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Abstract—In online education, Knowledge Tracing (KT) is a
fundamental but challenging task that traces learners’ evolving
knowledge states. Much attention has been drawn to this area
and several works such as Bayesian Knowledge Tracing and Deep
Knowledge Tracing are proposed. Recent works have explored
the value of relations among concepts and proposed to introduce
knowledge structure into KT task. However, the propagated influ-
ence among concepts, which has been shown to be a key factor
in human learning by the educational theories, is still under-
explored. In this paper, we propose a new framework called
Structure-based Knowledge Tracing (SKT), which exploits the
multiple relations in knowledge structure to model the influence
propagation among concepts. In the SKT framework, we not only
consider the temporal effect on the exercising sequence but also
take the spatial effect on the knowledge structure into account.
We take advantages of two novel formulations in modeling the
influence propagation on the knowledge structure with multiple
relations. For undirected relations such as similarity relations,
the synchronization propagation method is adopted, where the
influence propagates bidirectionally between neighbor concepts.
For directed relations such as prerequisite relations, the partial
propagation method is applied, where the influence can only
unidirectionally propagate from a predecessor to a successor.
Meanwhile, we employ the gated functions to update the states
of concepts temporally and spatially. Extensive experiments
demonstrate the effectiveness and interpretability of SKT.

Index Terms—Transfer of knowledge; Knowledge Tracing;
Influence Propagation; Recurrent Neural Network;

I. INTRODUCTION

Recent years have witnessed the booming of online ed-
ucation systems, such as KhanAcademy.org and Junyia-
cademy.org. These systems can not only assist tutors to give
proper instruction based on the individual characteristics, e.g.,
strengths and weaknesses, of learners, but also help learners be
aware of their learning progress. The conveniences and rapid
developments have attracted increasing attention of educators
and public [13], [19]. A key issue in the online education sys-
tems is Knowledge Tracing, the goal of which is to precisely
trace the evolving knowledge states of learners on the concepts
based on their past exercising performance.

Traditional Knowledge Tracing models [7], [25], [41]
mainly leverage the temporal information (i.e., learners’ se-

quential performance on the exercises). For example, Bayesian
Knowledge Tracing (BKT) [7] employs a hidden markov
model to respectively trace the evolving knowledge state of
each concept while Deep Knowledge Tracing (DKT) [25]
uses the recurrent neural networks to jointly model the states
of all concepts. Recently, more and more works [23], [34],
[35] have noticed the value of the knowledge structure, which
contains abundant domain knowledge. Chen et al. [4] used the
prerequisite relations in knowledge structure to reformulate
knowledge tracing as a constraint problem and Nakagawa et
al. [23] utilized graph neural networks on a homogeneous
graph knowledge structure to enhance knowledge tracing.
Although with significant improvement by utilizing knowledge
structure, previous works ignore the propagated influence
among concepts.

According to one of education theories, transfer of knowl-
edge [8], [31], [36], not only the proficiency of the current
learning concept but also some relevant concepts will be
changed when a learner learns a concept. As illustrated in the
middle part of Figure 1, a learner practices several exercises
on concepts B, D, ..., C, D sequentially and correctness (right
or wrong) of the answer given by learner is shown under
the concepts. The concept and correctness of the answer at
each time step are called an exercise-performance pair. The
bottom part shows the knowledge structure. The vertexes are
the pedagogical concepts and are linked by multiple relations.
The multiple relations include not only directed relations but
also undirected relations. Without loss of generality, here we
use two typical relations as a toy example. In Figure 1, the
black directed lines represent prerequisite relations1 and blue
undirected lines stand for similarity relations2. At the most
beginning, after the learner finishes the learning on concept
B, her proficiency on concept B increases, which can be seen
from the radar graphs on the top of Figure 1. Meanwhile,
the proficiency of concepts linked by multiple relations is

1A concept points to another concept with prerequisite relation means the
former one is considered as the foundation of the later one.

2Concepts linked by similarity relations is somehow similar in the content.
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Fig. 1: Illustration of Knowledge Tracing. B → D → ...→ C → D is an exercises sequence where each exercise corresponds
to one concept. The knowledge structures showed in the bottom contain two types of relations (i.e., prerequisite and similarity).
Radar graphs in the top show the evolving proficiency on each concepts during learning. Graphs in the bottom indicate the
knowledge structure where current-learning concepts are highlighted in green and influenced concepts in red.

also influenced. For instance, the proficiency on concept D (a
successor of B) and concept A (a concept similar with B) also
increase. The reason why the learning on concept C influences
the proficiency on concept A, D is that the knowledge can
be transferred among concepts. In other words, the learning
influence can be propagated along the multiple relations in
the knowledge structure. Thus, it is essential to consider the
influence propagation when utilizing the knowledge structure
for knowledge tracing.

However, there are two major challenges along this line.
First, the knowledge state of each concept is determined by
two types of effects. One is the temporal effect from the
exercise sequence and the other one is the spatial effect
from the knowledge structure. As shown in Figure 1, at
each time step, when a learner practices an exercise, the
learning behaviour results in a temporal effect on the learning
concept, which changes the state of the concept (e.g., the
state on concept B is changed by the learning at the first
step); Then, the variation of states of the learning concept
will furthermore influence its neighbors and successors in
the knowledge structure through different relations, which
is called spatial effect. Thus, there are two dimensions of
learning effects which we need to simultaneously model. How
to jointly model the temporal and spatial effect is a challenging
problem. Second, it is not easy to model the spatial effect
on a knowledge structure with multiple relations. Because the
influence can be propagated along different relations, a key
issue is to consider the different influence propagation ways
on different types of relations. As shown in Figure 1, there
are multiple relations in the knowledge structure, including
directed relations and undirected relations. Therefore, when we
model the spatial effect, the influence propagation on different
types of relations needs to be respectively considered.

To address the challenges above, we propose a new frame-
work called Structure-based Knowledge Tracing (SKT), which
can concurrently model the temporal and spatial effects.

Specifically, at each time step, we first extract the temporal
effect from the exercise-performance pair and update the state
of the practiced concept via a gated function. Then, to model
the influence propagation in the knowledge structure caused
by the temporal effect, we apply the synchronization and
partial propagation methods to characterize the undirected and
directed relations among knowledge structure, respectively.
Finally, for those influenced concepts, the same gated function
as mentioned above will be used to update the states based
on the influence propagated to them. In this way, we model
the influence propagation in the knowledge structure and
furthermore jointly model the temporal and spatial effect.
Extensive experiments on real-world datasets show that SKT
not only significantly outperforms several baselines, but also
effectively provides interpretable insights for understanding
the evolving states of learners.

II. RELATED WORK

Generally, the related works of this study are grouped into
the following two categories.

A. Knowledge Tracing

Knowledge tracing is a task of modeling learners’ knowl-
edge states over time so that we are able to accurately
predict how learners will perform on future exercises [13].
One of the classical knowledge tracing models is Bayesian
Knowledge Tracing (BKT) [7]. BKT-based approach models
learner’s knowledge in a Hidden Markov Model (HMM) as a
set of binary variables, which represents whether the learner
has mastered a skill or not (e.g., 0 indicates no while 1
indicates mastered). As deep learning models outperform the
conventional models in a range of domains such as pattern
recognition and natural language processing, Piech et al. [25]
used RNN to model the evolving proficiency on concepts
and proposes the Deep Knowledge Tracing (DKT) model.
Different from BKT using the binary variables to represent



the learner’s knowledge states, by using Recurrent Neural Net-
work (RNN), DKT models such states in a high-dimensional
and continuous representation. Another kind of deep learning
models is Deep Key-Value Memory Networks (DKVMN) [41].
DKVMN facilitates one static key memory matrix and one
dynamic value memory matrix. The key memory matrix stores
the knowledge concepts and the value memory matrix stores
and updates the mastery levels of corresponding concepts.
DKVMN is able to automatically learn the correlation between
input exercises and underlying concepts. DKT and DKVMN
encourage increasing amounts of research on deep learning-
based knowledge tracing models [22], [39].

Recently, more and more works have paid attention to
introduce the knowledge structure into knowledge tracing.
Chen et al. [4] and Wang et al. [35] respectively proposed
a regularization term based on the prerequisite and similarity
relations. Wang et al. [34] used the hierarchical knowledge
structure and put forward the Deep Hierarchical Knowledge
Tracing (DHKT) model while Nakagawa et al. [23] introduced
the Graph Neural Network (GNN) into knowledge tracing
with a graph-like knowledge structure. Nevertheless, previous
works ignore the influence among concepts during learning
or can only handle the knowledge structure with one-type
relations, which somehow limits their performance.

B. Influence Propagation

Several models [14], [15], [33] have been provided to
describe the dynamics of influence propagation. These models
define the stochastic process of information propagation. Thus
they are called stochastic diffusion models. Among them, the
Independent Cascade model (IC) and Linear Threshold model
(LT) have been widely used and studied [14], [20]. In both
models, the influence spread is simply defined as the expected
number of activated nodes. Recently, some authors proposed to
introduce neural networks to influence propagation models [1],
[17], [37]. Atwood et al. [1] presented diffusion-convolutional
neural networks to learn diffusion-based representations from
graph-structured data and used as an effective basis for node
classification. Li et al. [17] proposed Diffusion Convolutional
Recurrent Neural Network (DCRNN) on traffic forecasting to
incorporate both spatial and temporal dependency in the traffic
flow. These methods receive a graph with a single relation
type, which makes it hard to be directly applied in our task.

III. PROBLEM FORMULATION

Before formally introducing SKT, we give the necessary
definitions as follows:

A. Knowledge Structure

Educational theories have emphasized the importance of
knowledge structure [24], [26], which contains many relations
such as prerequisite [4], [28] and similarity [35]. Prerequisite
indicates the hierarchical structure existing among the learning
items. As represented in bottom graphs of Figure 1, the
directed arrow from one vertex to the other means that the
former is a prerequisite for the latter, e.g., count number within

100 is a prerequisite for one digit multiplication. Similarity is
another widely studied relation. As illustrated in Figure 1, the
vertexes linked by the blue undirected edge (i.e., similarity)
are involved in the same topic or area and may overlap in
some knowledge.

Definition 1: (Knowledge Structure) In this paper, the
knowledge structure with multiple relations is represented as
a graph G(V,E), where V = {v1, v2, ..., vN} and each vertex
v corresponds to one concept. There are multiple relations
E = {Er, r = 1, ..., R}, where r stands for a certain type of
relations (e.g., prerequisite and similarity) and Er represents
all relations of the type r. R is the number of relation types.

B. Problem Statement

Knowledge tracing task consists of two parts: (1) modeling a
learner’s knowledge state through their performance sequence
and (2) predicting how a learner will perform on future
exercises. Knowledge tracing task is usually formulated as
a supervised sequence prediction problem. By introducing
the graph-like knowledge structure G into knowledge tracing
problem, we formulate this knowledge tracing problem as:

Definition 2: (Knowledge Tracing with Knowledge Struc-
ture) Given a learner’s past exercise sequence of exercise-
performance pairs, i.e., X = {xt, t = 1, ..., T}, where
xt = (et, pt). pt ∈ {0, 1} is the correctness (i.e., 0 indicates
the learner giving a wrong answer while 1 indicates giving
a correct one.) of the learner’s answer on the exercise et
at the step t. Each exercise et tests one concept ct. Each
concept corresponds to one vertex v in the knowledge structure
G(V,E). Our goal is to model the learner’s knowledge states
Y = {y1,y2, ...,yT } on all N concepts (i.e., the vertexes V
in G), and predict the probability that the learner will correctly
answer a new exercise et+1 when given the learner’s past
exercise sequence x1,...,t and the knowledge structure G, i.e.,
P (pt+1 = 1|et+1, x1,...,t, G).

IV. STRUCTURE-BASED KNOWLEDGE TRACING

This section begins with a brief overview of our framework.
The components of SKT are then introduced in detail.

A. Overview

SKT is a sequential model, which leverages the graph-
structured nature of knowledge and applies two different prop-
agation models to trace the influence along different relations.
We present the architecture of SKT in Figure 2. At each time
step t, a dh-dimension vector hti is used to represent the hidden
state on concept i. The learner’s hidden state vectors on all
concepts form up the hidden states H, as shown in the left-
top part of Figure 2. A Cascade Influence Propagation (CIP)
unit is used to jointly model the temporal and spatial effects
on concepts. At each time step t, the CIP unit first extracts
the temporal effect on the current practice concept from the
exercise-performance pair xt = (et, pt). After that, some other
concepts are spatially affected after the temporal effect on
concept i. To model the spatial effect on different types of re-
lations, we propose two different propagation methods: partial
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Fig. 2: The overview of Structure-based Knowledge Tracing (SKT).

propagation method for directed relations and synchronization
propagation method for undirected relations. A gated function
is then adopted to update the hidden state based on temporal
and spatial effect. To predict whether the learner will correctly
answer a new exercise, a map function fout(hti) is used to infer
the correctly answering probability based on the hidden state
on concept i. The following paragraphs explain the processes
in detail.

B. Modelling of Temporal Effect
Based on the educational studies on concept learning [11]

and previous works in KT [7], [25], [41], when a learner
practices the exercise, a learning effect will be generated and
acts on the learning concept. As shown in Figure 2, at each
time step t, a temporal learning effect EtT acts on concept i,
which changes the hidden state on concept i from hti to ht,Ti .
The temporal effect on current learning concept is implied
based on the exercise-performance pair xt = {et, pt}, where
et tests the concept i. Similar to previous works [25], [38],
[40], a performance vector xt ∈ {0, 1}2N is used to represent
the exercise-performance pair xt:

xtj =

{
1 if j = 2 · et + pt,
0 otherwise. (1)

Then we embed the performance vector to formulate the
temporal effect vector EtT :

EtT = xtEr, (2)

where Er ∈ R2N×de is a matrix embedding the performance
vector xt. The temporal effect vector Et

T is then input into a
gated function G to update the state of the concept i:

ht,Ti = G(EtT ,hti), (3)

where G(•, •) is the Gated Recurrent Unit (GRU) gate [5]3.
Next, the follow-up parts will elaborate on how other concepts
are spatially affected after the temporal effect on concept i.

C. Modelling of Spatial Effect

Once the state of concept i is changed, the influence will
be propagated to the related concepts along the multiple
relations. As illustrated in the left-bottom part of Figure 2,
the hidden state of concept j is changed by the propagated
influences from concept i. The following parts will thoroughly
describe the two different influence propagation methods:
partial propagation and synchronization propagation.

1) Partial Propagation: For those directed relations, such
as prerequisite relations [4] and remedial relations [28], we
adopt a partial propagation method. Among the direct re-
lations, prerequisite relations is the most well studied one.
Previous works [4], [23] have established the ordering relation
of the proficiency of predecessor concepts and successor
concepts, where the proficiency of the former one is expected
to be higher than the latter. The conclusion can be further
explained from the perspective of transfer of knowledge [29]:
the influence is unidirectionally propagated from only prede-
cessors to successors. Therefore, we propose the partial prop-
agation method, which generates the influence based on the
variation of the state of predecessor concepts and propagates
the influence to successor concepts along directed relations.
Concretely, as shown in Figure 2, after the temporal effect
where the hidden state on concept i is changed from hti to

3Here we use GRU for it is computationally more efficient with less
complex structure compared with Long Short Term Memory (LSTM) [10],
[18]. However it should be noticed that the performance of LSTM is on a par
with GRU [6], which means GRU can also be replaced by LSTM.



ht,Ti , the variation of the state on concept i will result in an
influence and be propagated along the directed relations to its
successors:

partrij = fpart(h
t,T
i ,hti,Ec(j)),∀j ∈ Sr(i),

fpart(h
t,T
i ,hti,Ec(j)) = relu(Wr

pP
r
ij + brp),

P r
ij = (ht,Ti − hti)⊕Ec(j). (4)

Sr(i) is a successorhood function, which returns all successor
concepts of i on r. Wr

p and brp are learned parameters. ⊕ is
the operation that concatenates two vectors into a long vector.
In addition to the variation of the state on concept i, we also
include a vector Ec(j) to represent the concept feature. Ec ∈
RN×dc is a matrix embedding the concept index, where N
is the number of concepts and dc is the embedding size, and
Ec(j) represents the j-th row of Ec.

2) Synchronization Propagation: Previous works on undi-
rected relations, such as similarity relations [35] and collab-
oration relations [12], have got some interesting conclusions.
Wang et al. [35] found that, in similarity relations, the pro-
motion of the proficiency of a certain concept brought the
promotion to its neighbor concepts and vice versa, which
results in the similar proficiency of the neighbor concepts. The
idea can be further explained based on the theories of transfer
of knowledge [27], the influence is bidirectionally propagated
between neighbor concepts. Inspired by these observations, we
propose a synchronization propagation method to model the
bidirectional influence propagation. Similar to partial propa-
gation, after the temporal effect where the hidden state on
concept i is changed from hti to ht,Ti , the variation of the
state on i will be result in an influence and be propagated
along the undirected relations to its successors. To be noticed
that, different from partial propagation which is unidirectional
where the propagated influence is only decided by the variation
of concept i, in synchronization propagation, the influence is
determined by the state on both i and its neighbors and will be
propagated bidirectionally. Specifically, we use two formula-
tions to respectively model the influence propagated from the
concept i to its neighbors and the influence propagated from
the neighbors to the concept i.

We first use the following formulation to model the influ-
ence propagated from the concept i to its neighbors:

syncrij = fsync(h
t,T
i ,htj ,Ec(j)),∀j ∈ N r(i),

fsync(h
t,T
i ,htj ,Ec(j)) = relu(Wr

sS
r
ij + brs),

Srij = ht,Ti ⊕ htj ⊕Ec(j). (5)

N r(i) is a neighborhood function, which returns all neighbor
concepts of i on r. Wr

s and brs are learned parameters. Ec

is the same embedding matrix as Section IV-C1 and Ec(j)
represents the concept feature.

Then, we model the influence propagated from the neigh-
bors of concept i to itself:

syncri = relu(Wr
ssR

r
i + brss),

Rr
i = (ht,Ti +

∑
j∈N r(i)

htj)⊕Ec(i), (6)

Algorithm 1 Cascade Influence Propagation.

Input: Knowledge Structure G(V, E); performance vector xt; current
learning concept i; neighborhood function N r for a specific
relation type r; successorhood function Sr for a specific relation
type r; current state of concepts Ht = {ht

v,∀v ∈ V }; The
relations to apply synchronization propagation method RS =
{rS1 , rS2 ...}; The relations to apply partial propagation method
RP = {rP1 , rP2 , ..., };.

Output: States of all concepts at next step Ht+1 = {ht+1
v ,∀v ∈

V };
1: ht,T

i = G(xtEr,h
t
i) // Temporal effect (Section IV-B)

2: for r in RP do // Partial propagation (Section IV-C1)
3: for j in Sr(i) do
4: partrij = fpart(h

t,T
i , ht

i,Ec(j))
5: end for
6: end for
7: for r in RS do // Synchronization propagation (Section IV-C2)
8: for j in N r(i) do
9: syncrij = fsync(h

t,T
i ,ht

j ,Ec(j)),
// from i to its neighbor j (Equation 5)

10: end for
11: syncri = relu(Wr

ss((h
t,T
i +

∑
j∈Nr(i) h

t
j)⊕Ec(i)) + brss)

// from neighbors to i (Equation 6)
12: end for
13: // update the hidden state (Section IV-D)
14: use Equation 7 and 8 to get Ij for each influenced concept j.
15: // update the hidden state on j (Equation 9)
16: ht+1

j = G(Ij ,h
t
j)

17: return Ht+1

whereN r(i) is the same neighborhood function as Equation 5.
Wr

ss and brss are learned parameters.
In summary, synchronization propagation differs from par-

tial propagation in two aspects: (1) the influence is only
decided by the variation of concept i in partial propagation,
while it is determined by the state on both i and its neighbors
in synchronization propagation; (2) not only the neighbors
but also the concept i are influenced during synchronization
propagation, while only successors are influenced in partial
propagation. These differences make synchronization propa-
gation bidirectional and partial propagation unidirectional.

D. Update of Knowledge State

Next, for those concepts influenced by synchronization
propagation or partial propagation, the model first aggre-
gates the influences from both synchronization propagation
and partial partial propagation and then updates the hidden
states based on the aggregated influences. For each influenced
concept j, the the aggregated influence Ij is calculated as:

Aj =

{ ∑
r sync

r
j j = i,

α ·
∑

r sync
r
ij + (1− α) ·

∑
r part

r
ij j 6= i,

(7)

Ij = relu(WIAj + bI), (8)

where WI , bI are learned weight matrix and bias, and α is
a hyper-parameter. Then we use the following formulation to
update the state on each influenced concept j:

ht+1
j = G(Ij ,htj), (9)



where G(•, •) is a GRU gate. The full process of influence
propagation is shown in Algorithm 1.

E. Final Prediction

Finally, for each concept i, the model will output the
predictive probability of a learner correctly answering the
corresponding exercise at the next time step t:

p̂ti = fout(h
t
i),

fout(h
t
i) = σ(Woh

t
i + bo), (10)

where Wo is a learned weight matrix and bo is a learned bias
item. At time step t, the learner’s knowledge state is calculated
as: yt = {p̂t1, ..., p̂tN}.

The probability that the learner will correctly answer a new
exercise et:

P (pt = 1|et, x1,...,t−1, G) = p̂tet . (11)

F. Loss Function and Model Training

During the training stage, the parameters of SKT are jointly
learned by minimizing a standard cross entropy loss between
p̂t and the true label pt:

L = −
∑
t

(ptlogp̂t + (1− pt)log(1− p̂t)). (12)

SKT is fully differentiable and can be trained efficiently
with stochastic gradient descent. The framework setting and
training details are presented respectively in Section V-B2 and
Section V-B3.

V. EXPERIMENTS

In this section, we first introduce the datasets. Then, per-
formance of SKT is compared with several baselines. At last,
we show the interpretability of SKT.

A. Dataset

We use two real-world datasets, ASSISTments2014-2015
“skill-builder” dataset provided by the online educational
service ASSISTments4 and Junyi academy5 [3] crawled from a
Chinese e-learning platform. We preprocess each dataset using
certain conditions and the preprocessed datasets are depicted
in Table I, where ASSISTments2014-2015 is abbreviated as
ASSISTments and Junyi academy is abbreviated as Junyi.

1) Junyi: The Junyi academy dataset includes a knowledge
structure labeled by experts and learners’ exercise performance
logs in mathematics, where a learner has several exercise
sequences. Each exercise-performance pair recorded in the
learners’ log contains the information of a learner for one
exercise. Here is an example of one exercise performance se-
quence: {(representing numbers, correct), (division 4, wrong),
(conditional statements 2, wrong), (conditional statements 2,
wrong)}). Similar to [39], we select 1,000 most active learners
from the exercise log to yield the dataset.

4https://sites.google.com/site/assistmentsdata/home/ 2015-assistments-skill-
builder-data

5https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198
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The knowledge structure in Junyi academy contains two
types of relations: the prerequisite relation and the similarity
relation. They both contain several edges, e.g., in prerequisite
relation, (one digit addition, two digit addition) stands for the
linkage between the vertex one digit addition and the vertex
two digit addition where the former is the prerequisite of
the latter. In the prerequisite relation, we delete some loops
in order to keep the graph to be a Directed Acyclic Graph
(DAG). Due to the original data format of similarity relation
is like (concept1, concept2, similarity value) (e.g., (writing
expressions 1, evaluating expressions 1, 6.333)), where the
1 ≤ similarity value ≤ 9. We set the threshold as 5.0 to
get the similarity edges, i.e., concept1 and concept2 have an
edge of similarity if similarity value ≥ 5.0.

Furthermore, we investigate the practicing sequences of
learners to verify the existence of the learning influence
among concepts. Inspired by Piech et al. [25] and Nakagawa
et al. [23], we use the following equation to calculate the
correctness probability for concept pairs (i, j):Pij = nc(j|i)

n(j|i) ,
where nc(j|i) is the times that concept j is correctly answered
in the first time step when its neighbor or predecessor i
has been correctly answered, where n(j|i) is the times that
concept j is correctly answered. We respectively calculate
the influence factor for prerequisite and similarity and denote
them as P pij and P sij . As shown in Figure 3, compared with
the non-conditional correctness probability Pnj = nc(j)

n(j) , we
can see that when the neighbors and predecessors have been
learned, the correctness probability of answering concept j is
promoted. From the observation, we can conclude that there is
some influence propagated from one concept to its neighbors
or successors.

2) ASSISTments: We use the preprocessed dataset provided
by Zhang et al. [41]6. As the knowledge graph structure is
not explicitly provided in the dataset, inspired by previous
works [23], [25], we provide an implementation of construct-
ing the graph structure.

Correct graph is a counting matrix, where Cij = cij if
i 6= j; else, it is 0. Here, cij represents the number of times
concept j is answered correctly and immediately after concept
i is answered correctly.

Correct transition graph is a directed graph denoted as
T . We first calculate the transition probability matrix T̃ :
Tij =

Cij∑
k Cik

if i 6= j; else, it is 0. Here, C is the correct

6https://github.com/jennyzhang0215/DKVMN/tree/master/data/assist2015



TABLE I: The statistics of the dataset.

Statistics ASSISTments Junyi
# learners 19,840 1,000

# sequence 19,840 59,792
# exercise-performance pair 683,801 4,049,359

# vertexes 100 835
# prerequisite relations 1,112 978
# similarity relations 1,512 1,040

graph. Tij indicates the probability that the influence can be
unidirectionally propagated from concept i to concept j. Then,
we determine the relations by Tij = 1 if T̃ij > threshold;
else it is 0, where threshold is set as the average value of T̃
0.02. Loops are deleted to keep the graph a DAG.

Correct concurrency graph is a undirected graph denoted
as O. We first calculate the correct concurrency matrix: C̃ij =
Cij+Cji

|Cij−Cji|+ε , where ε = 0.1 is used to prevent zero division.
And then we use the max-min-scaling method to scale C̃ and
get Õ: Õij =

C̃ij−min(C̃)

max(C̃)−min(C̃)
. Õij is the probability that the

influence can be bidirectionally propagated between concept
i and j. Finally, we determine the relations by Oij = 1 if
Õij > threshold; else it is 0, where threshold is set as the
average value of Õ 0.02.

B. Experimental Setup

1) Data Partition: For each dataset, we divide the learners
into training: test = 8:2. We use 90% of the learners’ training
data to train SKT and use the automl tool nni7 to apply TPE
algorithm [2] to adjust the hyperparameters on the remaining
10% of the data.

2) Framework Setting: We set the size de and dc for
embedding matrix as 64, and the size of hidden states dh as 64.
In ASSISTment, the synchronization propagation method is
used on the correct concurrency graph and partial propagation
method is employed on the correct transition graph. In Junyi,
we adopt synchronization propagation method on similarity
relations and partial propagation method on prerequisite re-
lations. We respectively set α in Equation (7) as 0.55 in
ASSSISTment and 0.45 in Junyi. The discussion for α will be
presented in Section V-G. Dropout [30] is used in Equation 10
from the hidden vectors to the output vectors with a drop
probability of 0.5.

3) Training Details: We initialize parameters in all net-
works with Xavier initialization [9], which is designed to
keep the scale of gradients roughly the same in all layers.
The initialization fills the weights with random values in the
range of [−c, c] where c=

√
3

nin+nout
. nin is the number of

neurons feeding into weights, and nout is the number of
neurons the result is fed to. We use the Adam algorithm [16]
for optimization. The initial learning rate is set to 0.001.
Furthermore, we set mini-batches as 16 and max training
epoch number as 30. All models are trained on a Linux server
with two 2.30GHz Intel(R) Xeon(R) Gold 5218 CPUs and a
Tesla V100-SXM2-32GB GPU.8

7https://github.com/microsoft/nni
8The code is available at https://github.com/bigdata-ustc/XKT

TABLE II: Characteristics of the comparison methods.

Modeling Concept Relations Directed Undirected
BKT × × ×
DKT × × ×

DKT+ × × ×
DKVMN X × ×

GKT X X ×
SKT (ours) X X X

C. Baseline Approaches

1) BKT: BKT9 [7] is a kind of HMMs. Based on the
exercise sequences on a specific concept, BKT uses HMM
to model the learner’s latent knowledge state as a set of
binary variables. Although BKT model assumes that mastered
knowledge will not be forgotten, factors such as guessing and
slipping are still considered.

2) DKT: DKT [25] applies the recurrent neural network
model on the exercise performance sequences to estimate the
learner’s proficiency on each concept (i.e., knowledge state)
simultaneously. DKT takes the one-hot performance vector,
and outputs a vector representing the learner’ proficiency on
all concepts, whose elements are all between 0 and 1.

3) DKT+: DKT+10 [40] is an extended variant of DKT,
which aims at solving two major problems in the DKT model.
One is that the DKT model fails to reconstruct the observed
input and the other one is the predicted performance for DKT
model across time-steps is not consistent. By introducing three
regularization terms, the authors redefine the loss function
of the original DKT model to enhance the consistency in
prediction. Specifically, the loss function in DKT+ is L′ = L+
λrr+λw1

w1+λw2
w2

2 , where λr is for reconstructing the input
and λw1

and λw2
are for smoothing the transition in prediction.

In experiment, we set λr = 0.1, λw1
= 0.003, λw2

= 3.0.
4) DKVMN: DKVMN [41] is another classic model for

knowledge tracing. DKVMN has the capability of exploiting
the relationships between underlying concepts and directly
output the learner’s proficiency on each concept. DKVMN has
one static matrix called key, which stores the knowledge con-
cepts and the other dynamic matrix called value, which stores
and updates the mastery levels of corresponding concepts. In
ASSISTments, for key memory, we set the memory slot size
as 20 and memory state dimension as 50. In addition, for value
memory, we set the memory slot size as 20 and memory state
dimension as 200. In Junyi, we set the memory slot size as
40 and memory state dimension as 200 for key memory. In
addition, we set the memory slot size as 40 and memory state
dimension as 200 for value memory.

5) GKT: GKT [23] is a GNN-based knowledge tracing
method, which only adopts prerequisite relations to construct
the knowledge structure. At each time step, GKT will aggre-
gate the states of neighbors to infer the new state, and update
the state of not only what is learning currently but also its
neighbors. The size of all hidden vectors and the embedding
matrix is set as 32.

9https://github.com/myudelson/hmm-scalable
10https://github.com/ckyeungac/deep-knowledge-tracing-plus



TABLE III: Performance comparison on the KT task.

Dataset Eval BKT DKT DKT+ DKVMN GKT SKT (ours)

ASSISTments AUC 0.678 0.727 0.728 0.730 0.735 0.746
F1 0.554 0.541 0.572 0.575 0.577 0.607

Junyi AUC 0.831 0.847 0.889 0.890 0.893 0.908
F1 0.760 0.779 0.819 0.817 0.825 0.835

TABLE IV: Performance comparison of SKT and its variants.

Model ASSISTments Junyi
AUC F1 AUC F1

SKT TE 0.710 0.533 0.887 0.824
SKT Part 0.711 0.548 0.898 0.829
SKT Sync 0.736 0.579 0.899 0.828

SKT 0.746 0.607 0.908 0.835

For better illustration, we summarize the characteristics of
these models in Table II.

D. Evaluation Metrics

Same as the previous works [25], [41], we evaluate models
from classification perspective. During evaluation, learner’s
exercise result is defined as a binary value, in which 0
represents incorrect answer as negative sample and 1 repre-
sents correct answer as positive sample. Hence, two popular
classification metrics, Area Under ROC Curve (AUC) and F1
Score, are adopted to measure the models performance. An
AUC score of 0.5 indicates that the model performance is
merely as good as random guess and a higher AUC indicates
better performance. The F1 score can be interpreted as a
weighted average of the precision and recall, where an F1
score reaches its best value at 1 and worst score at 0. And a
higher F1 score indicates a better performance.

E. Experimental Results

1) Performance Comparison: We first compare the over-
all performance of SKT with baseline models. Results of
two datasets on two performance metrics are presented in
Table III. we can find that our proposed SKT achieves a
better performance than any other baselines both in AUC
and F1 in all datasets. Among baselines, we notice that
DKVMN and GKT are the best two models, which either
model the relations of concepts or explicitly utilize the exist-
ing knowledge structures. This observation demonstrates that
utilizing the concept relations (i.e., knowledge structure), no
matter explicitly or implicitly, does provide additional useful
information for estimating learners’ knowledge states. Further-
more, with significant promotion, our SKT achieves the best
performance by (1) modeling the temporal and spatial effect
based on influence propagation; (2) respectively modeling the
propagation ways along different relations. This indicates the
importance of simultaneously combining temporal information
and spatial information and considering the multiple relations
among the knowledge structure.

These evidences indicate that considering transfer of knowl-
edge during knowledge tracing and modeling the influence
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Fig. 4: Influence of α.

propagation with the help of knowledge structure in a proper
way can significantly enhance the model effectiveness.

F. Ablation Study

In this part, we compared our models with its variants.
SKT TE, SKT Part and SKT Sync are three variants of our
model. SKT TE only models the temporal effect. SKT Part
and SKT Sync respectively models either partial propagation
or synchronization propagation. From Table IV, we can see
the two variants (i.e., SKT Part and SKT Sync) models the
spatial effect have a better performance than SKT TE which
only modeling the temporal effect. This phenomenon suggests
that it is important to model the influence propagated in the
knowledge structure. Meanwhile, we also observe that SKT
have a significant promotion by combining two propagation
methods together. This indicates that when we model the
influence propagation, it is critical to consider the different
ways of the propagation along different relations.

G. Parameter Sensitivity

In SKT, the trade-off parameter α plays a crucial role
which balances the contribution from different influences of
similarity and prerequisite in Eq. (7). When α is smaller, the
influence tends to prioritize the influence from prerequisite
relations. Conversely, as α is larger, the model is allowed
to focus more on the influence from similarity relations. We
perform an experiment on different α where α is selected from
{0.05, 0.15, ..., 0.95}. As shown in Figure 4, when α increases,
the performance of SKT increases at the beginning. However,
the performance afterwards decreases in all three datasets.
These results indicate that properly balancing the influence
from prerequisite and similarity relations is vital for achieving
more accurate prediction performance.

H. Case Study

Figure 5 shows an example of the evolving knowledge
states when a learner learns, where each column represents the
proficiency on each concept. From area I, we can obviously
see from the divergence of the proficiency at time step 2 and
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Fig. 5: An example of a learner’s evolving knowledge states of 5 concepts as she solves 40 exercises of Junyi. In sub-figure (a),
concepts are marked in different colors on the left side. The top part indicates the performance at each time step. Sub-figure (b)
shows two subsequences which show two different propagation effects. The radar figure (c) on the right shows the proficiency
(in the range (0, 1)) of 5 concepts at the beginning (T=0) and the end (T=40).

time step 3 of concept 1 (decimals on the number line 1),
which get promoted at step 3. Meanwhile, the proficiency
of concept 2 (decimals on the number line 2) and concept
3 (number line) also gets promoted, where concept 2 is a
successor with the prerequisite relation while concept 3 is the
neighbor with the similarity relation. Furthermore, from area
II, at step 16, when the learner gets confused with the concept
2 , the proficiency of it decreases. However, the proficiency
of the predecessor of the concept 1 , 2 remains stable.
This observation indicates that the influence along prerequisite
relations is only unidirectionally propagated in SKT. From
these observations, we could see that, owing to the ability
of tracing the influence propagation among concepts, SKT is
able to provide a better interpretable insight on evolving states
for knowledge tracing.

I. Concept Clustering

SKT has the power to cluster related or similar concepts
into a same group, which can not only help the educational
experts discover the relationship among concepts, but also
be helpful for improving curricula arrangement. Following
Piech et al. [25], we visualize the concept representation
vectors utilizing the T-SNE method [21]. Specifically, we first
generate the influence feature vector by Jij = y(j|i)∑

k y(j|k)
,

where y(j|i) is the average correctness probability assigned
by SKT to exercise j when exercise j is answered correctly
at the first time step. Then, we reduce the vector dimension
to two-dimension space and then obtain the graph of concepts
clustering. As shown in Figure 6, the concepts in the same
color is in the same group. The arrow size of the edge
indicates connection strength, i.e., cosine distance. For better
illustration, we choose 42 concepts and omit those edges
with cosine distance smaller than 0.5. From Figure 6, we
can see that SKT clusters the concepts into five groups, and
the concepts in the same group is quite relevant to a certain
knowledge area, which is annotated beside the group. Based on
the clustering result, the educational expert can better discover
the relationship via the connection strength. Meanwhile, the
teachers in the school can also arrange the learners to learn
the concepts in the same group for they may be more related
and may have positive transfer on each other.

VI. CONCLUSION

In this paper, we proposed a new knowledge tracing frame-
work, i.e., Structure-based Knowledge Tracing (SKT). By
utilizing the knowledge structure, SKT succeeds in modeling
transfer of knowledge. Specifically, by concurrently consid-
ering the influence propagation in the knowledge structure
with learners’ exercise performance sequence, SKT is able to
estimate learners’ knowledge states more precisely. Extensive
experiments were conducted on real-world datasets and the
results showed the effectiveness and interpretability of SKT.

For the future work, we would try to involve more re-
lations and node attributes in the knowledge structure such
as collaboration relations [12]. Besides, we would explore
utilizing more features in knowledge tracing along with the
knowledge structure such as components in exercises (e.g.,
equation, image and text). Meanwhile, we would like to apply
our SKT on some other educational problems such as cognitive
diagnosis assessment [32].
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