本文搬运自Axeho’s blog ,作了一些补充。
Author : Axeho
Link : 关于向量场的微积分
Copyright Notice : All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
Copyright is owned by the author. For commercial reprints, please contact the author for authorization. For non-commercial reprints, please indicate the source.
Hamilton 算符
基本定义与物理含义
在直角坐标系下,定义如下算子:
∇ = ∂ ∂ x 1 e 1 + ∂ ∂ x 2 e 2 + ∂ ∂ x 3 e 3 \nabla = \frac{\partial }{\partial x_1}\boldsymbol e_1 + \frac{\partial }{\partial x_2}\boldsymbol e_{2} + \frac{\partial }{\partial x_3}\boldsymbol e_3
∇ = ∂ x 1 ∂ e 1 + ∂ x 2 ∂ e 2 + ∂ x 3 ∂ e 3
并称为 H a m i l t o n ~\mathrm{Hamilton}~ Hamilton 算子或 N a b l a ~\mathrm{Nabla}~ Nabla 算子。算子 ∇ ~\nabla~ ∇ 兼有微商和矢量两种运算属性,这是因为
∂ ∂ x i ′ = ∂ ∂ x j ⋅ ∂ x j ∂ x i ′ = T j i T ∂ ∂ x j = T i j ∂ ∂ x j \frac{\partial}{\partial x_i^{\prime}}=\frac{\partial}{\partial x_j} \cdot \frac{\partial x_j}{\partial x_i^{\prime}}=T_{j i}^{\mathrm{T}} \frac{\partial}{\partial x_j}=T_{i j} \frac{\partial}{\partial x_j}
∂ x i ′ ∂ = ∂ x j ∂ ⋅ ∂ x i ′ ∂ x j = T ji T ∂ x j ∂ = T ij ∂ x j ∂
随坐标的正交变换而作相同系数的正交变换,具有相同的转动性质,所以既是微分算子,又是矢量(注意,这里的矢量和线性空间中抽象向量的定义不同,它连带一个变换)。
∇ ~\nabla~ ∇ 与函数 φ ( x , y , z ) ~\varphi(x,y,z)~ φ ( x , y , z ) 的“数乘”给出函数的梯度
∇ φ = g r a d φ = ∂ φ ∂ x 1 e 1 + ∂ φ ∂ x 2 e 2 + ∂ φ ∂ x 3 e 3 \nabla\varphi = \boldsymbol{\mathrm{grad}}~\varphi = \frac{\partial \varphi}{\partial x_1}\boldsymbol e_1 + \frac{\partial \varphi}{\partial x_2}\boldsymbol e_2 + \frac{\partial \varphi}{\partial x_3}\boldsymbol e_3
∇ φ = grad φ = ∂ x 1 ∂ φ e 1 + ∂ x 2 ∂ φ e 2 + ∂ x 3 ∂ φ e 3
可以看出,数量场的梯度是一个向量场。
∇ ~\nabla~ ∇ 与向量场的"点乘"给出向量场的散度
d i v v = ∇ ⋅ v = ∂ P ∂ x 1 + ∂ Q ∂ x 2 + ∂ R ∂ x 3 \mathrm{div}~\boldsymbol v = \nabla\cdot\boldsymbol v = \frac{\partial P}{\partial x_1} + \frac{\partial Q}{\partial x_2} + \frac{\partial R}{\partial x_3}
div v = ∇ ⋅ v = ∂ x 1 ∂ P + ∂ x 2 ∂ Q + ∂ x 3 ∂ R
可以看出,向量场的散度是一个数量场。
∇ ~\nabla~ ∇ 与向量场的“叉乘”给出向量场的旋度
r o t v = ∇ × v = ( ∂ R ∂ y − ∂ Q ∂ z ) e 1 + ( ∂ P ∂ z − ∂ R ∂ x ) e 2 + ( ∂ Q ∂ x − ∂ P ∂ y ) e 3 \boldsymbol{\mathrm{rot}}~\boldsymbol v = \nabla\times\boldsymbol v =
\left(
\frac{\partial R}{\partial y} -
\frac{\partial Q}{\partial z}
\right)
\boldsymbol e_ 1+
\left(
\frac{\partial P}{\partial z} -
\frac{\partial R}{\partial x}
\right)
\boldsymbol e_2 +
\left(
\frac{\partial Q}{\partial x} -
\frac{\partial P}{\partial y}
\right)
\boldsymbol e_3
rot v = ∇ × v = ( ∂ y ∂ R − ∂ z ∂ Q ) e 1 + ( ∂ z ∂ P − ∂ x ∂ R ) e 2 + ( ∂ x ∂ Q − ∂ y ∂ P ) e 3
可以看出,向量场的旋度是一个向量场。
特别的,向量场的旋度可以写为行列式形式
r o t v = ∇ × v = ∣ e 1 e 2 e 3 ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ \boldsymbol{\mathrm{rot}}~\boldsymbol v = \nabla\times\boldsymbol v =
\begin{vmatrix}
\boldsymbol e_1 &
\boldsymbol e_2 &
\boldsymbol e_3 \\[6pt]
\frac{\partial }{\partial x} &
\frac{\partial }{\partial y} &
\frac{\partial }{\partial z} \\[6pt]
P & Q & R
\end{vmatrix}
rot v = ∇ × v = ∣ ∣ e 1 ∂ x ∂ P e 2 ∂ y ∂ Q e 3 ∂ z ∂ R ∣ ∣
可以验证以下结果
r o t g r a d φ = ∇ × ∇ φ = 0 d i v r o t a = ∇ ⋅ ( ∇ × a ) = 0 \begin{aligned}
\boldsymbol{\mathrm{rot~grad}}~\varphi &= \nabla\times\nabla\varphi = \boldsymbol 0 \\
\mathrm{div}~\boldsymbol{\mathrm{rot}}~\boldsymbol a &= \nabla\cdot(\nabla\times \boldsymbol a) = 0
\end{aligned}
rot grad φ div rot a = ∇ × ∇ φ = 0 = ∇ ⋅ ( ∇ × a ) = 0
上式表明,梯度的旋度为零向量,旋度的散度为零。
我们知道,梯度,旋度和散度有着几何或是物理意义。梯度的方向是数量场增加最快的方向,大小则是该方向的斜率大小。散度描述了向量场的“源”或“漏”,向量从此处发散或汇聚到此处,散度的大小即是某种通量。旋度则描述了向量场的旋转情况,旋度的大小是涡量的最大值,方向则是旋转轴的指向。
由此,我们可以比较直观的理解梯度的旋度和旋度的散度问题。若梯度的旋度不为零,则意味着梯度场中存在涡量。梯度的方向是增加最快的方向,若在场中沿各个向量可以连接出闭合曲线,那么意味着原数量场的最大值即是其最小值,这在数量场不是常量时是不可能的。
而旋度的散度为零,则表明向量场各点处涡量(环量除以面积取极限)的旋转轴不会汇聚到或发散自一点。倘若转轴汇聚到或发散自一点,那么涡量会相互抵消,就不存在这些转轴了。
引入求和约定
引入爱因斯坦求和约定,Hamilton \text{Hamilton} Hamilton 算符可以简洁的写作如下形式:
∇ = ∂ i e i \nabla = \partial_i \bm{e}_i
∇ = ∂ i e i
我们约定,在一个单项式中重复出现的下标默认为对该下标求和 ,其中 e i \bm{e}_i e i 是 i i i 方向上的单位矢量,这里默认其为欧几里得空间中固定的标准正交基。
标量场 的梯度:
∇ φ = ∂ i φ e i \nabla \varphi = \partial_i \varphi\,\bm{e}_i
∇ φ = ∂ i φ e i
向量场 的散度:
∇ ⋅ φ = ∂ i e i ⋅ φ j e j = ∂ i φ j δ i j = ∂ i φ i \nabla \cdot \bm{\varphi} = \partial_i \bm{e}_i \cdot \varphi_j \bm{e}_j = \partial_i\varphi_j \delta_{ij} = \partial_i\varphi_i
∇ ⋅ φ = ∂ i e i ⋅ φ j e j = ∂ i φ j δ ij = ∂ i φ i
向量场 的旋度:
∇ × φ = ϵ i j k ∂ j φ k e i \nabla \times \bm{\varphi} = \epsilon_{ijk}\partial_j \varphi_k \,\bm{e}_i
∇ × φ = ϵ ijk ∂ j φ k e i
可以看到,如果使用求和符号,就可以不用时刻检查作用对象究竟是向量场还是标量场,只需把标量场写作 φ j e j \varphi_j \bm{e}_j φ j e j 然后遵守求和约定进行数学运算即可,大大降低了数学推导的繁琐程度。
这是数学史上的一大发现,若不信的话,可以试着返回那不使用这方法的古板日子。
——阿尔伯特·爱因斯坦
求和约定以其表示的简洁而著称,但是初学者使用起来非常容易眼花。此处黑体也表示向量或者向量场,请读者一定要拿出草稿纸写一写,认真比较它们的异同。
对 ∇ ⋅ ( ∇ × φ ) = 0 \nabla\cdot (\nabla\times \bm{\varphi}) = 0 ∇ ⋅ ( ∇ × φ ) = 0 的一个简洁的证明如下:
∇ ⋅ ( ∇ × φ ) = ∂ i e i ⋅ ϵ l m n ∂ m φ n e l = ϵ l m n ∂ i ∂ m δ i l φ n = ϵ l m n ∂ l ∂ m φ n \begin{aligned}
\nabla\cdot (\nabla\times \bm{\varphi}) &= \partial_i \bm{e}_i \cdot \epsilon_{lmn}\partial_m \varphi_n \,\bm{e}_l\\
&= \epsilon_{lmn} \partial_i\partial_m \delta_{il} \varphi_n \\
&= \epsilon_{lmn} \partial_l\partial_m \varphi_n
\end{aligned}
∇ ⋅ ( ∇ × φ ) = ∂ i e i ⋅ ϵ l mn ∂ m φ n e l = ϵ l mn ∂ i ∂ m δ i l φ n = ϵ l mn ∂ l ∂ m φ n
由于 ∂ l ∂ m \partial_l\partial_m ∂ l ∂ m 关于 m , n m,n m , n 对称,ϵ l m n \epsilon_{lmn} ϵ l mn 关于 m , n m,n m , n 反对称,这相当于奇函数在对称区间积分 ,所以求和为 0 0 0 。
又如,证明 ∇ ( A ⋅ B ) = ( B ⋅ ∇ ) A + B × ( ∇ × A ) + ( A ⋅ ∇ ) B + A × ( ∇ × B ) \nabla(\boldsymbol{A} \cdot \boldsymbol{B})=(\boldsymbol{B} \cdot \nabla) \boldsymbol{A}+\boldsymbol{B} \times(\nabla \times \boldsymbol{A})+(\boldsymbol{A} \cdot \nabla) \boldsymbol{B}+\boldsymbol{A} \times(\nabla \times \boldsymbol{B}) ∇ ( A ⋅ B ) = ( B ⋅ ∇ ) A + B × ( ∇ × A ) + ( A ⋅ ∇ ) B + A × ( ∇ × B ) 可以这样证:
等式右边前两项的 i i i 分量为
= B j ∂ j A i + ε i j k B j ( ∇ × A ) k = B j ∂ j A i + ε i j k B j ε k l m ∂ l A m = B j ∂ j A i + ( δ i l δ j m − δ i m δ j l ) B j ∂ l A m = B j ∂ j A i + B j ∂ i A j − B j ∂ j A i = B j ∂ i A j , \begin{aligned}
&=B_j \partial_j A_i+\varepsilon_{i j k} B_j(\nabla \times A)_k \\
&=B_j \partial_j A_i+\varepsilon_{i j k} B_j \varepsilon_{k l m} \partial_l A_m \\
&=B_j \partial_j A_i+\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) B_j \partial_l A_m \\
&=B_j \partial_j A_i+B_j \partial_i A_j-B_j \partial_j A_i=B_j \partial_i A_j,
\end{aligned}
= B j ∂ j A i + ε ijk B j ( ∇ × A ) k = B j ∂ j A i + ε ijk B j ε k l m ∂ l A m = B j ∂ j A i + ( δ i l δ jm − δ im δ j l ) B j ∂ l A m = B j ∂ j A i + B j ∂ i A j − B j ∂ j A i = B j ∂ i A j ,
同理可得左边 i i i 分量。这里只是将分量拿出来了而已。至于不取出分量的情况有无本质困难,读者大可一试(取出分量这么复杂,为什么不用简洁统一的对基矢量求和来表示原来的矢量呢)。
再如,一个电偶极子处于原点,已知电势 U U U ,求电场:
U = 1 4 π ε 0 p ⋅ r r 3 E = − ∇ U = − 1 4 π ε 0 ∇ ( p ⋅ r r 3 ) = − 1 4 π ε 0 ∇ ( p ⋅ r ) r 3 − p ⋅ r 4 π ε 0 ∇ ( 1 r 3 ) = − 1 4 π ε 0 ∂ i ( p j r j ) e i r 3 + 3 p ⋅ r 4 π ε 0 r 4 ∇ r = − 1 4 π ε 0 p j δ i j e i r 3 + 3 p ⋅ r 4 π ε 0 r 4 r r = − 1 4 π ε 0 p r 3 + 3 ( p ⋅ r ) r 4 π ε 0 r 5 \begin{aligned}
U &=\frac{1}{4 \pi \varepsilon_0} \frac{\boldsymbol{p} \cdot \boldsymbol{r}}{r^3} \\
\boldsymbol{E} &=-\nabla U=-\frac{1}{4 \pi \varepsilon_0} \nabla\left(\frac{\boldsymbol{p} \cdot \boldsymbol{r}}{r^3}\right) \\
&=-\frac{1}{4 \pi \varepsilon_0} \frac{\nabla(\boldsymbol{p} \cdot \boldsymbol{r})}{r^3}-\frac{\boldsymbol{p} \cdot \boldsymbol{r}}{4 \pi \varepsilon_0} \nabla\left(\frac{1}{r^3}\right) \\
&=-\frac{1}{4 \pi \varepsilon_0} \frac{\partial_i\left(p_j r_j\right) \boldsymbol{e}_i}{r^3}+\frac{3 \boldsymbol{p} \cdot \boldsymbol{r}}{4 \pi \varepsilon_0 r^4} \nabla r \\
&=-\frac{1}{4 \pi \varepsilon_0} \frac{p_j \delta_{i j} \boldsymbol{e}_i}{r^3}+\frac{3 \boldsymbol{p} \cdot \boldsymbol{r}}{4 \pi \varepsilon_0 r^4} \frac{\boldsymbol{r}}{r}\\
&=-\frac{1}{4 \pi \varepsilon_0} \frac{\boldsymbol{p}}{r^3}+\frac{3(\boldsymbol{p} \cdot \boldsymbol{r}) \boldsymbol{r}}{4 \pi \varepsilon_0 r^5}
\end{aligned}
U E = 4 π ε 0 1 r 3 p ⋅ r = − ∇ U = − 4 π ε 0 1 ∇ ( r 3 p ⋅ r ) = − 4 π ε 0 1 r 3 ∇ ( p ⋅ r ) − 4 π ε 0 p ⋅ r ∇ ( r 3 1 ) = − 4 π ε 0 1 r 3 ∂ i ( p j r j ) e i + 4 π ε 0 r 4 3 p ⋅ r ∇ r = − 4 π ε 0 1 r 3 p j δ ij e i + 4 π ε 0 r 4 3 p ⋅ r r r = − 4 π ε 0 1 r 3 p + 4 π ε 0 r 5 3 ( p ⋅ r ) r
其中 ∂ i ( p j r j ) e i = p j δ i j e i \partial_i\left(p_j r_j\right) \boldsymbol{e}_i = p_j \delta_{i j} \boldsymbol{e}_i ∂ i ( p j r j ) e i = p j δ ij e i 是因为偶极子是放好的、不动的,所以 p \boldsymbol{p} p 是常量。
Green定理,Gauss定理与Stocks定理
设 D ~D~ D 是有限条逐段光滑的封闭曲线 L ~L~ L 围成的平面闭区域(因此 L = ∂ D ~L = \partial D~ L = ∂ D ), v = P ( x , y ) i + Q ( x , y ) j ~\boldsymbol{v} = P(x,y)\boldsymbol{i} + Q(x,y)\boldsymbol{j}~ v = P ( x , y ) i + Q ( x , y ) j 是 D ~D~ D 上的光滑向量场,则( G r e e n ~\mathrm{Green}~ Green 公式)
∮ ∂ D P d x + Q d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y \oint_{\partial D}P~\mathrm{d}x + Q~\mathrm{d}y = \iint_D\left({\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}}\right)\mathrm{d}x\mathrm{d}y
∮ ∂ D P d x + Q d y = ∬ D ( ∂ x ∂ Q − ∂ y ∂ P ) d x d y
其中曲线积分的方向为 L = ∂ D ~L = \partial D~ L = ∂ D 的逆时针方向。
设 D ~D~ D 是平面上的单连通区域(即 D ~D~ D 中任意一条简单闭曲线所围成的区域都包含在 D ~D~ D 中), v ~\boldsymbol{v}~ v 是定义在 D ~D~ D 上的光滑向量场,则下列三个命题互相等价:
向量场 v ~\boldsymbol v~ v 在区域 D ~D~ D 内绕任何简单封闭曲线 L ~L~ L 的环量等于零,即
∮ L v ⋅ d r = 0 \oint_L \boldsymbol{v}\cdot\mathrm{d}\boldsymbol r = 0
∮ L v ⋅ d r = 0
或者说 v ~\boldsymbol v~ v 在区域 D ~D~ D 内的曲线积分与路径无关。
向量场 v ~\boldsymbol v~ v 是一个函数的梯度场,即存在一个函数 φ ( x , y ) ~\varphi(x,y)~ φ ( x , y ) ,使得
v = g r a d φ ( x , y ) = ∇ φ ( x , y ) \boldsymbol v = \boldsymbol{\mathrm{grad}}~\varphi(x,y) = \nabla\varphi(x,y)
v = grad φ ( x , y ) = ∇ φ ( x , y )
且这样的函数 φ ( x , y ) ~\varphi(x, y)~ φ ( x , y ) 在相差一个常数意义下是唯一的。
向量场 v ~\boldsymbol v~ v 的两个分量 Q , P ~Q, P~ Q , P 满足
∂ Q ∂ x − ∂ P ∂ y = 0 \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 0
∂ x ∂ Q − ∂ y ∂ P = 0
设 v = P ( x , y , z ) i + Q ( x , y , z ) j + R ( x , y , z ) k ~\boldsymbol v = P(x,y,z)\boldsymbol i + Q(x,y,z)\boldsymbol j + R(x,y,z)\boldsymbol k~ v = P ( x , y , z ) i + Q ( x , y , z ) j + R ( x , y , z ) k 是 V ~V~ V 上的光滑向量场(即具有连续的偏导数), V ~V~ V 是空间中分片光滑曲面围成的闭区域。如果 V ~V~ V 可以同时分解成有限个互不相重叠的 X ~X~ X 型、 Y ~Y~ Y 型和 Z ~Z~ Z 型子区域的并,那么有( G a u s s ~\mathrm{Gauss}~ Gauss 公式)
◯ ∫ ∫ S P d y d z + Q d z d x + R d x d y = ∭ V ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d x d y d z \bigcirc\!\!\!\!\!\!\!\!\int\!\!\!\!\!\int_S
{P~\mathrm dy\mathrm dz + Q~\mathrm dz\mathrm dx + R~\mathrm dx\mathrm dy} = \iiint_V\left({\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}}\right)~\mathrm dx\mathrm dy \mathrm dz
◯ ∫ ∫ S P d y d z + Q d z d x + R d x d y = ∭ V ( ∂ x ∂ P + ∂ y ∂ Q + ∂ z ∂ R ) d x d y d z
或
◯ ∫ ∫ S v ⋅ d S = ∭ V ∇ ⋅ v d V = ∭ V d i v v d V \bigcirc\!\!\!\!\!\!\!\!\int\!\!\!\!\!\int_S{\boldsymbol v\cdot\mathrm d\boldsymbol S} = \iiint_V\nabla\cdot\boldsymbol v\mathrm dV = \iiint_V\mathrm{div}~\boldsymbol v~\mathrm dV
◯ ∫ ∫ S v ⋅ d S = ∭ V ∇ ⋅ v d V = ∭ V div v d V
其中 S ~S~ S 是 V ~V~ V 的表面, S = ∂ V ~S = \partial V~ S = ∂ V ,方向指向 V ~V~ V 的外侧。
G a u s s ~\mathrm{Gauss}~ Gauss 公式表明,通量对面积的积分等于散度对体积的积分。
设 v = P ( x , y , z ) i + Q ( x , y , z ) j + R ( x , y , z ) k ~\boldsymbol v = P(x,y,z)\boldsymbol i + Q(x,y,z)\boldsymbol j + R(x,y,z)\boldsymbol k~ v = P ( x , y , z ) i + Q ( x , y , z ) j + R ( x , y , z ) k 是 V ~V~ V 上的光滑向量场(即具有连续的偏导数),如果 S ~S~ S 是以曲线 L ~L~ L 为边的分片具有二阶连续偏导数的光滑曲面,或者说 L ~L~ L 是有界曲面 S ~S~ S 的边界, L = ∂ S ~L = \partial S~ L = ∂ S ,那么有( S t o c k s ~\mathrm{Stocks}~ Stocks 公式)
∮ L P d x + Q d y + R d z = ∬ S ( ∂ R ∂ y − ∂ Q ∂ z ) d y d z + ( ∂ P ∂ z − ∂ R ∂ x ) d z d x + ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y \begin{aligned}
&\oint_L P~\mathrm dx + Q~\mathrm dy + R~\mathrm dz \\
&= \iint_S\left({\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}}\right)~\mathrm dy\mathrm dz + \left({\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}}\right)~\mathrm dz\mathrm dx + \left({\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}}\right)~\mathrm dx\mathrm dy
\end{aligned}
∮ L P d x + Q d y + R d z = ∬ S ( ∂ y ∂ R − ∂ z ∂ Q ) d y d z + ( ∂ z ∂ P − ∂ x ∂ R ) d z d x + ( ∂ x ∂ Q − ∂ y ∂ P ) d x d y
或
∮ L v ⋅ d r = ∬ S r o t v ⋅ d S = ∬ S ∇ × v ⋅ d S \oint_L\boldsymbol v\cdot \mathrm d\boldsymbol r = \iint_S\boldsymbol{\mathrm{rot}}~\boldsymbol v\cdot \mathrm d\boldsymbol S = \iint_S \nabla\times \boldsymbol v\cdot \mathrm d\boldsymbol S
∮ L v ⋅ d r = ∬ S rot v ⋅ d S = ∬ S ∇ × v ⋅ d S
其中 L ~L~ L 的定向与 S ~S~ S 的定向相协调,即 L ~L~ L 的方向与 S ~S~ S 的法向量形成右手系。
S t o c k s ~\mathrm{Stocks}~ Stocks 公式表明,环量等于旋度对面积的积分。
不难看出,当我们在一个光滑平面上使用 S t o c k s ~\mathrm{Stocks}~ Stocks 定理,就可以得到 G r e e n ~\mathrm{Green}~ Green 定理。因此, G r e e n ~\mathrm{Green}~ Green 定理可以认为是 S t o c k s ~\mathrm{Stocks}~ Stocks 定理在平面上的退化形式。
如果我们把 N e w t o n − L e i b n i z ~\mathrm{Newton-Leibniz}~ Newton − Leibniz 公式
∫ a b f ( x ) d x = F ( b ) − F ( a ) , F ′ ( x ) = f ( x ) \int_a^b f(x)~\mathrm dx = F(b) - F(a),\quad F'(x) = f(x)
∫ a b f ( x ) d x = F ( b ) − F ( a ) , F ′ ( x ) = f ( x )
的右边看成零维的“积分”(即在 [ a , b ] ~[a,b]~ [ a , b ] 边界 ∂ [ a , b ] = { a , b } ~\partial [a,b] = \{a,b\}~ ∂ [ a , b ] = { a , b } 上的“积分”, F ( a ) ~F(a)~ F ( a ) 前的负号是由于定向导致的),那么 G r e e n ~\mathrm{Green}~ Green 公式, G a u s s ~\mathrm{Gauss}~ Gauss 公式和 S t o c k s ~\mathrm{Stocks}~ Stocks 公式可以看成 N e w t o n − L e i b n i z ~\mathrm{Newton-Leibniz}~ Newton − Leibniz 公式在高维的推广。
其他形式的曲线、曲面积分
本节将会涉及以下几种形式的曲线曲面积分
∫ L φ d r = ∫ L φ τ d s ∫ L d r × v = ∫ L τ × v d s ∬ S φ d S = ∬ S φ n d S ∬ S d S × v = ∬ S n × v d S \begin{aligned}
\int_L \varphi~\mathrm{d}\boldsymbol r
&=
\int_L \varphi\boldsymbol \tau~\mathrm{d}s \\
\int_L \mathrm{d}\boldsymbol r \times \boldsymbol v
&=
\int_L \boldsymbol\tau\times\boldsymbol v~\mathrm{d}s \\
\iint_S \varphi~\mathrm{d}\boldsymbol S
&=
\iint_S \varphi\boldsymbol n~\mathrm{d}S \\
\iint_S \mathrm{d}\boldsymbol S\times \boldsymbol v
&=
\iint_S \boldsymbol n\times\boldsymbol v~\mathrm{d}S
\end{aligned}
∫ L φ d r ∫ L d r × v ∬ S φ d S ∬ S d S × v = ∫ L φ τ d s = ∫ L τ × v d s = ∬ S φ n d S = ∬ S n × v d S
其中 τ ~\boldsymbol\tau~ τ 表示曲线的单位切向量, n ~\boldsymbol n~ n 是曲面 S ~S~ S 的单位法向量。
它们满足的 G a u s s ~\mathrm{Gauss}~ Gauss 和公式 S t o c k s ~\mathrm{Stocks}~ Stocks 公式如下:
设 S ~S~ S 是空间中逐段光滑有界曲面, S ~S~ S 的边界 ∂ S ~\partial S~ ∂ S 是逐段光滑封闭曲线,则
∮ ∂ S φ d r = ∬ S d S × ∇ φ ∮ ∂ S d r × v = ∬ S ( d S × ∇ ) × v \begin{aligned}
\oint_{\partial S}\varphi~\mathrm{d}\boldsymbol r &= \iint_S\mathrm{d}\boldsymbol S\times\nabla\varphi \\
\oint_{\partial S}\mathrm{d}\boldsymbol r\times\boldsymbol v &= \iint_S(\mathrm{d}\boldsymbol S\times\nabla)\times\boldsymbol v
\end{aligned}
∮ ∂ S φ d r ∮ ∂ S d r × v = ∬ S d S × ∇ φ = ∬ S ( d S × ∇ ) × v
设 V ~V~ V 是空间有界区域, V ~V~ V 的边界 ∂ V ~\partial V~ ∂ V 是逐段光滑封闭曲面,则
◯ ∫ ∫ ∂ V φ d S = ∭ V ∇ φ d V ◯ ∫ ∫ ∂ V d S × v = ∭ V ∇ × v d V \begin{aligned}
\bigcirc\!\!\!\!\!\!\!\!\int\!\!\!\!\!\int_{\partial V}\varphi~\mathrm{d}\boldsymbol S &= \iiint_V\nabla\varphi~\mathrm{d}V \\
\bigcirc\!\!\!\!\!\!\!\!\int\!\!\!\!\!\int_{\partial V}\mathrm{d}\boldsymbol S\times\boldsymbol v &= \iiint_V\nabla\times\boldsymbol v~\mathrm{d}V
\end{aligned}
◯ ∫ ∫ ∂ V φ d S ◯ ∫ ∫ ∂ V d S × v = ∭ V ∇ φ d V = ∭ V ∇ × v d V
根据以上两个定理,我们可以给出梯度、散度和旋度的积分表示。设 φ ~\varphi~ φ 和 v ~\boldsymbol v~ v 分别是一个数量场和向量场,对空间任意一点 P ~P~ P ,定义梯度、散度和旋度如下:
∇ φ = lim V → P [ 1 σ ( V ) ◯ ∫ ∫ S φ d S ] ∇ ⋅ v = lim V → P [ 1 σ ( V ) ◯ ∫ ∫ S v ⋅ d S ] ∇ × v = lim V → P [ 1 σ ( V ) ◯ ∫ ∫ S d S × v ] \begin{aligned}
\nabla\varphi &= \lim_{V \to P}\left[\frac{1}{\sigma(V)}\bigcirc\!\!\!\!\!\!\!\!\int\!\!\!\!\!\int_S\varphi~\mathrm{d}\boldsymbol S\right] \\[9pt]
\nabla\cdot\boldsymbol v &= \lim_{V \to P}\left[\frac{1}{\sigma(V)}\bigcirc\!\!\!\!\!\!\!\!\int\!\!\!\!\!\int_S\boldsymbol v\cdot\mathrm{d}\boldsymbol S\right] \\[9pt]
\nabla\times\boldsymbol v &= \lim_{V \to P}\left[\frac{1}{\sigma(V)}\bigcirc\!\!\!\!\!\!\!\!\int\!\!\!\!\!\int_S\mathrm{d}\boldsymbol S\times\boldsymbol v\right]
\end{aligned}
∇ φ ∇ ⋅ v ∇ × v = V → P lim [ σ ( V ) 1 ◯ ∫ ∫ S φ d S ] = V → P lim [ σ ( V ) 1 ◯ ∫ ∫ S v ⋅ d S ] = V → P lim [ σ ( V ) 1 ◯ ∫ ∫ S d S × v ]
极限 V → P ~V \to P~ V → P 表示区域 V ~V~ V 收缩到点 P ~P~ P 。 σ ( V ) ~{\sigma(V)}~ σ ( V ) 表示 V ~V~ V 的体积, S = ∂ V ~\boldsymbol S = \partial V~ S = ∂ V 表示 V ~V~ V 的边界。上面三个等式表面,梯度、散度和旋度是向量场自身的性质,与坐标系的选取无关。据此可以推出一般情况下梯度、散度和旋度的表达式。
曲线坐标系中的矢量分析
我们把一个无限小的位移矢量写为
d l = f d u u ^ + g d v v ^ + h d w w ^ \mathrm{d}\boldsymbol{l} = f\mathrm{d}u\hat{\boldsymbol{u}} + g\mathrm{d}v\hat{\boldsymbol{v}} + h\mathrm{d}w\hat{\boldsymbol{w}}
d l = f d u u ^ + g d v v ^ + h d w w ^
其中 f , g , h ~f, g, h~ f , g , h 是位置的函数,与使用的坐标系有关。如在直角坐标系中有 f = g = h = 1 ~f = g = h = 1~ f = g = h = 1 ,在球坐标系中有 f = 1 , g = r , h = r sin θ ~f = 1, g = r, h = r\sin\theta~ f = 1 , g = r , h = r sin θ .
首先考虑散度。
当从点 ( u , v , w ) ~(u, v, w)~ ( u , v , w ) 移动到点 ( u + d u , v + d v , w + d w ) ~(u + \mathrm{d}u, v + \mathrm{d}v, w + \mathrm{d}w)~ ( u + d u , v + d v , w + d w ) 时,标量函数 t ( u , v , w ) ~t(u, v, w)~ t ( u , v , w ) 的变化为
d t = ∂ t ∂ u d u + ∂ t ∂ v d v + ∂ t ∂ w d w \mathrm{d}t = \frac{\partial t}{\partial u}\mathrm{d}u + \frac{\partial t}{\partial v}\mathrm{d}v + \frac{\partial t}{\partial w}\mathrm{d}w
d t = ∂ u ∂ t d u + ∂ v ∂ t d v + ∂ w ∂ t d w
另一方面,我们也可以把它写成点积的形式,即
d t = ∇ t ⋅ d l = ( ∇ t ) u f d u + ( ∇ t ) v g d v + ( ∇ t ) w h d w \mathrm{d}t = \nabla t \cdot \mathrm{d}\boldsymbol{l} = (\nabla t)_u f \mathrm{d}u + (\nabla t)_v g \mathrm{d}v + (\nabla t)_w h \mathrm{d}w
d t = ∇ t ⋅ d l = ( ∇ t ) u f d u + ( ∇ t ) v g d v + ( ∇ t ) w h d w
对比可知
( ∇ t ) u f = 1 f ∂ t ∂ u ( ∇ t ) v g = 1 g ∂ t ∂ v ( ∇ t ) w h = 1 h ∂ t ∂ w (\nabla t)_u f = \frac{1}{f} \frac{\partial t}{\partial u}
(\nabla t)_v g = \frac{1}{g} \frac{\partial t}{\partial v}
(\nabla t)_w h = \frac{1}{h} \frac{\partial t}{\partial w}
( ∇ t ) u f = f 1 ∂ u ∂ t ( ∇ t ) v g = g 1 ∂ v ∂ t ( ∇ t ) w h = h 1 ∂ w ∂ t
故
∇ t = 1 f ∂ t ∂ u u ^ + 1 g ∂ t ∂ v v ^ + 1 h ∂ t ∂ w w ^ \nabla t = \frac{1}{f} \frac{\partial t}{\partial u}\hat{\boldsymbol{u}} + \frac{1}{g} \frac{\partial t}{\partial v}\hat{\boldsymbol{v}} + \frac{1}{h} \frac{\partial t}{\partial w}\hat{\boldsymbol{w}}
∇ t = f 1 ∂ u ∂ t u ^ + g 1 ∂ v ∂ t v ^ + h 1 ∂ w ∂ t w ^
接下来是梯度、旋度以及拉普拉斯算子。
推导过程略麻烦,其实通过散度和旋度的物理含义就可以逐步导出。下面直接给出结论。
对于矢量函数
A ( u , v , w ) = A u u ^ + A v v ^ + A w w ^ \boldsymbol{A}(u, v, w) = A_u\hat{u} + A_v\hat{v} + A_w\hat{w}
A ( u , v , w ) = A u u ^ + A v v ^ + A w w ^
无限小的体积元
d τ = d l u d l v d l w = ( f g h ) d u d v d w \mathrm{d}\tau = \mathrm{d}l_u \mathrm{d}l_v \mathrm{d}l_w = (fgh)\mathrm{d}u\mathrm{d}v\mathrm{d}w
d τ = d l u d l v d l w = ( f g h ) d u d v d w
散度为
∇ ⋅ A = 1 f g h [ ∂ ∂ u ( g h A u ) + ∂ ∂ v ( f h A v ) + ∂ ∂ w ( f g A w ) ] \nabla \cdot \boldsymbol{A} = \frac{1}{fgh}\left[\frac{\partial}{\partial u}(gh A_u) + \frac{\partial}{\partial v}(fh A_v) + \frac{\partial}{\partial w}(fg A_w)\right]
∇ ⋅ A = f g h 1 [ ∂ u ∂ ( g h A u ) + ∂ v ∂ ( f h A v ) + ∂ w ∂ ( f g A w ) ]
无限小的面积元(以与 u v ~uv~ uv 平行的面元为例,其他方向类似)
d a = ( f g ) d u d v w ^ \mathrm{d}\boldsymbol{a} = (fg)\mathrm{d}u\mathrm{d}v\hat{\boldsymbol{w}}
d a = ( f g ) d u d v w ^
散度为
∇ × A = 1 g h [ ∂ ∂ v ( h A w ) − ∂ ∂ w ( g A v ) ] u ^ + 1 f h [ ∂ ∂ w ( f A u ) − ∂ ∂ u ( h A w ) ] v ^ + 1 f g [ ∂ ∂ u ( g A v ) − ∂ ∂ v ( f A u ) ] w ^ \nabla\times\boldsymbol{A} = \frac{1}{gh}\left[ \frac{\partial}{\partial v}(h A_w) - \frac{\partial}{\partial w}(g A_v) \right]\hat{\boldsymbol{u}} + \frac{1}{fh}\left[ \frac{\partial}{\partial w}(f A_u) - \frac{\partial}{\partial u}(h A_w) \right]\hat{\boldsymbol{v}} + \frac{1}{fg}\left[ \frac{\partial}{\partial u}(g A_v) - \frac{\partial}{\partial v}(f A_u) \right]\hat{\boldsymbol{w}}
∇ × A = g h 1 [ ∂ v ∂ ( h A w ) − ∂ w ∂ ( g A v ) ] u ^ + f h 1 [ ∂ w ∂ ( f A u ) − ∂ u ∂ ( h A w ) ] v ^ + f g 1 [ ∂ u ∂ ( g A v ) − ∂ v ∂ ( f A u ) ] w ^
由上面的结论可以写出拉普拉斯算子作用的结果
∇ 2 t = 1 f g h [ ∂ ∂ u ( g h f ∂ t ∂ u ) + ∂ ∂ v ( f h g ∂ t ∂ v ) + ∂ ∂ w ( f g h ∂ t ∂ w ) ] \nabla^2 t = \frac{1}{fgh}\left[ \frac{\partial}{\partial u}\left( \frac{gh}{f}\frac{\partial t}{\partial u} \right) + \frac{\partial}{\partial v}\left( \frac{fh}{g}\frac{\partial t}{\partial v} \right) + \frac{\partial}{\partial w}\left( \frac{fg}{h}\frac{\partial t}{\partial w} \right) \right]
∇ 2 t = f g h 1 [ ∂ u ∂ ( f g h ∂ u ∂ t ) + ∂ v ∂ ( g f h ∂ v ∂ t ) + ∂ w ∂ ( h f g ∂ w ∂ t ) ]
矢量恒等式
最后本博文记录一些矢量恒等式,方便随时查阅。
三重积
A ⋅ ( B × C ) = B ⋅ ( C × A ) = C ⋅ ( A × B ) ~\boldsymbol A \cdot (\boldsymbol B \times \boldsymbol C) = \boldsymbol B \cdot (\boldsymbol C \times \boldsymbol A) = \boldsymbol C \cdot (\boldsymbol A \times \boldsymbol B)~ A ⋅ ( B × C ) = B ⋅ ( C × A ) = C ⋅ ( A × B )
A × ( B × C ) = B ( A ⋅ C ) − C ( A ⋅ B ) ~\boldsymbol A \times (\boldsymbol B \times \boldsymbol C) = \boldsymbol B (\boldsymbol A \cdot \boldsymbol C) - \boldsymbol C (\boldsymbol A \cdot \boldsymbol B)~ A × ( B × C ) = B ( A ⋅ C ) − C ( A ⋅ B )
积规则
∇ ( f g ) = f ( ∇ g ) + g ( ∇ f ) ~\nabla(fg) = f(\nabla g) + g(\nabla f)~ ∇ ( f g ) = f ( ∇ g ) + g ( ∇ f )
∇ ( A ⋅ B ) = A × ( × B ) + B × ( ∇ × A ) + ( A ⋅ ∇ ) B + ( B ⋅ ∇ ) A ~\nabla(\boldsymbol A \cdot \boldsymbol B) = \boldsymbol A \times (\boldsymbol \times B) + \boldsymbol B \times (\nabla \times \boldsymbol A) + (\boldsymbol A \cdot \nabla)\boldsymbol B + (\boldsymbol B \cdot \nabla)\boldsymbol A~ ∇ ( A ⋅ B ) = A × ( × B ) + B × ( ∇ × A ) + ( A ⋅ ∇ ) B + ( B ⋅ ∇ ) A
∇ ⋅ ( f A ) = f ( ∇ ⋅ A ) + A ⋅ ( ∇ f ) ~\nabla \cdot (f\boldsymbol A) = f(\nabla \cdot \boldsymbol A) + \boldsymbol A \cdot (\nabla f)~ ∇ ⋅ ( f A ) = f ( ∇ ⋅ A ) + A ⋅ ( ∇ f )
∇ ⋅ ( A × B ) = B ⋅ ( ∇ × A ) − A ⋅ ( ∇ × B ) ~\nabla \cdot (\boldsymbol A \times \boldsymbol B) = \boldsymbol B \cdot (\nabla \times \boldsymbol A) - \boldsymbol A \cdot (\nabla \times \boldsymbol B)~ ∇ ⋅ ( A × B ) = B ⋅ ( ∇ × A ) − A ⋅ ( ∇ × B )
∇ × ( f A ) = f ( ∇ × A ) − A × ( ∇ f ) ~\nabla \times (f\boldsymbol A) = f(\nabla \times \boldsymbol A) - \boldsymbol A \times (\nabla f)~ ∇ × ( f A ) = f ( ∇ × A ) − A × ( ∇ f )
∇ × ( A × B ) = ( B ⋅ ∇ ) A − ( A ⋅ ∇ ) B + A ( ∇ ⋅ B ) − B ( ∇ ⋅ A ) ~\nabla \times (\boldsymbol A \times \boldsymbol B) = (\boldsymbol B \cdot \nabla)\boldsymbol A - (\boldsymbol A \cdot \nabla)\boldsymbol B + \boldsymbol A(\nabla \cdot \boldsymbol B) - \boldsymbol B (\nabla \cdot \boldsymbol A)~ ∇ × ( A × B ) = ( B ⋅ ∇ ) A − ( A ⋅ ∇ ) B + A ( ∇ ⋅ B ) − B ( ∇ ⋅ A )
二阶导数
∇ ⋅ ( ∇ × A ) = 0 ~\nabla \cdot(\nabla \times \boldsymbol A) = 0~ ∇ ⋅ ( ∇ × A ) = 0
∇ × ( ∇ f ) = 0 ~\nabla \times (\nabla f) = 0~ ∇ × ( ∇ f ) = 0
∇ × ( ∇ × A ) = ∇ ( ∇ ⋅ A ) − ∇ 2 A ~\nabla \times (\nabla \times \boldsymbol A) = \nabla (\nabla \cdot \boldsymbol A) - \nabla^2 \boldsymbol A~ ∇ × ( ∇ × A ) = ∇ ( ∇ ⋅ A ) − ∇ 2 A