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ABSTRACT
Representation learning of examination papers is significantly cru-
cial for online education systems, as it benefits various applications
such as estimating paper difficulty and examination paper retrieval.
Previous works mainly explore the representation learning of indi-
vidual questions in an examination paper, with limited attention
given to the examination paper as a whole. In fact, the structure
of examination papers is strongly correlated with paper properties
such as paper difficulty, which existing paper representation meth-
ods fail to capture adequately. To this end, we propose a pre-trained
model namely PaperLM to learn the representation of examination
papers. Our model integrates both the text content and hierarchical
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structure of examination papers within a single framework by con-
verting the path of the Examination Organization Tree (EOT) into
embedding. Furthermore, we specially design three pre-training
objectives for PaperLM, namely EOT Node Relationship Prediction
(ENRP), Question Type Prediction (QTP) and Paper Contrastive
Learning (PCL), aiming to capture features from text and structure
effectively. We pre-train our model on a real-world examination
paper dataset, and then evaluate the model with three down-stream
tasks: paper difficulty estimation, examination paper retrieval, and
paper clustering. The experimental results demonstrate the effec-
tiveness of our method.
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1 INTRODUCTION
In recent years, there has been a significant increase in global at-
tention towards online education systems. To achieve the goal of
personalized education for each student, online education systems
usually equip with massive exercises and provide customized ex-
amination papers for students’ self assessments.

Many previous works [10, 12, 21, 22, 31] mainly focus on the
representation of individual questions, while few pay attention to
the understanding of the whole examination paper. Simply adding
up the representations of all questions in an examination paper
will result in the loss of rich information, such as the organiza-
tion of questions. Therefore it is imperative to develop a tailored
representation learning method for examination papers.

An examination paper can be treated as a special type of doc-
ument. Early document representation works [2, 17, 37], which
only consider textual information, are difficult to capture global
structural information. In recent years, many works start learning
representations of documents using pre-trained model. They tend
to integrate additional information such as document layout [40]
and document images [11, 20, 41] with document text. These works
consider the unique features of visually rich documents (e.g. forms),
so they are not suitable for examination papers. For documents
with strong structural information like web pages, there are also
works [4, 18, 39] integrating the document source code into models.
However, these works design their models and pre-training strate-
gies for specific types of documents, which cannot suit the unique
structure features and domain-specific features (e.g.knowledge con-
cept) of examination papers. Aiming to design a representation
learning method specially for examination papers, Ma et. al [25]
propose a multi-layer model where the hierarchical structure in-
formation of examination papers is extracted to enhance the repre-
sentation. Although the structure information is used, they ignore
the correlation between structure and properties of examination
papers such as paper difficulty. Therefore, we hope to design a
model for learning effective representations of examination papers
considering the unique structure of examination papers and the
correlation between structure and properties of papers.

In addition to textual information, an examination paper also
has global structure information, which is abstracted into a special
structure named Examination Organized Tree (EOT) in [25]. We
display an example examination paper and its corresponding EOT
in Figure 1. As the figure depicts, EOT is a tree structure in which
the leaf nodes represent questions and the internal nodes represent
conditions or summarizations of their child nodes. The hierarchical
structure of the examination paper, as represented by the EOT,
plays a pivotal role in paper design. Many researchers [5, 26] have
studied the effects of question order on test performance. They find
that students tend to performance better when presented with an
examination paper arranged in an easy-to-hard question sequence
rather than a hard-to-easy arrangement. Besides, the question type
distribution within an examination paper is also strongly correlated
with paper properties, which is concluded from our data analysis

later on. Therefore the structure information of examination papers
is vital for learning an informative paper representation.

However, there are still some challenges in learning an informa-
tive and effective representation of the examination paper using
this structure information. Firstly, there are two distinct aspects
of information: the semantic information derived from the con-
tent of paper text and the structural information provided by the
EOT. Finding an effective approach to combine them poses a chal-
lenge. Secondly, although the structure of examination papers is
correlated with paper properties, this correlation is implicit. How
to instruct the model learn such correlation deserves exploration.
Moreover, examination paper retrieval is an essential application
that requires model’s ability to distinguish holistic features of exam-
ination papers such as the examination scope. Previous document
representation works [11, 18, 40, 41] mainly contribute to effective
method to model additional modalities, while they are relatively
simple in their modeling of textual information by following the
Masked Language Model (MLM) in BERT [15]. This pre-training
pattern focuses on literal details and lacks the capability to capture
holistic features. How to capture the holistic features of examina-
tion papers poses an additional challenge.

To this end, in this paper, we introduce a novel pre-trained model
named PaperLM to fuse the textual and hierarchical structural of
the examination paper within a unified framework. To take advan-
tage of existing pre-trained language models, we use BERT as the
encoder backbone of PaperLM. Inspired by MarkupLM [18], we
define the EOT path for each node in EOT and convert it into an
embedding, enabling the model to access the examination paper’s
structure, including the arrangement of questions and the question
type distribution. Since examination papers are typically long docu-
ments, we establish our representation learning at the test item level
(EOT node level) instead of the single word level in papers. To effec-
tively pre-train PaperLM, we propose three pre-training strategies.
Firstly, in order to learn the hierarchical structure of examination
papers and better integrate the textual and structural information,
we introduce the EOT Node Relationship Prediction (ENRP) ob-
jective. Secondly, we propose the Question Type Prediction (QTP)
objective. Building upon the ENRP task, the QTP objective instructs
the model to identify different question types in papers, enabling
it to learn the correlation between question type distribution and
paper properties. Thirdly, we adopt the Paper contrastive Learning
(PCL) strategy, where we specially construct contrastive samples to
capture the holistic features of examination papers. The PaperLM
is pre-trained on high school mathematical examination papers
collected from an online education system. Finally, we adopt three
down-stream tasks: paper difficulty estimation, examination paper
retrieval, and paper clustering to demonstrate the effectiveness of
our proposed pre-trained method.

2 RELATEDWORKS
Pre-trained Language Model. Recent years have witnessed the
rapid development of pre-trained language models (PLMs) [1, 15,
24, 29, 33, 34, 45], which has greatly promoted the performance
of many tasks in natural language processing(NLP). Among the
massive literatures of PLMs, the "pre-trained and fine-tuning" par-
adigm has been widely used. Along this research line, BERT[15]
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Math Final Test

Section 1 Multiple Choice Questions

1.Let �(�) be differentiable at �0, then lim
�→0

�(�0+�)−�(�0−3�)
�

=(  ).
A. �´(�0) B. 2�´(�0) C. 3�´(�0) C. 4�´(�0)
2.  In ∆ABC, sin2A=sin2B+sin2C, then ∆ABC is a/an ( ). 
A. right triangle                            B. isosceles right triangle
C. equilateral triangle                   D. isosceles triangle

Section 2 Blank-filling Questions

1. Given �(�) = �� − 1 and �(�) = �2 + 4� − 3, if �(�) =
�(�). The range of b is  ____.
2. If �(�) = ��−�

�� (� ≠ 0) and �(�) = �(�) + 1 has no zeros.
Given that a is a real number, then � =  ____.

Section 3 Answer Questions

1. Given �(�) = ��(� − �), � = 0is an extreme point of 
function � = ��(�).

   (1) Calculate �;
   (2) Given function �(�) = �+�(�)

��(�)
, prove �(�) < 1.

Examination Organized Tree

Title

Sec 1 Sec 2 Sec 3

Q1 Q2 Q1 Q2 Q1

SQ1 SQ2

Extract EOT path

 paper/section3/question1/subquestion1

Algebra

Function Derivatives

Trigonometric
Function

Power
Function Limit Application of 

Derivatives

Knowledge Hierarchy

Sec2.Q2Sec1.Q1Sec2.Q1Sec1.Q2

Sec3.Q1

Figure 1: Examples of examination paper, Examination Organization Tree(EOT) and knowledge hierarchy.

firstly introduces a novel pre-training objective, Masked Language
Model(MLM), which becomes the foundation of various representa-
tion methods [1, 24, 45]. For example, RoBERTa [24] is pre-trained
with larger datasets and more optimized pre-training strategies
compared with BERT. Longformer [1] further proposes sliding win-
dow, dilated sliding window and global attention to achieve a self-
attention of linear time complexity, enabling it to process longer
sequences compared to BERT and RoBERTa. Although remark-
able success has been achieved in NLP tasks, these models mainly
concentrate on text modality, which is not ideal for representing
documents with hierarchical structure such as examination papers.

Document Understanding. Document understanding is an
important research direction for NLP, which supports various ap-
plications like document classification[20, 40] and document infor-
mation extraction[14, 30]. Modeling the additional information (e.g.
structure [18], layout [23, 40], images[11, 20, 41]) of documents
is the most used method in document understanding. Some early
researches [23, 32, 44] use Graph Convolutional Networks (GCN)
to aggregate the global representation from each unit of the docu-
ment. Qi et al. [32] model the global word-relation structure of a
document using GCN to improve context-aware document rank-
ing. Liu et al. [23] further leverage visual information presented in
visually rich documents. In recent years, following the success of
the BERT-like models, some works[11, 19, 20, 40, 41] have started
pre-training models on documents with multimodal information
such as images, layout and various forms of structure in documents.
LayoutLM [40] inherits the main idea from BERT while jointing lay-
out representation learning by encoding spatial coordinates of text,
and achieves great performance in down-stream tasks like form
understanding and receipt understanding. Based on LayoutLM, Lay-
outLMv2 [41] and LayoutLMv3 [11] further enhance the model by
integrating visual features in the pre-training phase, resulting in
significant performance improvements. SelfDoc [20] introduces
cross-modal learning to fully leverage multimodal information in-
cluding text, layout and image. MarkupLM [18] and WebKE [39]
are examples of models that combine document text and markup
language within a single pre-trained model, specifically designed
for representing HTML documents. However, these works mainly
design and train models for specific types of documents, which fail
to directly represent examination papers due to its unique struc-
ture and domain-specific features (e.g. knowledge concepts). To

apply document understanding to intelligent education area, Ma
et al. [25] investigate the hierarchical structure of examination pa-
pers and propose the Examination Organization Encoder (EOE) to
learn a robust representation of the examination paper. Despite
they explored the structure of examination papers, the correlation
between structure and properties of examination papers such as
paper difficulty is largely ignored.

Contrastive Learning. In last several years, contrastive learn-
ing has been widely applied in representation learning and shown
strong effectiveness [3, 8, 36]. The objective of contrastive learning
is to learn effective representations by discerning whether samples
are overall similar or dissimilar. This is achieved by employing
data augmentation techniques to generate positive samples while
treating other samples as negatives. The selection and number
of negative samples greatly affects the performance of the model.
To enhance the capacity of negative samples, memory bank tech-
niques [9, 38] have been introduced to augment the negative sample
pool and thereby improving the learning process. Recently, the in-
fluence of negative has been explored. BYOL [7] is introduced to
prove that contrastive learning is effective even without negative
samples. Khosla et al. [16] prove that contrastive learning can also
be applied by constructing the positive pairs with label supervision.

3 PRELIMINARY
In this section, we first provide the description of EOT and knowl-
edge hierarchy and then give the formal definition of examination
paper representation.

3.1 Examination Organization Tree
Examination Organization Tree (EOT) describes the hierarchical
structure of examination paper. Figure 1 shows an example math-
ematical paper along with its corresponding EOT. As the figure
depicts, an examination paper consists of multiple sections that
gather questions of different types separately. In the EOT, choice
questions (questions under Section 1) and blank-filling questions
(questions under Section 2) are represented as leaf nodes since
they do not have subquestions. On the other hand, answer ques-
tions (questions under Section 3) are represented as internal nodes,
which include a global condition and several subquestions. The
subquestions, in turn, are represented as leaf nodes. This tree-based
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PaperLM Encoder

TTitle TSec1 TQ1 TQ2 TQ1 TQ2 TQ1 TSQ1 TSQ2

EPTitle EPSec1 EPQ1 EPQ2 EPSec2 EPQ1 EPQ2 EPSec3 EPQ1 EPSQ1 EPSQ2 [PAD]

[SEP][CLS]

[PAD]

TSec2 TSec3

Title Q1 Q2 Q1 Q2 Q1 SQ1 SQ2 [SEP][CLS] Sec1 Sec2 Sec3

Parent

Choice 
Question

Blank-filling 
Question

Sibling

Aswer Question

EOT Node Relationship Prediction

Question Type Prediction

=   Input Embedding Masking 

Syntax 
Parser

Title

Sec 1

Q1

Q2

SQ1

SQ2

Sec 2

Q1

Q2

Sec 3

Q1

 EOT

(a) Architecture of PaperLM with pre-training objectives EOT Node Relationship Prediction(ENRP) and Question Type Prediction(QTP).

paper

paper/section3/question1/subquestion1

1 section 3 3 subques 3question

�0 �1 �2 �3�0 �1 �2 �3

��0 ��1 ��2 ��3

FFN Layer

����

Type | Rank

Type unit 
embedding tables

Rank unit 
embedding tables

Type | Rank
unit embedding

 Intermediate 
representation

EOT path embedding

EOT path

(b) Process of converting EOT path to embedding.

P P

Paper 
Encoder

Momentum 
Encoder

...
Memory Bank

Paper 
Augmentation

InfoNCE Loss

Momentum Update

Gradient

(c) Architecture of pre-training objective Paper Contrastive
Learning(PCL).

Figure 2: The proposed PaperLM framework. (a)Architecture of PaperLM with pre-training objectives EOT Node Relationship
Prediction(ENRP) and Question Type Prediction(QTP). (b)Process of converting EOT path to embedding. (c)Architecture of
pre-training objectives Paper Contrastive Learning(PCL).

representation provides insights into the arrangement of questions
and the distribution of question types within the examination paper,
which are closely related to the properties of the examination paper.
Consequently, Leveraging the EOT allows us to determine the sig-
nificance of each part of the examination paper, thereby enhancing
the overall representation of the papers. To enable the model to
receive the EOT as input, we define a path expression for each
node in the EOT, like paper/section3/question1/subquestion1. The
texts represent the type of the nodes while the numbers represent
the rank of the nodes among their siblings. With the extraction of
the EOT path, we can convert it into embedding for subsequent
processing steps.

3.2 Knowledge Hierarchy
Each single question in the examination paper has a knowledge con-
cept property, which is selected from a 𝐿-level knowledge hierarchy
𝐾𝐻 = {^, Y}. As shown in the right hand of Figure 1, 𝐾𝐻 is a tree
structure, where the vertexes ^ are the knowledge concepts, and
the edges Y represent the relationship between knowledge concepts.
The vertex in higher knowledge level indicates that it is a higher
abstraction or description of knowledge (e.g. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛), while ver-
tex in lower knowledge level indicates that it is a more fine-grained
knowledge of its parent node (e.g. 𝑃𝑜𝑤𝑒𝑟𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛). Therefore the
knowledge concept of a question is denoted as 𝑘 = {𝑘1, 𝑘2, ..., 𝑘𝐿},
where 𝑘𝑖 is the knowledge concept at 𝑙-level and 𝑘𝑖 is the parent of
𝑘𝑖+1. So the knowledge concept set of an examination paper that
consists of 𝑁 questions is denoted as 𝐾 = {𝑘1, 𝑘2, ..., 𝑘𝑁 }, where 𝑘𝑖
is the knowledge concept of the 𝑖-th question in the paper.
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3.3 Problem Definition
Given an examination paper 𝑃 and its corresponding EOT, we
aim to represent 𝑃 with a 𝑑ℎ-dimensional vector 𝑟𝑝 , which can be
used for several down-stream tasks and benefit the performances.
We hope the learned examination paper representation to contain
comprehensive information and effectively capture the textual and
structural features that are relevant to the properties and holistic
features of examination papers.

4 PAPERLM
In this section, we introduce the proposed model PaperLM. We first
present the model architecture and then describe the pre-training
objectives we specially designed to facilitate the learning of exami-
nation paper representations.

4.1 Model Architecture
To take advantage of existing pre-trained models and adapt them to
the structure of examination papers, we use BERT as the encoder
backbone and introduce a new input embedding: EOT path embed-
ding. Figure 2(a) shows the overview architecture of PaperLM.

4.1.1 Text Embedding. To match the structure of the EOT, we
partition the papers at the granularity of the test item, which is
directly aligned with the EOT path embedding. We embed the
plain text contained in a test item into a feature vector using the
pre-trained BERT model from EduNLP1: an open source Python
library that provides pre-trained language models specially for
educational questions of different subjects. Following BERT, we
mark the beginning of a test item sequence with a special [CLS]
token and the end with a special [SEP] token, which are both
computed by averaging the test item features.

4.1.2 EOT Path Embedding. Inspired by MarkupLM [18], we
incorporate the EOT path information into the model input by
converting it into embedding, as shown in Figure 2(b). For the 𝑖-th
test item 𝑥𝑖 in EOT, we split its corresponding path expression by
"/" to obtain the node information at each level of the path as a
list, 𝑒𝑝𝑖 = [(𝑡𝑖0, 𝑟

𝑖
0), (𝑡

𝑖
1, 𝑟

𝑖
1), ..., (𝑡

𝑖
𝑑
, 𝑟 𝑖
𝑑
)], where d denotes the depth

of this EOT path, 𝑡𝑖
𝑗
and 𝑟 𝑖

𝑗
denotes the type name of and rank of

the EOT path unit on level 𝑗 for 𝑥𝑖 . Note that we assign 1 to 𝑟 𝑖
𝑗
for

units without rank number. Additionally, we apply padding to 𝑒𝑝𝑖
to unify their lengths as 𝐿 for further processing.

For (𝑡𝑖
𝑗
, 𝑟 𝑖
𝑗
), we input this pair into the 𝑗-th type unit embedding

table and 𝑗-th rank unit embedding table respectively, of which we
set the dimensions as 𝑑𝑢 . Then we add these two embeddings to
get the 𝑗-th unit embedding 𝑢𝑒𝑖

𝑗
.

𝑢𝑒𝑖𝑗 = 𝑇𝑦𝑝𝑒𝑈𝑛𝑖𝑡𝐸𝑚𝑏 𝑗 (𝑡
𝑖
𝑗 ) + 𝑅𝑎𝑛𝑘𝑈𝑛𝑖𝑡𝐸𝑚𝑏 𝑗 (𝑟

𝑖
𝑗 ) . (1)

We concatenate all the unit embeddings to get the intermediate
representation 𝑟𝑖 of the complete EOT path for 𝑥𝑖 .

𝑟𝑖 = [𝑢𝑒𝑖0;𝑢𝑒
𝑖
1; ...;𝑢𝑒

𝑖
𝐿] . (2)

Then we feed the intermediate representation 𝑟𝑖 into an FFN layer
to get the final EOT path embedding 𝑒𝑝𝑒𝑖 .

𝑒𝑝𝑒𝑖 =𝑊2 [𝑅𝑒𝐿𝑈 (𝑊1𝑟𝑖 + 𝑏1)] + 𝑏2, (3)
1https://github.com/bigdata-ustc/EduNLP

𝑊1 ∈ R4𝑑ℎ×𝐿𝑑𝑢 , 𝑏1 ∈ R4𝑑ℎ , (4)

𝑊2 ∈ R𝑑ℎ×4𝑑ℎ , 𝑏2 ∈ R𝑑ℎ , (5)
where 𝑑ℎ denotes the hidden size of PaperLM.

After obtaining the text embedding and EOT path embedding
of each test item, we add them up respectively and feed the sum
embeddings into the PaperLM encoder. Finally, we use the mean of
test item embeddings at the last layer of the PaperLM encoder as
the representation vector of the input examination paper 𝑟𝑝 .

4.2 Pre-training Objectives
To efficiently capture both the textual and structural information
of examination papers, we propose three different pre-training
objectives, including EOT Node Relationship Prediction (ENRP),
Question Type Prediction (QTP), and Paper Contrastive Learning
(PCL). Note that all the pre-training objectives require input from
both textual and structural information.

4.2.1 EOT Node Relationship Prediction. To enhance the
model’s understanding of the semantics conveyed by the EOT path,
we propose the pre-training objective EOT Node Relationship Pre-
diction (ENRP) to explicitly model the relationship between a pair
of nodes within the EOT. First, we define a set of node relationships
𝑅 = {𝑠𝑒𝑙 𝑓 , 𝑐ℎ𝑖𝑙𝑑, 𝑝𝑎𝑟𝑒𝑛𝑡, 𝑠𝑖𝑏𝑙𝑖𝑛𝑔, 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑒𝑛𝑡, 𝑎𝑛𝑐𝑒𝑠𝑜𝑡𝑟, 𝑜𝑡ℎ𝑒𝑟𝑠}.
Then we combine each node in pairs and assign relationship labels
according to 𝑅. The model is then trained to predict the assigned
relationship label for each node pair. We formulate this objective as
a multi-classification objective. Given an examination paper with 𝑁
test items, we consider each pair of test item embeddings at the last
layer of the PaperLM encoder, denoted as 𝑒𝑖 and 𝑒 𝑗 , and concatenate
them in pairs to get the node pair embedding 𝑛𝑝𝑒𝑖 𝑗 .

𝑛𝑝𝑒𝑖 𝑗 = [𝑒𝑖 ; 𝑒 𝑗 ], 0 ≤ 𝑖, 𝑗 ≤ 𝑁 − 1. (6)

Then we feed the node pair embedding 𝑛𝑝𝑒𝑖 𝑗 into an FFN layer to
get the predicted classification result 𝑐𝑖 𝑗 of the node pair{𝑖, 𝑗}.

𝑐𝑖 𝑗 =𝑊2 [𝑅𝑒𝐿𝑈 (𝑊1𝑛𝑝𝑒𝑖 𝑗 )] + 𝑏, (7)

𝑊1 ∈ R2𝑑ℎ×2𝑑ℎ ,𝑊2 ∈ R𝑛𝑐×2𝑑ℎ , 𝑏 ∈ R𝑑ℎ , (8)
where 𝑑ℎ denotes the hidden size of PaperLM and 𝑛𝑐 represent the
category number of node relationships. Finally, we adopt the cross-
entropy loss function to compute the loss between the classification
result 𝑐𝑖 𝑗 and the relationship label 𝑟𝑖 𝑗 .

4.2.2 Question Type Prediction. Through the ENRP task, the
model can explicitly learn the hierarchical structure of examination
papers. However, it cannot yet relate the paper structure to the
paper properties. As we discussed earlier, the distribution of ques-
tion type is significantly correlated with paper difficulty. Therefore,
we propose another pre-training objective, namely Question Type
Prediction (QTP), which aims to enhance the model’s ability to
distinguish between different question types. As depicted in Figure
2(a), we mask the text embedding of section item while preserving
the corresponding EOT path embedding during the pre-training.
This is done because the text content of section items often provides
clues about the type of questions underneath. We then require the
model to predict which type it originally indicated. Now that the
model has learned the hierarchical structure of examination papers,
it will learn to predict the type of section items by referring to their
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childs. In this way, the model will learn the ability to distinguish
different types of questions, thereby bridging the gap between the
structure and text information.

The Question Type Prediction (QTP) objective is treated as a
multi-classification objective. We select the section item embed-
dings at the last layer of the PaperLM encoder 𝑒𝑠𝑒𝑐 and feed them
into an FFN layer to get the predicted classification results of the
question type 𝑐𝑞𝑡 :

𝑐𝑞𝑡 =𝑊2 [𝑅𝑒𝐿𝑈 (𝑊1𝑒𝑠𝑒𝑐 )] + 𝑏, (9)

𝑊1 ∈ R𝑑ℎ×𝑑ℎ ,𝑊2 ∈ R𝑛𝑐×𝑑ℎ , 𝑏 ∈ R𝑑ℎ , (10)

where 𝑑ℎ denotes the hidden size of PaperLM and 𝑛𝑐𝑙𝑠 represent the
category number of question types. Same as ENRP, we adopt the
cross-entropy loss to compute the loss between the classification
result 𝑐𝑞𝑡 and the question type label 𝑡𝑞 .

4.2.3 Paper Contrastive Learning. As we discussed earlier, cap-
turing the holistic examination scope is significantly important for
tasks like examination paper retrieval. However, previous meth-
ods fail to capture such information. Comparatively, contrastive
learning has been proved to achieve great success in learning rep-
resentations [6, 42]. Therefore, we propose the Paper Contrastive
Learning (PCL) to model the overall examination scope of papers,
which is illustrated in Figure 2(c). We aim to learn comprehen-
sive representations of examination papers by pulling papers with
similar knowledge concepts closer than those with less similar
knowledge concepts. This allows the model to measure the similar-
ity between examination papers based on their examination scope.
Thus it is important to construct suitable positive samples that are
similar in examination scope to the original samples.

To this end, we propose the following paper augmentation strat-
egy. For each question in an examination paper, we replace it with
another question that has the same knowledge concept and ques-
tion type as the original question. The question is selected randomly
from the pre-training corpus. This replacement is done with proba-
bility of 𝑝 for each question. In addition, following He et al. [9], we
introduce a memory bank with a momentum encoder, which allows
the inclusion of a large number of negative samples and thereby
enhancing the effectiveness of the contrastive learning. We feed
the examination paper representation 𝑟𝑝 into an MLP to get the
intermediate representation 𝑞.

We use the InfoNCE [28] loss as the contrastive loss function:

𝐿𝑃𝐶𝐿 = −𝑙𝑜𝑔 𝑒𝑥𝑝 (𝑞 · 𝑘+/𝜏)∑𝐾
𝑖=0 𝑒𝑥𝑝 (𝑞 · 𝑘𝑖/𝜏)

, (11)

where 𝑘+ and 𝑘𝑖 denote intermediate representations of positive
and negative samples respectively.𝐾 is the size of the memory bank
and 𝜏 is a temperature hyper-parameter [38].

5 EXPERIMENTS
In this section, we conduct pre-training of the PaperLMmodel using
real-world mathematical examination papers and then evaluate
our pre-trained model on three down-stream tasks to verify the
effectiveness of our proposed model.

Table 1: The statistics of the datasets.

Statics Dataset1 Dataset2 Dataset3 Dataset4

Num. Examination
Papers 34,852 5,000 - 2,000

Num. Examination
Paper Pairs - - 200 -

Avg. Questions per
Paper 23.54 16.13 18.64 19.28

EOT Depth 4 4 4 4
Knowledge in Level-1 10 - - 4
Knowledge in Level-2 39 - - 12
Knowledge in Level-3 431 - - 175

Table 2: Average Difficulty of Questions of Different Types.

Question Type Choice and Blank- Answer Questionsfilling Questions

Difficulty 0.34783 0.69408

5.1 Datasets
Four real-world datasets are used in our experiments, which are all
collected from an online education system Zhixue2, which provides
various and customized educational applications for high school
students in China. We list some important statistics of the datasets
in Table 1. Simple descriptions of four datasets are as follows:

Dataset1 contains 34,852 mathematical examination papers of
high school level, in which each question is annotated with a three-
level knowledge hierarchy. We pre-train PaperLM on Dataset1.

Dataset2 contains 5,000 mathematical examination papers with
paper-level difficulty scores. The difficulty score is calculated based
on the student performance using Classical Test Theory (CTT) We
randomly partition the dataset into training and testing sets with
the ratio of 4:1 for the down-stream task paper difficulty estimation.

Dataset3 contains 200 mathematical examination paper pairs
with similarity scores labeled by experts, who are expected to con-
sider the similarity of papers’ examination scope and quality. We
use Dataset3 for the down-stream task examination paper retrieval.

Dataset4 contains 2,000 unit examination papers, which focus
on one specific knowledge concept in the knowledge hierarchy
and are often used for targeted training purposes. Dataset4 is used
for the down-stream task paper clustering where we create two
experimental scenarios, each with 4, 12 clusters, corresponding to
4 and 12 frequent knowledge concepts from the first and second
levels of the knowledge hierarchy respectively.

5.2 Data Analysis
We additionally investigate students’ performance when they en-
counter different types of questions in Dataset2. The results of the
investigation are shown in Table 2, where the difficulty scores of
single questions are calculated from the correct rates of students
(low correct rates often mean high difficulty scores). Notably, we
obtain the observation that students score significantly higher on

2https://www.zhixue.com
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Table 3: Performance of different tasks.

Tasks Paper Difficulty Estimation Examination Paper Retrieval Paper Clustering
Datasets Dataset2 Dataset3 Dataset4

Metrics MAE ↓ RMSE ↓ PCC ↑ DOA ↑ NDCG@5 ↑ NDCG@10 ↑ #Cluster=4 #Cluster=12
NMI ↑ NMI ↑

HiAttention 0.2165 0.2512 0.3015 0.4550 - - - -
EOE 0.1778 0.2026 0.3689 0.6190 - - - -

Longformer 0.1704 0.2053 0.3839 0.6257 0.8648 0.9395 0.3084 0.3751
BigBird 0.1697 0.2046 0.5248 0.6806 0.8864 0.9482 0.2987 0.3492
BERT 0.1654 0.2006 0.5436 0.6865 0.8770 0.9449 0.4599 0.3960

MarkupLM 0.1642 0.1985 0.5493 0.6935 0.9274 0.9678 0.6311 0.5166
PaperLM 0.1507 0.1823 0.7003 0.7462 0.9742 0.9879 0.7062 0.6280

Table 4: Details of all models.

Models Input Information Parameter Pre-trained?
HiAttention Text+Structure - %

EOE Text+Structure - %

Longformer Text 148.66M !

BigBird Text 127.47M !

BERT Text 109.48M !

MarkupLM Text+Structure 135.20M !

PaperLM Text+Structure 33.00M !

choice questions and blank-filling questions compared to answer
questions. This observation indicates that an examination paper
with a higher proportion of answer questions would be more chal-
lenging than an examination paper with more choice questions
or blank-filling questions. From the data analysis, we confirm the
view we mentioned in Section 1 that the question type distribu-
tion within an examination paper is strongly correlated with paper
properties such as paper difficulty.

5.3 Implementation Details
5.3.1 Examination Paper Pre-processing. Following [25], we
design a syntax parser to extract the structural information from
an examination paper and covert it into an EOT. During the pro-
cess of extracting structural information, the textual content of
an examination paper is divided into some test items according to
the structure of the EOT. We notice that a very small proportion
of papers in the pre-training corpus have significantly more test
items than other papers. This could cause some input sequences
to be heavily padded to ensure that all sequences are of the same
length, therefore slowing down the training speed. This problem
is particularly serious in terms of the pre-training objective ENRP,
which requires to construct 𝐿𝑒𝑛2 node pairs for a sequence of length
𝐿𝑒𝑛. To address this issue, we set the maximum length of the input
sequences to 64 and exclude the papers that exceed the maximum
limitation. We use the pre-trained mathematical BERT model from
EduNLP to get the feature vectors of test items.

5.3.2 PaperLM Setup. 3 Our model is implemented by PyTorch.
We use BERT as the encoder backbone. Different from the original
BERT, we reduce the number of Transformer layers to 4. The size
of PaperLM hidden layers is 768. The size of the types and ranks
in the EOT Path embedding are 256 and 1,024 respectively, the
max depth of EOT path expression is 10, and the dimension for
the type-unit and rank-unit embedding (𝑑𝑢 ) is 32. The momentum
encoder is updated with a momentum term m = 0.999. The size
of the memory bank is set to 32,768. The probability of question
replacement 𝑝 is 0.3. The temperature factor 𝜏 is set to 0.07. In the
pre-training phase, we adopt the AdamW optimizer with a learning
rate of 0.0005 and a batch size of 64. We do not initialize our model
before pre-training with parameters from pre-trained BERT or any
variants. All experiments are conducted with one Tesla V100 GPU.

5.4 Baselines
To demonstrate effectiveness of our proposed model, we compare
it with several baselines. Specifically, these methods are:

HiAttention [43] is a traditional method for learning representa-
tions of long text sequences, especially documents with hierarchical
structure. It adopts a 2-level hierarchical attention mechanism to
measure the importance of different parts in the document.

EOE [25] is a multi-layer GRU-based model for learning repre-
sentation of examination papers with hierarchical structure.

Longformer [1] is a Transformer-based model. It adopts several
new attention mechanisms that greatly reduce the time complexity
of the model. Thus it can accept much longer sequences than BERT.

BigBird [45] is another Transformer-based model that imple-
ments a self-attention mechanism of linear dependency. It outper-
forms Longformer in some NLP tasks.

BERT [15] is the most popular pre-trained model in NLP tasks.
Considering its limitation on input length, we apply BERT to our
examination papers at the test item granularity and employ the
same test item embedding method as ours.

MarkupLM [18] is a pre-trained language model designed for
documents in markup languages, such as web pages. Its architec-
ture is well-suited for processing structured documents, making it
applicable to the representation of examination papers. To adapt
to the input format of MarkupLM, we convert examination papers
to HTML documents and extract the HTML source code as the

3Code is available at https://github.com/bigdata-ustc/PaperLM.
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model input. We also apply MarkupLM at the test item granularity
to enable it to handle lengthy examination papers.

For better illustration, we list the comparison of detailed charac-
teristics of all baselines and our proposed model in Table 4. Note
that we only calculate the numbers of parameter for the pre-trained
models. The non-pre-trained models: HiAttention and EOE, are
GRU-based models, whose numbers of parameter vary depending
on the length of the input sequences. As a result, their numbers of
parameter are not comparable with those of the other models.

5.5 Evaluation Tasks
We use three typical tasks related to examination paper representa-
tion: paper difficulty estimation examination paper retrieval, and
paper clustering to evaluate our proposed model.

Paper difficulty estimation. Paper difficulty estimation is a
regression task to estimate the difficulty of a given examination
paper. We add an MLP head on top of PaperLM as well as other
pre-trainedmodel baselines and fine-tune the whole model. For non-
pre-trained model baselines, we train it from zero. We conduct this
experiment on Dataset2 where we can obtain paper-level difficulty
scores. Following [13], we adopt MAE (Mean Absolute Error), RMSE
(Root Mean Square Error), PCC (Pearson Correlation Coefficient),
and DOA (Degree of Agreement) as our evaluation metrics.

Examination paper retrieval. The main purpose for task ex-
amination paper retrieval is to find similar examination papers in
large-scale online education systems, which supports various appli-
cation scenarios such as personalized paper recommendation. The
similarity between two arbitrary examination papers are measured
by cosine similarity function. We directly use the learned exami-
nation paper representations from pre-trained PaperLM without
further fine-tuning. Following [25], we adopt NDCG@N (Normal-
ized Discounted Cumulative Gain), themost widely-used evaluation
metric for ranking tasks, to evaluate our model. We conduct this
experiment on Dataset3.

Paper clustering. To further evaluate our model in the scenario
where there is no annotation available, we perform paper clustering
on Dataset4. We conduct experiments with two different number of
clusters in Dataset4 to evaluate model’s ability to distinguish knowl-
edge concepts at different levels. We apply K-means [27] clustering
over all the paper representations and use the NMI (Normalized
Mutual Information) metric for evaluation.

5.6 Results and Discussion
The results of three tasks are presented in Table 3. Note that Hi-
Attention and EOE are not pre-trained models, which limits their
applicability to unsupervised tasks such as examination paper re-
trieval and paper clustering. Consequently, we don’t evaluate their
performances on these two down-stream tasks. We discuss our
observations from the experiments as follows.

PaperLM outperforms baselines. As Table 3 shows, our pro-
posed model PaperLM consistently achieves better performance
than all baselines on paper difficulty estimation, examination paper
retrieval, and paper clustering, which demonstrates that PaperLM
can effectively capture the domain-specific textual and hierarchical
structural features of examination papers, benefiting learning an
informative and distinctive representation of examination papers.

Notably, PaperLM largely surpasses other methods on tasks ex-
amination paper retrieval and paper clustering, which highlights
the model’s ability to learn distinct representations for different
examination papers, making it highly valuable for practical applica-
tions. The observation also confirms our model’s discriminability
in features without fine-tuning.

Structural information is beneficial.The experimental results
obviously show that pre-trained models (e.g. PaperLM, Longformer)
largely outperform traditional methods (e.g. HiAttention, EOE), con-
firming the effectiveness of pre-trained language models. Addition-
ally, we obtain the observation that pre-trained models with both
textual and structural information (e.g. PaperLM, MarkupLM) out-
perform pre-trained models utilizing only textual information(e.g.
BigBird, BERT), which demonstrates that the structural information
of examination papers is essential for learning an informative and
distinct representation.

A test item is richer than a single word. We notice that
models operating at the test item granularity level (e.g. PaperLM,
MarkupLM, BERT) consistently perform better than models oper-
ating at the word or character granularity level (e.g. Longformer,
BigBird). Therefore, we believe that exploring information from
test items can be more beneficial than collecting features from each
word when representing an examination paper. In addition, well-
designed modeling on feature embedding can also bring a more
informative representation.

Lightweight but effective.We also observe from Table 4 that
while PaperLM outperforms all baselines, it has the fewest parame-
ters among the pre-trainedmodels. This demonstrates that PaperLM
is both lightweight and effective, which is helpful in terms of saving
computation resources.

6 MODEL ANALYSIS
6.1 Ablation study
To investigate the effect of each component, we conduct ablation
studies and the results are shown in Table 5. We consider two
scenarios here. Firstly, we remove the EOT path embedding and
two pre-training objectives related to EOT: EOT Node Relationship
Prediction and Question Type Prediction. Secondly, we keep the
EOT path embedding but remove the pre-training objective Paper
Contrastive Learning. We observe that removing any module leads
to a performance decrease on the down-stream tasks, which indi-
cates the effectiveness of our designs. Especially, there is a relatively
larger performance decrease when we remove EOT path embedding
and related pre-training objectives. This highlights the crucial role
of structure information in learning an informative representation
of examination papers.

6.2 Visualization
As we mentioned before, our model is expected to capture the
holistic examination scope of papers, which is represented by the
knowledge concepts covered in the examination papers. In order to
intuitively assess this capability, we project the representations of
examination papers in Dataset4 into 2D space by t-SNE [35]. The
projection is also conducted in two experimental scenarios, which
represent knowledge concepts at the first and second levels of the
knowledge hierarchy. Note that we exclude some categories as they
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Table 5: Results of ablation experiments.

Tasks Paper Difficulty Estimation Examination Paper Retrieval Paper Clustering

Metrics MAE ↓ RMSE ↓ PCC ↑ DOA ↑ NDCG@5 ↑ NDCG@10 ↑ #Cluster=4 #Cluster=12
NMI ↑ NMI ↑

PaperLM 0.1507 0.1823 0.7003 0.7462 0.9742 0.9879 0.7062 0.6280
w/o EOT path embedding 0.1589 0.1917 0.6720 0.7337 0.9679 0.9824 0.6876 0.5912

w/o PCL 0.1566 0.1897 0.6971 0.7455 0.9715 0.9868 0.6965 0.6025
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Figure 3: Different models’ visualization results of examination papers on Dataset4.
.

contain too few sample examination papers. We conduct the visu-
alization on PaperLM along with three pre-trained model baselines
and the results are shown in Figure 3, where examination papers in
different categories are marked with different colors. From the pro-
jection results at both levels, we observe that compared with other
models, PaperLM has the capability to cluster samples within the
same category more closely together, while effectively separating
samples belonging to different categories. This intuitively demon-
strates that PaperLM is able to capture the examination scope of
examination papers.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed a pre-trained model, namely PaperLM, to
learn representations of examination papers by integrating both the
text and hierarchical structure information of papers. Specifically,
we first extracted the Examination Organized Tree from a hierar-
chical examination paper, and converted its path into embedding as
the model input. Then, we proposed three pre-training objectives:
EOT Node Relationship Prediction, Question Type Prediction, and
Paper Contrastive Learning. These objectives aim to capture the hi-
erarchical structure of examination papers, bridge the gap between

text and structure, and model the holistic features of papers respec-
tively. We evaluated our proposed model on real-world datasets
with three down-stream tasks: paper difficulty estimation, examina-
tion paper retrieval, and paper clustering. The experimental results
demonstrated the effectiveness of our proposed model.

For future research, we will investigate the fusion of information
from additional modalities like examination paper images, to fur-
ther enhance the representation learning capabilities of our model.
Meanwhile, we hope to explore other meaningful applications of
paper representation, such as intelligent paper generation.
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