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Abstract. Entity Linking (EL) aims to map mentions in a text to corre-
sponding entities in a knowledge base. Existing EL methods usually rely
on sufficient labeled data to achieve the best performance. However, the
massive investment in data makes EL systems viable only to a limited
audience. There is ample evidence that introducing entity types can pro-
vide the model prior knowledge to maintain the model performance in
low-data regimes. Unfortunately, current low-data EL methods usually
employ entity types by rule constraints, which are in a shallow man-
ner. Furthermore, they usually ignore fine-grained interaction between
mention and its context, resulting in insufficient semantic information of
mention representation in low-data regimes. To this end, we propose a
Class-Dynamic and Hierarchy-Constrained Network (CDHCN) for entity
linking. Specifically, we propose a dynamic class scheme to learn a more
effective representation for each entity type. Besides, we formulate a
hierarchical constraint scheme to reduce the matching difficulty of the
given mention and corresponding candidate entities by utilizing entity
types. In addition, we propose an auxiliary task called mention position
prediction (MPP) to obtain an informative mention representation in
low-data regimes. Finally, extensive in-domain and out-of-domain exper-
iments demonstrate the effectiveness of our method.

Keywords: Entity linking · Entity type · Hierarchical constraint

1 Introduction

Entity Linking (EL), also known as entity disambiguation, aims to link ambigu-
ous textual mention to the correct entity in a particular knowledge base (KB).
As a fundamental building block for many Natural Language Processing (NLP)
applications, such as Question Answering [1] and Text Mining [2–4], this task
has received increasing attention from researchers in recent years.
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Fig. 1. A flowchart overview of the entity linking system.

Generally, as illustrated in Fig. 1, there are two main parts to the EL systems:
the first part is the entity candidate generation module, which takes the given
KB and selects a subset of entities that might be associated with mentions in
the input text; the second part is the entity disambiguation module, which takes
the given mentions and links them to the most corresponding entities in the
candidates set. As Fig. 1 shows, in the sentence “Tesla is an American hair
metal band”, the phrase Tesla is called a textual mention. Entity Linking seeks
to map the mention to a real word entity from a specific KB. For instance, the
mention Tesla in the above sentence should be mapped to Tesla (band) but not
Tesla (coil) in Wikipedia. The entities to be linked may have similar word forms
like Tesla (band) and Tesla (coil) which makes the EL task difficult.

Recently, learning better representations has been proposed as a promising
direction for the EL tasks. For example, static word embeddings [5,6] and pre-
trained models [8,9] have proved mention embedding’s effectiveness for improv-
ing the performance of EL methods. Unfortunately, such methods often require
a large amount of training data, and it is impractical for most researchers to
repeatedly train EL models on massive data from KBs due to the constant
updating of KBs (e.g., it took a week’s time to train the BLINK [10] on 8-GPUs
for 9M examples). For this reason, how to use external information to alleviate
the problem of data dependence has received more attention in EL tasks [11–13]
and other NLP tasks [14–16]. Specifically, Bhargav et al. [11] exploited external
information about entity types by proposing an auxiliary task called entity type
prediction in a low-data regime setting. Tedeschi et al. [13] proposed to improve
the EL model trained on low amounts of labeled data by exploiting entity types.

However, the above approaches employ external knowledge (i.e., entity types)
by rule constraints or simply splicing entity types and entity texts, which are in
a shallow manner. For example, Tedeschi et al. [13] simply concatenated entity
types (e.g., ORG) with entity description to enrich each candidate entity rep-
resentation and use entity types to constrain the EL model’s output. In this
way, the models cannot make the best use of semantic information associated
with entity types. Some deep semantic solutions (e.g., type embeddings) can pro-
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Fig. 2. The illustration of mention-entities selecting. (a) Traditional entity linking.
These methods select the corresponding entity from a candidate set directly. (b) Hier-
archical constraint entity linking. Our methods score the entity types for mention first
and then use this score to select the corresponding entity.

vide more information for entity linking. Meantime, the previous models select
the most suitable entity from the candidate set via similarity matching directly.
However, these candidates are often highly similar. As shown in Fig. 2 (a), the
candidate entity titles in Tesla’s candidate set are similar, causing candidate
entity representations generated to be similar, which is hard for models to select
the mention’s suitable entity. Therefore, it is necessary to exploit the semantic
information of entity types to lower EL tasks difficulty.

With the above analysis, in this paper, we propose a Class-Dynamic and
Hierarchy-Constrained Network (CDHCN) for effectively entity linking. Unlike
traditional label embedding methods [17] embedded entity types statistically,
we argue that the entity type representation should be dynamic as the mean-
ings of the same entity type for different candidate entities maybe be different.
For example, Tesla (band) and the European Union, the two mentions have
the same entity type (ORG). However, their meanings are inconsistent, and
we believe their entity type representations should be far away in the feature
space. In response to this, we propose a dynamic class embedding generation
method to learn a more effective representation for each entity type, which can
ensure that the mention’s unique characteristics can be retained as much as pos-
sible. Besides, different from traditional methods that match the mention and
its candidate entities directly, we propose to use entity types help pre-classify
of candidate entities and formulate a hierarchical scheme as shown in Fig. 2 (b).
Specifically, the hierarchical constraint module in our method first classifies can-
didate entities according to entity types (e.g., ORG, INST) and then matches
mention and entity types, as shown in Fig. 2 (b). In this way, we can substantially
reduce the matching difficulty of the given mention and corresponding candidate
entities. Furthermore, in order to solve the problem of the insufficient mention
representation trained in low-data regimes, we propose an auxiliary task called
Mention Position Prediction (MPP) to conduct multi-task learning. This task
enables fine-grained interactions between mention and its context, which could
capture more semantic information about the mention. In summary, the main
contributions of our work could be summarized as follows.

– For the first time, we formulate a dynamic class scheme and hierarchical
constraint scheme to fully utilize entity types in low-data regimes.
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– We present an auxiliary task called Mention Position Prediction to obtain a
more informative mention representation in low-data regimes.

– Extensive experiments on in-domain and out-of-domain datasets demonstrate
the effectiveness of the proposed method. Our code is available at https://
github.com/bigdata-ustc/CDHCN.

2 Related Work

2.1 Entity Linking

In recent years, the EL systems have made significant progress with the develop-
ment of contextualized word embedding and representation methods [6,18,19].
There are a variety of different approaches proposed by researchers to tackle
with EL task and its variants. For example, in order to maximize the similarity
score between a mention embedding and its most corresponding entity embed-
ding, Botha et al. [20] designed a dual-encoder architecture, consisting of two
encoders for mentions and entities separately. GENRE, proposed by De Cao et
al. [8], treats EL task as a generation problem by employing an auto-regressive
formulation to teach a transformer-based model to produce a unique name for
the mention. Gu et al. [21] proposed a machine reading comprehension frame-
work for short text EL.

These methods described above require large amounts of training data, which
is resource-intensive. This motivated researchers to make greater use of external
information such as entity relations, entity types to provide the model with more
prior information and reduce the scale of training data without performance
degradation. Therefore, Raiman and Raiman [22] proposed DeepType, which
makes use of type information to enhance the EL model’s performance. Another
noteworthy direction is how to fully leverage the entity types’ commonalities
between NER tasks and EL tasks. To take advantage of their relatedness, Martins
et al. [23] performed joint learning of NER and EL, and obtain a robust system.
Fine-grained NER labels are used to place limitations on the EL model’s behavior
in the most recent study [13]. Even though there is ample proof that introducing
entity types (NER labels) into EL approaches is beneficial, current methods don’t
take fully utilize entity types information. For more than just labelling purposes:
it can also be used to create informative embeddings that can be investigated
with fine-grained features.

2.2 Name Entity Recognition

Most NER systems regard the task as sequence labelling and usually model
it using conditional random fields (CRFs) or bi-directional Long Short Term
Memory Networks (LSTMs). The performance of NER was further improved by
recent large-scale pre-trained language models like BERT [9], which produced
state-of-the-art results comparable to almost any other area in NLP. Thanks
to NER classes, NER can cluster entities and solve the problem of intrinsic

https://github.com/bigdata-ustc/CDHCN.
https://github.com/bigdata-ustc/CDHCN.
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Fig. 3. The flowchart overview of our work.

sparsity in EL tasks. Besides, the relatedness of NER and EL has been proven
to improve the performance of the entity linking model [23]. Nevertheless, there
is a paucity of research on the effectiveness of enhancing EL models’ capability
by adding NER classes information or the relatedness of EL and NER. Previous
approaches in this area have directly either used NER for mention detection or
train a multi-task model that learns NER and EL jointly [23,24].

In this paper, we take the best of NER information. Following Tedeschi et
al. [13], we add constraints to the candidate entities generation and inference
phase. Additionally, we show using entity types embeddings is a feasible way to
exploit NER for EL. Furthermore, we propose an auxiliary task called mention
position prediction. This task is similar to NER but does not identify the type of
detected mention, which can retain the mention’s specific features for mention
embedding generation as much as possible.

3 The Framework of CDHCN

In this section, we first present the problem statement of entity linking (EL), and
then give an overview of our proposed CDHCN method. After that, we explain
the technical details of CDHCN.

3.1 Problem Statement

The EL task can be formulated as a multi-label classification task where classes
are represented by entities. Specifically, a text S contains a set of identified men-
tions M = {m1, m2, ... , mn}. The goal of the EL task is to find a mapping
function that links each mention mi to a unique entity ei which is an unambigu-
ous page in a given KB (e.g., Wikipedia).

Before entity disambiguation, we have a preprocessing step called entity can-
didate generation that chooses potential candidate entities Θ i = {e1, e2, . . . ,
eK} from a specific KB for each mention mi to improve recall, where K is a
pre-defined number to prune the candidate set. In this work, we adopt NER-
enhanced candidate generation in line with Tedeschi et al. [13]. In a nutshell,
by the use of NER classes, we can add constraints to the entity candidate set,
which help decrease the size of the candidate set without reducing its recall.
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3.2 An Overview of CDHCN

Figure 3 shows the framework of our method. In the preprocessing stage, our
method makes use of mention’s entity types (NER classes) to help generate a
candidate set [13]. Note that each candidate has one pertinent description in the
given KB. After obtaining the candidate set, we simultaneously input entities
and mentions into the model. Through the hierarchical constraint module, we
can obtain two similarity scores: one for the mention and entity type, and one
for the mention and entity itself. Then, the former similarity score that we call
it hierarchical constraint scores can be used to constrain the latter. Finally, we
use the similarity score that is obtained after constraining for selecting the best
mention-entity pair.
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Fig. 4. Illustration of our proposed CDHCN framework for entity linking. (a) The
dynamic class embeddings generation module can use candidate entities information to
generate class embeddings for mention. (b) The hierarchical constraint module can use
class embeddings to constrain the similarity scores between mention and its candidate
entities. (c) The mention position prediction module can use auxiliary task to learn a
more robust mention embedding.

3.3 Components of CDHCN

In this subsection, we will introduce the technical details of CDHCN. As shown
in Fig. 4, CDHCN mainly contains three parts: (1) dynamic class embedding
generation; (2) hierarchical constraint; (3) metion position prediction. We first
obtain mention-specific entity type embeddings by dynamic class embedding
generation module. Then the embedding can be used in hierarchical constraint
module. Additionally, the mention position prediction module aims to obtain a
more robust mention embeddings.

Input Representation. For a more accurate representation of mention and
entity, we need to map each word in contextual mention and entity descrip-
tion into a low-dimensional vector. In this paper, we splice mention and men-
tion’s context as the input of transformer-base encoder to obtain initial mention
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embeddings. Specifically, we construct the input of each mention example as:

Im = [CLS] lctx [Ms] mention [Me] rctx [SEP ], (1)

where lctx and rctx denote context to the left of the mention and right of the
mention, respectively. To address the problem of quadratic dependency in the
transformer encoder when dealing with long texts, we limit the mention context
length L to 128. Similarly, The entity input is as follows:

Ie = [CLS] title [SEP ] description [SEP ], (2)

where [CLS] and [SEP] are special placeholders and title denotes entity. We
consider the first token embedding, which is the output of the last hidden layer
corresponding to the position of the [CLS], as mention or entity representation.
Both mention context and candidate entity are encoded into vectors:

Hm = BERT1[CLS](Im) ∈ R
h, (3)

He = BERT2[CLS](Ie) ∈ R
h, (4)

where Hm and He are all h-dimensional vectors which represent mention and
candidate entity respectively. Note that BERT1 and BERT2 are two different
encoders. Besides, we also obtain every token representation as follows:

[He1i
,He2i

, ...,HeLi
]T = BERT1(Iei) ∈ R

L×h, (5)

[Hm1 ,Hm2 , ...,HmL ]T = BERT2(Im) ∈ R
L×h, (6)

where H is an h-dimensional vector and L is text length.

Dynamic Class Representation. To capture more fine-grained semantic fea-
tures of entity types (e.g., Organization), we need to encode entity types into
low-dimensional vectors. This can be done quickly and easily by using BERT’s
built-in support for entity types as input text. However, due to the limited
text (i.e., entity types are only one word in general), the embeddings that the
model extract are insufficient to represent types features. Moreover, as men-
tioned above, even the meanings of the same entity type for different mentions
are diverse. For example, Tesla, the European Union and Paribas have same
entity type - Organization. However, there are clear distinctions between them,
i.e., Tesla is a rock band, the European Union is a political and economic union
and Paribas is a banking group. Fortunately, the candidate entity descriptions
provide us with rich type information. We propose two simple yet effective meth-
ods to extract type-specific information for each candidate entity: one is context-
aware type extraction and the other is mention-aware type extraction.

1) Context-aware Type Extraction. The local context in the candidate
entity description provides most of the type-specific information. Therefore, we
focus on how to extract these crucial local features. In this method, multiple
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CNNs are used for generating entity types features because of the excellent abil-
ity of CNN in extracting local features [25]. Specifically, given a candidate entity
description representation [He1i

,He2i
, ...,HeLi

]T generated in the above step, we
need to splice them together:

He1:Li
= He1i

⊕ He2i
⊕ ... ⊕ HeLi

, (7)

where ⊕ denotes concatenation operation.
Then, the local feature Cexi

of candidate entity ei can be generated by con-
volution operation with different convolution kernel sizes ks:

Cexi
= f(WT

CNN · Hex+ks−1
i

+ b), (8)

where WCNN ∈ R
ks×h is a learnable matrix and b is a bias term. f is a non-

linear function. Particularly, the kernel is applied to each possible windows of
word embddings [He1:ks

i
,He2:ks+1

i
, . . . , HeL−ks+1:L

i
] in the sentence to produce a

feature map:
Cei = [Ce1i

, Ce2i
, . . . , CeL−ks+1

i
]. (9)

After that, we use a max-pooling layer over the feature map to extract
key information, and we can obtain the continuous fine-grained representations
[Ce1 ,Ce2 , ...,CeK ] for each candidate entity.

2) Mention-aware Type Extraction. Lacking complex mention-entity inter-
actions in the type-specific extraction stage might lead to the extracted features
not being the ones that are required by the mention-entity disambiguation task.
Therefore, we focus on how to utilize the mention information to assist in extract-
ing type-specific features for each candidate entity. Some researches have proven
that the associative attention can improve feature learning [26]. In this method,
the multi-head attention mechanism [27] is used to help the model focus on
features more relevant to the mention-entity disambiguation task. Specifically,
we regard mention embedding Hmi

as query, candidate entity token embedding
[He1j

,He2j
, ...,HeLj

]T as key and value. Then the mention-aware entity embeddings
are computed by:

C = {Cei |i = 1, 2, . . . , K}
= MultiHead(query ∗ Wq, key ∗ Wk, value ∗ Wv)

(10)

where Wq, Wk and Wv are learnable parameters. The output feature C =
{Cei |i = 1, 2, . . . ,K} is mention-aware representations for each candidate entity.
For detailed implementation of MultiHead Attention Mechanism, please refer to
Transformer [27].

After extracting type-specific information, we need to generate entity type
representations by aggregating fine-grained candidate entity representations with
the same entity type. In detail, we use entity type (e.g., Organization) to clus-
ter candidate type representations, and the final mention-specific entity type
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representation Htype is computed by:

Htypej =
n∑

i=1

Ceij/n, (11)

where eij (i = 1, 2, . . . , n) denotes that candidate entity ei type is typej .

Hierarchical Constraint. As we discussed before, external knowledge can be
used to improve model performance without requiring a larger data set. In the
paper, we use entity types information as an EL task external knowledge. Unlike
previous literature, we model entity type implicitly so that the proposed model
can capture specific type information for each different mention. As shown in
Fig. 2 (b), before calculating the similarity scores between mention and candidate
entities, we need to obtain the similarity scores between mention and mention-
specific entity types, which can also be called hierarchical constraint scores. The
hierarchical constraint scores are given by the cosine similarity score:

s(m, typei) =
HT

m · Htypei

||Hm|| ||Htypei ||
, i ∈ (1, 2, . . . , 18), (12)

where typei represents entity type, and we have 18 kinds of entity types. Htype

are entity type embedding that is computed in equation (11).
After obtaining the hierarchical constraint scores between mention and entity

types s(m, typei), we could use these scores to constrain the similarity scores
between mention and candidate entities. Prior to matching mention and can-
didate entities, it is intended that the model have pertinent knowledge about
candidate entity types. The similarity scores between mention and candidate
entities are also calculated by cosine similarity score:

s(m, ei) =
HT

m · Hei

||Hm|| ||Hei ||
, i ∈ (1, 2, . . . ,K). (13)

And the final constrained score function is as follows:

stypei(m, ej) = s(m, typei) · s(m, ej), (14)

where stypei(m, ej) denotes the similarity score between mention m and candi-
date entity ej whose entity type is typei. Then the network is trained to max-
imize the score of the gold mention-entity pairs. The training loss function of
gold entity prediction is defined as cross-entropy:

LEL = − 1
N

N∑

k=1

K∑

j=1

yj
klog(stypei(mk, ej)), (15)

where yj
k denotes gold entity of mk. N is the number of examples. K is the

number of candidate entities.

Mention Position Prediction. In order to enhance low-data mention repre-
sentation through fine-grained interaction between mention and its context, we
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introduce mention position prediction (MPP) as an auxiliary task. We design
an MPP task to teach the model to distinguish whether a token is a part of
the mention. MPP is a token-level prediction task because we require tokens
belonging to the correct mention span with the same position. In this way, the
model can learn more token-level feature which is more compatible with the
mention. This task is, in essence, a binary classification task that model predicts
if a word is part of a mention or not. We feed mention context token embed-
ding [Hm1 ,Hm2 , ...,HmL ] obtained above into a feed-forward layer with Softmax
function:

ỹj
i = Softmax(WT

MPPHmi
j
+ bMPP ), (16)

where WMPP ∈ R
h and b ∈ R

L are the learnable parameter and bias respectively.
The training loss function of MPP is defined as cross-entropy:

LM = − 1
N

N∑

j=1

L∑

i=1

[yj
i log(ỹj

i ) + (1 − yj
i )log(1 − ỹj

i )], (17)

where ỹj
i denotes the prediction and yj

i is the target indicating whether Hmi
j

is
mention embedding. N is the number of training examples.

3.4 Training Strategy

Our approach, in contrast to conventional methods, consists of two tasks: entity
linking task and mention position prediction task. we need to optimize simulta-
neously for these two tasks by a single loss function. Given the losses defined in
equation (15) and equation (17), our loss function is as follows:

L = λELLEL + λMLM , (18)

where L is the final optimization target, λEL and λM are hyper-parameters that
denote task weights for entity linking and mention position prediction respec-
tively. In our experiment setup, λEL and λM are all set to 1.

In the same manner as Tedeschi et al. [13], we use NER classes (e.g., ORG,
LOC) to constrain the model’s output. In particular, for each mention, we require
the model to output entities whose entity types is consistent with the prediction
of an NER classifier.

4 Experiments

4.1 Datasets Preparation

For the reliability and authority of experimental results, we conduct experiments
on both the in-domain and out-of-domain datasets. Specifically, we use AIDA-
YAGO-CoNLL [28] as our in-domain dataset. This dataset contains AIDA-train
for training, AIDA-A for development, and AIDA-B for testing. It is impor-
tant to note that we train each of our models on only the AIDA-train (18k
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label instances). For out-domain datasets, we evaluated models on five pop-
ular datasets: MSNBC, AQUAINT, ACE2004 [29] and WNED-WIKI, WNED-
CWEB [29,30]. The statistics of these datasets are shown in Table 1. For the KB,
we use the November 2020 dump of the English Wikipedia labeled by Tedeschi
et al. [13]. Each entity in Wikipedia was labeled by a new set of 18 fine-grained
NER classes.

Table 1. Statistics of the datasets. It is important to note that MSNBC, AQUAINT,
ACE2004, WNED-WIKI, and WNED-CWEB are out-of-domain datasets, meaning
they do not have training data and development data. We train each of our models on
only the AIDA-training.

Dataset Train Dev Test

AIDA [28] 18,395 4,784 4,463

MSNBC [29] – – 656

AQUAINT [29] – – 727

ACE2004 [29] – – 257

WNED-WIKI [29,30] – – 6,821

WNED-CWEB [29,30] – – 11,154

4.2 Experiment Setup

In this paper, our goal is to demonstrate the superiority of our method in low-
data regimes entity linking. For the low-data regimes scenario, we follow the
setting of Tedeschi et al. [13]. A complete EL systems consists of mention detec-
tion, candidate generation and entity disambiguation. Here, we mainly focus on
entity disambiguation methods. For mention detection and candidate generation,
we follow the setting of Tedeschi et al. [13]. Note that, we do not have to figure
out the right span of mention because it is provided in context. For candidate
generation, we adopt NER-Enhance strategy to find a trade-off between recall
and set size. Specifically, we train and employ an NER classifier to predict the
entity type of the given mention in context and then try to choose the entities
whose NER classes are consistent with the mention as candidate entities.

In our experiment, we use the pre-trained uncased BERT-based model with
a 768 dimensions hidden representation as our backbone. We trained each model
for 30 epochs, adopting an early stopping strategy with a patience value of 5. We
adopt Adam [31] as optimizer with learning rate 1e−5 and maximum sequence
length L 128. For each mention, the candidates’ number K is set to 40. All
experiments are performed on a NVIDIA GTX2080Ti with 11G GPU memory.

4.3 Baseline Methods

In our experiments, we compare our model with existing state-of-the-art base-
lines in entity linking:
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– Global-RNN [32] is a method based on convolutional neural networks and
recurrent neural networks.

– Deep-ed [6] is a joint document-level entity disambiguation method which
leverage neural attention to reinforce context representations.

– WNED [29] is a greedy and global NED algorithm based on a sound
information-theoretic notion of semantic relatedness derived from random
walks on carefully constructed disambiguation graphs.

– E-ELMo [7] is a method to learn an entity-aware extension of pretrained
ELMo [33]. The model obtains significant improvements.

– DCA [34] is a global method which sequentially accumulates context infor-
mation to make efficient, collective inference.

– WNEL [19] is a two-stages method which exploits unlabelled documents.
– GENRE [8] exploits a sequence-to-sequence architecture to generate entity

names in an autoregressive fashion conditioned on the context.
– NER-EL [13] is a method that use NER classes to improve performance in

low-data regimes.
– EXTEND [12] is Transformer-based architectures framing EL task as a text

extraction problem.

Most EL systems actually make use of massive additional data and informa-
tion originating from Wikipedia at training time, i.e., GENRE benefits greatly
from drastically increasing the size of the training set from 18K to 9000K labelled
instances, gaining almost 5 points. Our focus, however, is to improve EL model
performance in low-data regimes. Among the above methods, only GENRE,
NER-EL and EXTEND have low-data regimes setting.

Table 2. Results (InKB accuracy) on the in-domain settings when training on the
low-data regime, i.e., AIDA-training only (right) and when using additional resources
coming from Wikipedia (left). We mark in bold the best scores.

Model(high-data) AIDA-B Model(low-data) AIDA-B

Global-RNN 90.7 GENRE 88.6

Deep-ed 92.2 NER-EL 89.0

WNED 89.0 EXTEND(base) 87.9

E-ELMo 93.5 CDHCN(w/o MPP, w CAT) 89.6

DCA 93.7 CDHCN(w/o MPP, w MAT) 89.7

WNEL 89.6 CDHCN(w MPP, w/o CAT) 89.2

GENRE 93.3 CDHCN(w MPP, w CAT) 90.0

EXTEND(large) 92.6 CDHCN(w MPP, w MAT) 90.3
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Table 3. Results (InKB accuracy) on the out-of-domain settings when training on the
low-data regime, i.e., AIDA-training only. We mark in bold the best scores.

Model MSNBC AQUAINT ACE2004 CWEB WIKI

lo
w
-d
a
ta

NER-EL 84.9 67.2 86.3 63.7 60.0

CDHCN(w/o MPP, w CAT) 85.4 67.3 86.7 64.0 60.4

CDHCN(w/o MPP, w MAT) 86.5 67.1 85.9 64.1 60.0

CDHCN(w MPP, w/o CAT) 86.0 67.2 86.7 64.0 60.0

CDHCN(w MPP, w CAT) 84.2 67.7 87.5 64.2 60.2

CDHCN(w MPP, w MAT) 84.6 67.4 86.7 64.6 60.7

4.4 Experimental Results

We present the results of our approaches for EL on an in-domain dataset known
as AIDA-B and discuss the merits of each contribution in turn. Then, we conduct
experiments on out-of-domain datasets named MSNBC, AQUAINT, ACE2004,
WNED-WIKI and WNED-CWEB to prove that our contributions are robust and
beneficial for EL task in low-data regimes. In order to demonstrate the effects of
each contribution, we compare five CDHCN variants. Specifically, MPP denotes
the mention position prediction module, CAT denotes the context-aware type
extraction module and MAT denotes the mention-aware type extraction module.

In-domain Results. We present the in-domain entity linking evalution results
in low-data regimes in Table 2 (right). From Table 2 (right), we can observe
that compared to other strong baseline methods, CDHCN (w MPP, w MAT)
has state-of-the-art performance in low-data regimes and achieves 1.3% abso-
lute improvement in terms of accuracy over the strong baseline [13]. On the
AIDA-B dataset, CDHCN (w MPP, w CAT) performs better than other meth-
ods but slightly worse than CDHCN (w MPP, w MAT) in low-data regimes. Two
CDHCNs (w/o MPP) all perform better compared to the strong baseline [13].
The performance of our model further increases to 90.0 and 90.3 respectively by
combining auxiliary task MPP and two hierarchical constraint methods, indicat-
ing that our menthod enhances mention representation and makes use of entity
type information to tackle EL task successfully. To further validate the effec-
tiveness of our method, we also compare with baselines which are trained in
high-data regimes in Table 2 (left). Although our method is trained in low-data
regimes, it is still competitive and surpasses WNED [29] and WNEL [19] that
are trained in high-data regimes.

Out-of-domain Results. Among all the baselines described in this paper, only
GENRE, NER-EL and EXTEND have low-data regime settings. GENRE [8] and
EXTEND [12] are trained based on Bart [35], and NER-EL is trained based on
Bert [9]. Since Bart is more generalized than Bert, the models based on Bart
can perform much better on out-of-domain datasets. Although our methods can
also be realized on the Bart, in this paper, we only implemented on the Bert
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Table 4. Per-class accuracy (%) of the entities on the AIDA-B and ACE2004.

Entity type
AIDA-B ACE2004

NER-EL CDHCN Δ NER-EL CDHCN Δ
A
ID

A

PER 95.9 95.7 −0.2 88.9 88.9 +0.0

ORG 81.4 83.9 +2.5 84.5 85.9 +1.4

LOC 93.1 93.5 +0.4 87.7 89.0 +1.3

ANIM 100.0 100.0 +0.0 – – –

EVE 46.3 46.4 +0.1 – – –

VEHI 100.0 100.0 +0.0 100.0 100.0 +0.0

and left the implementation on the Bart as the future work. So we evaluate five
CDHCNs on the out-of-domain setting and compare it to NER-EL which is the
only model based on Bert in low-data regimes. Similarly to the in-domain eval-
uations, our method consistently improve the results across five out-of-domain
test sets. Table 3 shows that CDHCN (w MPP, w MAT) presents consistent
performance in term of accuracy by 0.7% points compared to baseline methond
[13] on WIKI. CDHCN (w/o MPP, w MAT) presents consistent performance by
1.6% in term of accuracy compared to baseline methond [13] on MSNBC. On
the ACE2004 and AQUAINT datasets, CDHCN (w MPP, w CAT) achieves a
1.2 and 0.5% point improvement over baseline approaches [13]. The performance
on out-of-domain datasets reveals the robustness of our model.

4.5 Type-Base Results

To better evaluate the role of entity types in our method, we analyze the accuracy
of each entity type. Table 4 shows the results of a comparison between NER-EL
[13] and CDHCN (w MPP, w MAT) when dealing with partial entity types. We
can observe that our approach improves the results of most entity types. Under
the type ORG, CDHCN pushes performances up by 2.5 and 1.4% on the AIDA-
B and ACE2004 respectively. Under the type LOC, CDHCN performs slightly
better than NER-EL by 0.4% on the AIDA-B but far better than NER-EL by
1.3%. There is a main reason that our improvement in mainly focused on ORG
and LOC: some entity types features are difficult to extract since the description
information of these entities has low degree distinction (e.g., PER). These type-
based results corroborate our hypothesis that using external knowledge (i.e.,
entity type) can boost entity linking performance.

4.6 Case Study

To better explain the CDHCN model’s research results, we conduct a case study.
As shown in Fig. 5, the model without hierarchical constraints incorrectly pre-
dicts “HSBC” as “The Hongkong and Shanghai Banking Corporation”, predicts
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“Yale University” as “Yale University Press”. The model can learn partial men-
tion’s entity type according to the mention context, however, it does not dare to
choose the gold candidate entity because of the lack of specific candidate entities’
types information. After learning entity type by giving hierarchical constraints,
the model will tend to select the correct candidate entity whose entity type is
the same as mention.

Text Gold Entity Prediction

HSBC has moved its Shanghai branch … HSBC
NER-EL: The Hongkong and Shanghai Banking Corporation

CDHCN: HSBC
… to head one of the departments at 

Yale University .

Yale 

University

NER-EL: Yale University Press

CDHCN: Yale University
… International Airport in the southern   

Gaza Strip was …

Gaza

Strip

NER-EL: Gaza

CDHCN: Gaza Strip
The New York Times on Wednesday 

reported that al Faroon told …

The New 

York Times 

NER-EL: Time (magazine)

CDHCN: The New York Times

Fig. 5. Examples of sentences where CDHCN can correctly link entity in the KB, but
NER-EL is not.“NER-EL” and “CDHCN” stand for the baseline system and CDHCN
(w MPP, w MAT), respectively.

5 Conclusions

In this paper, we studied the problem of entity linking in a low-data regime
and proposed the CDHCN model, which can take into account the informa-
tion from entity types. Specifically, to better capture information from entity
type, we proposed a method to generate a class embedding for each mention
and then used the embedding to constrain the similarity score between the men-
tion and its candidate entities. Additionally, we utilized an auxiliary task called
Mention Position Prediction to generate a more robust embedding for mention.
Experiments on in-domain and out-of-domain datasets verified the effectiveness
of CDHCN. Since we proposed to study entity type representations in low-data
regimes for the first time, we hope this work could lead to more research in the
future.

Acknowledgement. This research was partially supported by grant from the
National Natural Science Foundation of China (Grant No. 61922073), and the Uni-
versity Synergy Innovation Program of Anhui Province (GXXT-2021-002).

References

1. Dubey, M., Banerjee, D., Chaudhuri, D., Lehmann, J.: EARL: joint entity and
relation linking for question answering over knowledge graphs. In: Vrandečić, D.,
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