

Item Response Ranking for Cognitive Diagnosis

¹Anhui Province Key Laboratory of Big Data Analysis and Application, School of Computer Science and Technology & School of Data Science, University of Science and Technology of China ²University of California, Berkeley {tongsw, yrunl, ustc0411}@mail.ustc.edu.cn, {qiliuql, huangzhy}@ustc.edu.cn, {pardos, jiangwj}@berkeley.edu

Reporter: Shiwei Tong Date: 6/25/2021

30th International Joint Conference on Artificial Intelligence

Introduction

- **Problem Definition**
- **IRR Framework**
- **Experiments**
- Conclusion

Background

- reveal the proficiency level of students on knowledge concepts.
- Assist tutors to give proper instruction based on individual characteristics
- Help students be aware of their learning progress

Cognitive Diagnosis Model (CDM)

General form

- $\square P(y_{ie}|\boldsymbol{u}_i, \boldsymbol{v}_e) = f(\boldsymbol{u}_i, \boldsymbol{v}_e)$
- u_i is the latent traits of students
- v_e is the latent traits of items
- f is called the interaction function

IJCAI 2021

MONTREAL

Monotonicity

Student' s proficiency is monotonic with the probability of giving the right response to a test item.

General Form

 $P(y_{ie}|\boldsymbol{u}_i, \boldsymbol{v}_e) = f(\boldsymbol{u}_i, \boldsymbol{v}_e)$

Cognitive Diagnosis Model (CDM)

General form

- $\square P(y_{ie}|\boldsymbol{u}_i, \boldsymbol{v}_e) = f(\boldsymbol{u}_i, \boldsymbol{v}_e)$
- u_i is the latent traits of students
- v_e is the latent traits of items
- f is called the interaction function

Basic theories

Local dependence

Monotonicity

MONTREA

IJCAI 2021

Monotonicity

Student' s proficiency is monotonic with the probability of giving the right response to a test item.

Cognitive Diagnosis Model (CDM)

General form

- $\square P(y_{ie}|\boldsymbol{u}_i, \boldsymbol{v}_e) = f(\boldsymbol{u}_i, \boldsymbol{v}_e)$
- u_i is the latent traits of students
- v_e is the latent traits of items
- f is called the interaction function

Basic theories

Local dependence

Monotonicity

MONTREA

IJCAI 2021

Monotonicity

Student' s proficiency is monotonic with the probability of giving the right response to a test item.

Related Work

Traditional Methods

Item-level

IRT

- $P(y_{ie}|\theta, a, b) = \frac{1}{1 + e^{-1.7a(\theta b)}}$
- MIRT

•
$$P(y_{ie}|\boldsymbol{\theta}, \boldsymbol{a}, \boldsymbol{b}) = \frac{1}{1+e^{-\boldsymbol{a}\boldsymbol{\theta}+\boldsymbol{b}}}$$

- Concept level
 - DINA
 - $P(y_{ie}|\boldsymbol{\theta}, \boldsymbol{g}, \boldsymbol{s}, \boldsymbol{\beta}) = \boldsymbol{g}^{1-\eta}(1-\boldsymbol{s})^{\eta}$
 - $\eta = \prod_k \theta_k^{\beta_k}$
 - $\theta_k \in \{0, 1\}, \beta_k \in \{0, 1\}$

Deep learning methodsNeuralCD

General Form

$$P(y_{ie}|\mathbf{u}_i, \mathbf{v}_e) = f(\mathbf{u}_i, \mathbf{v}_e)$$

Figure 2: NeuralCD Framework

Related Work

- Traditional Methods
 - Item-level
 - IRT
 - $P(y_{ie}|\theta, a, b) = \frac{1}{1+e^{-1.7a(\theta-b)}}$ • MIRT
 - $P(y_{ie}|\boldsymbol{\theta}, \boldsymbol{a}, \boldsymbol{b}) = \frac{1}{1+e^{-\boldsymbol{a}\boldsymbol{\theta}+\boldsymbol{b}}}$
 - Concept level
 - DINA
 - $P(y_{ie}|\boldsymbol{\theta}, \boldsymbol{g}, \boldsymbol{s}, \boldsymbol{\beta}) = \boldsymbol{g}^{1-\eta}(1-\boldsymbol{s})^{\eta}$
 - $\eta = \prod_k \theta_k^{\beta_k}$
 - $\theta_k \in \{0, 1\}, \beta_k \in \{0, 1\}$
- Deep learning methods
 NeuralCD

General Form

$$P(y_{ie}|\mathbf{u}_i, \mathbf{v}_e) = f(\mathbf{u}_i, \mathbf{v}_e)$$

IJCAI 2021

Ρ

Figure 1: Example of IRT

Figure 2: NeuralCD Framework

Related Work

- Traditional Methods
 - Item-level

IRT

- $P(y_{ie}|\theta, a, b) = \frac{1}{1 + e^{-1.7a(\theta b)}}$
- MIRT
 - $P(y_{ie}|\boldsymbol{\theta}, \boldsymbol{a}, \boldsymbol{b}) = \frac{1}{1+e^{-\boldsymbol{a}\boldsymbol{\theta}+\boldsymbol{b}}}$
- Concept level
 - DINA
 - $P(y_{ie}|\boldsymbol{\theta}, \boldsymbol{g}, \boldsymbol{s}, \boldsymbol{\beta}) = \boldsymbol{g}^{1-\eta}(1-\boldsymbol{s})^{\eta}$
 - $\eta = \prod_k \theta_k^{\beta_k}$
 - $\theta_k \in \{0, 1\}, \beta_k \in \{0, 1\}$

Deep learning methods
 NeuralCD

f is human-designed

General Form

 $P(y_{i\rho}|\boldsymbol{u}_i, \boldsymbol{v}_{\rho}) = f(\boldsymbol{u}_i, \boldsymbol{v}_{\rho})$

f is learned from data

IJCAI 2021

Figure 2: NeuralCD Framework

General Form

$$P(y_{ie}|\boldsymbol{u}_i, \boldsymbol{v}_e) = f(\boldsymbol{u}_i, \boldsymbol{v}_e)$$

Objective Function

 $r_{ie} \leftarrow P(y_{ie})$

Question

Is it possible to create an optimization criteria to enhance the monotonicity?

Monotonicity

Previous methods apply a monotone function as the interaction function rather than considering it in the optimization criteria.

Observation

Ada with a right response to item e_1 is considered as having a higher proficiency level on the related concept A (i.e., Function) than Bob with a wrong response.

Observation

Ada with a right response to item e_1 is considered as having a higher proficiency level on the related concept A (i.e., Function) than Bob with a wrong response.

Induction

Students with correct responses should be more proficient than students with wrong responses.

Observation

Ada with a right response to item e_1 is considered as having a higher proficiency level on the related concept A (i.e., Function) than Bob with a wrong response.

Induction

Students with correct responses should be more proficient than students with wrong responses.

Motivation

Based on the partial order between item responses, we can create a new optimization criteria to exploit the response pairs to enhance the monotonicity.

It is hard for us to compare item responses across different items

related to non-overlapped concepts.

Exercise	Knowledge Concepts	Ada	Bob	Legend A: Function D: Coordinates
e_1	А	~	×	B: Derivative E: Equation C: Geometry Correct X Wrong
<i>e</i> ₂	В	~	~	A F B
<i>e</i> ₃	A, B	×	×	Cognitive D C
<i>e</i> ₄	C, D	?	~	Diagnosis A
<i>e</i> ₅	C, E	×	?	

It is hard for us to compare item responses across different items

related to non-overlapped concepts.

Exercise	Knowledge Concepts	Ada	Bob	Legend A: Function D: Coordinates
e_1	А	~	×	B: Derivative E: Equation C: Geometry ✓ Correct ➤ Wrong
<i>e</i> ₂	В	~	~	A E B
<i>e</i> ₃	A, B	×	×	Cognitive D C
<i>e</i> ₄	C, D	?	~	Diagnosis A
<i>e</i> ₅	C, E	×	?	

It is hard for us to compare item responses across different items

related to non-overlapped concepts.

Exercise	Knowledge Concepts	Ada	Bob	Legend A: Function D: Coordinates
e_1	А	~	×	B: Derivative E: Equation C: Geometry ✓ Correct ➤ Wrong
<i>e</i> ₂	В	~	 	A F B
<i>e</i> ₃	A, B	×	×	Cognitive D C
<i>e</i> ₄	C, D	?	~	Diagnosis A
<i>e</i> ₅	C, E	X	?	

 It is hard for us to compare item responses across different items related to non-overlapped concepts.

There exist many unobserved responses.

It is hard for us to compare item responses across different items related to non-overlapped concepts.

• There exist many unobserved responses.

 How to find an objective function so that the monotonicity can be directly optimized.

30th International Joint Conference on Artificial Intelligence

Introduction

1

2 **Problem Definition**

3 IRR Framework

4 Experiments

5 Conclusion

Problem Definition

Given

- *N* students: $S = \{s_1, s_2, ..., s_N\}$
- *M* test items: $E = \{e_1, e_2, ..., e_M\}$
- L knowledge concepts: $K = \{k_1, k_2, \dots, k_L\}$
- Q-matrix $Q = \{Q_{ij}\}_{M \times L}$
- Response logs $\mathcal{R} = \{(s, e, r)\}$

	<i>k</i> ₁	k ₂	<i>k</i> ₃
<i>e</i> ₁	1	0	0
<i>e</i> ₂	0	1	1
e ₃	1	1	1

An example of Q-matrix

Goal

Mine students' proficiency on knowledge concepts.

1	Introduction
2	Problem Definition
3	IRR Framework
4	Experiments
5	Conclusion

Monotonicity

Monotonicity

In the literature, the monotonicity theory assumes that student's proficiency is monotonic with the probability of giving the right response to a test item.

$$r_{ie} \leftarrow P(y_{ie})$$

Monotonicity

Monotonicity

In the literature, the monotonicity theory assumes that student's proficiency is monotonic with the probability of giving the right response to a test item.

Pairwise Monotonicity

Given a specific test item, the students with right responses are more skilled than those with wrong responses.

$$r_{ie} \leftarrow P(y_{ie})$$

Monotonicity

Monotonicity

In the literature, the monotonicity theory assumes that student's proficiency is monotonic with the probability of giving the right response to a test item.

Pairwise Monotonicity

Given a specific test item, the students with right responses are more skilled than those with wrong responses.

$$r_{ie} \leftarrow P(y_{ie})$$

$$(r_{ie} - r_{je}) \leftarrow P(y_{ie} - y_{je})$$

Objective

Traditional pointwise: $r_{ie} \leftarrow P(y_{ie})$

D Pairwise Monotonicity : $(r_{ie} - r_{je}) \leftarrow P(y_{ie} - y_{je})$

Two issues

- How to construct the response pairs
 - non-overlapped problem
 - unobserved responses
- Objective function design

28

 Item specific sampling for non-overlapped problem
 Observed students S⁰(e)

• Unobserved students $S^U(e)$

- Item specific sampling for non-overlapped problem
 - □ Observed students *S*⁰(*e*)
 - Positive students *S*⁺(*e*)
 - Negative students *S*⁻(*e*)
 - Unobserved students $S^U(e)$

- Item specific sampling for non-overlapped problem
 - □ Observed students *S*⁰(*e*)
 - Positive students *S*⁺(*e*)
 - Negative students *S*⁻(*e*)
 - Unobserved students $S^U(e)$

- Item specific sampling for non-overlapped problem
 - □ Observed students *S*⁰(*e*)
 - Positive students *S*⁺(*e*)
 - Negative students S⁻(e)
 - Unobserved students $S^U(e)$

Item specific sampling for non-overlapped problem

Two branch sampling for unobserved responses

? as negative (0)

Item specific sampling for non-overlapped problem

Item specific sampling for non-overlapped problem

Two branch sampling for unobserved responses

Positive sampling

Item specific sampling for non-overlapped problem

Item specific sampling for non-overlapped problem

Two branch sampling for

unobserved responses

■ Training samples *T*(*R*)

Log-likelihood

- $\square \ln IRR = \ln IRR^+ + \ln IRR^-$
- $IRR^{+} = \prod_{e \in E} \prod_{i \in S^{+}(e)} \prod_{j \in S^{-}S^{+}(e)} P(r_{ie} \ge r_{je}) \times (1 P(r_{je} \ge r_{ie}))$ $IRR^{-} = \prod_{e \in E} \prod_{i \in S^{-}(e)} \prod_{i \in S^{-}S^{-}(e)} P(r_{ie} \le r_{je}) \times (1 P(r_{je} \le r_{ie}))$

Loss function

$$\square \mathcal{L} = -\sum_{(i,j)\in T(R)} \log \frac{\exp(P(r_{ie}|\Theta))}{\exp(P(r_{ie}|\Theta)) + \exp(P(r_{je}|\Theta))} + \lambda(\Theta)$$

\square $\lambda(\Theta)$ is the regularization term

30th International Joint Conference on Artificial Intelligence

Introduction 1 **Problem Definition** 2 **IRR Framework** 3 **Experiments** 4 Conclusion 5

Experimental Setup

- Dataset
 - ASSISTments
 - MATH
- Divide the students on each test item into training : test = 8:2
 - 10% of training used for hyper-parameter adjustment

Hyper-parameters

- □ $\lambda \leftarrow \{0.1, 0.01, 0.001, 0.0001\}$
 - λ = 0.0001
- □ $N^{o}, N^{U} \leftarrow \{1, 5, 10, 30\}$
 - $N^{O} = N^{U} = 10$

Baselines

IRT, MIRT, DINA, NeuralCD

Statistics	ASSISTments	MATH
# users	4,163	10,268
# items	17,746	917,495
# knowledge concepts	123	1,488
# response logs	324,572	864,722

Table 1: The statistics of the dataset.

Parameter Setting

Dimension of latent traits equal to the number of concepts

- 123 in ASSISTments
- 1488 in MATH

Classification Metrics

- AUC
- Precision
- Recall
- F1

Evaluation Metrics

- Classification Metrics
 - AUC
 - Precision
 - Recall
 - F1
- Ranking Metrics
 MAP(E), NDCG(E)
 MAP(U), NDCG(U)

Evaluation Metrics

- Classification Metrics
 - AUC
 - Precision
 - Recall
 - F1
- Ranking Metrics
 MAP(E), NDCG(E)
 MAP(U), NDCG(U)
- Monotonicity Metrics
 DOA

Student *j*

Me	Metrics		DINA		IRT		Г	NeuralCD	
Wettes		Pointwise	IRR	Pointwise	IRR	Pointwise	IRR	Pointwise	IRR
Classification	AUC	0.786	0.815	0.776	0.848	0.777	0.889	0.817	0.839
	Precision	0.689	0.713	0.665	0.752	0.716	0.785	0.706	0.734
	Recall	0.485	0.553	0.585	0.607	0.737	0.645	0.662	0.579
	F1	0.518	0.598	0.534	0.654	0.666	0.697	0.625	0.626
	MAP(E)	0.840	0.853	0.817	0.913	0.824	0.937	0.867	0.907
Danking	NDCG@5(E)	0.871	0.881	0.867	0.894	0.868	0.912	0.881	0.889
Kalikilig	MAP(U)	0.780	0.799	0.754	0.880	0.761	0.908	0.826	0.875
	NDCG@5(U)	0.464	0.481	0.462	0.503	0.462	0.524	0.487	0.500
(a) ASSISTments									

Metrics		DINA		IRT		MIRT		NeuralCD	
IVIC	Metrics		IRR	Pointwise	IRR	Pointwise	IRR	Pointwise	IRR
	AUC	0.549	0.567	0.537	0.666	0.537	0.686	0.596	0.608
Classification	Precision	0.717	0.725	0.637	0.760	0.583	0.767	0.686	0.737
Classification	Recall	0.447	0.707	0.722	0.743	0.699	0.750	0.655	0.719
	F1	0.500	0.711	0.524	0.747	0.588	0.754	0.602	0.724
	MAP(E)	0.735	0.740	0.728	0.808	0.729	0.814	0.765	0.772
Ranking	NDCG@5(E)	0.852	0.855	0.845	0.906	0.844	0.909	0.853	0.866
Kalikilig	MAP(U)	0.356	0.360	0.345	0.494	0.347	0.508	0.431	0.437
	NDCG@5(U)	0.488	0.498	0.479	0.654	0.477	0.677	0.587	0.569

Me	Metrics		Α	IRT	IRT		MIRT		NeuralCD	
IVIC	uics	Pointwise	IRR	Pointwise	IRR	Pointwise	IRR	Pointwise	IRR	
	AUC	0.786	0.815	0.776	0.848	0.777	0.889	0.817	0.839	
Classification	Precision	0.689	0.713	0.665	0.752	0.716	0.785	0.706	0.734	
Classification	Recall	0.485	0.553	0.585	0.607	0.737	0.645	0.662	0.579	
	F1	0.518	0.598	0.534	0.654	0.666	0.697	0.625	0.626	
	MAP(E)	0.840	0.853	0.817	0.913	0.824	0.937	0.867	0.907	
Panking	NDCG@5(E)	0.871	0.881	0.867	0.894	0.868	0.912	0.881	0.889	
Kalikilig	MAP(U)	0.780	0.799	0.754	0.880	0.761	0.908	0.826	0.875	
	NDCG@5(U)	0.464	0.481	0.462	0.503	0.462	0.524	0.487	0.500	
			(a)	ASSISTment	S					

Me	Metrics		4	IRT	IRT		MIRT		NeuralCD	
Wettes		Pointwise	IRR	Pointwise	IRR	Pointwise	IRR	Pointwise	IRR	
	AUC	0.549	0.567	0.537	0.666	0.537	0.686	0.596	0.608	
Classification	Precision	0.717	0.725	0.637	0.760	0.583	0.767	0.686	0.737	
Classification	Recall	0.447	0.707	0.722	0.743	0.699	0.750	0.655	0.719	
	F1	0.500	0.711	0.524	0.747	0.588	0.754	0.602	0.724	
	MAP(E)	0.735	0.740	0.728	0.808	0.729	0.814	0.765	0.772	
Ranking	NDCG@5(E)	0.852	0.855	0.845	0.906	0.844	0.909	0.853	0.866	
Kanking	MAP(U)	0.356	0.360	0.345	0.494	0.347	0.508	0.431	0.437	
	NDCG@5(U)	0.488	0.498	0.479	0.654	0.477	0.677	0.587	0.569	

Me	Metrics		NA	IRT		MIR	Т	NeuralCD		
IVIC	uies	Pointwise	IRR	Pointwise	IRR	Pointwise	IRR	Pointwise	IRR	
	AUC	0.786	0.815	0.776	0.848	0.777	0.889	0.817	0.839	
Classification	Precision	0.689	0.713	0.665	0.752	0.716	0.785	0.706	0.734	
	Recall	0.485	0.553	0.585	0.607	0.737	0.645	0.662	0.579	
	F1	0.518	0.598	0.534	0.654	0.666	0.697	0.625	0.626	
	MAP(E)	0.840	0.853	0.817	0.913	0.824	0.937	0.867	0.907	
Panking	NDCG@5(E)	0.871	0.881	0.867	0.894	0.868	0.912	0.881	0.889	
Kalikilig	MAP(U)	0.780	0.799	0.754	0.880	0.761	0.908	0.826	0.875	
	NDCG@5(U)	0.464	0.481	0.462	0.503	0.462	0.524	0.487	0.500	
	(a) ASSISTments									
Matrias		DINA		IRT		MIRT		NeuralCD		

Metrics		DINA		IRT		MIRT		NeuralCD	
		Pointwise	IRR	Pointwise	IRR	Pointwise	IRR	Pointwise	IRR
Classification	AUC	0.549	0.567	0.537	0.666	0.537	0.686	0.596	0.608
	Precision	0.717	0.725	0.637	0.760	0.583	0.767	0.686	0.737
	Recall	0.447	0.707	0.722	0.743	0.699	0.750	0.655	0.719
	F1	0.500	0.711	0.524	0.747	0.588	0.754	0.602	0.724
	MAP(E)	0.735	0.740	0.728	0.808	0.729	0.814	0.765	0.772
Ranking	NDCG@5(E)	0.852	0.855	0.845	0.906	0.844	0.909	0.853	0.866
Kanking	MAP(U)	0.356	0.360	0.345	0.494	0.347	0.508	0.431	0.437
	NDCG@5(U)	0.488	0.498	0.479	0.654	0.477	0.677	0.587	0.569

 For every CDM, the IRR-CDM significantly outperform the pointwise-CDM on classification metrics on all datasets.

Metrics		DINA		IRT		MIRT		NeuralCD	
		Pointwise	IRR	Pointwise	IRR	Pointwise	IRR	Pointwise	IRR
	AUC	0.786	0.815	0.776	0.848	0.777	0.889	0.817	0.839
Classification	Precision	0.689	0.713	0.665	0.752	0.716	0.785	0.706	0.734
Classification	Recall	0.485	0.553	0.585	0.607	0.737	0.645	0.662	0.579
	F1	0.518	0.598	0.534	0.654	0.666	0.697	0.625	0.626
	MAP(E)	0.840	0.853	0.817	0.913	0.824	0.937	0.867	0.907
Panking	NDCG@5(E)	0.871	0.881	0.867	0.894	0.868	0.912	0.881	0.889
Kalikilig	MAP(U)	0.780	0.799	0.754	0.880	0.761	0.908	0.826	0.875
	NDCG@5(U)	0.464	0.481	0.462	0.503	0.462	0.524	0.487	0.500

(a) ASSISTments

Metrics		DINA		IRT	IRT		Т	Neural	CD
		Pointwise	IRR	Pointwise	IRR	Pointwise	IRR	Pointwise	IRR
	AUC	0.549	0.567	0.537	0.666	0.537	0.686	0.596	0.608
Classification	Precision	0.717	0.725	0.637	0.760	0.583	0.767	0.686	0.737
Classification	Recall	0.447	0.707	0.722	0.743	0.699	0.750	0.655	0.719
	F1	0.500	0.711	0.524	0.747	0.588	0.754	0.602	0.724
	MAP(E)	0.735	0.740	0.728	0.808	0.729	0.814	0.765	0.772
Ranking	NDCG@5(E)	0.852	0.855	0.845	0.906	0.844	0.909	0.853	0.866
Kalikilig	MAP(U)	0.356	0.360	0.345	0.494	0.347	0.508	0.431	0.437
	NDCG@5(U)	0.488	0.498	0.479	0.654	0.477	0.677	0.587	0.569

- For every CDM, the IRR-CDM significantly outperform the pointwise-CDM on classification metrics on all datasets.
- IRR-CDM also achieve higher scores in ranking metrics.

Metrics		DIN	A	IRT		MIR	Т	NeuralCD	
wieutes		Pointwise	IRR	Pointwise	IRR	Pointwise	IRR	Pointwise	IRR
	AUC	0.786	0.815	0.776	0.848	0.777	0.889	0.817	0.839
Classification	Precision	0.689	0.713	0.665	0.752	0.716	0.785	0.706	0.734
Classification	Recall	0.485	0.553	0.585	0.607	0.737	0.645	0.662	0.579
	F1	0.518	0.598	0.534	0.654	0.666	0.697	0.625	0.626
	MAP(E)	0.840	0.853	0.817	0.913	0.824	0.937	0.867	0.907
Ranking	NDCG@5(E)	0.871	0.881	0.867	0.894	0.868	0.912	0.881	0.889
Kanking	MAP(U)	0.780	0.799	0.754	0.880	0.761	0.908	0.826	0.875
	NDCG@5(U)	0.464	0.481	0.462	0.503	0.462	0.524	0.487	0.500

(a) ASSISTments

Metrics		DIN	A	IRT		MIR	Т	Neural	CD
IVIC	uics	Pointwise	IRR	Pointwise	IRR	Pointwise	IRR	Pointwise	IRR
	AUC	0.549	0.567	0.537	0.666	0.537	0.686	0.596	0.608
Classification	Precision	0.717	0.725	0.637	0.760	0.583	0.767	0.686	0.737
Classification	Recall	0.447	0.707	0.722	0.743	0.699	0.750	0.655	0.719
	F1	0.500	0.711	0.524	0.747	0.588	0.754	0.602	0.724
	MAP(E)	0.735	0.740	0.728	0.808	0.729	0.814	0.765	0.772
Panking	NDCG@5(E)	0.852	0.855	0.845	0.906	0.844	0.909	0.853	0.866
Kalikilig	MAP(U)	0.356	0.360	0.345	0.494	0.347	0.508	0.431	0.437
	NDCG@5(U)	0.488	0.498	0.479	0.654	0.477	0.677	0.587	0.569

- For every CDM, the IRR-CDM significantly outperform the pointwise-CDM on classification metrics on all datasets.
- IRR-CDM also achieve higher scores in ranking metrics.

Metrics		DINA	DINA IRT			MIRT		NeuralCD	
		Pointwise	IRR	Pointwise	IRR	Pointwise	IRR	Pointwise	IRR
	AUC	0.786	0.815	0.776	0.848	0.777	0.889	0.817	0.839
Classification	Precision	0.689	0.713	0.665	0.752	0.716	0.785	0.706	0.734
Classification	Recall	0.485	0.553	0.585	0.607	0.737	0.645	0.662	0.579
	F1	0.518	0.598	0.534	0.654	0.666	0.697	0.625	0.626
	MAP(E)	0.840	0.853	0.817	0.913	0.824	0.937	0.867	0.907
Panking	NDCG@5(E)	0.871	0.881	0.867	0.894	0.868	0.912	0.881	0.889
Kanking	MAP(U)	0.780	0.799	0.754	0.880	0.761	0.908	0.826	0.875
	NDCG@5(U)	0.464	0.481	0.462	0.503	0.462	0.524	0.487	0.500

(a) ASSISTments

Metrics		DINA		IRT	IRT		Г	Neural	NeuralCD	
NIC	uies	Pointwise	IRR	Pointwise	IRR	Pointwise	IRR	Pointwise	IRR	
	AUC	0.549	0.567	0.537	0.666	0.537	0.686	0.596	0.608	
Classification	Precision	0.717	0.725	0.637	0.760	0.583	0.767	0.686	0.737	
Classification	Recall	0.447	0.707	0.722	0.743	0.699	0.750	0.655	0.719	
	F1	0.500	0.711	0.524	0.747	0.588	0.754	0.602	0.724	
	MAP(E)	0.735	0.740	0.728	0.808	0.729	0.814	0.765	0.772	
Panking	NDCG@5(E)	0.852	0.855	0.845	0.906	0.844	0.909	0.853	0.866	
Kanking	MAP(U)	0.356	0.360	0.345	0.494	0.347	0.508	0.431	0.437	
	NDCG@5(U)	0.488	0.498	0.479	0.654	0.477	0.677	0.587	0.569	

(b) MATH

Conclusion

By exploiting the partial order between responses, IRR can not only help CDMs **promote the diagnosis precision** but also **better maintain the monotonicity**.

Knowledge Proficiency Monotonicity

- As the sample number increases, the performance of IRR-CDMs
 - increases at the beginning

- As the sample number increases, the performance of IRR-CDMs
 - increases at the beginning
 - converges afterwards

- As the sample number increases, the performance of IRR-CDMs
 - increases at the beginning
 - converges afterwards

 Compared with MATH, the performance of IRR-CDMs on ASSISTments converges earlier.

- As the sample number increases, the performance of IRR-CDMs
 - increases at the beginning
 - converges afterwards

 Compared with MATH, the performance of IRR-CDMs on ASSISTments converges earlier.

Conclusion

Including **more sampled pairs** can help the IRR-CDMs **promote the performance**, but the promotion has a **upper bound** due to the converge of information increment.

(a) Response Logs diagram.

IJCAI 2021

MONTREAL

(b) Proficiency on knowledge concepts digram.

ID	Concepts	Student 1	Student 2	Student 3				
ltem 1	B, C	×	>	×				
ltem 2	B, C, D, E	×	>	~				
ltem 3	A, B, D	~	×	×				
A - ProportionB - Circle GraphC - Percent OfD - Equivalent FractionsE - Finding Percents								
A - <u>Pro</u> D	<u>portion</u> - <u>Equivalent Fra</u>	B - <u>Circle Grap</u> actions E -	<u>h</u> C - <u>Po</u> • <u>Finding Percer</u>	<u>ercent Of</u> <u>nts</u>				

IJCAI 2021

MONTREAL

(b) Proficiency on knowledge concepts digram.

ID	Concepts	Student 1	Student 2	Student 3				
ltem 1	B, C	×	>	×				
ltem 2	B, C, D, E	×	>	>				
ltem 3	A, B, D	>	×	×				
A - <u>Proportion</u> B - <u>Circle Graph</u> C - <u>Percent Of</u>								

(a) Response Logs diagram.

IJCAI 2021

MONTREAL

(a) Response Logs diagram.

IJCAI 2021

MONTREAL

(b) Proficiency on knowledge concepts digram.

(a) Response Logs diagram.

IJCAI 2021

MONTREAL

(b) Proficiency on knowledge concepts digram.

ID	Concepts	Student 1	Student 2	Student 3				
ltem 1	B, C	×	>	×				
ltem 2	B, C, D, E	×	>	~				
Item 3	A, B, D	>	×	×				
A - <u>Proportion</u> B - <u>Circle Graph</u> C - <u>Percent Of</u> D - <u>Equivalent Fractions</u> E - <u>Finding Percents</u>								

(a) Response Logs diagram.

 IRR-CDMs get a more precise and more discriminated ranking result

(b) Proficiency on knowledge concepts digram.

ID	Concepts	Student 1	Student 2	Student 3			
ltem 1	B, C	×	>	×			
ltem 2	B, C, D, E	×	>	~			
Item 3	A, B, D	>	×	×			
Item 3 A, B, D X X A - Proportion B - Circle Graph C - Percent Of D - Equivalent Fractions E - Finding Percents							

(a) Response Logs diagram.

- IRR-CDMs get a more precise and more discriminated ranking result
- The distributions of the diagnosis proficiency values got by IRR-CDMs are more smooth

IJCAI 2021

MONTREAL

(b) Proficiency on knowledge concepts digram.

ID	Concepts	Student 1	Student 2	Student 3			
ltem 1	B, C	×	>	×			
ltem 2	B, C, D, E	×	~	>			
Item 3	A, B, D	>	×	×			
A - <u>Proportion</u> B - <u>Circle Graph</u> C - <u>Percent Of</u> D - <u>Equivalent Fractions</u> E - <u>Finding Percents</u>							

(a) Response Logs diagram.

- IRR-CDMs get a more precise and more discriminated ranking result
- The distributions of the diagnosis proficiency values got by IRR-CDMs are more smooth

Conclusion

Our method can help CDMs get a **more precise and discriminated** diagnosis proficiency values.

IJCAI 2021

MONTREAL

(b) Proficiency on knowledge concepts digram.

30th International Joint Conference on Artificial Intelligence

Introduction

1

- 2 **Problem Definition**
- 3 IRR Framework
- **4 Experiments**

5 Conclusion

Conclusion

- **D** Cognitive diagnosis is a vital task in education area.
- Previous methods do not include monotonicity during optimization.
- We proposed the Item Response Ranking framework (IRR) to incorporate the monotonicity into the optimization objective.
 - promote the diagnosis precision;
 - better maintain the monotonicity;
 - get a more discriminated diagnosis proficiency values.
- Our codes are available in https://github.com/bigdataustc/EduCDM.

Q&A

tongsw@mail.ustc.edu.cn

