Observe that the equation for z(-) is trivial, once x(-) and p(-) have
been found by solving Hamilton’s equations. O

As for conservation laws (Example 5), the initial-value problem for the
Hamilton—Jacobi equation does not in general have a smooth solution
lasting for all times t > 0.

3.3. INTRODUCTION TO HAMILTON-JACOBI
EQUATIONS

In this section we study in some detail the initial-value problem for the
Hamilton—Jacobi equation:

ut+ H(Du) =0 in R"™ x (0,00)
(1) { t u=g onR"x {t=0}.

Here u : R™ x [0, 00) — R is the unknown, u = u(z, t), and Du = Dyu =
(ugyy- -, Uz, ). We are given the Hamiltonian H : R™ — R and the initial
function ¢g : R™ — R.
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Our goal is to find a formula for an appropriate weak or generalized
solution, existing for all times ¢ > 0, even after the method of characteristics
has failed.

3.3.1. Calculus of variations, Hamilton’s ODE.

Remember from §3.2.5 that two of the characteristic equations associated
with the Hamilton—Jacobi PDE

ut + H(Du,z) =0
are Hamilton’s ODE .
{ x = DpH (p, X)
p= —DzH(P,X),

which arise in the classical calculus of variations and in mechanics. (Note
the z-dependence in H here.) In this section we recall the derivation of
these ODE from a variational principle. We will then discover in §3.3.2 that
this discussion contains a clue as to how to build a weak solution of the
initial-value problem (1).

a. The calculus of variations. Assume that L : R” x R" — R is a given
smooth function, hereafter called the Lagrangian.

NOTATION. We write
L=L(v,z)=L(v1,...,0n,%1,---,%n) (v,x €R")
and
{ DyL = (Lu, -+~ Ly,)
DyL = (Ly, -~ Lg,).

Thus in the formula (2) below “v” is the name of the variable for which
we substitute w(s), and “z” is the variable for which we substitute w(s).
g

Now fix two points z,y € R™ and a time ¢t > 0. We introduce then the
action functional

@) w0 = [ Lwhwonds (=2,

defined for functions w(-) = (w!(-),w?(:),...,w"(-)) belonging to the ad-
missible class

A= {w() € C2(0, 8 B") | w(0) = y, w(t) = a}.



116 3. NONLINEAR FIRST-ORDER PDE

wi(.)

x(-)

A problem in the calculus of variations

Thus a C? curve w(-) lies in A if it starts at the point y at time 0 and
reaches the point z at time t.

A basic problem in the calculus of variations is to find a curve x(-) € A
satisfying

3) Iix()] = min Iw()]

That is, we are asking for a function x(-) which minimizes the functional

I[-] among all admissible candidates w(-) € A.

We assume next that there in fact exists a function x(-) € A satisfying
our calculus of variations problem and will deduce some of its properties.

THEOREM 1 (Euler-Lagrange equations). The function x(-) solves the
system of Euler-Lagrange equations

d

@)~ (DuL(x(s),x(5))) + Dz L(%(s),x(s)) =0 (0 < s <)

This is a vector equation, consisting of n coupled second-order equations.

Proof. 1. Choose a smooth functiony : [0,t] — R™, y(:) = (¥}(),...,v"("),
satisfying

(5) y(0) =y(t) =0,
and define for 7 € R
(6) w() =x()+7y()

Then w(-) € A and so
Ix()] < Iw ().
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Thus the real-valued function

i(7) = 1Ix() + 7y ()]

has a minimum at 7 = 0, and consequently

) ‘=0 ("=4).

provided ¢/(0) exists.

2. We explicitly compute this derivative. Observe

im=LL&@+W@m@+W@M&

and so
/ ZL,,Z x+7'y,3:+7'y)y +Lzz(x+7'y,a:+7'y)y ds.

Set 7 = 0 and remember (7):

/ZL (%,%)3* + Ly, (%, %x)y" ds.

We recall (5) and then integrate by parts in the first term inside the integral,
to discover

0= Z:;/Ot [—% (Ly, (%,%)) + Ly, (%,%) | " ds.

This identity is valid for all smooth functions y(-) = (y (),---,y™(")) satis-
fying the boundary conditions (5), and so for 0 < s <t

—%(Lvi(k,x))+in(k,x)=0 (i=1,...,n). 0

Critical points. We have just demonstrated that any minimizer x(-) € A
of I[-] solves the Euler-Lagrange system of ODE. It is of course possible
that a curve x(-) € A may solve the Euler-Lagrange equations without
necessarily being a minimizer: in this case we say x(-) is a critical point of
I[-]. So every minimizer is a critical point, but a critical point need not be
a minimizer.
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Example. If L(v,z) = 3m|v|? — ¢(z), where m > 0, the corresponding
Euler-Lagrange equation is

m(s) = £(x(s))

for f := —D¢. This is Newton’s law for the motion of a particle of mass m
moving in the force field f generated by the potential ¢. (See Feynman-—
Leighton—Sands [F-L-S, Chapter 19].) a

b. Hamilton’s equations. We now transform the Euler-Lagrange equa-
tions, a system of n second-order ODE, into Hamilton’s equations, a system
of 2n first-order ODE. We hereafter assume the C? function x(-) is a critical
point of the action functional and thus solves the Euler-Lagrange equations

(4)-

First we set

(8) P(s) :== Dy L(x(s),x(s)) (0<s<t);

p(-) is called the generalized momentum corresponding to the position x(-)
and velocity x(-). We next make this important hypothesis:

Suppose for all z,p € R™ that the equation
p=DyL (Ua :C)

can be uniquely solved for v as a smooth

9)
function of p and z, v = v(p, z).

We will examine this assumption in more detail later: see §3.3.2.
DEFINITION. The Hamiltonian H associated with the Lagrangian L is
H(p,z) :==p-v(p,x) - L(v(p,z),z) (p,z €R"),

where the function v(-) is defined implicitly by (9).
Example (continued). The Hamiltonian corresponding to the Lagrangian
L(v,z) = gm|v|? — ¢(z) is

Hp,z) = 5 Ipl* + 9(a).

The Hamiltonian is thus the total energy, the sum of the kinetic and potential
energies (whereas the Lagrangian is the difference between the kinetic and
potential energies). a

Next we rewrite the Euler-Lagrange equations in terms of p(-), x(-):



3.3. INTRODUCTION TO HAMILTON-JACOBI EQUATIONS 119

THEOREM 2 (Derivation of Hamilton’s ODE). The functions x(-) and
p(-) satisfy Hamilton’s equations:

{ x(s) = DpH(p(s),%(s))
p(S) = —DIH(p(s),x(s))

for 0 < s <t. Furthermore,
the mapping s — H(p(s),x(s)) is constant.

(10)

The equations (10) comprise a coupled system of 2n first-order ODE for
x(-) = (z'(:),...,2"(-)) and p(-) = (p'(-), ..., p"(")) (defined by (8)).
Proof. First note from (8) and (9) that %x(s) = v(p(s), x(s)).

Let us hereafter write v(-) = (v!(-),...,v"(-)). We compute for i =
1,...,n that

:Ez p; Zpkvzi(pa ka(V(p,fE),CC)’U:i(p,I) - Lzz(V(p,I),I)

= —Lzl.(q, ) according to (9)

and

Hpi(p7 - vl(pa + Zpkv i P, L’Uk (V(p7 CC), x)v;k;z (p,:c)

=v'(p,z), again by (9).
Thus _ .
Hpi (p(s)’x(’s)) = Uz(p(s)’x(s)) = iz(s)a
and likewise
HIi(p(s)’x(s)) = —in(v(p(s),x(s)),x(s)) = _in(k(s)ax(s))
= _dis (Lv; (x(s),x(s))) according to (4)
= —7'(s).
Finally, observe

EH(I%X) = ZHPi (P, x)p" + He, (P, x)&

= E :Hpi(p’x)(_Hivi (p,x)) + Hwi(p’x)HPi(p’x) =0.
=1
O

See Arnold [Ar1, Chapter 9] for more on Hamilton’s ODE and Hamilton—
Jacobi PDE in classical mechanics. We are employing here different notation
than is customary in mechanics: our notation is better overall for PDE the-
ory.
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3.3.2. Legendre transform, Hopf-Lax formula.

Now let us try to find a connection between the Hamilton—Jacobi PDE
and the calculus of variations problem (2)—(4). To simplify further, we also
drop the z-dependence in the Hamiltonian, so that afterwards H = H(p).
We start by reexamining the definition of the Hamiltonian in §3.3.1.

a. Legendre transform. We hereafter suppose the Lagrangian L : R" —
R satisfies these conditions:

(11) the mapping v — L(v) is convex
and
L
(12) ) = +00
ol—oo [Vl

The convexity implies L is continuous.

DEFINITION. The Legendre transform of L is

(13) L*(p) := qseuﬂgl{p ‘v—L(v)} (peR).

This is also referred to as the Fenchel transform.

Motivation for Legendre transform. Why do we make this definition?
For some insight let us note in view of (12) that the “sup” in (13) is really
a “max”; that is, there exists some v* € R™ for which

L*(p) =p-v" = L(v")

and the mapping v — p-v — L(v) has a maximum at v = v*. But then p =
DL(v*), provided L is differentiable at v*. Hence the equation p = DL(v)
is solvable (although perhaps not uniquely) for v in terms of p, v* = v(p).
Therefore

L*(p) =p-v(p) — L(v(p)).
However, this is almost exactly the definition of the Hamiltonian H asso-

ciated with L in §3.3.1 (where, recall, we are now assuming the variable x
does not appear). We consequently henceforth write

(14) H=1L"

Thus (13) tells us how to obtain the Hamiltonian H from the Lagrangian L.

Now we ask the converse question: given H, how do we compute L?
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THEOREM 3 (Convex duality of Hamiltonian and Lagrangian). Assume
L satisfies (11), (12) and define H by (13), (14).

(i) Then
the mapping p — H(p) is convex
and
lim ﬁ = +00.
lpl—oo P
(ii) Furthermore
(15) L=H"

Thus H is the Legendre transform of L, and vice versa:
L=H" H=L".

We say H and L are dual convex functions. The identity (15) implies that
the three statements

(16) p=DL(v)
v=DH(p)

are equivalent provided H is differentiable at p and L is differentiable at v:
see Problem 11.

{p'v—L(v)JrH(p)

Proof. 1. For each fixed v, the function p — p-v — L(v) is linear; and
consequently the mapping

p— H(p)=L*(p) = vsgﬂgl{p v — L(v)}

is convex. Indeed, if 0 <7 <1, p,p € R™, we have
H{(rp + (1= 7)p) =sup{(rp + (1 —7)p) - v - L(v)}
< 7sup{p-v— L(v)}
N (1= 7)sup{p-v—L(v)}
=7H(p)+ (1 —-7)H(D).
2. Fix any A > 0, p # 0. Then

H(p) =Useuﬂ£l{p~v—L(v)}
AN 3

> Alp| - nax L.



122 3. NONLINEAR FIRST-ORDER PDE

Thus lim inf |5 % > X for all A > 0.

3. In view of (14)
H(p)+ L(v) 2 p-v

for all p,v € R™, and consequently

Lw)ziﬁﬁ%v—H@B=fFWX

On the other hand

H*(v) = sup{p-v—sup{p-r—L(r)}}

peR™ reRn
= sup inf {p-(v—r)+ L(r)}.
peRn reR

Now since v — L(v) is convex, according to §B.1 there exists s € R™ such
that
L(r)> L(v)+s-(r—v) (reR™.

(If L is differentiable at ¢, take s = DL(v).) Putting p = s above, we
compute

H()>T1€rﬁ{n{s (v—r)+ L(r)} = L(v). O

b. Hopf-Lax formula. Let us now return to the initial-value problem (1)
for the Hamilton—Jacobi equation and conclude from (64) in §3.2.5 that the
corresponding characteristic equations are

p=0
¢=DH(p)-p— H(p)
% = DH(p).

The first and third of these are Hamilton’s ODE, which we in §3.3.1 derived
from a minimization problem for associated Lagrangian L = H*. Remem-
bering (16), we can therefore understand the second of the characteristic
equations as asserting

t=DH(p)-p— H(p) = L(X).

But at least for such short times that (1) has a smooth solution u, we have
z(t) = u(x(t),t) and consequently

w(z,t) = /0 L(%(s)) ds + g(x(0)).
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Our intention is to modify this expression, to make sense even for large
times t > 0 when (1) does not have a smooth solution. The variational
principle for the action discussed in §3.3.1 provides the clue. Given z € R™
and t > 0, we therefore propose to minimize among curves w(-) satisfying
w(t) = z the expression

/0 L(w(s)) ds + g(w(0)),

which is the action augmented with the value of the initial data. We ac-
cordingly now define

(17) u(z,1) := inf {/Ot L(w(s))ds + g(w(0)) | w(t) = ﬂc} )

the infimum taken over all C! functions w(-). (Better justification for this
guess will be provided much later, in Chapter 10.)

We must investigate the sense in which the function u given by (17)
actually solves the initial-value problem for the Hamilton—Jacobi PDE:

(18) {ut-i-H(Du):O in R™ x (0, 00)

u=g onR"x {t=0}.

Recall we are assuming H is smooth,

(19) lim 2® = 4.

{ H is convex and
Ipl—co 17

We henceforth suppose also

(20) g:R™ > R is Lipschitz continuous;

this means Lip(g) := supz yer» {%} < oo
Ty
First we note that formula (17) can be simplified:

THEOREM 4 (Hopf-Lax formula). Ifz € R™ andt > 0, then the solution
u = u(z,t) of the minimization problem (17) is

(21) u(z,t) = min {tL (%) + g(y)} .

yeR™

DEFINITION. We call the expression on the right-hand side of (21) the
Hopf-Lax formula.
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Proof. 1. Fix any y € R™ and define w(s) := y+ $(z —y) (0 < s < 1).
Then the definition (17) of u implies

e, < [ (o ds o) =02 (1Y) +0),

ety < inf {12 (570) +at)}.

2. On the other hand, if w(-) is any C! function satisfying w(t) = z, we

have ( /W >— /OL(W( »

by Jensen’s inequality (§B.1). Thus if we write y = w(0), we find

and so

tL( t >+g(y) /OtL(v'v(s))ng(y);

and consequently

inf, {tL (?) + g(y)} < u(z, t).

3. We have so far shown

wwo) = ing o2 (23) 400

and leave it as an exercise to prove that the infimum above is really a
minimum. g

We now commence a study of various properties of the function u defined
by the Hopf-Lax formula (21). Our ultimate goal is showing this formula
provides a reasonable weak solution of the initial-value problem (18) for the
Hamilton—Jacobi equation.

First, we record some preliminary observations.

LEMMA 1 (A functional identity). For each z € R™ and 0 < s < ¢, we
have

(22) u(z,t) = min {(t — )L (%) +u(y, s)} .

yERn —

In other words, to compute u(-,t), we can calculate u at time s and then
use u(-, s) as the initial condition on the remaining time interval [s,t].
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Proof. 1. Fix y € R", 0 < s < t and choose z € R™ so that
(23) u(y, s) = sL (y_;_z) + g(2).

Now since L is convex and 72 = (1 — $) =% 4 $¥==we have

u(z, t) 5tL< t ) +g(2) < (t—s)L (1;—;,) +sL (ys;z> +9(2)

— S

— (-9 (3=2) +ulweo)

- $§

by (23). This inequality is true for each y € R™. Therefore, since y — u(y, s)
is continuous (according to the first part of the proof Lemma 2 below), we
have

. zT—y
< — _— .
(24) u(z,t) < min {(t s)L (t — s> + u(y, s)}
2. Now choose w such that
(25) wwt) =2 (272 +otw),

and set y := $z 4 (1 — $) w. Then =¥ = 2% = =% Consequently

=L (T2) +ulono)

by (25). Hence

(26) min {(t —$)L ("” - y> +uly, s)} < u(z,t).

yeR™
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LEMMA 2 (Lipschitz continuity). The function u is Lipschitz continuous
in R™ x [0, 00), and

u=g onR"x{t=0}.
Proof. 1. Fixt > 0, z,Zz € R™. Choose y € R" such that

(27) tL (g) + 9(y) = u(z, t).
Then

u(@, 1) - u(z,t) = min {tL <@> + g(z)} ¢ (“’ - y) oy

t
<g9(&—z+y)—g(y) <Lip(g)|Z — z|.

Hence
u(i,t)—-u(m,t)fglﬂp(gﬂi:—-rh

and, interchanging the roles of Z and z, we find
(28) |u(z, t) — u(Z,t)| < Lip(g)|z — .

2. Now select z € R™, ¢t > 0. Choosing y = z in (21), we discover
(29) u(z,t) <tL(0) + g(z).

Furthermore,

u(z,t) = ;2}% {tL (%) + g(y)}

> g(z) + min {— Lip(g)|z — y| + tL (ﬂ)
yeR™ t

r—y
)

= 9(z) — tmax{Lip(g)|| — L(2)} (z=
= —¢ o — I

9(z) weB B8 ) gelﬁzg{w z—L(2)}
=g(z) - tB max H.

(0,Lip(g))
This inequality and (29) imply
|u(z,t) — g(z)| < Ct

for

30 C :=max(|L(0)|, max |H|).
(30) (LO). , max 1))
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3. Finally select z € R”, 0 < ¢ < ¢t. Then Lip(u(-,t)) < Lip(g) by (28)
above. Consequently Lemma 1 and calculations like those employed in step
2 above imply

lu(z,t) — u(z,t)| < Clt — ¢

for the constant C defined by (30). a

Now Rademacher’s Theorem (which we will prove later, in §5.8.3) asserts
that a Lipschitz function is differentiable almost everywhere. Consequently
in view of Lemma 2 our function u defined by the Hopf-Lax formula (21)
is differentiable for a.e. (z,t) € R™ x (0,00). The next theorem asserts u in
fact solves the Hamilton—Jacobi PDE wherever u is differentiable.

THEOREM 5 (Solving the Hamilton-Jacobi equation). Suppose z € R™,
t > 0, and u defined by the Hopf-Laz formula (21) is differentiable at a point
(z,t) € R™ x (0,00). Then

ut(z,t) + H(Du(z,t)) = 0.

Proof. 1. Fix v € R", h > 0. Owing to Lemma 1,

u(z + hv,t +h) = min {hL (w) +u(y,t)}
yeR™ h

< hL(v) + u(z,t).
Hence
u(z + hv,t+h) —u
h

@8 < L(w).
Let h — 07, to compute
v - Du(z,t) + u(z,t) < L(v).
This inequality is valid for all v € R™, and so
(31)  wi(z,t) + H(Du(z,t)) = w(z, t) + 11)2%{1; - Du(z,t) — L(v)} < 0.

The first equality holds since H = L*.

2. Now choose z such that u(z,t)
s=t— hy——:c-l-(l )z Then £

w(@t) — u(y, 5) > L (%) ra) - [s2 (V5) +4)
= (t—s)L (a;;z)

( ) ). Fix h > 0 and set
y and thus
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That is,

u(a:,t)—u((l—h%)x+%z,t—h) ZL(:c—z).

Let h — 07, to see that

r— =z

- Du(z,t) + w(z,t) > L (a’ - z) :

Consequently

ut(z,t) + H(Du(z,t)) = w(z, t) + 1%%575{1} - Du(z,t) — L(v)}

> ug(z,t) + x;z - Du(z,t) — L (a:;z)

> 0.

This inequality and (31) complete the proof. O

We summarize:

THEOREM 6 (Hopf-Lax formula as solution). The function u defined by
the Hopf-Lax formula (21) is Lipschitz continuous, is differentiable a.e. in
R™ x (0,00), and solves the initial-value problem

(32) u+ H(Du) =0 a.e. in R™ x (0,00)
u=g9 onR"x{t=0}.

3.3.3. Weak solutions, uniqueness.

a. Semiconcavity. In view of Theorem 6 above it may seem reasonable
to define a weak solution of the initial-value problem (18) to be a Lipschitz
function which agrees with g on R™ x {t = 0} and solves the PDE a.e. on
R™ x (0, 00). However this turns out to be an inadequate definition, as such
weak solutions would not in general be unique.

Example. Consider the initial-value problem

{ut+|uw|2=0 in R x (0, 00)

(33) u=0 onRx {t=0}

One obvious solution is

ui(z,t) = 0.
However the function
0 if |z|>t¢
ug(z, t) := z—t if 0<z<t

—zx—t if —t<z<0
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is Lipschitz continuous and also solves the PDE a.e. (everywhere, in fact,
except on the lines z = 0,%t). It is easy to see that actually there are
infinitely many Lipschitz functions satisfying (33). O

This example shows we must presumably require more of a weak solution
than merely that it satisfy the PDE a.e. We will look to the Hopf-Lax
formula (21) for a further clue as to what is needed to ensure uniqueness.
The following lemma demonstrates that u inherits a kind of “one-sided”
second-derivative estimate from the initial function g.

LEMMA 3 (Semiconcavity). Suppose there exists a constant C such that
(34) g(z +2) = 2g(z) + g(z — 2) < Czf?
for all z,z € R™. Define u by the Hopf-Lax formula (21). Then

u(z + 2,t) — 2u(z, t) + u(z — 2,t) < C|z)?

forallz,ze R", t > 0.

We say g is semiconcave provided (34) holds. It is easy to check that
(34) is valid if g is C? and supg~ |D?g| < co. Note that g is semiconcave if
and only if the mapping z — g(z) — $|z|? is concave for some constant C.

Proof. Choose y € R™ so that u(z,t) = tL (5¥) + g(y). Then, putting
y+ z and y — 2z in the Hopf-Lax formulas for u(a: + z,t) and u(z — 2,t), we
find

< C’|z|2 by (34

d

As a semiconcavity condition for v will turn out to be important, we
pause to identify some other circumstances under which it is valid. We will
no longer assume g to be semiconcave but will suppose the Hamiltonian H
to be uniformly convex.
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DEFINITION. A C? conver function H : R®™ — R is called uniformly
convex (with constant § > 0) if

(35) > Hyp, (p)€i6; > 01€1* for all p,€ € R™

,5=1

We now prove that even if g is not semiconcave, the uniform convexity
of H forces u to become semiconcave for times ¢t > 0: this is a kind of mild
regularizing effect for the Hopf-Lax solution of the initial-value problem
(18).

LEMMA 4 (Semiconcavity again). Suppose that H is uniformly convex
(with constant 0) and u is defined by the Hopf-Lax formula (21). Then

1
u(z + z,t) — 2u(z,t) + u(z — 2,t) < %|z|2
for allz,z e R™, t > 0.

Proof. 1. We note first using Taylor’s formula that (35) implies

+ 1 1 0
(36) H(BZ2) < SH@) + SHp) — S lp — ol
2 2 2 8
Next we claim that for the Lagrangian L we have the estimate
— il < — —
(37) 2L('U1) + 2L(’l}2) <L ( 2 ) + 89|’l}1 V2|

for all vy, vy € R™. Verification is left as an exercise.

2. Now choose y so that u(z,t) = tL (%) + g(y). Then using the
same value of y in the Hopf-Lax formulas for u(z + z,t) and u(z — z,t), we
calculate

u(z + 2z,t) — 2u(z,t) + u(z — 2,t)

= [tL (:Htﬂ) +g(y)] -2 [tL (%) +9(y)]
+ [“3 (@) +9(y)]
e () e () ()]

1]22]?
<ot— |22

1 2
< —
il |21,

6t

the next-to-last inequality following from (37). O
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b. Weak solutions, uniqueness. In this section we show that semi-
concavity conditions of the sorts discovered for the Hopf-Lax solution u in
Lemmas 3 and 4 can be utilized as uniqueness criteria.

DEFINITION. We say that a Lipschitz continuous function u : R™ x
[0,00) — R is a weak solution of the initial-value problem:

(38)

ut+H(Du)=0 inR" x (0,00)
u=g onR"™x{t=0}

provided
(a) u(z,0)=g(z) (z€R"),

(b) u¢(z,t) + H(Du(z,t)) =0 for a.e. (z,t) € R™ x (0,00),
and

(c) u(z+z,t) — 2u(z,t) +ulz — 2,t) <C (1 + 1) |22

for some constant C > 0 and all x,z € R™, t > 0.

Next we prove that a weak solution of (38) is unique, the key point being
that this uniqueness assertion follows from the inequality condition (c).

THEOREM 7 (Uniqueness of weak solutions). Assume H is C? and sat-
isfies (19) and g satisfies (20). Then there exists at most one weak solution
of the initial-value problem (38).

Proof*. 1. Suppose that u and 4 are two weak solutions of (38) and write
wi=Uu— U.

Observe now that at any point (y,s) where both u and @ are differen-
tiable and solve our PDE, we have

wt(y’ 3) = Ut(y, 3) - at(y’ 3)
= —H(Du(y,s)) + H(Du(y, s))

= _ /1 diH(rDu(y, s)+ (1 —r)Da(y,s))dr
o dr
1
= —/0 DH(rDul(y,s) + (1 —r)Du(y, s)) dr - (Du(y, s) — Du(y, s))
=: —b(y, s) - Dw(y, s).
Consequently

(39) wi+b-Dw=0 ae.

*Omit on first reading.
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2. Write v := ¢(w) > 0, where ¢ : R — [0, 00) is a smooth function to
be selected later. We multiply (39) by ¢'(w) to discover

(40) v1+b-Dv=0 a.e.

3. Now choose € > 0 and define u® := 7, * u, U° := 7 * %, where 7). is the
standard mollifier in the z and ¢ variables. Then according to §C.4

(41) |Du®| < Lip(u), |D@f| < Lip(4),
and
(42) Du® — Du, Di* — Du a.e., as € — 0.

Furthermore inequality (c) in the definition of weak solution implies

(43) D*uf, D%if < C (1 + %) I

for an appropriate constant C and all € > 0, y € R", s > 2¢. Verification is
left as an exercise.

4. Write
(44) be(y,s) := /01 DH(rDu®(y,s) + (1 — r)Du(y, s)) dr.
Then (40) becomes
vt +b.-Dv=(b.—b)-Dv ae;
hence
(45) vt + div(vb,) = (divb.)v + (b, — b) - Dv  a.e.

5. Now

1 n
divh, — /0 S Hpep (rDu® + (1 — 1) D) (1t g, + (1 — )i, ,) dr
k=1

46) <C (1 + %)

for some constant C, in view of (41), (43). Here we note that H convex
implies D2H > 0.
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6. Fix g € R™, ¢y > 0, and set
(47) R := max{|DH (p)| | Ip| < max(Lip(u), Lip(@))}.
Define also the cone
C:={(z,t) |0 <t <ty |x—zo| <R(to—1t)}

Next write

e(t) = / v(z,t)dx
B(:L‘(),R(to—t))

and compute for a.e. t > 0:

é(t):/ vtdx—R/ vdS
B(zo,R(to—1)) 8B(z0,R(to—t))

= / —div(vb,) + (divb.)v + (be — b) - Dvdz
B(:L‘(),R(to—t))

~R vdS by (45)
9B(zo,R(to—t))

=_/ v(be - v+ R) dS
OB(zo,R(to—t))

+/ (divbe)v + (b — b) - Dvdz
B(zo,R(to—t))

< / (divbe)v 4 (be —b) - Dvdz by (41), (44)
B(zo,R(to—t))

SC(1+1)e(t)+/ (be —b) - Dvdzx
t B(zo0,R(to—t))

by (46). The last term on the right-hand side goes to zero as e — 0, for a.e.
t > 0, according to (41), (42) and the Dominated Convergence Theorem.
Thus

(48) et) <C (1 + %) e(t) for ae. 0<t< tp.

7. Fix 0 < e < r < tp and choose the function ¢(z) to equal zero if
|2| < e[Lip(u) + Lip()]
and to be positive otherwise. Since u =% on R™ x {t =0},

v=¢(w)=¢d(u—-u)=0 at{t=c}.
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Thus e(e) = 0. Consequently Gronwall’s inequality (§B.2) and (48) imply
e(r) < e(e)ede CU+2)ds — g,

Hence
|u — 4| < g[Lip(u) + Lip(@)] on B(zo, R(to —T)).

This inequality is valid for all € > 0, and so v = @ in B(zo, R(to — 7)).
Therefore, in particular, u(zo, to) = @(zo, to)- O
In light of Lemmas 3, 4 and Theorem 7, we have

THEOREM 8 (Hopf-Lax formula as weak solution). Suppose H is C?
and satisfies (19) and g satisfies (20). If either g is semiconcave or H is
uniformly conver, then

u(z,t) = min {tL (It;y) +g(y)}

is the unique weak solution of the initial-value problem (38) for the Hamilton—
Jacobi equation.

Examples. (i) Consider the initial-value problem:

(49) {ut +3Dul>=0 inR"™ x (0, 00)

u=|z|] onR™x {t=0}.

Here H(p) = %|p|? and so L(v) = 3|v|?>. The Hopf-Lax formula for the
unique, weak solution of (49) is

[z —yl?
50 t) =m .
(50) u(z,t) yel}g{ 5+l

Assume |z| > t. Then

|z —y|? y-z  y
D = = 0);
and this expression equals zero if z = y + lz—lt, y = (lzl = t)5; # 0. Thus
u(z,t) = |z| — £ if || > t. If |z| < t, the minimum in (50) is attained at
y = 0. Consequently

|z| —t/2 if |z| >t

u(x,t) =
(z,¢) { LB it g < t.
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Observe that the solution becomes semiconcave at times t > 0, even though
the initial function g(z) = |z| is not semiconcave. This accords with Lemma
4.

(ii) We next examine the problem with reversed initial conditions:

(51) u + 1| Dul? = 0 in R™ x (0, c0)
u=—|z|] onR"x {t=0}.
Then
[z —yP?
t) = — .
u(z,t) = min { 5 |y
Now

t |y]

and this equals zero if z =y — &t, y = (|z| + t){Z. Thus

t
u(z,t) = —|z| — 5 (zx €R", t>0).

The initial function g(z) = —|z| is semiconcave, and the solution remains so
for times t > 0. g

In Chapter 10 we will again study Hamilton—-Jacobi PDE and discover
another and better notion of weak solution, applicable even if H is not
convex.

3.4. INTRODUCTION TO CONSERVATION LAWS

In this section we investigate the initial-value problem for scalar conservation
laws in one space dimension:

u+ F(u); =0 inR x (0,00)
M) { u=g onRx {t=0}.

Here F : R — R and g : R — R are given and u : R x [0,00) — R is
the unknown, u = u(z,t). As noted in §3.2, the method of characteristics
demonstrates that there does not in general exist a smooth solution of (1),
existing for all times ¢ > 0. By analogy with the developments in §3.3.3, we
therefore look for some sort of weak or generalized solution.
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3.4.1. Shocks, entropy condition.

a. Integral solutions; Rankine—Hugoniot condition. We open our
discussion by noting that since we cannot in general find a smooth solution
of (1), we must devise some way to interpret a less regular function u as
somehow “solving” this initial-value problem. But as it stands, the PDE
does not even make sense unless u is differentiable. However, observe that
if we temporarily assume u is smooth, we can as follows rewrite, so that the
resulting expression does not directly involve the derivatives of u. The idea
is to multiply the PDE in (1) by a smooth function v and then to integrate
by parts, thereby transferring the derivatives onto v.

More precisely, assume
(2) v:R x [0,00) — R is smooth, with compact support.

We call v a test function. Now multiply the PDE u; + F'(u), = 0 by v and
integrate by parts:

0:/ / (ut + F(u)z) vdzdt

/ / uvtda:dt—/ uv dz|i= 0—/ / u)vg dzdt.

In view of the initial condition u = g on R x {t = 0}, we thereby obtain the
identity

®3)

4) / / wvy + F(u)v, dzdt +/ gudz|i—o = 0.
0 —00 —00

We derived this equality supposing u to be a smooth solution of (1), but
the resulting formula has meaning even if u is only bounded.

DEFINITION. We say that u € L>®(R x (0,00)) is an integral solution
of (1), provided equality (4) holds for each test function v satisfying (2).

Suppose then that we have an integral solution of (1). What can we
deduce about this solution from the identities (4)?

We partially answer this question by looking at a situation for which u,
although not continuous, has a particularly simple structure. Let us in fact
suppose in some open region V C R x (0, 00) that u is smooth on either side
of a smooth curve C. Let V; be that part of V' on the left of the curve and
let V;. be that part on the right. We assume that u is an integral solution of
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(1), and that u and its first derivatives are uniformly continuous in V; and
in V..

First of all, choose a test function v with compact support in V;. Then
(4) becomes

0= / / uvg + F(u)vg dedt = / / [ut + F(u)g]v dzdt,

the integration by parts being justified since u is C! in V; and v vanishes
near the boundary of V;. The identity (5) holds for all test functions v with
compact support in V;, and so

(6) u+ F(u); =0 in V.
Likewise,
(7 u+ F(u); =0 in V.

Jump conditions along shocks. Now select a test function v with com-
pact support in V, but which does not necessarily vanish along the curve C.
Again employing (4), we deduce

= / / uvy + F(u)v, dzdt
0 —o0
= // uvy + F(u)vg dzdt + // wvy + F(u)vg dzdt.
Vi 8

Now since v has compact support within V', we have

(8)

// wvg + F(u)vg dzdt = —/ [ut + F(u)z]vdzdt
Vi Vi
9) + /C(ull/2 + F(u)vt)vdl
= / (uly2 + F(ul)ul)v dl
C

in view of (6). Here v = (v!,1?) is the unit normal to the curve C, point-

ing from Vj into V;, and the subscript “I” denotes the limit from the left.
Similarly, (7) implies

// wvg + F(u)vg dzdt = —/ (urv? + F(us)vh)vdl,
a c
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Rankine-Hugoniot condition

the subscript “r” denoting the limit from the right. Adding this identity to
(9) and recalling (8) gives us

/ (F(w) — F(un))r* + (s — up)v?dl = 0.
C

This equality holds for all test functions v as above, and so
(10) (F(w) — F(up))v' + (4 — ur)v? =0 along C.

Now suppose C is represented parametrically as {(z,t) | z = s(t)} for
some smooth function s(-) : [0,00) — R. We can then take v = (v!,1?) =
(1+ 5%)~1/2(1,—5). Consequently (10) implies

(11) F(u) — F(ur) = 8(u; — uy)
in V, along the curve C.

NOTATION.

[[u]] = w; — ur = jump in u across the curve C
([FW)] = F(w) = F(ur) = jump in F(u)

o = § = speed of the curve C.
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Let us then rewrite (11) as the identity

(12) [[F(w)]] = of[u]

along the discontinuity curve. This is the Rankine-Hugoniot condition along
the shock curve C. Observe that the speed o and the values u;, u,, F/(u;) and
F(u,) will generally vary along the curve C. The point is that even though
these quantities may change, the expressions [[F(u)]] = F(w) — F(u,) and
o|[u]] = 3(u; — u,) must always exactly balance.

Example 1 (Shock waves). Let us consider the initial-value problem for
Burgers’ equation:

2

(13) ut+(“7)x:0 in R x (0, 00)
u=g onRx{t=0},

with the initial data

1 if z<0
(14) glzy=K1—-z if 0<z<1
0 if z>1.

According to the characteristic equations (cf. §3.2.5) any smooth solution
u of (13), (14) takes the constant value 20 = g(z°) along the projected
characteristic

y(s) = (g9(z%)s + 2% s) (s>0)
for each z° € R. Thus
if z<t,0<t<1

1
u(z,t)=¢ =% if t<2<1,0<t<1
0 if z>1,0<t<1.

Observe that for ¢ > 1 this method breaks down, since the projected
characteristics then cross. So how should we define u for ¢ > 17

Let us set s(t) = 1t and write

1 iz <s(t)
(@, 1) = {O if s(t) <z

if t > 1. Now along the curve parameterized by s(-), u; = 1, we have u, = 0,
F(w) = 3(w)? = 3, F(u;) = 0. Thus [F(u)]] = 3 = o[[u]], as required by
the Rankine-Hugoniot condition (12). O
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Formation of a shock
b. Shocks, entropy condition.
We try now to solve a similar problem by the same techniques.

Example 2 (Rarefaction waves and nonphysical shocks). Again consider
the initial-value problem (13), for which now we take

0 if z<0
(15) g(w)={1 if > 0.

The method of characteristics this time does not lead to any ambiguity
in defining u but does fail to provide any information within the wedge
{0 < z < t}. To illustrate this lack of knowledge, let us first set

0 if z<
1 if z>

[T ST

(0= {

It is easy to check that the Rankine-Hugoniot condition holds and, indeed,
that u is an integral solution of (13), (15). However, we can create another
such solution by writing

1 if z>t
ug(z,t):=¢ § if 0<z <t
0 if z<0.

The function ug, called a rarefaction wave, is also a continuous integral
solution of (13), (15). O
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A “nonphysical” shock

Rarefaction wave

Thus we see that integral solutions are not in general unique. Presum-
ably the class of integral solutions includes various “nonphysical” solutions,
which we want somehow to exclude. Can we find some further criterion
which ensures uniqueness?

Entropy condition. Let us recall from §3.2.5 that for the general scalar
conservation law of the form

ut + F(u)g =0,

the solution u, whenever smooth, takes the constant value 20 = g(z°) along
the projected characteristic

(16) y(s) = (F'(9(z%)s + 2% s) (s >0).

Now we know that typically we will encounter the crossing of characteristics,
and resultant discontinuities in the solution, if we move forward in time.
However, we can hope that if we start at some point in R x (0,00) and
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go backwards in time along a characteristic, we will not cross any others.
In other words, let us consider the class of, say, piecewise-smooth integral
solutions of (1) with the property that if we move backwards in ¢ along any
characteristic, we will not encounter any lines of discontinuity for w.

So now suppose at some point on a curve C' of discontinuities that u has
distinct left and right limits, w; and u,, and that a characteristic from the
left and a characteristic from the right hit C' at this point. Then in view of
(16) we deduce

(17) F'(u) > o0 > F'(u,).

These inequalities are called the entropy condition (from a rough analogy
with the thermodynamic principle that physical entropy cannot decrease as
time goes forward). A curve of discontinuity for u is called a shock provided
both the Rankine-Hugoniot identity (12) and the entropy inequalities (17)
hold.

Let us further interpret the entropy condition under the additional as-
sumption that

(18) F' is uniformly convex.

This means F” > 6 > 0 for some constant §. Thus in particular F” is strictly
increasing. Then (17) is equivalent to our requiring the inequality

(19) U > Up
along any shock curve. a

Example 3. We again return to Burgers’ equation (13), now for the initial
function

0 if z<0
(20) glz)y=<1 if 0<z<1
0 if z>1.

For 0 <t < 2, we may combine the analysis in Examples 1 and 2 above
to find

if <0

if 0<z<t
if t<z<l+i
if 2>1+%

(0<t<2).
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For times t > 2, we expect the shock wave parameterized by s(-) to continue,
with u = z/t to the left of s(-), u = 0 to the right. This is compatible with
the entropy condition (19). We calculate the behavior of the shock curve by
applying the Rankine-Hugoniot jump condition (12). Now

2
) =9, e -5 (22 o5

along the shock curve for ¢ > 0. Thus (12) implies

) s(t)
)= —= > 2).
() = 2D (12 9)
Additionally s(2) = 2, and so we can solve this ODE to find s(t) = (2t)'/2
(t > 2). Hence we may augment (21) by setting

0 if z<0
u(z,t)=¢ 7 if 0<z< (20)1/2  (t > 2).
0 if z> (2t)'/2

See the illustration. O

3.4.2. Lax—Oleinik formula.

We now try to obtain a formula for an appropriate weak solution of
the initial-value problem (1), assuming as above that the flux function F is
uniformly convex. With no loss of generality we may as well also take

(22) F(0) = 0.
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As motivation, suppose now g € L*°(R) and define

(23) h(z) = /0 “iw)dy (zeR).

Recall the Hopf-Lax formula from §3.3 and set

(24) w(a,t) = min {tL (%) + h(y)} (z €R, t > 0),
where
(25) L=F"

Thus w is the unique, weak solution of this initial-value problem for the
Hamilton—Jacobi equation:

(26) {wt+F(ww):O in R x (0, 00)

w=h onRx{t=0}

For the moment assume w is smooth. We now differentiate the PDE
and its initial condition with respect to z, to deduce

Wet + F(wz)z =0 in R x (0, 00)
wy; =g onR x {¢t=0}

Hence if we set u = wg, we discover u solves problem (1).

The foregoing computation is only formal, as we know that w defined
by (24) is not in general smooth. But recall from §3.3 that w is in fact
differentiable a.e. Consequently

(27) u(z,t) := a% [IZ’JDGI]}IQ {tL (g) + h(y)}]

is defined for a.e. (z,t) and is presumably a leading candidate for some sort
of weak solution of the initial-value problem (1). Our intention henceforth
is to justify this expectation.

First, we will need to rewrite the expression (27) into a more useful form.

NOTATION. Since F is uniformly convex, F'’ is strictly increasing and
onto. Write

(28) G:=(F')™!

for the inverse of F'’.
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THEOREM 1 (Lax—Oleinik formula). Assume F' : R — R is smooth and
uniformly conver and g € L (R).
(i) For each time t > 0, there exists for all but at most countably many
values of x € R a unique point y(x,t) such that

min {tL (%) + h(y)} =tL (”’L(“)) + h(y(z, ).

yeR t

(ii) The mapping z — y(z,t) is nondecreasing.

(iii) For each time t > 0, the function u defined by (27) is

(29) w(z,t) =G (“’_—y(“’i))

t

for a.e. z. In particular, formula (29) holds for a.e. (z,t) € R x
(0,0).

DEFINITION. We call equation (29) the Lax—Oleinik formula for the
solution (1), where h is defined by (23) and L by (25).

Proof. 1. First, we note

L(v) = max (vp — F(p)) = vp* — F(p*),

where F'(p*) = v. But then p* = G(v) according to (28), and so
L(v) =vG(v) — F(G(v)) (veR)

(cf. §3.3.1). In particular, L is C2. Furthermore

(30) L'(v) = G(v) + vG'(v) — F'(G(v))G'(v) = G(v)

by (28), and L"(v) = G'(v) > 0. This and (22) imply L is nonnegative and
strictly convex.

2. Fix t > 0, 1 < 2. As in §3.3 there exists at least one point y; € R
such that

(31) {tL (a’l ;yl) + h(yl)} = min {tL (Ilt_y> + h(y)}.

We next claim

(32)  tL (@) +h(y) < tL (w2;y> Yhly) ify <.
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To see this, we calculate z2 —y; = 7(z1 — 1)+ (1 —7)(z2 —y) and 2 —y =
(1 =7)(z1 —31) + 7(z2 —y) for

n—y
Tz —T1+ Y1 —Y

0<7:= < 1.

Since L"” > 0, we thus have
)

L(‘TZ;Z“) <L (“;yl) +(1—7’)L(x2t_y>,

( 1 ><(1 ) ( l l) ( 2 );
t t t
and hence

(33) L(x2;y1>+L(I1t_y><L(@>+L(”;y).

Now notice from (31) that

tL (a’l - yl) + h(y1) < tL (’“ _y) + h(y).

t

We multiply (33) by ¢, add h(y1) + h(y) to both sides, and add the
resulting expression to the above inequality to obtain (32).

3. In view of (31), in computing the minimum of tL (22-¥) + h(y) we
need only consider those y > y;, where y; satisfies (31). Now for each z € R
and ¢ > 0, define the point y(z,t) to equal the smallest of those points y
giving the minimum of tL (%) + h(y). Then the mapping z — y(z,t) is
nondecreasing and is thus continuous for all but at most countably many z.
At a point z of continuity of y(-,t), y(z,t) is the unique value of y yielding
the minimum.

4. According to the theory developed in §3.3 for each fixed ¢ > 0, the
mapping

yeR

—tL (%(‘”)) + h(y(z,t))

is differentiable a.e. Furthermore the mapping z +— y(z,t) is monotone and
consequently differentiable a.e. as well. Thus given t > 0, for a.e. z the

z > w(z,t) = min {tL (%) + h(y)}
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mappings T L(w@) and so also z — h(y(z,t)) are differentiable as
well.

Consequently formula (27) becomes

et = 2 [i0 (222D 1 hy(a, )]

— (25D (1 o) + g bl )

But since y — tL (£3¥) + h(y) has a minimum at y = y(z, t), the mapping
z > tL (%) + h(y(z,t)) has a minimum at z = z. Therefore

~2 (T2 ) + halu(e ) =0,

and hence

w(ont) = I (r—y(r,t)) o (a:—y(:c,t)) |

t t

according to (30). O

We now investigate the precise sense in which formula (29) provides us
with a solution of the initial-value problem (1).

THEOREM 2 (Lax—Oleinik formula as integral solution). Under the as-
sumptions of Theorem 1, the function u defined by (29) is an integral solution
of the initial-value problem (1).

Proof. As above, define

w(z,t) = min {tL (’”t;y> + h(y)} (z€R, t>0).

yeR

Then Theorem 6 in §3.3.2 tells us w is Lipschitz continuous, is differentiable
for a.e. (z,t), and solves

w + F(wg) =0 a.e. in R x (0, 00)
(34) { t w=h onRx{t=0}

Choose any test function v satisfying (2). Multiply the PDE w; +
F(w;) = 0 by v, and integrate over R x (0, 00):

(35) 0= /Ooo /—o; [wt + F(wgz)] vy dzdt.
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Observe

(o] (o] (o] (o] (o 0]
/ / wivg dzdt = — / / Wy dzdt — / wug dx|t=o
0 —00 0 —0 —00
o] o o]
:/ / wyv dzdt +/ We v dx|t=0.
0 —0o0 —0

These integrations by parts are valid since the mapping z — w(z,t) is
Lipschitz continuous, and thus absolutely continuous, for each time ¢ > 0.
Likewise t +— w(:c t) is absolutely continuous for each z € R. Now w(z,0) =
h(z) = fo y) dy, and so wg(z,0) = g(z) for a.e. z. Consequently

/ / wevg drdt = / / Wyt da:dt+/ gu dz|¢=0.

Substitute this identity into (35) and recall u = w, a.e., to derive the integral
identity (4). a

3.4.3. Weak solutions, uniqueness.

a. Entropy condition revisited. We have already seen in §3.4.1 that
integral solutions of (1) are not generally unique. Since we believe the Lax—
Oleinik formula does in fact provide the “correct” solution of this initial-
value problem, we must see if it satisfies some appropriate form of the en-
tropy condition discussed in §3.4.1. This is not straightforward, however,
since it is not usually the case that the function u defined by the Lax—Oleinik
formula is smooth, or even piecewise smooth.

We identify now a kind of “one-sided” derivative estimate for the func-
tion u defined by the Lax—Oleinik formula (27). This estimate—which is
an analogue for conservation laws of the semiconcavity estimate from Lem-
mas 3, 4 in §3.3.3 for Hamilton—Jacobi equations—will turn out to be a
uniqueness criterion.

LEMMA (A one-sided jump estimate). Under the assumptions of The-
orem 1, there exists a constant C such that the function u defined by the
Laz-Oleinik formula (29) satisfies the inequality

(36) u(z + z,t) —u(z, t) < gz
forallt >0 andz,z € R, z > 0.
DEFINITION. We call inequality (36) the entropy condition.

It follows from (36) that for ¢ > 0 the function z — u(z,t) — —:c is
nonincreasing and consequently has left- and right-hand limits at each pomt.
Thus also z — u(z,t) has left- and right-hand limits at each point, with
w(z,t) > ur(z,t). In particular, the original form of the entropy condition
(19) holds at any point of discontinuity.
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Proof. We know from §3.3 that in computing the minimum in (29) we need
only consider those y such that |"”—;Q| < C for some constant C; verification
is left to the reader. Consequently we may assume, upon redefining G if
necessary off some bounded interval, that G is Lipschitz continuous.

As G = (F')~! and y(-,t) are nondecreasing, we have

u(z,t) = G (”’L(“))

t
ZG(QM> for z >0
e (r+z—y(r+z,t)> _ Lip(G)z
- t t
:u(r+z,t)-M. a

b. Weak solutions, uniqueness. We now establish the important asser-
tion that an integral solution which satisfies the entropy condition is unique.

DEFINITION. We say that a function u € L (R x (0, 00)) is an entropy
solution of the initial-value problem

(37) {Ut + F(u); =0 in R x(0,00)
u=g onRx{t=0}
provided
[ee] o0 [ee]
(i) / / uvy + F(U)Ua: dxdt + / gu dIlt:O =0
0 —0o0 —00

for all test functions v : R x [0,00) — R with compact support and

(ii) u(z + 2z, t) —u(z,t) < C(1+ %)z

for some constant C > 0 and a.e. ¢,z € R, t > 0, with z > 0.

THEOREM 3 (Uniqueness of entropy solutions). Assume F' is convez
and smooth. Then there exists—up to a set of measure zero—at most one
entropy solution of (37).
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Proof*. 1. Assume that u and @ are two entropy solutions of (37), and
write w := u — %. Observe for any point (z,t) that

Flu(z,t)) — F(i(z, 1)) / Flru(z,£) + (1 — rYi(z, £)) dr
- / Fru(z,t) + (1 — r)i(, ) dr (u(z, £) — i(z, £))

0
=: b(z, t)w(z,t).

Consequently if v is a test function as above,

/ / u — @)vg + [F(u) — F(@)]vy dodt

=/ / wlvg + bug| dzdt.
0 —00

2. Now take € > 0 and define u® = 7. * u, 4° = 7 * &, where 7 is the
standard mollifier in the z and t variables. Then according to §C.4

(38)

(39) [ullzoo < flullzeo, 8%z < llal| oo,

(40) u® - u, 4* >4 a.e.,ase—0.

Furthermore the entropy inequality (ii) implies

1
(41) o), et <0 (14])
for an appropriate constant C' and alle > 0, x € R, t > 0.

3. Write
1
bo(z,t) = / F(ra(z, 8) + (1 — )iz, £)) dr-
0
Then (38) becomes

(42) 0= / / wlve + bevg| dzdt + / / w[b — be|vg, dzdt.
0 —o0 0 —0o0

4. Now select T > 0 and any smooth function ¢ : R x (0,7) — R
with compact support. We choose v* to be the solution of the following
terminal-value problem for a linear transport equation:

{vf+bev§ =14 inRx(0,T)

(43) v*=0 onRx {t="T}.

*Omit on first reading.
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Let us solve (43) by the method of characteristics. For this, fix z € R,
0 <t <T, and denote by z.(-) the solution of the ODE

(44) {ﬁi(éi - Za,(xe(s), s) (s>1)
and set
T
(45) v¥(z,t) = —/t Y(ze(s),s)ds (r€R, 0<t<T).

Then v* is smooth and is the unique solution of (43). Since |b¢| is
bounded and 1 has compact support, v* has compact support in R x [0, T").

5. We now claim that for each s > 0, there exists a constant C; such
that

(46) [v5] < Cs  onR x (s, T).

To prove this, first note that if 0 < s <t < T, then

(47)  beg(z,t) = /1 F'(ru® + (1 —r)a®)(rul + (1 — r)ag) dr < — <

¢
0 t

¢
S

by (41), since F' is convex.
Next, differentiate the PDE in (43) with respect to z:

(48) Vi + beVsy + be gVs = g

Now set a(z,t) := eMvE(z,t), for

(49) A=g+1.

Then

as + beag = Aa + eM[vE, + bovag]
(50) = Xa + eM[=b. .05 +1b,] by (48)
= [\ = begla+ M)y

Since v® has compact support, a attains a nonnegative maximum over
R X [s,T] at some finite point (zo, t9). If to = T, then v, = 0. If 0 <ty < T,
then
at(xo,to) <0, ag(zo,to) =0.
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Consequently equation (50) gives
(51) A —bezla+ e, <0 at (zo,t0).
But since b.; < € and X is given by (49), inequality (51) implies
a(zo, to) < —e M0ty < M ||z oo
A similar argument shows
a(z1,t1) > —€ T |ihg | oo

at any point (z1,t;) where a attains a nonpositive minimum. These two
estimates and the definition of a imply (46).

6. We will need one more inequality, namely

(e o]
(52) / [vi(z,t)|dz < D
—0
for all 0 < t < 7 and some constant D, provided 7 is small enough.

To prove this, choose 7 > 0 so small that ¢ = 0 on R x (0, 7). Then if
0 <t <7, we see from (45) that v° is constant along the characteristic curve
ze(+) (solving (44)) for t < s < 7. Select any partition zgp < z; < --- < zn.
Then yp < y1 < --- < yn, where y; :=z5(7) (i =1,...,N) for

{a‘cf(s) = be(af(s),s) (t<s<T)

As 1 is constant along each characteristic curve z5(-), we have

N N

> (@, t) = v (@i, 1) = D [ (i, 7) — v (i1, 7)| < varv® (-, 7),

i=1 i=1

“var” denoting variation with respect to xz. Taking the supremum over all
such partitions, we find

[ee] (o]
/ [V (z,t)| de = varv®(-,t) < varv®(-,7) = / |05 (z, )| dz < C,

— —0

since v® has compact support and estimate (46) is valid for s = 7.
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7. Now, at last, we complete the proof by setting v = v¢ in (42) and
substituting, using (43):

(o9} [ee] (o9} [ee]
/ / wip dzdt = / / wbe — bJvs dzdt
0 —0o0 0 —00
T poo
= / / w(be — bJvs dxdt
T —00

T (o]
+/ / w(be — bJvE dzdt
0 —00
= I+ J..

Then in view of (40), (46), and the Dominated Convergence Theorem,
It -0 ase—0

for each 7 > 0. On the other hand, if 0 < 7 < T, we see

(e o]
£l < e < .
|J5| < 7C Joax. /_Oo [vi|dz < 7C, by (52)

/ / wy dxdt =0
0 —o0

for all smooth functions ¥ as above, and so w =u — 4 =0 a.e. O

Thus

3.4.4. Riemann’s problem.
The initial-value problem (1) with the piecewise-constant initial function

_Jw if <0
(53) g(x)_{ur if >0
is called Riemann’s problem for the scalar conservation law (1). Here the
constants u;, u, are the left and right initial states, u; # u,.

We continue to assume F is uniformly convex and C?, and as before we
write G = (F')~L.
THEOREM 4 (Solution of Riemann’s problem).

(i) If u; > ur, the unique entropy solution of the Riemann problem (1),
(53) is

(54) u(z,t) = { w i (€R, ¢ >0),

U if

8 |8
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x=0t

N

u=uj

Shock wave solving Riemann’s problem for u;>ur

(55) o= F(“;—z:uF(L)

(ii) If w < ur, the unique entropy solution of the Riemann problem (1),
(53) is

w if §<F'(w)
(56) u(z,t) =4 G(%) if Fllw)<2<F'(u) (z€R, t>0).
ur if > F'(ur)

Shocks and rarefactions. In the first case the states uw; and u, are sepa-
rated by a shock wave with constant speed o. In the second case the states
u; and u, are separated by a rarefaction wave.

We know from the theory set forth in §§3.4.2-3.4.3 that the Lax-Oleinik
formula must generate these solutions, and it is an interesting exercise to
verify this directly. We will instead construct the functions (54), (56) from
first principles and verify they are in fact entropy solutions. By uniqueness,
then, they must agree with Lax-Oleinik formulas. This is a nice illustration
of the power of the uniqueness assertion, Theorem 3.

Proof. 1. Assume u; > u,. Clearly u defined by (54), (55) is then an inte-
gral solution of our PDE. In particular since ¢ = [[F'(u)]]/[[u]], the Rankine—
Hugoniot condition holds. Furthermore note

F(u) — F(ur)

Flu)) <o =
U — Uy

- ][“l F'(rydr < F'(u)

in accordance with (17). Since u; > u,, the entropy condition holds as well.
Uniqueness follows from Theorem 3.
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Wi

Rarefaction wave solving Riemann’s problem for uj<ur

2. Assume now that u; < u,. We must first check that u defined by (56)
solves the conservation law in the region {F'(u;) < £ < F'(u,)}. To verify
this, let us ask the general question as to when a function u of the form

T

u(z,t) = v(;)

solves (1). We compute

u + F(u)y = u + F'(u)u,

-—(5) ()
-/@ilro-3]

Thus, assuming v’ never vanishes, we find F’ (v(%)) =

et =(5) ()

solves the conservation law. Now v(%) = w; provided ¥ = F'(u;), and
similarly v(%) = u, if § = F'(uy).

As a consequence we see that the rarefaction wave u defined by (56) is
continuous in R x (0,00) and is a solution of the PDE u; + F(u); = 0 in
each of its regions of definition. It is easy to check that u is thus an integral
solution of (1), (53). Furthermore, since as noted in §3.4.3 we may as well
assume G is Lipschitz continuous, we have

u(z + 2,t) — u(z,t) = G (3:+ Z) -G (E) < Lip(G)z

t t/ t

if F'(w)t < x < z+ 2z < F'(u,)t. This inequality implies that u also satisfies
the entropy condition. Uniqueness is once more a consequence of Theorem 3.
O
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3.4.5. Long time behavior.

a. Decay in sup-norm. We now employ the Lax-Oleinik formula (29)
to study the behavior of our entropy solution u of (1) as t — co. We assume
below that F' is smooth, uniformly convex, F'(0) = 0, and g is bounded and
summable.

THEOREM 5 (Asymptotics in L>-norm). There exists a constant C such
that

(57) u(z, B)] < =
forallz € R, ¢ > 0.

Proof. 1. Set

(58) o = F'(0);

then

(59) G(o) =0,

and therefore

(60) L(0) = 0G(0) — F(G(0)) = 0, L'(c) = 0.

2. In view of (60) and the uniform convexity of L,

'L (g) L (@M)

(61) >t [L(a) +L'(0) (w) 0 (wﬂ

t t
_ple—y—at?
t

for some constant § > 0. Since h = [ gdy is bounded by M := ||g||1, we
see from (61) that

— oy — 2
tL(wty)‘l'h(y)ZeM_M'

On the other hand,

tL (M) +h(z —ot) < M.
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Thus at the minimizing point y(z,t) we have
_ 12
ple=slm ot ),
and so
z—y(z,t) C
(62) : 1= ar
for some constant C.
3. But since G(0) =0, for any z € R, ¢t > 0 we have
lu(z,t)| = ’G (%(ZH))‘
— t
= ‘G<x+(x,) -a+a> - G(o)
. T — y(xa t) _ i
according to (62). 0

Example 3 in §3.4.1 shows this t~1/2 decay rate to be optimal.

b. Decay to N-wave. Estimate (57) asserts that the L>°-norm of u goes
to zero as t — oco. On the other hand we note from Example 3 in §3.4.1
that the L!-norm of u need not go to zero; indeed, the integral of u over R
is conserved (Problem 19). We instead show here that u evolves in L! into

a simple shape, assuming now that

g has compact support.

Given constants p, ¢, d, o, with p,q > 0, d > 0, we define the correspond-

ing N-wave to be the function

0 otherwise.

(63) N@Jy:{

The constant ¢ is the velocity of the N-wave.
Now define o by (58), set

(64) d = F"(0) >0,

% (% —o) if —(pdt)Y/? < z — ot < (qdt)'/?
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(qdt) 1/2

N-wave

and also write

Yy o0
= — 1 =2 d .
(65) p 222&/_00961!:6, q Tﬁu‘?/y gdz

Note p,q > 0 and
, 1
(66) G'(o) = 7

THEOREM 6 (Asymptotics in L'-norm). Assume that p,q > 0. Then
there exists a constant C' such that

(67) /°° lu(-,8) — N(-,8)] dz < tl%

—0
for allt > 0.

Proof. 1. From estimate (62) in the proof of Theorem 5 we have

(68)

t - $1/2°

Now
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Consequently (59), (66) and (68) imply

(x — ot) — y(z,?)

(69) M@@—é t

’<9.
-t

2. Since g has compact support, we may assume for some constant B > 0
that ¢ =0 on RN {|z| > R}. Therefore

h_ if z<-R
h(z) = {
h+ if z > R,

for constants h+. A calculation shows

. p q
(70) min h=—¢ +ho =~ +hs.

We next set

A
(71) e=¢(t) = a5 (t>0),
the constant A to be selected later.

3. We now claim that if A is sufficiently large, then

(72) w(z,t) =0 for z —ot< —R— (pd(1+e)t)}/?
and
(73) w(z,t) =0 for x—ot> R+ (qd(1 +e)t)*/2
In fact, since (64) implies X

L"(0) = PR

we deduce from (60) and (62) that

(74) tL (a:—y_(r,t)) = Lz =ot) = v, +0 (t-1/2) as t — oo.

t d 2t
Assume now that
(75) z— ot < —R — (pd(1+ €)t)'/2,

Then h(z — ot) = h— and so

tL <w> +h(z —ot) =tL(c)+ h_ = h_.
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Now if y(z,t) < —R, then
L= y(x, t)
o (2B 4wy ) > e

since L > 0. On the other hand if y(z,t) > —R, we employ (74) and (70)

to estimate
z —y(z, ) 1!(w-0t)—y(x,t)l2 _bp -1/2
tL( / >+h(y(x,t))zd - rhoto (1)

pd(l+e)t p ~1/2
> 2+h_+0(t ) by (75)

_2A w0 (t‘1/2) by (71)
241
> h_,

provided A is large enough.
We conclude that (75) forces y(z,t) = z — at, and so u(z, t) = G(o) = 0.
This establishes assertion (72), and the proof of (73) is analogous.

4. Next we assert for A and ¢ large enough that
(76) y(z,t) > —R if z—ot=R— (pd(1 —e)t)"/2,

To see this, notice that y(z,t) < —R implies as above that
- t
tL (%(x)) + hy(z, ) > h_.

Select now a point z such that h(z) = minh = =% + h_ and |z| < R. Then
we can as before estimate

2
pd(l—e)t p -1/2
<o 2+h_+0(t )
A
= -g—l +ho+0 (t‘1/2) <h_,

t2

for A large enough. This proves (76) and a similar argument establishes
that

(77) y(z,t) <R if z—ot=—R+ (qd(1 —e)t)}/2.
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5. Remember from the proof of Theorem 1 in §3.4.2 that the mapping
z — y(z,t) is nondecreasing. Hence (69), (76) and (77) imply for large ¢
that

79 { [u@ ) -3 (F-0)|<¢ i
R— (pd(1 —e)t)'/2 < z — ot < —R + (qd(1 — €)t)1/2.
According to Theorem 5, we have |u| = O(t'%) and by definition |N| =
O(t_%). In addition (71) implies ((1 :I:e)t)% —t2 = O(1). Using these
bounds along with (72), (73) and (78), we estimate

(e o]
/ |u(z,t) — N(z,t)|dz = O (t_l/Q) ,
-0

as asserted. O
Example 3 (continued). Observe that we have p=0,¢=2,0=0,d=1
in Example 3 of §3.4.1. In this case

z if 0< < (2t)1/2

N(z,t) = { ¢

0 otherwise,

and so in fact u = N for times t > 2. O

We will study systems of conservation laws in Chapter 11.

3.5. PROBLEMS

In the following exercises, all given functions are assumed smooth, unless
otherwise stated.

1. Prove
u(z,t,a,b) =a-z—tH(a)+b (a€R™beR)

is a complete integral of the Hamilton—Jacobi equation

ut + H(Du) = 0.

2. Compute the envelopes of the family of lines
71+ a’ze —2a =0 (a € R)
in R? and of the family of planes

2a1x1 + 20929 — 13 + a% + ag =0 (a,a2 €R)
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in R3. Draw pictures illustrating the geometric meaning of the en-
velopes.

3. Suppose that the formula G(z, z,a) = 0 implicitly defines the function
z = u(z,a), where z,a € R". Assume further that we can eliminate
the variables a from the identities

{ G(z,u,a) =0
Gz, (z,u,a) + Gy(z,u,a)uz, =0 (i=1,...,n),
to solve for u = u(z).
(a) Find a PDE that u solves if G = Y ; a;z? + 2.
(b) What is the PDE characterizing all spheres in R"*! with unit
radius and center in R™ x {z = 0}7
4.  (a) Write down the characteristic equations for the PDE
(%) u+b-Du=f inR" x(0,00),
where b € R", f = f(z,1).
(b)  Use the characteristic ODE to solve (x) subject to the initial
condition
u=g onR"x {t=0}.
Make sure your answer agrees with formula (5) in §2.1.2.
5. Solve using characteristics:
(a)  ziugz, + ToUgy = 2u, u(xy,1) = g(z1).
(b)  ziug, + 2x2uz, + Ugs = 3u, u(z1,x2,0) = g(z1,22).
() wug, +ug, =1, u(zy,z1)= %xl.
6.  Given a smooth vector field b on R™, let x(s) = x(s, z,t) solve the

ODE ,
{ x=b(x) (se€R)
x(t) = z.
(a) Define the Jacobian
J(s,z,t) := det Dgx(s, z,t)
and derive Fuler’s formula:
Js = div b(x)J.

(b) Demonstrate that

u(z,t) = g(x(0,z,t))J(0, z,1)
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10.

solves
ut + div(ub) =0 in R™ x (0, 00)
u=g onR"x {t=0}.
(Hint: Show %(u(x, s)J)=0.)
Verify assertion (36) in §3.2.3, that when T' is not flat near z°, the
noncharacteristic condition is

D,F(°,2%,2%) - v(a®) # 0.

Confirm that the formula v = g(z — tF'(u)) from §3.2.5 provides an
implicit solution for the conservation law

ut+ F(u)z = 0.

Consider the problem of minimizing the action fot L(w(s),w(s))ds
over the new admissible class

A= {w() € C¥[0,t;R") | w(t) = z},

where we do not require that w(0) = y.

(a)  Show that a minimizer x(-) € A solves the Euler-Lagrange equa-
tions
d

— 2= (DoL(x(s), x(5))) + DuL(%(s), x(s)) =0 (0 < s < ).

(b) Prove that
D, L(x(0),x(0)) = 0.

(¢) Suppose now that x(-) € A minimizes the modified action
t
| £t(e), wo) ds + g(w(0))

Show that x(-) solves the usual Euler-Lagrange equations and
determine the boundary condition at s = 0.

If H:R™ — R is convex, we write L = H*.

(a) Let H(p) = 2|p|", for 1 < r < co. Show
1 1 1
L(v) = =|v|*, where — 4+ - =1.
s ros

(b) Let H(p) = 5 3.7y aipipj + iy bipi, where A = ((a;;)) is a
symmetric, positive definite matrix, b € R™. Compute L(v).
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11.

12.

13.

14.

15.
16.

Let H : R™ — R be convex. We say v belongs to the subdifferential of
H at p, written

v € 0H (p),
if
H(r)y>H(p)+v-(r—p) forallreR"
Prove v € 0H(p) if and only if p € OL(v) if and only if p-v =
H(p) + L(v), where L = H*.

Assume L, Ly : R — R are convex, smooth and superlinear. Show
that
in (L L = —-H — Hy(-p)),
min (L1(v) + L2(v)) max(—Hy(p) — Ha(=p))
where Hy = L}, Hy = L3.
Prove that the Hopf-Lax formula reads

u(z,t) = min {tL (%) + g(y)}

yER™

. r—y
= tL | —~=
yegzz?m{ ( i )*9@)}

for R = supg~ |DH(Dg)|, H = L*. (This proves finite propagation
speed for a Hamilton—Jacobi PDE with convex Hamiltonian and Lip-
schitz continuous initial function g.)

Let E be a closed subset of R™. Show that if the Hopf-Lax formula
could be applied to the initial-value problem

ug + |Dul2 =0 in R" x (0, 00)

0 z€FE n _
u—{+oo t ¢ E on R™ x {t = 0},

it would give the solution
u(z,t) = L dist(z )2
, i ist(x, E)°.

Provide all details for the proof of Lemma 4 in §3.3.3.

Assume u!, u? are two solutions of the initial-value problems

ut + H(Du') =0 in R™ x (0, 00)
ut=g¢" onR"x {t=0} (i=1,2),

given by the Hopf-Lax formula. Prove the L*-contraction inequality

SJ;P |u1(-,t) — uz(.,t)] < sﬂlg) |g1 — 92| (t>0).
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17.  Show that

u(z,t) ==

“2(t+ V32 + ) ifdz+ >0
0 ifdz+t*<0

is an (unbounded) entropy solution of u; 4 (“72),0 =0.
18.  Assume u(z+ z) —u(z) < Ez for all z > 0. Let u® = 7, * u, and show

u;, < E.

19. Assume F(0) =0, u is a continuous integral solution of the conserva-

tion law
ut+ F(u); =0 in R x (0,00)
u=g¢g onRx {t=0},

and u has compact support in R x [0,T] for each time 7" > 0. Prove
o0 (o 0]
/ u(-,t) dz :/ gdx
—o0 —0o0
for all ¢t > 0.

20. Compute explicitly the unique entropy solution of

ut+(§) =0 inR x (0,00)
x
u=g onRx {t=0},

for
1 if z< -1
o(z) = 0 if —-1<z<0
2 if 0<z<xl
0 if z>1.

Draw a picture documenting your answer, being sure to illustrate what
happens for all times ¢ > 0.

3.6. REFERENCES

Section 3.1 A nice source for this material is Courant-Hilbert [C-H,
Chapter 2.
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OTHER WAYS
TO REPRESENT
SOLUTIONS

4.1 Separation of variables

4.2 Similarity solutions

4.3 Transform methods

4.4 Converting nonlinear into linear PDE
4.5 Asymptotics

4.6 Power series

4.7 Problems

4.8 References

This chapter collects together a wide variety of techniques that are some-
times useful for finding certain more-or-less explicit solutions to various par-
tial differential equations, or at least representation formulas for solutions.

4.1. SEPARATION OF VARIABLES

The method of separation of variables tries to construct a solution u to a
given partial differential equation as some sort of combination of functions
of fewer variables. In other words, the idea is to guess that u can be written
as, say, a sum or product of as yet undetermined constituent functions, to
plug this guess into the PDE, and finally to choose the simpler functions to
ensure u really is a solution.

167
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4.1.1. Examples.

The separation of variables technique is best understood in some exam-
ples.

Example 1. Let U C R™ be a bounded, open set with smooth boundary.
We consider the initial/boundary-value problem for the heat equation

(1) u=0 ondU x [0,00)

ug—Au=0 in U x (0,00)
u=g onU x {t=0},

where g : U — R is given. We conjecture there exists a solution having the
multiplicative form

(2) u(z,t) =v(t)w(z) (zeU, t>0);

that is, we look for a solution of (1) with the variables z = (z1,...,2,) € U
“separated” from the variable ¢ € [0, T7.

Will this work? To find out, we compute
ug(z,t) = o' ()w(z), Au(z,t) = v(t)Aw(z).
Hence
0 = ug(z,t) — Au(z, t) = V' (H)w(z) — v(t) Aw(z)
if and only if

V(t)  Aw(z)
v(t)  w(z)
for all z € U and t > 0 such that w(z),v(t) # 0. Now observe that the

left-hand side of (3) depends only on ¢ and the right-hand side depends only
on z. This is impossible unless each is constant, say

(3)

V' (t) _ Aw(z)

o0 =u w(z) (t>0, z€U).
Then
(4) v = Hv,
(5) Aw = pw.

We must solve these equations for the unknowns w,v and p.
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Notice first that if 4 is known, the solution of (4) is v = de”t for an
arbitrary constant d. Consequently we need only investigate equation (5).

We say that X is an eigenvalue of the operator —A on U (subject to zero
boundary conditions) provided there exists a function w, not identically
equal to zero, solving

—Aw=Aw inU
{ w=0 ondU.
The function w is a corresponding eigenfunction. (See Chapter 6 for the
theory of eigenvalues, eigenfunctions.)

If A is an eigenvalue and w is a related eigenfunction, we set p = —\
above, to find

(6) u = de Mw

solves

) u—Au=0 in U x (0,00)
u=0 ondU x [0,00),

with the initial condition u(-,0) = dw. Thus the function u defined by
(6) solves problem (1), provided g = dw. More generally, if A1,..., Ay, are
eigenvalues, wi,...,wn, are corresponding eigenfunctions, and d,...,dn
are constants, then

m
(8) U= dee—’\"twk
k=1

solves (7), with the initial condition u(-,0) = Y 7*, dywg. If we can find
m,w, ..., etc. such that Y ;- dywy = g, we are done.

We can hope to generalize further by trying to find a countable sequence

A1, ... of eigenvalues with corresponding eigenfunctions wy, ..., so that
(e o]
(9) dewk =g inU
k=1
for appropriate constants di,.... Then presumably
(o]
(10) u = Z dke_’\kt’wk
k=1

will be the solution of the initial-value problem (1).
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This is an attractive representation formula for the solution, but depends
upon (a) our being able to find eigenvalues, eigenfunctions and constants
satisfying (9) and (b) our verifying that the series in (10) converges in some
appropriate sense. We will discuss these matters further in Chapters 6, 7,
within the context of Galerkin approximations. d

Take note that only our solution (6) is determined by separation of
variables; the more complicated forms (8) and (10) depend upon the linearity
of the heat equation.

Example 2. Let us next apply the separation of variables technique to
discover a solution of the porous medium equation

(11) ur— A(u”) =0 in R™ x (0, 00),

where u > 0 and v > 1 is a constant. The expression (11) is a nonlinear
diffusion equation, in which the rate of diffusion of some density « depends
upon u itself. This PDE describes flow in porous media, thin-film lubrica-
tion, and a variety of other phenomena.

As in the previous example, we seek a solution of the form
(12) u(z,t) =v(t)w(z) (zeR™ t>0).
Inserting into (11), we discover that

V' (t) Aw" (z)

w7 H T )

(13)

for some constant x4 and all z € R™, t > 0, such that w(z),v(t) # 0.
We solve the ODE for v and find
1
v=((1 -yt + N,

for some constant A, which we will take to be positive. To discover w, we
must then solve the PDE

(14) Aw") = pw.

Let us now guess that
w = I"Ij Iaa

for some constant o that must be determined. Then

(15) pw — A(w”) = plz|* — ary(ay +n —2)|z[*7 72
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So in order that (14) hold in R", we should first require that o = ay — 2,
and hence

2
16 = —.
(16) o=
Returning to (15), we see that we must further set
(17) pw=aylay+n—2)>0.

In summary then, for each A > 0 the function
1
u=((1-7)pt+ 1) |z|*

solves the porous medium equation (11), the parameters «, u defined by
(16), (17). O

Remark. Observe that since v > 1, this solution blows up for z # 0 as

t — t, for t, ;== —2—. Physically, a huge amount of mass “diffuses in from
(r=1u

infinity” in finite time. See §4.2.2 for another, better behaved, solution of
the porous medium equation, and see §9.4.1 for more on blow-up phenomena
for nonlinear diffusion equations.

In the previous example separation of variables worked owing to the
homogeneity of the nonlinearity, which is compatible with functions u having
the multiplicative form (12). In other circumstances it is profitable to look
for a solution in which the variables are separated additively:

Example 3. Let us turn once again to the Hamilton—Jacobi equation
(18) ut + H(Du) =0 in R™ x (0, 00)
and look for a solution u having the form
u(z,t) =w(z) +v(t) (zeR” ¢t>0).
Then
0 = w(z,t) + H(Du(z,t)) = v'(t) + H(Dw(z))
if and only if
H(Dw(z)) =p=—-v'(t) (z€R™t>0)
for some constant . Consequently if
H(Dw) = p
for some p € R, then
u(z,t) = w(z) — pt +b
will for any constant b solve u; + H(Du) = 0. In particular, if we choose
w(z) = a -z for some a € R™ and set u = H(a), we discover the solution
u=a-z—H(a)t+b
already noted in §3.1. d
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4.1.2. Application: Turing instability.

Separations of variables and eigenfunction expansions, discussed in Ex-
ample 1 above, are very powerful tools in both pure and applied mathemat-
ics. This section discusses an interesting such application.

Assume we are given a smooth vector field f = (f!, f2) on R? for which
0 is an equilibrium:

£(0) = 0.

We are interested in comparing the stability of solutions x = (2!, z?) of the
system of ODE

(19) x=f(x) (t20)
with solutions u = (u!,u?) of a corresponding reaction-diffusion system of

PDE
(20) { u; — AAu=1f(u) inU x (0,00)

u=0 on AU x (0, 00)

in some bounded, smooth region U € R%. The matrix

_ ay 0
A—<0 a2>

introduces the diffusion constants a;,as > 0. (See §9.2.1 for more on
reaction-diffusion equations.)

Linearizations, separation of variables. The linearization of (19) around
the equilibrium solution x = 0 is the linear system of ODE

(21) y=Df(0)y (t20)

where y = (y!,%?). The equilibrium x = 0 is asymptotically stable if each
solution y goes to zero as t — oo. This will be so provided the eigenvalues
of the matrix Df(0) have negative real parts.

Similarly, the linearization of (20) around u = 0 is the linear system of
PDE

(22) vy — AAv = Df(0)v

for v = (v!,v?). We solve (22) by the separation of variables and subsequent

eigenfunction expansion method introduced in §4.1.1. We therefore write

(23) v(z,t) = Z sj(H)w;(x)
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for the eigenfunctions {w;}$2, for the Laplacian on U with zero boundary
conditions:

{ —ij' = )\jwj inU
w; =0 on OU.

The theory of such eigenvalues and eigenfunctions appears in §6.5, where we
will learn in particular that

)\j>0 (]=1,)

and also that we can take {w;}52; to be orthonormal in L3(U):
/ wiwjdazz 6ij (’L,j = l,...).
U

Plugging (23) into (22), we deduce that for j =1,...

(24) S;- = Aj Sj

for the matrix
(25) Aj = Df(O) — )\]A

The solution v = 0 is stable if and only if each function s; decays to 0
as t — oo. This occurs provided the eigenvalues of the matrices A; have
negative real parts for j = 1,....

We now address the following question: if 0 is an asymptotically stable
equilibrium for the system of ODE (19), does it necessarily follow that 0
is an asymptotically stable equilibrium for the system of PDE (20)? The
perhaps surprising answer is “no”. The diffusion terms introduced into the
PDE (20) can in fact transform a stable point for (19) into an unstable point
for (20). This effect is called a Turing instability.

Eigenvalues of Df(0). We investigate this phenomenon by first introduc-
ing explicit conditions on Df(0) that force 0 to be stable for the ODE (19).
Let us hereafter write

oo = (fio o) = (5 5):

(26) det(Df(0) — o) = 02 — (o + ) + ad — 4f.

Then
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We require that 0 be a stable equilibrium of Df(0) and thus that the roots
01,09 of (26) have negative real parts. This means

a+d=0c1+02<0
(27) { 1T

ad —yfB = o102 > 0.
Notice that these conditions cover both the cases of real eigenvalues oo <

o1 < 0 and of complex conjugate eigenvalues o1 = b + ic,09 = b — ic with
b<O0.

Eigenvalues of A;. We want to see if by adding in diffusion terms a1, a2 > 0
we can force the eigenvalues of A; to have positive real parts for some j.

We see from (25) that

(28) det(Aj—0‘])20‘2—0'(04+5—)\j(a1 +a2)) + p(Aj)
for
(29) p(A) := Na1a2 — M(a10 + aza) + ad — By.

The roots o1,; and o2 ; of the polynomial (28) satisfy
o15+02;=a+d— )\j(al +a2) <0,

since a4 0 < 0 according (27), A; > 0, a1, a2 > 0. Consequently for the case
of complex conjugate roots o1; = b; + icj,02,; = b; — icj, the real part b;
is negative. In this circumstance solutions s; of the ODE (24) tend to zero
as t — oo and we have asymptotic stability: this is not what we are looking
for.

Loss of stability. Consequently the only way the PDE system (22) could
lose stability is when we have real roots o2 ; < 01 ;. We want to try to select
ai,az > 0 in this case so that o1; > 0. Let us imagine starting out with
a1 = a2 = 0 and then increasing these diffusion constants until the system
(22) first begins to lose stability, when o7 ; = 0. This happens provided

(30) p(A;) =0.

We seek algebraic conditions implying (30). We may assume without
loss of generality that
(31) §<0.

Then if as = 0, we would have

p(Aj) = —Xjard+ad — By >0
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according to (27). Thus we must have ag > 0; that is, we must introduce
some diffusion into the second equation of our PDE system (22) for the
Turing instability to occur.

Now if a < 0, then (27) forces
p(>\j) = )\?0,10,2 — )\j(a15 + 0,204) + (a5 - /6’)’) > 0,
and so we cannot achieve (30). Consequently we must require

(32) a>0.

We keep (31) and (32) in mind and rewrite the formula p(\;) = 0 to
read
ad — B — dAjaq
33 az = .
( ) 2 )\j(a - )\jal)

But then given some A\; > 0, we can easily find az > 0 and a; > 0 solving
(33). Notice that if A; >> 0, we will need to take a; to be small enough to
ensure that a — A\ja; > 0.

Interpretation: activators and inhibitors. The sign conditions

a=f1(0)>0, B=f1(0) <0
{7= 2(0)>0, 5= f2(0) <0

are consistent with our requirements (27), (31) and (32). We may then
interpret u! as the density of a chemical activator and u? as the density of
an inhibitor: since a > 0, the activator by itself would increase; but since
B < 0, this growth can be offset by the inhibitor. The signs of ,d imply
that the inhibitor increases only in response to the presence of the activator.
Condition (27) means that activator/inhibitor balance holds for the ODE
(19), at least near the origin.

We have discovered that diffusion effects can upset this equilibrium,
provided as is sufficiently large and a; sufficiently small. The physical inter-
pretation is that the inhibitor u? diffuses away from any given point more
rapidly than the activator u!, and consequently there need not be enough
of the inhibitor present to prevent runaway growth of the activator. Such
reaction-diffusion instabilities are sometimes proposed as simple models for
biological pattern formation: see for example Markowich [Mr].
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4.2. SIMILARITY SOLUTIONS

When investigating partial differential equations, it is often profitable to
look for specific solutions u, the form of which reflects various symmetries
in the structure of the PDE. We have already seen this idea in our derivation
of the fundamental solutions for Laplace’s equation and the heat equation
in §2.2.1 and §2.3.1 and our discovery of rarefaction waves for conservation
laws in §3.4.4. Following are some further applications of this important
method.

4.2.1. Plane and traveling waves, solitons.

Consider first a partial differential equation involving the two variables
z € R, t € R. A solution u of the form

(1) u(z,t) =v(z —ot) (z€R, teR)

is called a traveling wave (with speed o and profile v). More generally, a
solution u of a PDE in the n + 1 variables z = (z1,...,z,) € R", t € R
having the form

(2) u(z,t) =v(y-z—ot) (zeR" teR)
is called a plane wave (with wavefront normal to y € R™, speed ﬁ, and
profile v).

a. Exponential solutions. In view of the Fourier transform (discussed
later, in §4.3.1), it is particularly enlightening when studying linear partial
differential equations to consider complex-valued plane wave solutions of the
form

3) u(e, ) = =D,

where 0 € C and y = (y1,...,Yn) € R", o being the time frequency and
{yi}=, the wave numbers. We will next substitute trial solutions of the form
(3) into various linear PDE, paying particular attention to the relationship
between y and o = o(y) forced by the structure of the equation.

(i) Heat equation. If u is given by (3), we compute
us — Au = (—io + |y[*)u =0,
provided o = —i|y|?. Hence

.‘ _ 2
w = ey Tlyl*t
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solves the heat equation for each y € R™. Taking real and imaginary parts,
we discover further that e 14" cos(y - z) and e~ ¥*tsin(y - z) are solutions as
well. Notice in this example that since ¢ is purely imaginary, there results
a real, negative exponential term e~1vI*t in the formulas, which corresponds
to damping or dissipation.

(ii) Wave equation, Klein—Gordon equation. Upon our substitut-
ing (3) into the wave equation, we discover

ug — Au = (=0 + |y|*)u = 0,
provided o = %|y|. Consequently

u = wTElyl)

solves the wave equation, as do the pair of functions cos(y - = £ |y|t) and
sin(y - £ |y|t). Since ¢ is real, there are no dissipation effects in these
lo|

| — 1 of each such

solutions; and the absolute value of propagation speed o]

solution is the same.

Turning next to the Klein—-Gordon equation
g — Au+ m?u =0,
our inserting (3) yields
ug — Au+miu= (=2 + |y)* + m*)u=0

for o = :|:(|y|2+m2)%. However notice now that the speed ﬁ of propagation

depends nonlinearly upon the frequency of the initial value e®¥®, the slower
oscillating solutions traveling faster. That waves of different frequencies
propagate at different speeds means that the Klein—-Gordon equation creates
dispersion.

(iii) Other dispersive equations. Putting u = ¢{¥*~% into Schré-
dinger’s equation
tug + Au =0,

we compute
iug + Au= (0 — |yl )u=0

when o = |y|?. Therefore

o
u = Wzl

and so this solution displays dispersion.
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For a final example of a dispersive PDE, let n = 1 and substitute u =
e!wr=9t) into Airy’s equation

Ut + Ugze = 0.

We calculate
Ut + Ugzr = _i(o' + yg)u = 0’

whenever o = —53.

Phase and group velocities. For a general dispersive linear PDE with

constant coefficients, we can in principle compute as above 0 = a(y). We

a(y)
y

sometimes refer to as the phase velocity of the exponential plane-wave

solution (3): this is the speed of propagation in the direction of the unit
vector ﬁ

However, we will see in §4.3.1 that we can often use the Fourier transform
to write more general solutions of our PDE as a linear superposition of such
exponential plane-wave solutions:

u(e,t) = [ =y dy

for some appropriate function a. To understand the speed of propagation of

u, let us consider the limit ¢ — oo, while the ratio v := ¥ is held fixed. We

will learn later in §4.5.3 on stationary phase that the main contribution to
the integral

/ ei(y‘a:—a(y)t)a(y) dy — / eit(y"v—ﬂ(y))a(y) dy

occurs for wave numbers y for which Do(y) = v. For this reason, we call
Do (y) the group velocity.

b. Solitons. We consider next the Korteweg—de Vries (KdV) equation in
the form

(4) ut + 6uty + Ugzz =0 in R X (0, 00),

this nonlinear dispersive equation being a model for surface waves in water.
We seek a traveling wave solution having the structure

(5) u(z,t) =v(z —ot) (xz€R, t>0).

Then u solves the KdV equation (4), provided v satisfies the ODE

d
o / m_ r— 2
(6) ov' 4 6vv’ +v 0 ( ds>
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We integrate (6) by first noting
(7) —ov + 3% + " = q,
a denoting some constant. Multiply this equality by v to obtain
"1

—ovv’ + 302 + " =av,

and so deduce

(8) :—v3+%v2+av+b

where b is another arbitrary constant.

We investigate (8) by looking now only for solutions v which satisfy
v,v',v” — 0 as s — £oo (in which case the function u having the form (5)
is called a solitary wave). Then (7), (8) imply a = b = 0. Equation (8)
thereupon simplifies to read

Hence v/ = +v(o — 2v)1/2.
We take the minus sign above for computational convenience and obtain
then this implicit formula for v:

v(s)
12

z(o — 22)1/2

for some constant ¢. Now substitute z =3 2 sech?@. It follows that % =
—osech?tanh 6 and z(c — 22)1/% = sech2 f tanh 6. Hence (9) becomes

2
(10) § = ﬁ 0 +c,
where 6 is implicitly given by the relation
(11) %sechze = v(s).

We lastly combine (10) and (11), to compute

v(s) = Esech2(\/_(s - c)) (s € R).
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Conversely, it is routine to check that v so defined actually solves the ODE
(6). The upshot is that

u(z,t) = %sech2 (@(r — ot — c)) (zeR, t>0)

is a solution of the KdV equation for each ¢ € R, ¢ > 0. A solution of this
form is called a soliton. Notice that the velocity of the soliton depends upon
its height. d

The KdV equation is in fact utterly remarkable, in that it is completely
integrable, which means that in p<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>