
Decoupling and Reconstructing: a Multimodal Sentiment Analysis
Framework Towards Robustness

Anonymous Author(s)

Abstract
Multimodal sentiment analysis (MSA) has shown1

promising results but often poses significant chal-2

lenges in real-world applications due to its depen-3

dence on the complete and aligned multimodal se-4

quences. While existing approaches attempt to5

address missing modalities through feature recon-6

struction, they often neglect the complex interplay7

between homogeneous and heterogeneous relation-8

ships in multimodal features. To address this prob-9

lem, we propose Decoupled-Adaptive Reconstruc-10

tion (DAR), a novel framework that explicitly ad-11

dresses these limitations through two key com-12

ponents: (1) a mutual information-based decou-13

pling module that decomposes features into com-14

mon and independent representations, and (2) a re-15

construction module that independently processes16

these decoupled features before fusion for down-17

stream tasks. Extensive experiments on two bench-18

mark datasets demonstrate that DAR significantly19

outperforms existing methods in both modality re-20

construction and sentiment analysis tasks, particu-21

larly in scenarios with missing or unaligned modal-22

ities. Our results show improvements of 2.21% in23

bi-classification accuracy and 3.9% in regression24

error compared to state-of-the-art baselines on the25

MOSEI dataset.26

1 Introduction27

As an important research direction in artificial intelligence,28

multimodal emotion recognition aims to achieve more accu-29

rate and comprehensive emotional understanding through the30

integration and analysis of information from different modal-31

ities (such as speech, text, vision, etc.)[Liang et al., 2021;32

Lv et al., 2021a]. With the rapid development of deep learn-33

ing technologies and the increasing abundance of multimodal34

data, significant progress has been made in this field.35

Compared to laboratory environments where high-quality36

data samples can be artificially selected for training, data col-37

lected in real scenarios may face varying degrees of missing38

issues, leading to otherwise well-performing multimodal sen-39

timent classification models to face severe performance loss40

when dealing with real-world incomplete data.41
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Figure 1: (a) shows an example of incomplete data entry, with the
gray overlay indicating invisibility. (b) shows an illustration of fea-
ture reconstruction, where blank parts are missing features and col-
ors represent modal-independent features, textures represent modal-
common features.

Recently, research trends have shifted from laboratory con- 42

ditions to modeling data from natural scenarios. This shift 43

creates a wider application space for MSA in the real world, 44

despite concerns due to issues such as sensor failure and au- 45

tomatic speech recognition (ASR), which lead to inconsis- 46

tencies such as incomplete data in real-world deployments. 47

Many influential solutions have been proposed to address 48

the major problem of incomplete data in multimodal senti- 49

ment analysis. For example, [Yuan et al., 2021] introduced 50

a transformer-based feature reconstruction mechanism, TFR- 51

Net, which aims to improve the robustness of the model in 52

dealing with random deletions in unaligned multimodal se- 53

quences by reconstructing the missing data. Zhang intro- 54

duced a model (LNLN)[Zhang et al., 2024], the Language 55

Dominated Noise Resistant Learning Network, to improve 56

the robustness of MSA to incomplete data. It aims to enhance 57

the completeness of linguistic mood features, which are con- 58

sidered dominant moods due to their richer emotional cues 59

and supported by other auxiliary moods. 60

Previous methods have demonstrated that the use of miss- 61

ing data during training is helpful in improving the robust- 62

ness of the model in an incomplete input scenario and have 63

also verified that reconstructing complete data using missing 64

data allows the model to learn more stable features. How- 65

ever, these methods have the following problems: the process 66

of reconstructing complete inputs does not take into account 67

the redundancy and complementarity that exists between dif- 68

ferent modal data, resulting in the model failing to achieve 69

the desired reconstruction effect; at the same time, the inclu- 70

sion of reconstruction loss may cause the model to pay too 71

much attention to the consistency between the complete data 72



and the missing data after feature extraction, resulting in the73

degradation of the encoder effect and the failure to effectively74

extract key features.75

To solve the above problems, we propose a feature76

decoupling-reconstructing approach for multimodal feature77

fusion. As shown in Figure 1, we first decompose modal fea-78

tures into modal-independent and modal-common features by79

methods of mutual information-based approach. Then we re-80

construct features corresponding to two complete inputs ac-81

cording to the respective properties of the two types of fea-82

tures. We also use a specialized neural network for the out-83

put from complete data to guide the supervised feature recon-84

struction of the model features for the downstream task. Fi-85

nally, the loss is added to the overall loss to avoid the degra-86

dation problem caused by the feature encoder’s tendency to87

favor the reconstruction effect. The contributions of this work88

can be summarized as:89

• We propose a new approach that is suitable for feature90

reconstruction to decouple sequence features based on91

mutual information.92

• We propose a missing feature reconstruction method93

based on decoupled features, which intuitively reflects94

the redundancy and complementary relationship be-95

tween different modal data.96

• We validate our approach on two widely used multi-97

modal sentiment analysis datasets and compare it with98

other robust and non-robust fusion methods. The re-99

sults demonstrate that our approach outperforms other100

existing models on several metrics and achieves the best101

overall performance.102

2 Related Work103

2.1 Robust Representation Learning in MSA104

Multimodal Sentiment Analysis (MSA) methods can be cat-105

egorized into Context-based MSA and Noise-aware MSA,106

depending on the modeling approach[Zhang et al., 2024].107

Most of previous works ([Zadeh et al., 2017]; [Tsai et al.,108

2019]; [Mai et al., 2020]; [Hazarika et al., 2020]; [Liang et109

al., 2020]; [Rahman et al., 2020]; [Yu et al., 2021]; [Han et110

al., 2021]; [Lv et al., 2021b]; [Yang et al., 2022]; [Guo et111

al., 2022]; [Zhang et al., 2023]) can be classified to Context-112

based MSA. This line of work primarily focuses on learn-113

ing unified multimodal representations by analyzing contex-114

tual relationships within or between modalities. For example,115

[Zadeh et al., 2017] explore computing the relationships be-116

tween different modalities using the Cartesian product. [Tsai117

et al., 2019] utilize pairs of Transformers to model long de-118

pendencies between different modalities. [Yu et al., 2021]119

propose generating pseudo-labels for each modality to fur-120

ther mine the information of consistency and discrepancy be-121

tween different modalities. Despite these advances, context-122

based methods are usually suboptimal under varying levels123

of noise effects (e.g. random data missing). Several recent124

works ([Mittal et al., 2020];[Yuan et al., 2021];[Yuan et al.,125

2024];[Li et al., 2025]) have been proposed to tackle this is-126

sue.127

In concrete terms, [Hazarika et al., 2020] and [Yang et al., 128

2022] apply feature disentanglement to each modality, mod- 129

eling multimodal representations from multiple feature sub- 130

spaces and perspectives. [Yu et al., 2021] and [Liang et al., 131

2021] explore self-supervised learning and semi-supervised 132

learning to enhance multimodal representations, respectively. 133

[Tsai et al., 2019] and [Rahman et al., 2020] introduce Trans- 134

former to learn the long dependencies of modalities. [Zhang 135

et al., 2023] devise a language-guided learning mechanism 136

that uses modalities with more intensive sentiment cues to 137

guide the learning of other modalities. Noise-aware MSA fo- 138

cuses more on perceiving and eliminating the noise present in 139

the data. For example, [Mittal et al., 2020] design a modality 140

check module based on metric learning and Canonical Corre- 141

lation Analysis (CCA) to identify the modality with greater 142

noise. [Yuan et al., 2021] design a feature reconstruction 143

network to predict the location of missing information in se- 144

quences and reconstruct it. [Yuan et al., 2024] introduce ad- 145

versarial learning to perceive and generate cleaner represen- 146

tations. [Zhang et al., 2024] proposed LNLN, explored the 147

capability of language-guided mechanisms in resisting noise 148

and provide new. perspectives for the study of MSA in noisy 149

scenarios. 150

2.2 Multimodal feature decoupling 151

One of the more important features of multimodal tasks, com- 152

pared to unimodal tasks, is the redundancy and complemen- 153

tarity of the modal information prior([Zhao et al., 2024]). 154

A lot of work has been done to explore the decoupling of 155

modal features into irrelevant classifications and apply them 156

to downstream tasks, starting from the commonalities and dif- 157

ferences of information between different modalities. Cur- 158

rently, multimodal feature decoupling can be categorized 159

into two kinds: spatial-based and mutual information-based, 160

among which the spatial-based work is [Hazarika et al., 2020] 161

and [Li et al., 2023], The degree of similarity and dissim- 162

ilarity of features is measured using the vanilla cosine dis- 163

tances between feature vectors, respectively. And the mutual 164

information-based approach is [Yang et al., 2023] and [Xia et 165

al., 2024]. The former defines similar and dissimilar features 166

by constructing positive and negative examples, and the lat- 167

ter optimizes the loss of mutual information by constructing 168

time-series versions of the upper and lower bounds on the use 169

of mutual information approximations. 170

Inspired by works on mutual information-based feature 171

decomposition([Yang et al., 2023];[Xia et al., 2024]), the se- 172

quence feature decoupling module proposed in this paper em- 173

ploys a similarity measure based on both mutual information 174

and spatial properties, which assumes that similar features 175

have high mutual information between them, while mutual in- 176

formation between dissimilar features should be minimized. 177

3 The DAR Model 178

3.1 Task Setup 179

In this paper, we consider three modalities, i.e., language (l), 180

visual(v), acoustic (a). These modalities are represented as 181

Ul ∈ RTl×dl , Uv ∈ RTv×dv , and Ua ∈ RTa×da respec- 182

tively. Here Tm denotes the length of the utterance, such as 183



Figure 2: The overall architecture of our proposed model. Light gray blocks on the left side indicate complete inputs, dark gray blocks indicate
missing inputs, and blanks indicate missing parts. The model consists of three main components: (a) decouple module, (b) reconstruct
module, and (c) Fusion-Output module, where the marker s denotes modal independent features, c denotes modal common features and
two-way arrows represent comparative losses.

number of tokens (Tl), for modality m and dm denotes the184

respective feature dimensions.185

Given these sequences Um∈{l,v,a}, the primary task is to186

predict the affective orientation of utterance U from either a187

predefined set of C categories y ∈ RC or as a continuous188

intensity variable y ∈ R.189

3.2 Overview190

The general structure of the model is shown in Figure191

2. It first obtains incomplete multimodal data through the192

datamissing operation. Model DAR first uses an alignment193

layer to adjust the input features of all modalities to the same194

dimension to ensure data consistency. Then, for each modal195

input, we use independent modal-common feature encoder196

and modal-independent feature encoder to obtain modal-197

common representation and modal-independent representa-198

tion of the features. Next, the modal reconstruction mod-199

ule corrects the decomposed two feature reconstructions to200

restore the feature representation corresponding to the full201

input. Finally, the feature fusion module utilizes the self-202

attention mechanism and the cross-attention mechanism to203

process the two kinds of features, fuse them, and output the204

classification results through the output layer.205

3.3 Input Construction and Multimodal Input206

Following the previous method ([Zhang et al., 2024]), for207

each modality, we randomly erase changing proportions of208

information (from 0% to 90%). These pre-processed inputs209

are represented as sequences, denoted by Um ∈ RTm×dm ,210

m ∈ {l, v, a} representing language, visual and acoustic fea-211

tures respectively where Tm denotes the length of the se-212

quence for modality m (such as number of tokens for m = l),213

and dm denotes the respective feature dimensions . With ob-214

tained Um, we apply random data missing to Um, thus form-215

ing the noise-corrupted multimodal input Ũm .216

(a) (b)

Figure 3: Method of dividing positive and negative examples. (a)
represents the modal-common features pairing; (b) represents the
modal-independent features pairing.

3.4 Decouple Module 217

It is essential to standardize the feature representations across 218

modalities for ease of further processing. To achieve this, we 219

apply 1D convolutions followed by a simple nonlinear layers 220

to process the input features. Given features corresponding to 221

complete input data and random missing data be represented 222

as Um ∈ RTm×dm and Ũm ∈ RTm×dm , m ∈ {l, v, a}. Af- 223

ter the alignment operation, the output feature U1
m ∈ Rt×d 224

and Ũ1
m ∈ Rt×d have unified length of utterance, t and fea- 225

ture dimension d across all modalities, making it suitable for 226

subsequent model processing. 227

Given the incomplete sequence Ũ1
m ∈ Rt×d for modal- 228

ity m, we employ common feature extractors and indepen- 229

dent feature extractors to extract the modal-common features 230

H̃com
m and modal-independent features H̃spec

m using the encod- 231

ing functions. 232

H̃com
m = Ec(Ũ

1
m; θcm), H̃spec

m = Es(Ũ
1
m; θsm) (1)

Similarly, for the complete input corresponding to feature 233

U1
m we also use the same encoder to obtain the corresponding 234



modal-common input and modal-independent inputs Hcom
m235

and Hspec
m . We reserve two types of features for the gener-236

ation of restoration features under supervision.237

Based on the characteristics of the modal-common and238

modal-independent features, we aim to ensure that the com-239

mon features from the same sample across different modali-240

ties exhibit high consistency, while the independent features241

within the same modality show high consistency as well. Si-242

multaneously, we seek to reduce the information redundancy243

between the two types of features. To achieve this, we define244

a decoupling loss function Ldecouple as:245

Ldecouple = λ(Lsim + Ldiff) + Lre (2)

Where λ is a hyperparameter, Lre is the restoration loss that246

reduces the decomposed feature to the original feature and I247

for mutual information. The mutual information between the248

two distributions is represented as follows:249

I(z1; z2) =

∫ ∫
p(z1, z2) log

p(z1, z2)

p(z1)p(z2)
dz1dz2 (3)

where:p(z1, z2) is the joint probability distribution of z1 and250

z2,p(z1) and p(z2) are the marginal distributions of z1 and251

z2, respectively.252

Specifically, for sets of data in batches B we have:253

Lsim = − I(H̃com
a ; H̃com

v ; H̃com
l )

−
M∑
m

I(H̃spec
m,i; H̃

spec
m,j) (4)

where i, j represent two different batches of data.254

Ldiff =

M∑
m

I(H̃spec
m ; H̃com

m ) (5)

where H̃com
m and H̃spec

m represent the modal-common fea-255

tures and modal-independent features, respectively, m ∈256

M and M = {l, v, a}. The objective is to maximize the mu-257

tual information between the common features of different258

modalities for the same sample and the independent features259

of different batches within the same modality, while mini-260

mizing the mutual information between the common and in-261

dependent features of the same sample.262

Since it is difficult to compute the mutual information di-263

rectly, we use the mutual information approximate upper and264

lower bounds to optimize the loss function as above. For the265

similarity loss, we use the noise comparison lower bounds of266

the mutual information for optimization; for the dissimilarity267

loss, we use the CLUB upper bounds of the mutual infor-268

mation for optimization, and we achieve the minimization of269

decoupling loss by optimizing the upper and lower bounds of270

the mutual information.271

InfoNCE-based Mutual Information Maximization:272

InfoNCE([Oord et al., 2018]) is a commonly used lower273

bound for mutual information loss, contrastive methods274

enhance this by utilizing sample pairs from positive set P275

and negative set N . The goal is to pull positive pairs closer in276

the representation space while pushing negative pairs apart. 277

The commonly used InfoNCE loss is defined as: 278

Lsim =− 1

|P|
∑

(z1,z2)∈P

log[exp(sim(z1, z2)/τ)/

∑
(z1,zi)∈N

exp(sim(z1, zi)/τ)] (6)

where: sim(·, ·) is a similarity function, in this paper, we 279

use the cosine similarity, and τ is a temperature parame- 280

ter. |P| denotes the cardinality of the positive pair set. We 281

maximize the mutual information between positive examples 282

by constructing positive and negative examples, chosen as 283

shown in Figure 3. According to 3a, 3b in Figure 3, we com- 284

pute the Lcom
sim and Lspec

sim corresponding to the common and 285

independent features respectively, and add the two together 286

to obtain the final Lsim. 287

Lsim = Lcom
sim + Lspec

sim (7)

We average the original time series features in the time di- 288

mension as the sample features, obtain the corresponding fea- 289

ture z, calculate the InfoNCE as the loss of the lower bound 290

of the mutual information. 291

CLUB-based MI Minimization: CLUB can effectively 292

optimize the MI upper bound, demonstrating superior advan- 293

tages in information disentanglement [Cheng et al., 2020]. 294

Given two variables x and y, the objective function of CLUB 295

is defined as: 296

IvCLUB(x;y) := Ep(x,y)[log qθ(y|x)]
−Ep(x)Ep(y)[log qθ(y|x)], (8)

where qθ is the variational approximation of ground-truth 297

posterior of y given x and can be parameterized by a network 298

θ. We use CLUB to optimize the MI upper bound between 299

the common features H̃com
m and modal-specific features H̃spec

m . 300

To better measure the mutual information between the two 301

temporal features, we use a combination of a bidirectional 302

lstm([Huang et al., 2015]) and a nonlinear fully connected 303

layer as a variational approximation network qθ, we modify 304

IvCLUB into following: 305

Ldiff =
1

N

N∑
i=1

[log qθ(H̃
com
m |H̃spec

m )

− 1

N

N∑
j=1

log qθ(H̃
com
m |H̃spec

m )], (9)

The approximation network and the main networks are opti- 306

mized alternatively during training process. 307

Restoration loss: To distinguish the differences between 308

H̃com
m and H̃spec

m and mitigate the feature ambiguity, we syn- 309

thesize the vanilla coupled features Ũ1
m in a self-regression 310

manner. Mathematically speaking, for each modality m, we 311

concatenate the features from the other two modalities with 312

H̃spec
m and exploit a private decoder Dm to produce the cou- 313

pled feature. Specifically: For modality l: 314

Ll
re = ∥Ũ1

l −Dl(Concat(H̃com
v , H̃com

a , H̃spec
l ))∥2F (10)



For the other two modalities, we also use the same way to315

get the losses Lv
re and La

re. Adding up these losses, we get the316

overall restoration loss Lre:317

Lre = Ll
re + Lv

re + La
re (11)

3.5 Reconstruct Module318

We hypothesize that the independent features of a complete319

modality can be predicted through the corresponding inde-320

pendent features of the missing modality feature, while the321

common features of a complete modality can be predicted by322

the common features of all the input missing modalities fea-323

ture.324

To implement this, we propose two distinct feature recon-325

struction modules for each modality: the Independent Fea-326

ture correction module and the Common Feature reconstruc-327

tion module. The Independent Feature reconstruction module328

takes as input the decoupled independent features and out-329

puts the corrected independent features Ĥspec
m . In contrast, the330

Common Feature Reconstruction module uses the combined331

common features from all modalities as input and generates332

the reconstructed features Ĥcom
m as output. Finally, after ob-333

taining the two features, we use a specially set up private de-334

coder Dm to reconstruct the coupled complete input U1
m.335

Ĥcom
m = Em

com(Concat(H̃com
l , H̃com

v , H̃com
a ), θmcom), (12)

336

Ĥspec
m = Em

spec(H̃
spec
m , θmspec), (13)

337

Û1
m = Dm(Concat(H̃com

m , H̃spec
m ) (14)

where θcom denotes the parameters of the common feature338

reconstruction module Ecom and θspec denotes the parame-339

ters of the independent feature reconstruction module Espec.340

Finally, we combine reconstructed features with original341

input features to obtain features for downstream tasks.342

g = σ(Wg[Ĥ, H̃] + bg) (15)

Hfused = g ⊙ Ĥ+ (1− g)⊙ H̃ (16)
To ensure that the reconstructed features are consistent343

with the common and independent features obtained from the344

complete input through the encoder, hereafter referred to as345

the complete common and complete independent features, we346

construct the alignment loss minimizing the loss between the347

corrected features and the complete features as following:348

Lrecon = ∥Ĥ−H∥2F + ∥Û1 −U1∥2F (17)

3.6 Fusion-Output Module349

For the modal-common features, which exhibit relatively350

similar distributions, we apply a multi-layer self-attention351

model for further refinement. In contrast, for the modal-352

independent features, where there are significant distribu-353

tional differences between features, we employ a cross-354

attention mechanism.355

Modal-common Features Fusion Module. Given the356

modified modal-common feature Hcom
fused, we perform feature357

fusion in the temporal dimension using a multilayer self-358

attention module for each modal counterpart, while using the359

features of the last frame of the output of the last layer as the360

overall feature output hfused.361

hcom = SelfAttention(Hcom
fused)[−1] (18)

Modal-independent Features Fusion Module. For 362

modal-independent features, we use a cross-attention mech- 363

anism to fuse different modal information. The core of the 364

multimodal transformer is the crossmodal attention unit 365

(CA), which receives features from a pair of modalities 366

and fuses cross-modal information. Take the language 367

modality Hspec
fused-L as the source and the visual modality 368

Hspec
fused-V as the target, the cross-modal attention can be 369

defined as: QV = Hspec
fused-VPq , KL = Hspec

fused-LPk, and 370

VL = Hspec
fused-LPv , where Pq , Pk, Pv are the learnable 371

parameters, formulated as: 372

hspec
L→V = softmax

(
QV K

⊤
L√

d

)
VL[−1], (19)

where hspec
L→V is the enhanced features from Language to 373

Visual, d means the dimension of QV and KL. For the three 374

modalities in MER, feature of each modality hspec
m will be re- 375

inforced by the two others and the resulting features will be 376

concatenated. Take visual modality as an example the for- 377

mula is expressed as follows: 378

hspec
V = Concat(hspec

L→V ,h
spec
A→V ) (20)

Prediction/Inference. Finally, we splice the obtained fused 379

features and input the nonlinear fully connected layer to gen- 380

erate predictions ŷ, we also use the bootstrap module to pre- 381

dict the results ŷboot using common features generated from 382

the complete information, ensuring that the encoder learns 383

features that facilitate classification. 384

ŷ = MLP(Concat(hcom,hspec)) (21)
385

ŷboot = MLP(H) (22)
The task loss Ltask and overall model loss Ltotal are formu- 386

lated as follows: 387

Ltask = Loss(y, ŷ) + Loss(y, ŷboot) (23)
388

Ltotal = Ltask + αLdecouple + βLrecon (24)
where α and β are hyperparameters. 389

4 Experiments and Analysis 390

In this section, we provide a comprehensive and fair compar- 391

ison between the proposed DAR and previous representative 392

MSA methods on MOSI ([Zadeh et al., 2016]) and MOSEI 393

([Bagher Zadeh et al., 2018]) datasets. 394

4.1 Datasets 395

MOSI The dataset includes 2,199 multimodal samples, in- 396

tegrating visual, audio, and language modalities. It is divided 397

into a training set of 1,284 samples, a validation set of 229 398

samples, and a test set of 686 samples. Each sample is given 399

a sentiment score, varying from -3, indicating strongly nega- 400

tive sentiment, to 3, signifying strongly positive sentiment. 401

MOSEI The dataset consists of 22,856 video clips sourced 402

from YouTube. The sample is divided into 16,326 clips for 403

training, 1,871 for validation, and 4,659 for testing. Each clip 404

is labeled with a score, ranging from -3, denoting the strongly 405

negative, to 3, denoting the strongly positive. 406



Method MOSI MOSEI

Acc-7 Acc-5 Acc-2 F1 MAE↓ Corr Acc-7 Acc-5 Acc-2 F1 MAE↓ Corr

MISA 28.90 31.67 69.15 / 70.74 68.50 / 70.23 1.092 0.508 38.92 39.28 76.21 / 72.12 70.76 / 65.50 0.800 0.490
Self-MM 30.78 34.03 68.75 / 70.89 65.47 / 67.90 1.070 0.518 46.40 46.78 71.18 / 72.75 70.45 / 70.99 0.695 0.498
MMIM 31.51 34.92 69.22 / 71.08 67.34 / 69.42 1.077 0.511 44.04 44.42 75.99 / 71.47 70.63 / 64.97 0.739 0.459
CENET 29.78 33.23 66.41 / 69.47 62.65 / 65.38 1.088 0.496 47.18 47.93 75.96 / 74.10 73.28 / 70.51 0.685 0.525
TETFN 29.89 33.20 68.66 / 70.89 65.11 / 67.64 1.087 0.512 46.31 47.03 71.63 / 71.84 68.91 / 68.14 0.714 0.508
TFR-Net 29.54 34.67 68.15 / 66.35 61.73 / 60.06 1.200 0.459 46.83 34.67 73.62 / 77.23 68.80 / 71.99 0.697 0.489
ALMT 30.35 32.92 68.27 / 70.55 64.47 / 67.07 1.083 0.506 42.01 42.58 76.75 / 72.96 72.00 / 67.16 0.754 0.511
LNIN 32.80 36.12 71.11 / 72.22 71.33 / 72.34 1.066 0.505 45.42 46.17 75.27 / 76.98 74.97 / 77.39 0.692 0.530

Ours 34.47 38.65 71.60 / 73.18 71.51 / 73.15 1.069 0.520 47.01 48.02 77.48 / 78.14 77.44 / 77.51 0.665 0.583

Table 1: Performance comparison on MOSI and MOSEI datasets.

4.2 Evaluation Settings and Criteria407

For each sample in the dataset, we incorporate data from408

three modalities: language, audio, and visual data. Consis-409

tent with previous works ([Zhang et al., 2023]), each modal-410

ity is processed using widely-used tools: language data is411

encoded using BERT([Devlin, 2018]), audio features are ex-412

tracted through Librosa ([McFee et al., 2015]), and visual413

features are obtained using OpenFace ([Baltrusaitis et al.,414

2018]). Specifically, for visual and audio modalities, we fill415

the erased information with zeros. For language modality, we416

fill the erased information with [UNK] which indicates the417

unknown word in BERT ([Devlin, 2018]).418

Following the previous works ([Zhang et al., 2024]), we419

report our results in classification and regression with the420

average of 3 runs of different seeds and 10 missing rates421

from 0.0 to 0.9 at 0.1 intervals. For classification, we re-422

port the multiclass accuracy and weighted F1 score. We cal-423

culate the accuracy of 2-class prediction, 5-class prediction424

(Acc-5) and 7-class prediction (Acc-7) for MOSI and MO-425

SEI. Besides, Acc-2 and F1-score of MOSI and MOSEI have426

two forms: negative/non-negative (non-exclude zero) ([Zadeh427

et al., 2017]) and negative/positive (exclude zero) ([Tsai et428

al., 2019]1). For regression, we report Mean Absolute Er-429

ror (MAE) and Pearson correlation (Corr). Except for MAE,430

higher values indicate better performance for all metrics.431

In training process, for hyperparameters, we choose that432

λ = 0.7, α = 0.1, β = 0.1. On the mosi dataset, we choose433

the missing rate k = 0.3, and on the mosei dataset, we choose434

k = 0.4.435

Compared with the baseline LNLN([Zhang et al., 2024])436

which uses the best model under different metrics for test-437

ing, we use the same model with the smallest overall loss as438

the optimal model for testing, and at the same time, in order439

to ensure the stability of the results, we randomly test three440

times and take the average value as the final result following441

the baseline settings.442

Inaddition, the result of MISA, Self-MM, MMIM, CENET,443

TETFN, ALMT is reproduced by the authors from open444

source code in the MMSA([Mao et al., 2022]),which is a445

unified framework for MSA, using default hyperparameters,446

LNLN([Zhang et al., 2024]) model is implemented using the447

author’s open source code and for TFR-Net, We use the re-448

0.0 0.2 0.4 0.6 0.8

k

60

65

70

75

80

85

Ac
cu

ra
cy

2

MOSI - Accuracy2
lnln
self_mm
almt
cenet
mmim
misa
tetfn
tfrnet
dar

0.0 0.2 0.4 0.6 0.8

k

20

25

30

35

40

45

50

55

Ac
c5

MOSI - Acc5
lnln
self_mm
almt
cenet
mmim
misa
tetfn
tfrnet
dar

0.0 0.2 0.4 0.6 0.8

k

50

60

70

80

Ac
c2

MOSEI - Acc2
lnln
self_mm
almt
cenet
mmim
misa
tetfn
tfrnet
dar

0.0 0.2 0.4 0.6 0.8

k

35

40

45

50

55

Ac
c5

MOSEI - Acc5
lnln
self_mm
almt
cenet
mmim
misa
tetfn
tfrnet
dar
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Figure 4: Variation of acc2 and acc5 of the model with training data
of different missing rates

sults reported in the LNLN article, and since that article uses 449

the best modeling results under the corresponding metrics, we 450

consider this comparison to be fair. 451

4.3 Robustness Comparison 452

Table 1 shows the robustness evaluation results on the MOSI 453

and MOSEI datasets. As shown in Table 1, DAR achieves 454

state-of-the-art performance on most metrics, demonstrating 455

the robustness of DAR in the term of different noise effects. 456

For seven categorical metrics on the mosi dataset MAE versus 457

the mosei dataset, our model is able to achieve sub-optimal 458

results. Considering the unpredictability of the impact of 459

stochastic factors on the quality of missing data, and some 460

of the extremes of the data have a huge impact on the overall 461

results, in this case, given the inherent instability of missing 462

data, we can assume that DAR achieves the optimal overall 463

performance on both datasets compared to the other models 464

compared. 465

Figure 4 shows the performance of all models under two 466

of the most commonly used binomial and multiclassification 467

metrics, non0acc2 and acc5, at different missing rates. The 468

results show that although DAR loses part of its performance 469

compared to other models when facing complete inputs, its 470



Method Acc-7 Acc-5 Acc-2 F1 MAE↓ Corr
w/o Lsim 34.14 38.42 71.50 / 72.71 71.30 / 72.62 1.084 0.505
w/o Ldiff 34.28 38.27 71.54 / 72.85 71.48 / 72.62 1.089 0.507
w/o Lsim&Ldiff 34.15 38.35 71.32 / 72.46 71.10 / 72.35 1.113 0.504
w/o Lrecon 33.57 38.31 71.02 / 72.20 70.45 / 71.13 1.123 0.493
w/o Lboot 33.03 36.93 70.50 / 72.26 69.90 / 71.80 1.123 0.475

Ours 34.47 38.65 71.60 / 73.18 71.51 / 73.15 1.069 0.520

Table 2: Effects of different component. Where Lboot denotes the
task loss corresponding to the boot module.

performance under other missing rates is significantly im-471

proved compared to other models without missing data, and472

also compared to TFR-Net and LNLN trained with missing473

data, which proves the effectiveness of our method.474

4.4 Ablation Experiment475

To evaluate the effectiveness of our proposed approach, we476

conduct a series of ablation experiments. These experi-477

ments systematically remove or modify key components of478

our model to assess their individual contributions to perfor-479

mance. By comparing the results of these ablations with the480

full model, we are able to quantify the impact of each design481

choice. This analysis provides a deeper understanding of the482

strengths and limitations of our method.483

The effect of the ablation experiment is shown in Table 2.484

The results of the ablation experiments demonstrate the effec-485

tiveness of our proposed multimodal fusion framework based486

on the decomposition-reconstruction idea. Compared to the487

complete model, eliminating either similarity or dissimilarity488

loss causes information redundancy in the feature correction489

reconstruction process, which reduces the performance of the490

model to varying degrees.491

Besides, we also verified the effect of eliminating the align-492

ment loss and bootstrap loss in the incomplete feature recon-493

struction process on the model effectiveness, and the elimina-494

tion of the alignment loss increases the uncertainty in the in-495

complete feature reconstruction process and affects the model496

performance. While eliminating the bootstrap loss causes the497

model to focus too much on the effect of the incomplete fea-498

ture reconstruction, in order to minimize the difference losses499

between the incomplete input and the complete input after en-500

coding. This leads to the degradation of the encoder’s ability501

to extract features, the reduction of the variability of the ex-502

tracted features, and ultimately impairing the model’s ability.503

For these reasons, we believe that mapping the bootstrap loss504

forces the model encoders to learn to benefit the downstream505

tasks of the features, mitigating encoder degradation.506

4.5 Missing Rates Sensitivity Experiment507

During the training of the model, we found that the manually508

selected missing rate of the multimodal data has a critical im-509

pact on the training process, and the following demonstrates510

the specific impact of the missing rate on the model output re-511

sults. We tested the performance of the model under different512

missing training sets constructed with different missing rates513

k. The results are shown in Table 3.514

Analyzing the experimental results, it can be seen that the515

performance of the model appears to increase and then de-516

Method Acc-7 Acc-5 Acc-2 F1 MAE↓ Corr
k=0.0 31.84 35.45 68.99 / 71.03 66.39 / 63.10 1.069 0.514
k=0.2 33.18 37.88 70.57 / 71.06 70.57 / 70.56 1.160 0.502
k=0.4 32.95 36.39 71.22 / 72.73 70.98 / 72.62 1.078 0.515
k=0.6 30.12 32.58 70.63 / 71.99 70.27 / 71.75 1.118 0.475
k=0.8 24.56 24.64 69.16 / 70.96 67.50 / 69.51 1.173 0.460

Table 3: Performance of the model at different missing rates k in
training process.

crease overall as the missing rate increases. After analyzing 517

the results, we believe that too low missing rate will lead to 518

the missing data is not distinct enough from the original com- 519

plete input data, and the model degenerates into an ordinary 520

multimodal fusion model. In this case,the DAR model is un- 521

able to learn the ability of feature reconstruction, while too 522

high missing rate will lead to the features being corrupted 523

seriously, especially for the modal common features, which 524

may lead to the fact that all the modal features corresponding 525

to all modal features are after alignment under too high miss- 526

ing rate. The model is therefore unable to learn the ability to 527

reconstruct complete features from incomplete features. 528

The experiments show that choosing the appropriate miss- 529

ing rate is very important for the final performance of the 530

model, and the model should be robustly trained by choosing 531

the appropriate missing rate according to the task features. 532

5 Conlusion 533

In this paper, we propose a novel method for multi- 534

modal sentiment analysis called Decoupled-Adaptive Re- 535

construction (DAR). The framework uses a reconstruction 536

method based on feature decoupling, and adopts differ- 537

ent reconstruction methods for the modal-common features 538

and modal-independent features of the missing data accord- 539

ing to their own properties, and achieves a more obvious 540

improvement in the robustness test of the mosi and mo- 541

sei datasets compared with the existing methods. In ad- 542

dition, we validate the effectiveness of our proposed fea- 543

ture decomposition-reconstruction framework through abla- 544

tion experiments, showing that our method can alleviate prob- 545

lems such as information redundancy in the feature recon- 546

struction process. 547

Finally, we explore the performance of the trained mod- 548

els with different levels of data missing rates, and the results 549

show that choosing the appropriate data missing rate has an 550

extremely important impact on the robust performance of the 551

models. In this experiment, we only discuss the case of the 552

same missing rate for multiple modalities, however, in prac- 553

tice, due to the different quality and noise immunity of differ- 554

ent modalities, choosing different missing rates for different 555

modalities or using methods that can adapt the missing rate is 556

a more promising direction for future improvement. 557
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