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ABSTRACT

Formula recognition endeavors to automatically identify mathe-
matical formulas from images. Currently, the Encoder-Decoder
model has significantly advanced the translation from image to
corresponding formula markups. Nonetheless, previous research
primarily concentrated on single-line formula recognition, ignoring
the recognition of multi-line formulas, which presents additional
challenges such as more stringent grammatical restrictions and two-
dimensional positions. In this work, we present GAP (Grammar
And Position-Aware formula recognition), a comprehensive frame-
work designed to tackle the challenges in multi-line mathematical
formula recognition. First, to overcome the limitations imposed by
grammar, we design a novel Grammar Aware Contrastive Learn-
ing (GACL) module, integrating complex grammar rules into the
transcription model through a contrastive learning mechanism.
Furthermore, primitive contrastive learning lacks clear directions
for comprehending grammar rules and can lead to unstable conver-
gence or prolonged training cycles. To enhance training efficiency,
we propose Rank-Based Sampling (RBS) specialized for multi-line
formulas, which guides the learning process by the importance
ranking of different grammar errors. Finally, spatial location infor-
mation is critical considering the two-dimensional nature of multi-
line formulas. To aid the model in keeping track of that global
information, we introduced a Visual Coverage (VC) mechanism
that incorporates historical attention information into the image
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features via a parameter-free way. To validate the effectiveness
of our GAP framework, we construct a new dataset Multi-Line
containing 12,002 multi-line formulas and conduct extensive ex-
periments to show the efficacy of our GAP framework in captur-
ing grammatical rules, enhancing recognition accuracy, and en-
hancing training efficiency. Codes and datasets are available at
https://github.com/Sinon02/GAP.
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1 INTRODUCTION

Mathematical formulas often appear in textbooks, test papers, and
scientific journals, as expressing knowledge by formulas is quite
concise. However, markup languages such as LaTeX and MathML
are needed to represent mathematical formulae, which makes it
difficult to reuse those formulas directly. Therefore, there is a great
demand for recognizing formulas directly from images in the fields
like online education [19] and image retrieval.

The research about converting images into correspondingmarkup
sequences starts from [2]. The idea of primary works [1, 5, 18, 26]
is to segment the image into multiple symbols and conduct spatial
analysis to identify subscripts, superscripts, and fractions. However,
such methods heavily rely on the accuracy of symbol segmentation
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Figure 1: Examples of multi-line formula grammar rules.

and manually crafted features, limiting their recognition capability
and scalability for real-world applications. With the advancement
of deep neural networks, [9, 43, 45] start to adopt the sequence-
to-sequence methods to replace the traditional approaches. These
methods leverage the Encoder-Decoder architecture [27] to achieve
end-to-end formula recognition, getting rid of symbol segmenta-
tion and manual feature engineering, resulting in significant perfor-
mance improvements. However, as [32] points out, existing models
perform poorly when dealing with lengthy formulas or those con-
taining complex structures such as large matrices or nested arrays.

While prior studies have made notable progress, limited atten-
tion has been paid to the difficulties in recognizing multi-line for-
mulas, including grammatical constraints and the distribution of
two-dimensional positions. Therefore, multi-line formula recogni-
tion starts as an emerging and difficult task in the field of formula
recognition. Specifically, according to our research, multi-line for-
mula recognition presents the following new challenges compared
to single-line formula recognition.

First, multi-line formulas have more stringent grammatical re-
strictions. For instance, multi-line formulas often require left and
right brackets that can vary based on the content size. As shown in
Figure 1(a), 1(b) and 1(c), certain LaTeX parsers (e.g., MathJax1 and
KaTeX2) require left and right operators to appear in pairs, which
means redundancy on either side will cause the parsing failure.
Additionally, multi-line formulas consist of rows and columns. In
Figure 1(d), the {cccc} indicates that there are four columns in the
array, and each column should be center-aligned. Missing even one
alignment character can cause the array to change from Figure 1(d)
to Figure 1(e), resulting in a completely different formula.

Second, the multi-line formulas have two-dimension positions.
With rows and columns defining their structure, elements within
multi-line formulas possess an added degree of freedom for place-
ment. In fact, any equation can be an element of the multi-line
formula, even the array itself. Therefore, the model not only needs
to know how to translate the sub-formulas in each position but also
needs to have a clear idea of its current location in two dimensions.

Finally, there are relatively few multi-line formulas in the ex-
isting public datasets. For instance, the CROHME [22] datasets
(CROHME 2014, CROHME 2016, and CROHME 2019), which are

1https://www.mathjax.org/
2https://katex.org/

the most commonly used datasets in the handwritten mathematical
expression recognition (HMER) field, do not include any multi-
line formulae. The IM2LATEX-100K [9] dataset, a notable resource,
comprises only 6,591 formulas out of 103,556 formulas (about 6.4%)
that encompass multi-line structures like matrices and tables. The
scarcity of data significantly challenges the effective training of
formula recognition models to comprehend multi-line formulas.

To tackle these challenges, we propose the GAP (Grammar And
Position-Aware formula recognition) framework to optimize multi-
line formula recognition. The main contributions are as follows:

• To incorporate the complex grammar rules of multi-line for-
mulas, we design the Grammar-Aware Contrastive Learning
(GACL) module, which generates negative image-formula
pairs by selecting translations with grammatical errors from
the top-𝑘 beam search results. By maximizing the likelihood
distance between positive and negative pairs, the model is
trained to avoid translating grammatically incorrect sentences.

• Primitive contrastive learning lacks clear directions in under-
standing grammar rules, so we propose Rank-Based Sampling
(RBS) specialized for multi-line formulas, which enriches the
combination of positive-negative pairs by classifying different
samples by the importance rankings of grammar rules.

• To overcome the two-dimensional display of multi-line equa-
tions, we propose Visual Coverage (VC) to help the model
clearly remember its current spatial location and where it has
already been observed by blending image features and history
attention records, which is a parameter-free method.

• We construct a new dataset Multi-Line which contains 12,002
formulas while each formula contains at least one multi-line
structure. Subsequently, we conduct extensive experiments on
three different datasets. The results demonstrate the existing
baselines can effectively capture grammatical rules, enhance
recognition accuracy, and increase training efficiency after
fine-tuning with the GAP framework.

2 RELATEDWORKS

2.1 Formula Recognition

The end-to-end formula recognition started from [9, 45] by utilizing
the attention-based encoder-decoder structure to get rid of sym-
bol segmentation and artificial design features. Later works made
improvements by updating the encoder [31, 32], changing the at-
tention module [41, 48], and introducing GNN [35]. Although these
works have significantly improved the recognition accuracy, such
Encoder-Decoder models do not impose any restrictions on the
generated sequence, while the markup languages are sensitive to
grammatical errors. Recently, researchers have noticed the impor-
tance of grammar rules. A series of tree decoders [34, 42, 44] have
been proposed to incorporate syntax information into an encoder-
decoder structure. Tree decoders can capture the hierarchical tree
structure of mathematical expressions, resulting in considerable
improvement compared to string decoders. However, these meth-
ods are primarily designed for relatively simple syntax rules, such
as superscripts and fractions, and cannot handle complex scenarios
such as matrices, where multiple parts are interdependent.

Our research provides a novel perspective for incorporating
grammatical information. Rather than designing a tree decoder,
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we teach the model to avoid violating grammatical rules through
contrastive learning. This allows us to add any type of syntax rule
to the model, enabling us to incorporate the complex restrictions
of multi-line formulas into the baseline model.

2.2 Contrastive Learning

Recently, contrastive learning (CL), as an important approach of
self-supervised representation learning (SSL), has achieved signifi-
cant success in the fields of computer vision [7, 11, 12, 25], natural
language processing [10, 37, 38, 46], and recommender systems
[6, 21, 30, 40]. The basic idea of contrastive learning is to pull an an-
chor sample together with positive samples and push it away from
negative samples in a uniform embedding space. In self-supervised
learning, positive samples typically come from data augmentation,
while negative samples often encompass irrelevant instances.

However, the concept of contrastive learning extends beyond
unsupervised learning. As [15] proposed, improved results can be
achieved by categorizing samples into positive and negative samples
based on their classification labels from supervised learning and
then substituting the conventional cross-entropy loss function with
the contrastive learning loss function.

Similarly, our work seeks to categorize the formulas translated by
the model into positive and negative samples by applying specific
grammatical rules. While similar ideas have been mentioned in the
field of natural language processing [4, 39, 47], we uniquely employ
these concepts to address the challenge of incorporating multi-line
formula grammars into formula recognition models. Our research
also introduces a novel methodology for constructing positive and
negative pairs specifically designed for multi-line formulas.

2.3 Coverage Technology

The concept of Coverage originated from phrase-based statistical
machine translation [17]. In machine translation [23], the cover-
age vector indicates whether a source phrase is translated or not,
ensuring that each source phrase is translated exactly once, and
alleviating issues of repetition and omission. In the image cap-
tion domain, [14] utilizes a coverage vector to indicate whether
a region in the image has been observed and directs the model
to pay greater attention to regions that have not been viewed. As
for formula recognition field, [45] incorporates historical visual
information through a CNN network; [49] proposes specialized
coverage methods for transformer-based Encoder-Decoder archi-
tectures; [42] conditionally selects historical visual information
based on the structure of the syntax tree structure.

As part of our training framework, we aim to seamlessly incor-
porate historical visual information into models lacking coverage
techniques. Our proposed solution, Visual Coverage, offers a sim-
ple but highly interpretable approach. This technique maintains
the model’s structure and avoids the introduction of additional pa-
rameters. Instead, it integrates visual attention records into image
features through an image-blending technique.

3 PRELIMINARY

3.1 Problem Definition

In this subsection, we define the formula recognition task and the
multi-line formula recognition task. In formula recognition, the

model is given an image containing structural components, and the
objective is to generate the corresponding sequence using a specific
markup language, such as LaTeX. Formally speaking, the input is
an image 𝑥 with width𝑊 and height𝐻 . Each pixel 𝑥𝑖 𝑗 of this image
has 𝐶 channels, where 𝐶 is always 1 to indicate a gray-scale image.
The task is to generate 𝑦 = {𝑦1, 𝑦2, · · · , 𝑦𝐿} that matches the given
image, where 𝐿 is the length of the target sequence and each 𝑦𝑘
represents a token of markup language. If the image contains at
least one multi-line structure such as an array, matrix, or table, it is
considered a multi-line formula, and its corresponding recognition
is multi-line formula recognition.

3.2 Transcription Model

In this section, we provide a summary of the various modifications
to the Encoder-Decoder architecture that have been proposed in
prior works for Formula Recognition, and these models will be
trained in our proposed GAP framework.

3.2.1 Image Encoder. In the first stage of image processing, visual
features are extracted by a convolutional neural network. As noted
by [36], a two-dimensional feature map 𝑉 ∈ R𝐻

′×𝑊 ′×𝐷 is retained
to preserve structural information. Here, 𝐷 represents the dimen-
sion of the feature map, and 𝐻 ′,𝑊 ′ denote its height and width,
respectively. To better exploit the spatial information, many studies
incorporate additional positional information, which can be divided
into two categories: Row Encoder and Position Encoding.

1) Row Encoder. The Row Encoder approach [9] proposes ap-
plying a recurrent neural network (RNN) sequentially across each
row of the feature map 𝑉 to generate a new feature grid 𝑉 . There
are many variants of vanilla RNN, such as LSTM [13] and GRU [8],
but for convenience, we use the symbol RNN to represent them
in this paper. The formula for updating the RNN hidden state is
ℎ𝑡 = RNN(ℎ𝑡−1, 𝑥𝑡 ), where ℎ𝑡−1 denotes the hidden state gener-
ated by previous timestep 𝑡 − 1 and 𝑥𝑡 indicates the input token
at timestep 𝑡 . In our scenario, the feature map 𝑉 is updated by a
RNN, i.e., for each row ℎ ∈ {1, · · · , 𝐻 ′}, the features at column
𝑤 ∈ {1, · · · ,𝑊 ′} are updated by 𝑉ℎ𝑤 = RNN(𝑉ℎ,𝑤−1,𝑉ℎ𝑤). The

resulting feature map 𝑉 now includes horizontal sequential infor-
mation. To capture the vertical location information, a trainable
initial hidden state 𝑉ℎ,0 can be used for each row.

2) Position Encoding. The Position Encoding approach [32]
tailors the 1-D positional encoding technique proposed by Trans-
former model [29] to a 2-D situation as follows:

PE(𝑥,𝑦, 2𝑖) = sin(𝑥/100004𝑖/𝐷 )
PE(𝑥,𝑦, 2𝑖 + 1) = cos(𝑥/100004𝑖/𝐷 )

PE(𝑥,𝑦, 2 𝑗 + 𝐷/2) = sin(𝑦/100004𝑗/𝐷 )
PE(𝑥,𝑦, 2 𝑗 + 1 + 𝐷/2) = cos(𝑦/100004𝑗/𝐷 )

(1)

Here 𝑥 and 𝑦 denote the horizontal and vertical positions re-
spectively, with 𝑖, 𝑗 ∈ {1, · · · , 𝐷/4} specifying the dimension. The
position encoding has the same shape and dimension channels as
the feature map. Therefore, it can be directly added to the original
feature map 𝑉 to obtain a new feature map 𝑉 . The decisive advan-
tage of Position Encoding is that it does not introduce any new
parameters, yet it still demonstrates comparable performance to
Row Encoder. Furthermore, the Position Encoding can be applied
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to any shape of input image, allowing it to handle image sizes that
were not seen during the training stage.

3.2.2 Markup Decoder. The Decoder’s task is to generate the target
sequence {𝑦𝑡 } based on the feature map 𝑉 from the Encoder. To
address this problem, researchers commonly employ RNNs and
Transformers [29], which consider prior predictions while creating
new translations and can decode sequences of arbitrary lengths.

To fully exploit the visual information from feature map𝑉 , atten-
tion mechanisms [3] are necessary to guide which regions require
more focus when generate each predicted token. Following are
three common attention methods [20]:

Score(ℎ𝑡 , ℎ𝑠 ) =

⎧⎪⎪⎨⎪⎪⎩
ℎ𝑇𝑡 ℎ𝑠 dot
ℎ𝑇𝑡 𝑊𝑎ℎ𝑠 general
𝑊𝑎 [ℎ𝑡 ;ℎ𝑠 ] concat

(2)

Here ℎ𝑡 denotes the hidden state of decoder at timestep 𝑡 , ℎ𝑠
denotes each hidden state from the encoder and Score(ℎ𝑡 , ℎ𝑠 ) refers
to the alignment between the two hidden states. To specify which
cell the model is attending to, we can introduce a latent categorical
variable 𝑧𝑡 ∈ {1, · · · , 𝐻 ′} × {1, · · · ,𝑊 ′}. Here, we rewrite ℎ𝑠 as
𝑉ℎ𝑤 to clarify its coordinates. This allows us to write down the
probability distribution of 𝑧𝑡 and our encoder context 𝑐𝑡 :

𝑝 (𝑧𝑡 ) = softmax
(
Score

(
ℎ𝑡 ,𝑉ℎ𝑤

))
, (3)

𝑐𝑡 =
∑
ℎ,𝑤

𝑝 (𝑧𝑡 = (ℎ,𝑤))𝑉ℎ𝑤 . (4)

At each timestep 𝑡 , the previous hidden stateℎ𝑡−1 and the transla-
tion 𝑦𝑡−1 are considered. Additionally, input-feeding approach [20]
is used to incorporate the alignment information 𝑜𝑡−1. Therefore,
the formula for updating the hidden state can be written as:

ℎ𝑡 = RNN(ℎ𝑡−1, [𝑦𝑡−1;𝑜𝑡−1]), (5)

when predicting the next token 𝑦𝑡 , we consider both the image fea-
tures context 𝑐𝑡 and the previous translation history ℎ𝑡 . Therefore,
we concatenate them to calculate the alignment information 𝑜𝑡 .
Then, we use a softmax layer to obtain the probability distribution
of the predicted token from the vocabulary, as shown below:

𝑜𝑡 = tanh(𝑊𝑐 [ℎ𝑡 ; 𝑐𝑡 ]), (6)

𝑝 (𝑦𝑡 |𝑦1, · · · , 𝑦𝑡−1,𝑉 ) = softmax(𝑊𝑜𝑜𝑡 ). (7)

Given the ground truth 𝑦 = {𝑦1, 𝑦2, · · · , 𝑦𝑁 }, the probability
𝑃 (𝑦 |𝑥 ;𝜃 ) to generate it from an image 𝑥 using an Encoder-Decoder
model with parameter 𝜃 , can be written as follows:

log 𝑃 (𝑦 |𝑥 ;𝜃 ) =
𝑁∑
𝑡=1

log 𝑝 (𝑦𝑡 |𝑦<𝑡 ,𝑉 ;𝜃 ). (8)

4 THE PROPOSED GAP FRAMEWORK

In this section, we introduce our GAP framework in detail. We
begin by detailing how to use contrastive learning to integrate
grammatical rules into existing baseline transcription models. Then,
we introduce a Rank-Based Sampling techniquewhich can increases
the diversity of positive-negative pairs based on multi-line formula
grammar rules. Finally, we illustrate the design of Visual Coverage
to record the history of attended regions.

4.1 Grammar-Aware Contrastive Learning

Deep neural networks excel at summarizing patterns from exten-
sive data, enabling existing models to achieve commendable perfor-
mance in formula recognition tasks without explicit external syntax
information. Consider the example of a fraction, whose pattern is
quite simple: \frac{}{}. After translating numerous fractions in-
stances, the model can discern the need to position the numerator
before the denominator to correctly construct a fraction.

\left(\begin{array}{cc|cc}
1 & 2 & 3 & 4 \\

\hline 5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\

\end{array}\right) 

Figure 2: The basic grammar rules of the array.

However, summarizing patterns becomes increasingly challeng-
ing as formulas become more complex. Figure 2 displays a matrix
and its corresponding notation. The basic rules for writing a gram-
matically correct array can be enumerated as follows:

• Begin and End: An array must start with \begin{array} and
end with \end{array}, ensuring they appear in pairs.

• Aligns: The alignment specifications should directly follow
the \begin{array} command. (1) In the brackets, alignment
letters (l,c,r) dictate column justification, with the option to
include the | character for vertical dividing lines; (2) The count
of alignment letters should match or exceed the column count.

• Rows: After the alignment, the elements should be written
row by row. (1) Optionally, use \hline to introduce a horizon-
tal separator line; (2) Separate elements in adjacent columns
using the & separator; (3) Each row should have the same
number of elements, and any absence will be supplemented
by empty placeholders; (4) Terminate each row with \\.

It’s obvious from these grammar rules that an array must adhere
to multiple regulations, and a violation of any one rule can cause
the entire array to be incorrect. However, most existing Encoder-
Decoder models are trained by the Teacher Forcing procedure [33],
which only exposes these models to correct sequences during the
training process. Therefore, it is essential for them to be aware of the
cases in which their translations become grammatically incorrect.

To incorporate these syntax rules, we propose a contrastive ap-
proach that teaches the model grammar information by expanding
the likelihood gap between positive image-formula pairs (ground
truth) and negative image-formula pairs (contain syntax errors). As
shown in Figure 3, negative pairs are generated by selecting gram-
matically incorrect translations from beam search outputs, because
the sequences generated by beam search are top-𝑘 preferred by
the model, and the model will quickly notice the importance of the
grammar rules if forced not to generate these sentences.

Formally speaking, given a training set 𝐷𝑇 = {〈𝑥 (𝑠 ) , 𝑦 (𝑠 ) 〉}𝑆𝑠=1,

where 𝑆 is the total number of image-formula pairs 〈𝑥 (𝑠 ) , 𝑦 (𝑠 ) 〉. We
first train the model using maximum likelihood estimation (MLE):

𝜃MLE = argmin
𝜃

{𝐿𝑁𝐿𝐿 (𝜃 )} , (9)

where the negative log-likelihood (NLL) is defined as:

𝐿𝑁𝐿𝐿 (𝜃 ) =
𝑆∑
𝑠=1

−log 𝑃 (𝑦 (𝑠 ) |𝑥 (𝑠 ) ;𝜃 ) . (10)
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Figure 3: The Grammar-Aware Contrastive Learning module.

After the MLE training converges, the model can already gener-
ate highly accurate formulas based on images. However, these for-
mulas may contain syntax errors. Therefore, we use the converged
parameters as a starting point for Grammar-Aware Contrastive
Learning (GACL) and subsequently fine-tune the model.

For each image 𝑥 (𝑠 ) , we first generate top-𝑘 formula translations
by beam search. Then we use a Grammar Checker to randomly
select one translation 𝑦 (𝑠 ) containing syntax errors from these
predicted formulas. If such a translation 𝑦 (𝑠 ) exists, we construct
the negative image-formula pair 〈𝑥 (𝑠 ) , 𝑦 (𝑠 ) 〉, and train it using the
max-margin contrastive learning loss:

𝐿
(𝑠 )
𝐶𝐿 = max

{
log 𝑃 (𝑦 (𝑠 ) |𝑥 (𝑠 ) ;𝜃 ) + 𝜂 − log 𝑃 (𝑦 (𝑠 ) |𝑥 (𝑠 ) ;𝜃 )), 0

}
.

(11)
If all 𝑘 predicted formulas are grammatically correct, we just set

𝐿
(𝑠 )
𝐶𝐿 = 0. To ensure translation accuracy while correcting syntax
errors, we combine the negative log-likelihood loss 𝐿𝑁𝐿𝐿 (𝜃 ) with
contrastive learning loss 𝐿𝐶𝐿 (𝜃 ), so the final optimization goal is:

𝜃CL = argmin
𝜃

{
𝑆∑
𝑠=1

(
𝐿
(𝑠 )
𝐶𝐿 (𝜃 ) + 𝐿

(𝑠 )
𝑁𝐿𝐿 (𝜃 )

)}
. (12)

4.2 Rank-Based Sampling

Although the contrastive learning approach presented in Section
4.1 already enables the model to learn formula-related grammatical
information to some extent, it is relatively inefficient to merely
rely on ground truth as the only positive sample. Intuitively, if the
positive sample is unique and constant, the contrastive learning
loss function only blindly reduces the probability of the formula
translation containing grammatical errors, and there is no clear
direction for this optimization process.

To improve the training efficiency and fully utilize the avail-
able resources, we propose the Rank-Based Sampling method
specifically designed for the multi-line formulas. Firstly, we classify
formulas containing syntax errors into two types based on the seri-
ousness of the errors, Compile Error and Grammatical Error.
The former indicates that the errors will cause the whole formula
to be unparseable, while the latter implies that the formula can still
be parsed and used despite violating some rules. Subsequently, we
prioritize the categories of error types by their importance. In par-
ticular, Compile Error destroys the whole formula, so all categories
of it are assigned a Very High rank, whereas Grammatical Error can

be further differentiated based on importance, as we demonstrate
in Table 1. Finally, diverse pairs of positive and negative samples
can be constructed based on their different error ranks. A valid
positive-negative pair of samples can be created as long as the error
rank of one sample is lower than the other’s.

Table 1: The ranking list of syntax errors.

Error Type Category Importance Rank ↓

Compile Error
Mismatched Symbol Very High

Incorrect Structure Very High

Missing Arrays High

Grammatical Error Wrong Alignment Medium

Missing Lines Low

Take Figure 4 as an example. The ground truth of Figure 4 is a
two-row and one-column matrix with left curly braces. Our for-
mula recognition model produced two translations, one committing
Wrong Alignment error (Rank Low), i.e., writing two columns in
the alignment section, and the other suffering from Mismatched
Symbol error (Rank Very High), i.e., having only the begin com-
mand without the corresponding end command. According to the
description in Section 4.1, both of them would be defined as nega-
tive samples, with the ground truth being the only positive sample.
However, if we classify the positive and negative samples based on
the importance of the error, then the model will be guided to prior-
itize the avoidance of more serious errors, and thus incrementally
learn the complex grammar rules of the multi-line formulas.

\left\{ \begin{array} { l l l } 
{ \partial _ { \mu } V _ { \mu } ( x ) } & { = } & { 0 } \\
{ \partial _ { \mu } A _ { \mu } ( x ) } & { = } & { 2 m P } ( x )  
\end{array} \right.

\left\{ \begin{array} { l l } 
{ \partial _ { \mu } V _ { \mu } ( x ) } & { = } & { 0 } \\
{ \partial _ { \mu } A _ { \mu } ( x ) } & { = } & { 2 m P } ( x ) 
\end{array} \right.

\left\{ \begin{array} { l l l } 
{ \partial _ { \mu } V _ { \mu } ( x ) } & { = } & { 0 } \\
{ \partial _ { \mu } A _ { \mu } ( x ) } & { = } & { 2 m P } ( x )  
\right.

Ground 
Truth

Positive

Negative

Figure 4: Example of Rank-Based Sampling.

Formally Speaking, as described in Section 4.1, we first generate

𝑘 translations {𝑦
(𝑠 )
𝑖 |1 ≤ 𝑖 ≤ 𝑘} for one sample 〈𝑥 (𝑠 ) , 𝑦 (𝑠 ) 〉 via

beam search. Then, we classify these translations to obtain different

rankings {𝑟 (𝑠 )𝑖 |1 ≤ 𝑖 ≤ 𝑘}, where 𝑟 (𝑠 )𝑖 ∈ {No Error, Low, Medium,
High, Very High} as a important ascending order. Finally, we can

construct a collection 𝐷
(𝑠 )
𝐹 of positive-negative pairs :

𝐷 (𝑠 )
𝐹 =

{
〈𝑦

(𝑠 )
𝑖 , 𝑦

(𝑠 )
𝑗 〉|1 ≤ 𝑖, 𝑗 ≤ 𝑘, 𝑖 ≠ 𝑗, 𝑟𝑖 < 𝑟 𝑗

}
, (13)

where 〈𝑥 (𝑠 ) , 𝑦 (𝑠 )𝑖 〉 is the positive sample and 〈𝑥 (𝑠 ) , 𝑦
(𝑠 )
𝑗 〉 is the neg-

ative sample. Thus, Equation (11) can be rewritten as:

𝐿
(𝑠 )
𝐶𝐿 = max

{
log 𝑃 (𝑦 (𝑠 )𝑗 |𝑥 (𝑠 ) ;𝜃 ) + 𝜂 − log 𝑃 (𝑦 (𝑠 )𝑖 |𝑥 (𝑠 ) ;𝜃 )), 0

}
.

(14)
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4.3 Visual Coverage (VC) Mechanism

Experiments have shown that formula recognition models also
suffer from over-translation and under-translation issues [14], es-
pecially in multi-line formulas. Upon analysis, we discover that
certain previous models [9, 31, 32, 48, 50] only contain coverage
information at the text level. Consequently, when generating trans-
lations of duplicate or similar text fragments, the model tends to
lose its position in the image, resulting in repetitive translations.

As a universal training framework, we aim to incorporate image-
level coverage information without introducing parameters or al-
tering the model structure. Thus, we propose a new variable𝑉𝐶𝑡 ∈
R𝐻

′×𝑊 ′
, it accumulates the probability distribution 𝑝 (𝑧𝑡 ) ∈ R𝐻

′×𝑊 ′

of image features𝑉 for timesteps before 𝑡 , enabling it to capture the
decoding history at the image level, so we call it Visual Coverage:

𝑉𝐶
(ℎ,𝑤 )
𝑡 = 𝑉𝐶

(ℎ,𝑤 )
𝑡−1 + 𝑝 (𝑧𝑡−1 = (ℎ,𝑤)). (15)

To avoid additional parameters, we combine the Visual Coverage
𝑉𝐶𝑡 and the image features 𝑉 in an image blending way. Once
integrated, the model will perceive different visual features 𝑉𝑡 at
each time step 𝑡 during the decoding progress:

𝑉
(ℎ,𝑤 )
𝑡 = (1 − 𝛼)𝑉 (ℎ,𝑤 ) + 𝛼𝑉𝐶

(ℎ,𝑤 )
𝑡 . (16)

Here, we use the hyper-parameter 𝛼 to control the tendency
between the image features and the visual coverage. Note that the
introduction of 𝑉𝐶 does not alter any model equation. We only

need to replace the 𝑉ℎ𝑤 with 𝑉 (ℎ,𝑤 )
𝑡 in (3) and (4):

𝑝 (𝑧𝑡 ) = softmax
(
Score

(
ℎ𝑡 ,𝑉

(ℎ,𝑤 )
𝑡

))
, (17)

𝑐𝑡 =
∑
ℎ,𝑤

𝑝 (𝑧𝑡 = (ℎ,𝑤))𝑉
(ℎ,𝑤 )
𝑡 . (18)

Figure 5 presents an example of amulti-line formula that includes
a nested array. With the help of Visual Coverage, we can easily
know the current position is the end of the first line in the smaller
array and the model will proceed to the second line of this array as
it has already completed the first line translation.

Figure 5: Visual Coverage for the multi-line formula.

5 EXPERIMENTAL SETUP

5.1 Datasets

we conduct experiments mainly on three datasets, i.e., IM2LATEX-
100K, Questions and Multi-Line.

• IM2LATEX-100K [9] is a public dataset, it provides 103,556
different LaTeX math equations along with rendered pictures.
Its train set has 83, 883 equations, validation set has 9,319
equations and test set has 10,354 equations;

• Questions is a private dataset, it contains 32,258 formulas
extracted from real-world math questions, where the train
set contains 20,624 formulas, the validation set contains 5,171
formulas and the test set contains 6,463 formulas;

• Multi-Line is a specific dataset for multi-line formula recog-
nition with 12,002 formulas. The train set contains 7,190 for-
mulas, the validation set contains 2,403 formulas and the test
set contains 2,409 formulas.

Both the Questions andMulti-Line datasets are divided into 6/2/2
by length buckets with the step of 10 tokens. And all images are
rendered by pdflatex3. The basic statistics are listed in Table 2.

Table 2: The basic statistics of the datasets.

Dataset
Image
count

Multi-Line
count

Avg. tokens
per image

Avg. image
pixels

IM2LATEX-100K 103,556 6,591 65.8 16,659.9
Questions 32,258 1,811 24.7 13,418.6
Multi-Line 12,002 12,002 44.3 12,249.2

5.2 Preprocessing

To support parallel training, it is necessary to pad similar-sized im-
ages into the same size since each formula has a different image size.
As previous works [9, 32, 48] use different preprocessing strategies,
we employ a unified preprocessing strategy for all baseline models,
which involved cropping the image to only formula regions and
then padding it to the closest (32 ×𝑚, 32 × 𝑛),𝑚, 𝑛 ∈ N+. After
padding, we group images of the same size together. For formula
texts, we divide each formula into LaTeX symbols using KaTeX,
which preserves the LaTeX commands such as \frac as a token.

5.3 Comparison methods

To demonstrate the effectiveness of our framework, we reproduced
three existing baselines as follows:

• WYGIWYS [9] is the first model to introduce the Encoder-
Decoder structure to solve the formula recognition problem.
It laid the foundation of the model for later works.

• Double Attention [48] make improvement to WYGIWYS by
combining concat attention and dot attention.

• MI2LS [32] proposes the 2d position encoding mechanism to
replace the Row Encoder after CNN networks.

Besides, we also compare the reported result of the following works:

• Infty [28] is an OCR-basedmathematical expression recogni-
tion system. Its implementation InftyReader combines sym-
bol recognition and structural analysis phases.

• DenseNet [31] replace the original CNNnetworkwithDenset-
Net and presented a novel multi-scale attention model.

5.4 Evaluation Measures

We evaluate the different models by the following metrics:

• BLEU [24]. BLEU evaluates the similarity of the predicted
formula sequences and the ground-truth formula sequences.

• Exact Match. Render the predicted and ground-truth formu-
las back to images, and check the accuracy to exactly match.

• Exact Match (-ws). The metric compares predicted images
to the original images after removing whitespace columns.

3LaTeX (version 3.141592653-2.6-1.40.22)
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Table 3: Main experimental results on the IM2LATEX-100K, Questions and Multi-Line datasets.

Dataset Model BLEU Image Edit Distance Exact Match Exact Match (-ws)

IM2LATEX-100K

Infty 51.20 66.65 15.60 26.66
DenseNet 88.25 - - -

WYGIWYS 90.45 90.87 77.12 79.69
+ GAP 90.98 91.33 78.82 81.40

Double Attention 90.41 90.93 77.27 80.01
+ GAP 90.39 91.08 77.82 80.31

MI2LS 90.15 90.78 77.73 80.68
+ GAP 90.44 91.28 77.96 81.14

Questions

WYGIWYS 88.52 90.91 85.77 87.03
+ GAP 90.41 91.57 87.53 88.43

Double Attention 88.89 91.10 86.61 87.58
+ GAP 89.07 91.67 86.96 87.85

MI2LS 88.74 90.27 86.91 87.71
+ GAP 89.54 91.58 87.76 88.67

Multi-Line

WYGIWYS 90.95 87.49 82.40 83.31
+ GAP 91.84 88.54 82.56 83.19

Double Attention 88.06 86.18 79.74 80.90
+ GAP 90.59 86.94 80.03 80.78

MI2LS 90.76 86.51 82.10 83.39
+ GAP 91.94 88.64 84.72 85.72

• Image Edit Distance (IED). Binarize the predicted and the
original images, then expand them to be binary strings (each
pixel is represented by a number 0/1) and finally calculate the
edit distance between these two strings.

5.5 Implementation Details

We reproduce three classic formula recognition models WYGIWYS
[9], Double Attention [31], MI2LS [32]. The models’ parameters are
basically set as follows: the dimension of the image features and the
decoder hidden state are both set to𝐷 = 512. For models containing
Row Encoder, the encoder is bi-directional and its hidden state size
is set to 256. The size of the token embedding is uniformly set to 80.
The batch sizes for the MLE and CL stages are set to 20. Empirically,
we set 𝛼 to 0.3 for the Visual Coverage module.

During the MLE training phase, we start the Adam optimizer
[16] from the initial learning rate 1e-3. We train all models within
30 epochs for the IM2LATEX-100K dataset, and 40 epochs for the
Questions and Multi-Line datasets. For CL stage, we still use the
Adam optimizer, which starts from 5e-5. We use MLE pre-trained
models with the highest BLEU scores for further training, and all
models are trained for 30 epochs on IM2LATEX-100K, Questions
and Multi-Line datasets. All models are implemented by PyTorch
and trained on a Linux server with four RTX 3090 GPUs.

6 EMPIRICAL RESULTS

In this section, we conduct extensive experiments to demonstrate
the effectiveness of our framework from various aspects:

• RQ1: What is GAP’s overall performance against baselines?
• RQ2: How does each component (GACL & VC) of GAP really
contribute to the model performance?

• RQ3: How does RBS affect the contrastive learning process?
• RQ4: Are there some typical cases that demonstrate why the
GAP framework works?

6.1 Overall Performance (RQ1)

From the results in Table 3. we can get several observations. Firstly,
despite the multi-line formulas constituting only 6.4% and 5.6% of
the IM2LATEX-100K and Questions comprehensive datasets respec-
tively, employing our framework still achieves marginal enhance-
ments. Especially for the WYGIWYS, which gains 0.53 BLEU, 0.58
IED, 1.69 EM and 1.71 EM(-ws). This proves, 1) the historical visual
information also benefits the recognition of single-line formulas;
2) The grammar rules introduced by GACL can also improve the
quality of single-line formula generation.

Secondly, on the Multi-Line dataset, our framework achieved
great performance gains (almost 2 percentage points of metrics
in general for MI2LS), especially for the image-level metrics. As
previously emphasized, multi-line formulas exhibit high sensitivity
to syntax, thus even minor modifications to grammar units can
significantly impact the overall layout. Consequently, the increase
in IED and EM indicates that the model is more likely to generate
grammatically correct formulas after training in our framework.
Finally, our framework demonstrates performance improvements
across all three baselines, indicating its general effectiveness.

6.2 Ablation Study (RQ2)

For the sake of page limitations, in this section we will present
ablation experiments results for different modules from two per-
spectives: fix a model and vary the datasets, and fix a dataset and
vary the models. Let us start with the ablation results of the model
MI2LS on the three datasets as shown in Table 4.

Table 4 demonstrates the efficacy of both the VC and GACL mod-
ules in enhancing multiple model metrics. GACL notably enhances
image-level metrics like IED and EM (-ws) more than the text-level
metric BLEU. However, the GACL module shows comparatively
less improvement in metrics compared to the VC module.

To further investigate the impact of the GACL module, we con-
ducted additional ablation experiments on the Multi-Line dataset
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Table 4: Ablation study for MI2LS on three datasets.

Dataset VC GACL BLEU IED EM EM (-ws)

IM2LATEX-100K
� � 90.15 90.78 77.73 80.68
� � 90.38 91.01 77.70 80.90
� � 90.44 91.28 77.96 81.14

Questions
� � 88.74 90.27 86.91 87.71
� � 89.21 91.01 87.88 88.63
� � 89.54 91.58 87.76 88.67

Multi-Line
� � 90.76 86.51 82.10 83.39
� � 91.91 88.11 84.97 84.97
� � 91.94 88.64 84.72 85.72

to assess the performance variations of the three baseline models.
We introduced new conditions that only utilized the GACL module,
and the experimental results are presented in Table 5.

Based on Table 5, the following conclusions can be drawn. Firstly,
the GACL module consistently improves image-level metrics, re-
gardless of its integration with the VC module. This may be due
to GACL’s training objective, which aims not only to align model
output formula with ground truth but also to ensure adherence to
grammatical rules. This goal inherently conflicts with text-level
metrics. Additionally, the impact of GACL on metrics depends on
the base model. For example, GACL produces more significant im-
provements for MI2LS than Double Attention and shows greater
enhancements for models combined with VC. This suggests that
stronger baselines allow GACL to provide models with a deeper un-
derstanding of grammar information. In general, models finetuned
with GACL produce higher-quality recognition results.

6.3 Effect of Rank-Based Ranking (RQ3)

In this section, we explore the impact of Rank-Based Sampling
(RBS). First, the MI2LS model is trained for 40 epochs using MLE
method on the Multi-Line dataset. Then, the model with the highest
BLEU score is selected as the starting point. Finally, the model is
trained using the vanilla contrastive learning and the contrastive
learning with the RBS strategy with different hyperparameter 𝜂.

Figure 6: The Effect of Rule-Based Ranking.

In Figure 6, we track the occurrence of grammatical errors among
the top-𝑘 potential translation results throughout the training pro-
cess. Based on the experimental results, it is evident that the training
curve based on Rule-Based Sampling demonstrates a more rapid
reduction in errors, ultimately converging to fewer potential er-
rors. Additionally, the hyperparameter 𝜂 has a certain impact on
the training process. A small 𝜂 can weaken contrastive learning,
resulting in an increased occurrence of errors.

Table 5: Ablation study for Multi-Line on three models.

Model VC GACL BLEU IED EM EM (-ws)

WYGIWYS

� � 90.95 87.49 82.40 83.31
� � 92.28 87.83 82.06 82.89
� � 90.81 87.71 82.48 83.44
� � 91.84 88.54 82.56 83.19

Double
Attention

� � 88.06 86.18 79.74 80.90
� � 90.87 86.48 79.83 80.78
� � 88.29 86.38 79.36 80.53
� � 90.59 86.94 80.03 80.78

MI2LS

� � 90.76 86.51 82.10 83.39
� � 91.91 88.11 84.01 84.97
� � 90.74 86.83 82.27 83.60
� � 91.94 88.64 84.72 85.72

6.4 Case Study (RQ4)

In this section, we analyze a practical case to illustrate why our
GAP framework can optimize the recognition results.

MLE

GAP

GT

Figure 7: Comparison of recognition results.

As shown in Figure 7, theMLE-trainedmodel made twomistakes:
1) it didn’t identify the existence of two arrays in the original image;
2) it produced repeated translations when translating the first line,
resulting in one less element in the second line. After being fine-
tuned by the GAP framework, the model now has a global visual
memory, so although the model still only generates one array, it
fully restores the information in the original image. Moreover, the
incorporation of syntax rules prevents the occurrence of vacancies
resulting from varying element counts across different rows.

7 CONCLUSION

In this paper, we presented a comprehensive framework GAP to
address the challenges in multi-line formula recognition. GAP skill-
fully incorporates syntax rules, which are hard to be handled by
tree-decoders, into the baseline models via a contrastive learning
approach, and achieves promising improvements in different met-
rics. Additionally, in order to enhance the diversity of positive and
negative sample pairs, we also proposed Rule-Based Samplig to
guide the model to learn grammar rules according to their impor-
tance. Finally, GAP also introduces visual coverage through a simple
parameter-free mechanism, and gains decent effects. We hope this
work will lead to more studies in the future.
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