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 A B S T R A C T

Keyphrase extraction (KE) refers to the process of identifying words or phrases that signify the primary 
themes of a document. Although keyphrase extraction is important in many downstream applications, including 
scientific document indexing, search, and question answering, the challenge lies in executing this extraction 
both adaptively and effectively. To this end, we propose a novel Distillation-based Adaptive Ensemble Learning 
(DAEL) method specifically designed for efficient keyphrase extraction, encompassing diagnosis, aggregation, 
and distillation processes. Specifically, we initiate with a Cognitive Diagnosis Module (CDM) to evaluate the 
diverse capabilities of individual KE models. Following this, an Adaptive Aggregation Module (AAM) is employed 
to create a weight distribution uniquely suited to each data instance. The process concludes with a Knowledge 
Distillation Module (KDM) to distill the superior performance of the ensemble model into a single model, thereby 
refining its efficiency and reducing computational cost. Extensive testing on real-world datasets highlights the 
superior performance of the proposed model. In comparison with leading-edge methods, our approach notably 
excels in processing text with complex structures or significant noise, marking a substantial advancement in 
KE effectiveness.
1. Introduction

Keyphrase Extraction (KE) refers to the process of identifying the 
keyphrases (e.g., ‘‘graph neural networks’’, ‘‘intelligent analysis’’, and
‘‘sentiment analysis’’ as exemplified in Fig.  1) from a source document. 
This task is a crucial component of Natural Language Processing (NLP) 
and boasts a broad spectrum of applications, such as condensing the 
documents into summaries (Papagiannopoulou & Tsoumakas, 2020), 
enhancing retrieval of information (Hasan & Ng, 2014), and creating 
the models for various topics (Hasan & Ng, 2014; Song, Feng, & Jing, 
2023; Zhao et al., 2017).

In the task of keyphrase extraction, a central challenge lies 
in identifying the crucial information, largely because potential 
keyphrases often display multiple and hidden relationships (Song, 
Feng, & Jing, 2022a; Sun, Qiu, Zheng, Wang, & Zhang, 2020). 
Most current keyphrase extraction models, including those highlighted 
in Bennani-Smires, Musat, Hossmann, Baeriswyl, and Jaggi (2018), 
Liang, Wu, Li, and Li (2021), Song, Liu, Feng and Jing (2023), mainly 
use the pre-trained word embeddings. These models generally follow a 
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two-step process: generating candidate keyphrases and estimating their 
significance (Song, Jing, & Xiao, 2021). The first step involves using 
heuristic methods to select a set of words or phrases from the source 
document as potential keyphrases (Liang et al., 2021). The second step 
encompasses two main elements: representing semantics of the text 
and calculating the importance of these keyphrases.

Recently, the landscape of natural language processing has been 
transformed with the introduction and widespread adoption of 
advanced, pre-trained transformer models such as BERT (Kenton 
& Toutanova, 2019) and RoBERTa (Liu et al., 2019). These Pre-
trained Language Models (PLMs) have not only revolutionized the 
modeling method to various NLP tasks but have also proven to 
be exceptionally effective. As a key part of NLP workflows, they 
serve as sophisticated embedding layers, generating contextualized 
representations for a multitude of applications. This evolution in text 
representation technology has notably enhanced the research field of 
keyphrase extraction. The emergence of embedding-based keyphrase 
extraction methods (Song, Feng, & Jing, 2022b; Song, Jiang, Liu, Shi 
& Jing, 2023; Zhang et al., 2022), capitalizing on the strengths of 
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Fig. 1. Part (a) shows the traditional ensemble strategy based on Accuracy. Since the three methods perform consistently across the whole dataset, they are aggregated equally when 
encountering new data. However, part (b) shows that there are differences among the methods from a fine-grained perspective. When dealing with Sports news, more emphasis 
should be placed on the two methods that are more capable in Sports. Part (c) is the knowledge distillation process, which can reduce model parameters while maintaining the 
effect of the integrated model.
these PLMs, represents a notable breakthrough. Additionally, their 
ability to efficiently and accurately identify critical keyphrases in 
large volumes of text highlights the remarkable progress of current 
PLMs technologies. In summary, these methods have demonstrated 
outstanding results, surpassing the previous approaches, and setting 
new benchmarks for the state-of-the-art performance in keyphrase 
extraction. With the rise of Large Language Models (LLMs), there 
has been a notable exhibition of their strong zero-shot learning 
capabilities (Kojima, Gu, Reid, Matsuo, & Iwasawa, 2022). Recent 
work (Song, Geng et al., 2023) and our experiments on several 
open source LLMs have demonstrated the effectiveness of prompt-
based approaches using ChatGPT and ChatGLM (GLM et al., 2024), 
highlighting the potential of LLMs for Keyphrase Extraction.

Nevertheless, despite the significant advancements made by these 
methods, keyphrase extraction still faces many challenges that ne-
cessitate further exploration and resolution. Specifically, the previous 
methods primarily concentrate on aligning candidate keyphrases and 
their corresponding document representations within a unified seman-
tic space. However, they often overlook the key aspects such as the 
extractability, adaptability, and efficiency of keyphrase extraction (KE) 
models. This narrow focus results in certain shortcomings. For instance, 
as illustrated in Fig.  1(a), the text document titled ‘‘Medical technology is 
being used to improve the performance of athletes. For example,. . . ,reduce 
their injury risk’’. includes some keyphrases: ‘‘medical technology’’ and
‘‘performance of athletes’’. However, due to the text’s complexity, such 
as long sentences, or the presence of high noise levels, like text from 
diverse domains, previous models struggle to effectively capture the 
various features in the text, leading to limited performance.

To address these limitations, a practical solution involves lever-
aging ensemble learning methods. These methods aggregate various 
keyphrase extraction models, aiming to enhance the overall effective-
ness of keyphrase extraction in more complex scenarios. Regrettably, 
traditional methods in keyphrase extraction often fail to yield sat-
isfactory results in practice, sometimes even adversely affecting the 
process. Specifically, in the KE task, there are two notable challenges 
in ensemble learning that demand attention and solutions.

• First, the traditional ensemble approach tends to overlook the 
nuanced, multi-dimensional capabilities of individual Knowledge 
Extraction (KE) models, focusing instead solely on their overall 
performance as measured by a single metric like ‘‘Accuracy’’. 
This limited perspective can reduce the effectiveness of the en-
semble. For instance, as shown in Fig.  1(b), Bert-Chunk and 
SpanBert-Rank excel in the ‘‘sports’’ domain, yet fall behind Bert-
TagKPE in the ‘‘medical’’ domain. Consequently, when dealing 
with new ‘‘sports’’ data, it is advisable to prioritize Bert-Chunk 
2 
and SpanBert-Rank, rather than treating all three methods equally 
during the model aggregation process.

• Traditional ensemble methods, while effective in improving per-
formance, often result in increasing model size and the compu-
tational complexity. This strategy of seeking performance gains 
at the cost of heightened model intricacy may compromise re-
search fairness. Besides, the increased complexity may not always 
justify the performance improvements, especially when consider-
ing resource constraints and practical applicability. Hence, it is 
crucial to strike a balance between resource utilization and per-
formance during model integration, maintaining efficiency and 
effectiveness.

The observation indicates that traditional ensemble methods lack in 
two key areas: first, in the adaptive ensemble of the multi-dimensional 
strengths of individual models, and second, in effectively managing the 
efficiency of the overall ensemble model. Thus, we argue that the previ-
ous ‘‘ensemble pattern’’ can be further explored to improve the keyphrase 
extraction without significantly consuming computing resources. In this 
work, we introduce a pioneering approach known as Distillation-based
Adaptive Ensemble Learning (DAEL), specifically designed for efficient 
keyphrase extraction. This approach integrates diagnosis, aggregation, 
and distillation processes. Initially, a Cognitive Diagnosis Module (CDM)
assesses the diverse capabilities of individual KE models. Subsequently, 
an Adaptive Aggregation Module (AAM) is employed to create a weight 
distribution uniquely suited to each data instance. Finally, a Knowledge 
Distillation Module (KDM) distills the enhanced performance of the 
ensemble model into a singular model, thereby streamlining efficiency 
and minimizing computational demands. Our extensive testing on real-
world datasets demonstrates the model’s superiority, particularly in 
handling texts with complex structures or substantial noise, thereby 
significantly advancing KE effectiveness compared to leading methods.

The remainder of this paper is organized as follows. Section 2 
reviews related work in keyphrase extraction, cognitive diagnosis and 
knowledge distillation. In Section 3, we provide foundational concepts 
and methodologies that underpin our research. Section 4 introduces the 
proposed DAEL model and its theoretical foundations. In Section 5, we 
describe our implementation details, experimental setup, experimental 
results and detailed analysis. Finally, Section 6 concludes the paper, 
while Section 7 discusses the advantages of our diagnostic approach 
and future research directions.

2. Related works

Keyphrase Extraction. With the rise of information extraction, 
keyphrase extraction algorithms have become a hot research topic. 
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Keyphrase extraction aims at selecting a set of phrases from a doc-
ument that could summarize the main topics discussed in the docu-
ment (Hasan & Ng, 2014). Keyphrase extraction algorithms are mainly 
divided into supervised and unsupervised methods. Specifically, unsu-
pervised methods mainly use different features of the document such 
as topic features, phrase frequency, length features, context features, 
and so on. Campos et al. (2018) proposed YAKE using 5 features 
including case, word position, word frequency, word contextuality, and 
sentence difference. Besides, graph-based methods are an effective class 
of unsupervised keyphrase extraction methods. Among them, inspired 
by PageRank (Page, Brin, Motwani, & Winograd, 1999), Mihalcea and 
Tarau (2004) proposed TextRank, which abstracts a document as a 
graph, where the nodes represent phrases and edges represent the 
relationship between phrases

Subsequently, considerable efforts were made to enhance the docu-
ment graph by incorporating additional information. Among these ef-
forts, Singlerank (Wan & Xiao, 2008) incorporated phrase co-occurrence
information as weights on edges based on TextRank model. Bougouin, 
Boudin, and Daille (2013) introduced TopicRank, a model that re-
placed keyphrases with candidate words obtained from clustered topics. 
Multipartite (Boudin, 2018) combined topical information with a mul-
tipartite graph structure. PositionRank (Florescu & Caragea, 2017) 
incorporated positional information of phrase into a biased weighted 
PageRank.  Liu, Huang, Zheng, and Sun (2010) proposed Topical 
PageRank (TPR) which used LDA to obtain the topic distribution of 
each word. More recently, pre-trained language models have been 
used for keyphrase extraction. SIFRank (Sun et al., 2020) combined 
the autoregressive pre-trained ELMo to compute phrase and document 
embeddings. It then computed cosine similarity to select the keyphrase. 
AttentionRank (Ding & Luo, 2021) extracted attention weights from 
BERT and computes self and cross attention to determine the relevance 
between phrases and documents. Compared with these unsupervised 
methods, Xiong, Hu, Xiong, Campos, and Overwijk (2019) presented 
BLING-KPE and took the task as an n-gram level keyphrase chunk-
ing task.  Sun, Liu, Xiong, Liu, and Bao (2021) considered both of 
the phraseness and informativeness when extracting keyphrases in 
a multi-task training architecture.  Kong et al. (2023) proposed the 
PromptRank, an encoder–decoder architecture that feeds documents 
into the encoder and calculates the probability of generating candi-
dates using a designed prompt in the decoder. To take this further, 
Large language models, including ChatGPT and numerous open-source 
LLMs, have demonstrated strong performance across various down-
stream natural language processing tasks, attributed to their zero-shot 
learning capabilities. Song, Geng et al. (2023) investigated a prompt-
based method that directly combines instructions and documentation 
as inputs, prompting ChatGPT and ChatGLM (GLM et al., 2024) for 
Keyphrase Extraction.

Cognitive Diagnosis. Cognitive Diagnosis (CD) is a fundamental 
task in many real-world scenarios (e.g., business (Liu, Yang, Gao, Li, & 
Liu, 2023) and education (Gao et al., 2021, 2023; Wang et al., 2020)). 
The main goal of Cognitive Diagnosis is to measure learners’ proficiency 
profiles of abilities to finish specific tasks from their observed behav-
iors (Wang et al., 2020). For instance in education, it can be used to 
infer student (as learner) knowledge proficiency (as ability) by fully 
exploiting their responses of answering each exercise (as task). Most 
of the existing cognitive diagnosis models (CDMs) (De La Torre, 2009; 
Gao et al., 2021; Lord, 1952) are well designed from psychometric 
theories of human measurement. Among them, item response theory 
(IRT) (Lord, 1952) is the most established CDMs which assumes the 
probability of the learner 𝑠𝑖 correctly finishing a task 𝑒𝑗 , i.e., 𝑟𝑖𝑗 = 1, 
increases with learner ability 𝜃𝑖 while decreasing with task difficulty 
𝛽𝑗 . Among them, the user ability and task difficulty are trainable 
unidimensional parameters (Liu, 2021). A typical formulation of IRT 
is 𝑃 (𝑟𝑖𝑗 = 1) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑((𝜃𝑖 − 𝛽𝑗 ) ⋅ 𝑎𝑗 ), where 𝑎𝑗 is an optional task 
discrimination item. Recently, some works extended the previous basic 
models to capture the more complex relationships among users, tasks, 
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and abilities. The typical method is NeuralCD (Wang et al., 2020) 
which introduced neural networks 𝐹 (⋅) to model high-level interaction 
between learners/abilities and tasks, i.e., 𝑃 (𝑟𝑖𝑗 = 1) = 𝐹 (𝜃𝑖 − 𝛽𝑗 ). 
Inspired by the psychometric theories from human measurement, the 
multi-dimensional evaluation of KE models can also benefit from the 
fine-grained assessment of human learning performance.

Ensemble Learning. Ensemble Learning (EL) can fuse the knowl-
edge of the individual models together to achieve competitive perfor-
mance via voting schemes based on some learned features, which is 
widely used in machine learning tasks (Dong, Yu, Cao, Shi, & Ma, 2020; 
Papagiannopoulou & Tsoumakas, 2020). Traditional voting schemes 
include unweighted averaging and the weighted voting. Among them, 
unweighted averaging of the outputs of the base learners in an ensem-
ble is the most followed approach for fusing the outputs (Ganaie, Hu, 
Malik, Tanveer, & Suganthan, 2022). It considers the output results of 
each learner equally but ignores the differences between learners. On 
the other hand, weighted voting (Ganaie et al., 2022) and Adaptive 
Ensemble strategy for KE (AEKE) (Jin et al., 2023) methods tend to 
assign different weights to different learners based on their unidimen-
sional ability. Such ability is often assessed by a single traditional 
metric on the history datasets. But the weights are constant during 
model aggregation. In ensemble strategies of keyphrase extraction, 
mainstream methods employed unweighted averaging and weighted 
voting methods to aggregate individual KE models.

However, the above methods still suffered from relying on the unidi-
mensional ability (e.g., Accuracy, Precision) of individual KE models to 
achieve aggregation, resulting in limited performance in the ensemble. 
To solve that, we develop an adaptive ensemble strategy for keyphrase 
extraction from the perspective of multi-dimensional abilities.

Knowledge Distillation. Knowledge Distillation (KD), originally 
conceptualized by Hinton, Vinyals, and Dean (2015), is a process 
aimed at transferring knowledge from a larger, well-trained ‘‘teacher’’ 
model to a smaller, yet comparably effective ‘‘student’’ model. The 
standard approach in KD involves aligning the output distributions of 
both teacher and student models by minimizing the Kullback–Leibler 
divergence loss, which often involves a constant temperature hyperpa-
rameter.

To improve the efficacy of distillation, diverse knowledge trans-
fer strategies have been explored. These strategies generally fall into 
three main categories: logit-based methods, as demonstrated in works 
by Chen, Mei, Wang, Feng, and Chen (2020), Zhao, Cui, Song, Qiu, 
and Liang (2022); representation-based methods, exemplified by Chen, 
Liu, Zhao, and Jia (2021); and relationship-based methods, as seen in 
studies by Park, Kim, Lu, and Cho (2019), Yim, Joo, Bae, and Kim 
(2017). Recent innovations, such as MKD (Liu, Liu, Li, & Liu, 2022), 
advocate for adapting the temperature via meta-learning using an ad-
ditional validation set. Although this method shows promise, especially 
when combined with robust data augmentation, its effectiveness may 
be limited with augmentation or when integrated into other knowledge 
distillation techniques.

However, in the field of knowledge extraction, the application 
of knowledge distillation technology to improve the performance of 
ensemble model remains underexplored. Thus, our proposed DAEL 
(Distillation-based Adaptive Ensemble Learning) method focuses on ex-
amining the influence and utility of knowledge distillation technology 
within the integration process of ensemble models.

3. Preliminary

3.1. Cognitive diagnosis for KE

Building upon the NeuralCD (Wang et al., 2020) which is a cognitive 
diagnostic model, we introduce the definition of the cognitive diagnosis 
problem for keyphrase extraction algorithms. First, we denote the 
algorithms to be evaluated as learners and the NeuralCD as diagnosers. 
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Then, we evaluate the multi-dimensional abilities of learners on differ-
ent skills, which are used to describe how well an algorithm performs 
on a particular category of samples. Besides, in our work, since the topic 
of documents contains the main information and represents the specific 
textual features of keyphrase (Meng, Wang, Yuan, Zhou, & He, 2022), 
we take the topics of documents as skills. For instance, topics on Sports
and Medical convey a totally different message. Thus, we designate each 
document topic as a unique skill, aligning one topic with one specific 
skill.

In designing our diagnoser, we consider a well-trained learner set 
𝑆 = {𝑠1,… , 𝑠𝑁}, a sample set 𝐸 = {𝑒1,… , 𝑒𝑀} which is the dataset 
in our task, and a skill (topic) set 𝐶 = {𝑐1,… , 𝑐𝑃 }. 𝑁 and 𝑀 denote 
the number of learners to be aggregated and samples in the dataset. 𝑃
denotes the number of skills as a hyper-parameter in our task. Then the 
learner’s output results on each sample as response logs 𝑅, which are 
denoted as a set of triplet (𝑠, 𝑒, 𝑟𝑖𝑗 ), where 𝑠 ∈ 𝑆, 𝑒 ∈ 𝐸 and 𝑟𝑖𝑗 is the 
score that learner 𝑖 got on sample 𝑗. The top 5 results of keyphrase 
extraction are transferred to a score (0 or 1). We denote 𝑟𝑖𝑗 = 1
if learner 𝑖 predicts more than one keyphrase correctly and 𝑟𝑖𝑗 = 0
otherwise. Meanwhile, an explicitly pre-defined sample-skill relevancy 
matrix 𝑄 should also be given. 𝑄 = {𝑄𝑖𝑗}𝑀×𝑃 , where 𝑄𝑖𝑗 = 1 if 
sample 𝑒𝑖 is related to skill 𝑝𝑗 and 𝑄𝑖𝑗 = 0 otherwise. Given the learner-
sample response matrix 𝑅 and the sample-skill matrix relevancy 𝑄, we 
could estimate the multi-dimensional abilities of different learners on 
different skills through the diagnoser.

3.2. Adaptive aggregation for KE

Fig.  1(a) shows a critical limitation in traditional ensemble strate-
gies for keyphrase extraction algorithms: their singular focus on a single 
metric (e.g., Accuracy), overlooking the nuances of model’s multi-
dimensional abilities. To address this gap, we utilizes the cognitive 
diagnosis results to inform the development of adaptive ensemble 
strategies. The method starts with the cognitive diagnosis analysis, 
yielding insights into each model’s multi-dimensional capabilities and 
the specific characteristics (e.g., the difficulty, discrimination, and topic 
relevance) of the data set. Armed with this information, we then 
confront a new document, denoted as 𝑛, with a bespoke aggregation 
strategy. This strategy dynamically adjusts weights based on the di-
agnostic outcomes, taking into account the multi-dimensional abilities 
of the algorithms and the specific attributes of the data, including 
difficulty, discrimination, and topic.

In this work, multi-dimensional abilities represent the distinct com-
petencies of the keyphrase extraction model, while the difficulty, dis-
crimination, and topic characteristics pertain to the data samples. Our 
overarching objective is to forge a coherent link between the diagnostic 
results and the voting weights 𝑤 assigned to each algorithm. This adap-
tive weighting strategy is designed to enhance ensemble performance 
on each new document by tailoring the algorithmic response to the 
requirements and nuances of the data at hand.

3.3. Knowledge distillation for KE

In the realm of knowledge distillation (KD), as established by Hinton 
et al. (2015), the foundational concept involves training a ‘‘student’’ 
model to mimic the output distribution of a ‘‘teacher’’ model. This 
approach is based on the premise that the ‘‘teacher’’ model’s output dis-
tribution offers a more informative and effective learning signal to the 
‘‘student’’ model than the gold standard labels alone. Building upon this 
concept, (Clark, Luong, Khandelwal, Manning, & Le, 2019) expanded 
the utility of KD by integrating it with Multi-Task Learning (MTL). Their 
research demonstrated that applying knowledge distillation within an 
ensemble framework, particularly when learning from multiple related 
tasks, can significantly enhance the performance of models. In this 
work, we try to use the integrated KE model as a teacher model, and 
use the knowledge distillation method to distill a single KE model, and 
keep its effect at a high level.
4 
3.4. Problem definition

Given the multi-dimensional abilities of KE algorithms and features 
of the new document, our goal is to design an adaptive ensemble 
strategy to adjust the aggregation weights to improve the keyphrase 
extraction. Specifically, given the learner-sample response matrix 𝑅 and 
the sample-skill matrix relevancy 𝑄, the Cognitive Diagnosis Module 
utilizes NeuralCD to get multi-dimensional abilities of the learner ℎ𝑎, 
the difficulty ℎ𝑑 and discrimination ℎ𝑑𝑖𝑠𝑐𝑑  of the sample. It defines a 
probability 𝑦 = 𝑓 (ℎ𝑎, ℎ𝑑 , ℎ𝑑𝑖𝑠𝑐𝑑 ) and uses cross entropy loss 𝐿 as the ob-
jective of the diagnosis process. The adaptive weighting strategy takes 
𝐿 and (ℎ𝑎, ℎ𝑑 , ℎ𝑑𝑖𝑠𝑐𝑑 ) as input to determine a new sample’s distribution 
across various implicit topics 𝑐𝑛. It then embeds the token sequence of a 
new sample, denoted as 𝐷𝑤 into 𝑒𝑑 to compare with the representations 
of the samples entering in the diagnosis. Subsequently, it calculates 
the average difficulty and discrimination of the 𝐾 closest samples to 
define the new sample’s value 𝑑𝑛 and 𝑑𝑖𝑠𝑐𝑛. Finally, the weight 𝑤 is 
determined based on (ℎ𝑎, 𝑐𝑛, 𝑑𝑛, 𝑑𝑖𝑠𝑐𝑛).

4. Methodology

4.1. Overview

Since previous research either ignore the adaptability of the ensem-
ble model or ignore the efficiency of the ensemble model. The goal of 
our model is to design a better adaptivity and efficient ensemble model 
based on the Cognitive Diagnosis and knowledge distillation technique. 
The overall model architecture is illustrated in Fig.  2. Specifically, the 
proposed DAEL model mainly contains three components: 1) Cognitive 
Diagnosis Module (CDM): aiming to achieve fine-grained evaluation for 
keyphrase extraction models on multi-dimensional ability; 2) Adaptive 
Aggregation Module (AAM): aggregating KE models through adaptive 
strategies after diagnosing capabilities of them; 3) Knowledge Distilla-
tion Module (KDM): distilling the integrated model into one model, so 
that the distilled KE model can reduce the number of parameters while 
maintaining the performance.

4.2. Cognitive diagnosis module

Following previous cognitive diagnosis research, three important 
elements need to be considered: learner factors, sample factors, and the 
interaction function between them (Wang et al., 2020). Inspired by the 
NeuralCD (Wang et al., 2020) model, the architecture of our diagnostic 
framework is shown in Fig.  2. Specifically, we use one-hot vectors of the 
corresponding learner and text representation for the sample as input. 
Then, we learn the interaction among the factors and characterize the 
learner and the sample. Finally, the goal of our model is to predict the 
performance of the algorithms on samples in the dataset.

Learner Factors. In the task, we only focus on the ability on the 
different skills. Therefore, each learner is represented with a one-hot 
vector 𝑠𝑧 ∈ {0, 1}1×𝑁  as input, where 𝑁 denotes the number of learners 
to be evaluated.

Sample Factors. Previous diagnostic works choose an independent 
one-hot vector to represent the items (e.g., data items). They represent 
sample 𝑒𝑑 input as one-hot vector 𝑒𝑑 ∈ {0, 1}1×𝑀 , where 𝑀 denotes the 
number of samples.

Skill Factors. We want to make the topics as skills, as topic informa-
tion is valuable in keyphrase extraction tasks. However, the published 
datasets do not contain topic labels for documents. To this end, in this 
paper, we employ the LDA (Blei, Ng, & Jordan, 2003) to obtain the 
topic labels by unsupervised clustering of the documents. Especially, 
LDA has better interpretability and the topical tokens for the clusters 
can be used as the explicit description for skills, which is great of 
importance for Cognitive Diagnosis. After clustering the documents into 
𝑃  topics by LDA, we can obtain the sample-skill matrix 𝑄 ∈ {0, 1}𝑀×𝑃 . 
By this method, the topic label of each sample will be obtained. With 
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Fig. 2. The model’s overall framework, DAEL, is divided into three key components: 1) the Cognitive Diagnosis Module (CDM), which conducts detailed assessments of keyphrase 
extraction models across various dimensions; 2) the Adaptive Aggregation Module (AAM), which combines KE models using tailored strategies based on their assessed capabilities; 
and 3) the Knowledge Distillation Module (KDM), which condenses the collective insights from the ensemble into a single, more efficient model.
Table 1
Several important mathematical notations.
 Notation Description  
  The set of learners.  
  The set of data samples.  
  The set of skills.  
  The sample-skill mappings of samples.  
  The set of response from learners to samples. 
 ℎ𝑎 The ability of learners.  
 ℎ𝑑 The difficulty of samples.  
 ℎ𝑑𝑖𝑠𝑐

𝑑 The discrimination of samples.  

the representation of learners, samples, and skills (i.e., 𝑠𝑧, 𝑒𝑑 , and 𝑐𝑘
respectively), we will eventually predict the performance of the learn-
ers on the samples based on the existing response logs. Previous works 
have achieved the generality of diagnosis frameworks in education. The 
core of the cognitive diagnostic layer lies in the representation and 
interaction of model ability and sample factors. Following these works, 
we have designed a simple and universal diagnostic layer.

Following previous NeuralCD method, with the model we can get 
multi-dimensional abilities of the learner ℎ𝑎, the difficulty ℎ𝑑 and 
discrimination ℎ𝑑𝑖𝑠𝑐𝑑  of the sample. Note that, detailed explanations of 
all symbols are provided in Table  1. Among them, ℎ𝑎 indicates the 
ability of the learner to process samples on different topics. The ℎ𝑑
represents the degree of difficulty the learner to solving the problem. 
Besides, the ℎ𝑑𝑖𝑠𝑐𝑑  indicates the capability of samples to differentiate the 
proficiencies of learners. Samples with low discrimination mean that of 
low quality: they tend to have annotation errors or do not make sense. 

Prediction. With the representation of learners, samples, and skills, 
we will eventually predict the performance of learners on the samples 
based on the existing response logs. Specifically, we exploit neural 
networks to model the relationship between learner ability factor ℎ𝑎
and skill difficulty factor ℎ𝑑 . The probability 𝑌  is defined as the ability 
compared with the sample in the covered topic as: 
𝑌 = (ℎ𝑎 − ℎ𝑑 ) × ℎ𝑑𝑖𝑠𝑐𝑑 . (1)

Then, we use the full connection layers 𝐹  to predict the score of 
learner 𝑧 on the sample 𝑑 (i.e., the score 𝑦): 
𝑦 = 𝜎(𝐹 (𝑌 )). (2)

Finally, the whole objective of the diagnoser is defined with the 
cross entropy loss function: 
 = −

∑

𝑖
(𝑟𝑖 log 𝑦𝑖 + (1 − 𝑟𝑖) log(1 − 𝑦𝑖)), (3)

where 𝑟 is the true score. Based on Eq. (3), we can get the multi-
dimensional abilities of the KE models.
5 
4.3. Adaptive aggregation module

Utilizing cognitive diagnosis module, we are able to discern the 
multi-dimensional capabilities of various keyphrase extraction models. 
Drawing on these diagnostic insights, we have developed an adaptive 
aggregation module (AAM) to more effectively amalgamate the out-
comes of each extraction algorithm when confronted with new test 
samples.

The Input of AAM. The AAM receives inputs comprising both the 
capabilities of single KE models and the features of the new sample. The 
abilities of KE models, ascertained from the prior diagnostic module, 
reflect multi-dimensional proficiency across diverse KE topics. The 
features of the new sample encompass details about the topic, difficulty, 
and distinctiveness. Specifically, the topic information correlates with 
the evaluated abilities of the algorithms, ensuring a tailored approach. 
The difficulty and distinctiveness of the sample provide insights into 
the models’ implicit adeptness in addressing such challenges. Together, 
these three attributes (i.e., topic, difficulty, and distinctiveness) com-
prehensively represent the information of new sample, equipping AAM 
with a nuanced understanding for effective aggregation.

In summary, drawing from the topic model obtained in Section 4.2, 
when a new sample is introduced, the distribution across various 
implicit topics is determined, represented as 𝑐𝑛. Each dimension of 
𝑐𝑛 signifies the probability of the sample’s association with a specific 
implicit topic. However, it is vital to note that since unseen samples 
are not utilized as inputs in the diagnostic module, direct assessments 
of their difficulty and discrimination are not readily available. To this 
end, we design a non-parametric module to predict the difficulty and 
discrimination. Specifically, as there is a close relationship between 
original texts and the factors of samples including the difficulty and 
discrimination, we choose to predict difficulty and discrimination based 
on semantic K-nearest neighbor (Peterson, 2009) methods. Here, given 
the token sequence of original texts of keyphrase extraction samples 
𝐷𝑤 = {𝑑𝑤1 , 𝑑

𝑤
2 ,… , 𝑑𝑤𝑛𝑤}, we map each word of 𝐷

𝑤 into word embedding 
by BERT (Devlin, Chang, Lee, & Toutanova, 2018), and get the doc-
ument embedding by applying mean-pooling, where 𝑛𝑤 is the length 
of the word sequence. We use the document embedding 𝑒𝑑 as input 
representation for the new sample: 
𝑒𝑑 = 𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙(𝐵𝐸𝑅𝑇 ([𝑑𝑤1 , 𝑑

𝑤
2 ,… , 𝑑𝑤𝑛𝑤 ])). (4)

Then, we match and retrieve the textual representations of the new 
samples with the representations of the samples entering in the diag-
nosis and find the 𝐾 closest samples. These samples are able to get the 
difficulty {𝑑1,… , 𝑑𝑘} and discrimination {𝑑𝑖𝑠𝑐1,… , 𝑑𝑖𝑠𝑐𝑘} by diagnosis. 
Finally, we average the difficulty and discrimination retrieved as the 
difficulty 𝑑  and discrimination 𝑑𝑖𝑠𝑐  of the new sample.
𝑛 𝑛
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Fig. 3. Knowledge Distillation (KD) framework. Blue means the parameter needs to be 
updated, while gray means not. This method makes knowledge transfer more friendly 
and effective.

Weight Prediction. Upon acquiring the aforementioned inputs, the 
next step involves determining the most suitable ensemble weights for 
each new sample. To maintain the interpretability of these weights, we 
have devised an ensemble strategy for the new samples based on: 
𝑤 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(ℎ𝑎 ⋅ 𝑐𝑛 × 𝑑𝑛 × 𝑑𝑖𝑠𝑐𝑛), (5)

where 𝑤 ∈ R𝑁×1, ℎ𝑎 ∈ R𝑁×𝑃 , 𝑐𝑛 ∈ R1×𝑃 , 𝑑𝑛 and 𝑑𝑖𝑠𝑐𝑛 are single 
numbers.

4.4. Knowledge distillation module

In neural networks, ‘‘knowledge’’ primarily encompasses the ac-
quired weights and biases. However, large deep neural networks exhibit 
a vast array of knowledge sources. Traditional knowledge distillation 
techniques leverage the teacher model’s logits to transfer knowledge, 
whereas alternative approaches concentrate on weights or activations 
of the intermediate layers. Additionally, pertinent knowledge forms 
include the dynamics between various activation types and neurons, 
as well as teacher model’s parameters themselves.

Previous discussions have highlighted numerous studies on the 
enhanced performance of ensembles from theoretical standpoints. Yet, 
these investigations predominantly focus on methods like Boosting, 
Bagging, and ensembles of models and features. Building on this foun-
dation, we propose a novel Knowledge Distillation Module (KDM) to 
distill the essence of the ensemble model into a single model, aiming 
to preserve the ensemble model’s superior performance. Fig.  3 illus-
trates that the traditional knowledge distillation centers on the teacher 
model’s final output layer. The underlying assumption is that the stu-
dent model is trained to replicate the teacher model’s predictions. This 
replication process is facilitated through a specialized loss function, 
known as distillation loss (i.e., 𝐿𝐾𝐿), which quantifies the discrepancy 
between the student’s and the teacher’s logits. By minimizing this loss 
during training, the student model progressively improves its ability to 
generate predictions that align with those of the teacher model.

The foundational setup for the teacher and student models can 
be described as follows: the ensemble teacher model, denoted as 𝑓 𝑡, 
comprises three distinct models: Bert-Chunk, SpanBert-Rank, and Bert-
TagKPE; the student model, denoted as 𝑓 𝑠, is Bert-Chunk. It is worth 
to note that, the 𝜃 is the model parameters (e.g., 𝜃𝑠 is the parameters 
of the student model. 𝜃𝑡 is the parameters of the teacher model).

Note that, in the teacher model, indicated by the gray (gray) section, 
we freeze the parameters of the ensemble model to prevent them from 
updating during the learning process. On the other hand, in the student 
model, highlighted in blue, we allow the parameters to be updated 
through backpropagation. This approach enables the student model 
to assimilate knowledge from the teacher model efficiently, without 
incurring significant computational overhead. Specifically, the vanilla 
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knowledge distillation loss measuring the KL-Divergence of teachers 
and students can be formulated as: 

𝐾𝐿
(

𝒇 (𝜏 ∣ 𝜃𝑠) ,𝒇
(

𝜏 ∣ 𝜃𝑡
))

= 𝜏2
∑

𝑗
𝒇 𝑗

(

𝜏 ∣ 𝜃𝑡
)

⋅ log
𝒇 𝑗

(

𝜏 ∣ 𝜃𝑡
)

𝒇 𝑗 (𝜏 ∣ 𝜃𝑠)
(6)

where 𝜏 is the temperature used in knowledge distillation process, 
which controls how much to rely on the teacher’s soft predictions. 𝑗 ∈
{1, 𝐾} is the number of classes. In sum, ensemble in deep learning may 
be very different from the ensemble in random features. It may be more 
accurate to study ensemble/knowledge distillation in deep learning as 
feature learning process, instead of feature selection process.

5. Experiments

In the section, we aim to showcase the efficacy of our DAEL model. 
We begin by comparing DAEL against several cognitive diagnosis base-
lines. This comparison is based on response logs obtained from al-
gorithms tested on two distinct keyphrase extraction datasets. Subse-
quently, we conduct a series of comprehensive experiments including 
diagnostic analysis, hyper-parameter sensitivity study, model aggre-
gation and present some cases. Collectively, these experiments are 
designed to illustrate the effectiveness of our ‘‘diagnostic-aggregation-
distillation’’ framework from multiple, consistent perspectives.

5.1. Baselines

Keyphrase Extraction Baselines. To better test the effectiveness 
of the proposed framework, we select 24 representative keyphrase 
extraction algorithms including unsupervised methods (e.g. TextRank, 
TopicRank, YAKE, and SIFRank) and supervised methods (e.g. BERT-
JointKPE and BERT-SpanKPE). All models are shown in Table  2 with 
a general description. Supervised methods are trained on the OpenKP 
training set (134k documents). We obtain the response logs of learners 
on all samples on the datasets. Following the past research (Wang et al., 
2020), we split the datasets into the training, validation and test set as 
7:1:2.

Diagnoser Baselines. We evaluate the performance of our proposed 
framework with other well-known CDMs. The details are illustrated as 
follows:

• IRT (Lord, 1952) is the most popular cognitive diagnosis method, 
it models students’ latent traits and the parameters of exercises 
like difficulty and discrimination with a logistic-like function.

• DINA (De La Torre, 2009) is the first method to design the 
Q-matrix and it uses binary variables to represent mastery of 
skills.

• MIRT (Reckase & Reckase, 2009) is a multidimensional extension 
of IRT, modeling multiple knowledge proficiency of students and 
exercises.

• MCD (Toscher & Jahrer, 2010) uses matrix factorization for mod-
eling the deep interaction.

• NeuralCD (Wang et al., 2020) is a neural cognitive diagnostic 
model, which leverages multi-layers for modeling complex inter-
actions of students and exercises, aiming to diagnose students’ 
cognition by predicting the probability of the answering exercise 
correctly.

Dataset Description. To illustrate the generality of our proposed 
framework DAEL, we conduct experiments on two common keyphrase 
extraction datasets, i.e., OpenKP (Xiong et al., 2019) and Inspec (Hulth, 
2003). OpenKP is an open-domain keyphrase extraction dataset with 
various domains and topics. Each document contains the most relevant 
keyphrases generated by expert annotations. Furthermore, it is often 
used to evaluate supervised algorithms. The cognitive diagnosis model 
of DAEL is based on NeuralCD. In the datasets used by NeuralCD, 
specifically MATH and ASSIST, the average number of response logs per 
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Table 2
Keyphrase extraction models.
 Type Methods Description  
 

Unsupervised

Firstphrase Choose the first phrase in sentences.  
 YAKE (Campos et al., 2018) Based on 5 statistical features including 

case, word position, frequency, 
contextuality, and sentence difference.

 

 TextRank (Mihalcea & Tarau, 2004) Based on phrase graph and PageRank 
algorithm.

 

 SingleRank (Wan & Xiao, 2008) Incorporate phrase co-occurrence 
information on TextRank.

 

 TopicRank (Bougouin et al., 2013) Choose topics obtained by clustering 
candidate.

 

 TopicalPageRank (Liu et al., 2010) Combine with LDA.  
 PositionRank (Florescu & Caragea, 2017) Incorporate position into PageRank.  
 MultipartiteRank (Boudin, 2018) Combine topical information with a 

multipartite graph.
 

 SIFRank (Sun et al., 2020) Combine ELMo with sentence 
embeddings.

 

 

Supervised

BERT-JointKPE (Sun et al., 2021) A multi-task model is trained jointly on 
the chunking task and the ranking task.

 

 BERT-RankKPE (Sun et al., 2021) Learn the salience phrases in the 
documents using a ranking network.

 

 BERT-ChunkKPE (Sun et al., 2021) Classify high-quality keyphrases using a 
chunking network.

 

 BERT-TagKPE (Sun et al., 2021) Modify the sequence tagging model.  
 BERT-SpanKPE (Sun et al., 2021) Modify the span extraction model.  
 RoBERTa-Variants*5 (Sun et al., 2021) Five methods based on RoBERTa.  
 SpanBERT-Variants*5 (Sun et al., 2021) Five methods based on SpanBERT.  
Table 3
Statistics of datasets.
 Statistics OpenKP Inspec 
 Document Number 6616 1500  
 Document Len Average 900 128  
 Keyphrase Average 2.2 9.8  
 Keyphrase Len Average 2.0 2.5  

Table 4
Evaluation of all diagnosers through predicting learner performance on unknown 
samples.
 Methods OpenKP Inspec

 AUC Accuracy RMSE AUC Accuracy RMSE  
 DINA 0.5629 0.5447 0.5594 0.5377 0.5115 0.5782  
 IRT 0.5760 0.5403 0.5424 0.5595 0.5450 0.5437  
 MIRT 0.5691 0.5556 0.5645 0.5233 0.5175 0.5886  
 MCD 0.8543 0.7786 0.3765 0.6643 0.6212 0.4790  
 NeuralCD 0.9140 0.8692 0.3395 0.8832 0.7615 0.3792 

student is 84 and 78, respectively. The experimental results from Neu-
ralCD indicate that this volume of response logs is sufficient for training 
a model to diagnose student abilities. Accordingly, the 6616 samples 
in the OpenKP valid set provide sufficient data for each keyphrase 
extraction method to generate an adequate number of response logs for 
training DAEL’s cognitive diagnostic model. This sufficiency obviates 
the need to employ the entire training set. Therefore, we choose the 
valid set for our tasks. The Inspec dataset consists of short docu-
ments selected from scientific journal abstracts which are labeled by 
the authors. We choose the valid (500 documents) and train (1,000 
documents) sets in this paper. Table  3 shows the statistics of the two 
datasets. From the table, it is obvious that documents in Inspec tend 
to have more ground truth than those in OpenKP. In previous studies, 
the top 𝑁 selected by the keyphrase extraction algorithm was set to 
{5, 10, 15} for Inspec and {1, 3, 5} for OpenKP considering this difference 
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between the two datasets. For the result of the method, the top 5 
keyphrases are compared with the ground truth in our work.

5.2. Implementation

In our experiment we use the pre-trained uncased BERT-based 
model with a 768 dimensions hidden representation as our tool. As the 
number of skills 𝑃  is the most important hyper-parameter, we conduct 
sensitivity experiments on it in section 5.3.3. To set up the training 
process, we initialize all network parameters with Xavier initialization. 
The Adam optimizer (Kingma & Ba, 2014) is used in the experiment 
while the learning rate is set to 0.0002. We train all diagnosers for 
20 epochs and select the best model on validation set for testing. All 
diagnosers are implemented by Pytorch and are run on a Linux server 
with two Intel(R) Xeon(R) E5-2650 v4 CPUs and an NVIDIA A100 GPU.

5.3. Evaluation metrics

Our experimental metrics consist of three components: metrics for 
learner performance prediction, and metrics for model aggregation. 
The first is commonly used in cognitive diagnostic to test the validity 
of diagnostic methods (Li et al., 2022; Wang et al., 2020, 2022). 
Meanwhile, the model aggregation method is employed to demonstrate 
the improvement of diagnostic results for the KE task.

Learner Performance Prediction. Generally, obtaining the ground 
truth regarding learners’ abilities is challenging, making the evaluation 
of cognitive diagnosis models difficult. Most studies use the indirect 
method of assessing learners’ performance prediction as a means to 
evaluate these models. Common evaluation metrics include Accuracy, 
Root Mean Square Error (RMSE), and Area Under the Curve (AUC). 
In this context, better predictions are indicated by higher values in 
Accuracy and AUC, whereas a lower value in RMSE signifies a more 
accurate prediction.

Model Aggregation. In order to further illustrate the usefulness of 
the diagnostic results for the extraction task, we realize model aggrega-
tion based on each learner’s proficiency on the topics. The aggregation 
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Table 5
Model aggregation results of popular keyphrase extraction models. The top part lists some unsupervised methods, the middle part lists the 
supervised methods, and the bottom part lists the ensemble methods.
 Methods OpenKP Inspec

 P@5 R@5 𝐹1@5 P@5 R@5 𝐹1@5 
 Firstphrase 19.5 36.7 23.6 24.0 15.0 17.3  
 YAKE (Campos et al., 2018) 12.1 29.1 16.7 21.0 13.6 15.5  
 TextRank (Mihalcea & Tarau, 2004) 5.5 14.2 7.9 31.7 19.2 22.6  
 SingleRank (Wan & Xiao, 2008) 14.4 34.5 19.7 33.0 20.2 23.6  
 TopicRank (Bougouin et al., 2013) 14.4 30.3 19.6 28.2 16.9 20.0  
 TopicalPageRank (Liu et al., 2010) 13.0 34.4 19.6 32.9 20.0 23.5  
 PositionRank (Florescu & Caragea, 2017) 15.1 36.0 20.6 32.8 19.9 23.3  
 MultipartiteRank (Boudin, 2018) 14.8 34.9 20.1 28.2 17.3 20.2  
 SIFRank (Sun et al., 2020) 12.3 29.2 16.7 33.2 21.9 29.1  
 Aggregation(Unsupervised) 14.3 30.2 19.6 37.6 22.7 25.1  
 BERT-JointKPE (Sun et al., 2021) 22.7 57.1 30.3 37.9 24.3 27.9  
 SpanBERT-RankKPE (Sun et al., 2021) 23.2 61.8 33.9 38.7 24.9 28.6  
 RoBERTa-TagKPE (Sun et al., 2021) 23.0 58.9 31.8 36.9 23.7 27.2  
 Averaging 23.7 61.0 33.5 39.1 25.0 28.9  
 Weighted Voting(Precision) 24.0 61.4 33.7 39.7 25.2 29.4  
 AEKE 24.5 62.0 34.1 40.3 25.8 29.8  
 DAEL (Diagnosis-Aggregation-Distillation) 24.8 67.8 35.6 40.5 26.2 31.3  
is tested on both OpenKP and Inspec datasets with several traditional 
keyphrase extraction metrics including Precision, Recall and F1-score.

5.4. Main results

Learner Performance Prediction. Table  4 presents the experimental 
results of five baseline diagnoser methods for predicting learner per-
formance on unknown samples. The NeuralCD method, which serves 
as the diagnostic component of DAEL, exhibits the best performance 
on both the OpenKP and Inspec datasets, underscoring its effectiveness 
in evaluating the capabilities of keyphrase extraction algorithms. How-
ever, traditional models, such as IRT, MIRT, and DINA, show subpar 
performance. In contrast, models like MCD and NeuralCD, both im-
plemented using neural networks, demonstrate relatively better results. 
This contrast highlights the complexity in capturing the relationship be-
tween the model’ abilities and the features of samples, and concurrently 
underscores the efficiency of neural networks in this context. Notably, 
our method leverages NeuralCD, further emphasizing the superiority of 
DAEL in KE task.

Model Aggregation. Building on the precise diagnostic outcomes, 
we can implement a model aggregation strategy among all the mod-
els we have evaluated. The diagnostic results clearly delineate each 
model’s strengths, thus we can choose the best models for each topic 
based on our new multidimensional metric, rather than traditional 
evaluation methods. In our experiment, we select the top 3 models for 
each topic and compile their responses to the samples. A keyphrase 
that frequently appears in these responses is selected as the final output 
of our integrated model. This is because such phrases, consistently 
chosen by top three models in the given topic, are highly likely to 
be essential. Besides, we make a distinction between supervised and 
unsupervised methods. We separately integrate all unsupervised models 
and supervised models to better assess their impact. The results are 
detailed in Table  5, which presents the model aggregation results 
of popular keyphrase extraction methods. It is observed that unsu-
pervised methods, lacking sufficient training, perform poorly on the 
news dataset OpenKP, leading to less effective aggregation results for 
unsupervised methods on this dataset. However, when considering all 
methods collectively, the aggregation achieves relatively good results 
on both datasets.

Regarding the results, there are some key points to note. Firstly, in 
the domain of keyphrase extraction, two datasets, OpenKP and Inspec, 
are utilized for different methodologies: OpenKP is typically used in su-
pervised method experiments, while Inspec is favored for unsupervised 
approaches. As previously mentioned, the OpenKP dataset features 
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fewer ground truth keyphrases, leading us to adopt different top 𝑁
metrics for evaluation: @1, @3, @5 for OpenKP and @5, @10, @15 
for Inspec. This variance in evaluation metrics partly explains why 
models tend to score higher in recall on OpenKP compared to Inspec. 
Further analysis of unsupervised methods on OpenKP reveals that their 
outputs often exceed the length of the ground truth, resulting in a 
mismatch. This can be attributed to two main factors. On the one hand, 
these methods demonstrate a limited capability in processing long and 
complex texts. On the other hand, this mismatch is a significant reason 
for the failure of aggregating all unsupervised methods. In conclusion, 
these observations serve as a simple yet effective demonstration of 
the value of diagnostic results in enhancing the understanding and 
application of keyphrase extraction models.

Knowledge Distillation. Regarding the efficacy of knowledge dis-
tillation, our developed model sets a new standard, not just in terms 
of its effectiveness but also regarding its operational efficiency. The 
distilled student model, which is a central component of the Diagnosis-
Aggregation-Distillation framework (DAEL), remarkably contains only 
about one-third of the parameter volume found in the comprehensive 
ensemble model, yet it manages to match, if not surpass, the teacher 
model’s performance levels. To put this into perspective, the DAEL 
framework is engineered with approximately 130 million parameters, 
leading to a video memory requirement of around 17 GB during its 
training phase. This is in stark contrast to the AEKE model, which 
is significantly more resource-intensive, comprising 350 million pa-
rameters and demanding about 50 GB of video memory throughout 
the training process. Moreover, the DAEL model not only achieves 
parity with the teacher model in terms of raw performance but also 
demonstrates superior results on specific benchmarks. For instance, on 
the OpenKP benchmark, the DAEL model records impressive scores of 
24.8 and 67.8, thereby clearly outperforming the AEKE model. This 
not only highlights the DAEL model’s efficiency in utilizing resources 
but also underscores its capability to distill and leverage knowledge 
effectively, thereby setting a new benchmark in the field of knowledge 
distillation.

5.5. Visualize results

Visualization of Distribution. In our analysis, we present a visual-
ization of the data distribution in Fig.  4, focusing on sample factors. 
The vertical axis, 𝑑𝑖𝑠, represents discrimination, reflecting the dataset’s 
ability to effectively distinguish between learners of different abilities. 
The horizontal axis, 𝑑𝑖𝑓𝑓 , represents difficulty, indicating the chal-
lenge of predicting the correct labels for the dataset samples. Based 
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Fig. 4. Visualization of data distribution based on sample factors including skill difficulty and discrimination factors.
Fig. 5. A heat map showing the relationship between the difficulty factor and the 
discrimination factor of the sample and the traditional indicator Precision@5. Four 
keyphrase extraction models and all data within a topic in the OpenKP dataset are 
used as an example.

on these two dimensions, we define four labels: 𝐸𝑎𝑠𝑦, 𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒, 
𝐿𝑜𝑤 𝑄𝑢𝑎𝑙𝑖𝑡𝑦, and 𝐻𝑎𝑟𝑑 𝑎𝑛𝑑 𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒. Samples characterized 
by low difficulty and moderate discrimination are classified as 𝐸𝑎𝑠𝑦. 
Those with moderate difficulty and high discrimination are labeled 
as 𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒. Samples exhibiting low discrimination, regardless of 
their difficulty level, are categorized as 𝐿𝑜𝑤 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 because they do 
not effectively differentiate between learners’ abilities. Finally, samples 
that possess both high difficulty and high discrimination are classified 
as 𝐻𝑎𝑟𝑑 𝑎𝑛𝑑 𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒. This visualization reveals a distinct half-
moon shape pattern in both datasets, signifying that the majority 
of discriminative examples are classified as either straightforward or 
particularly challenging. Notably, across various topics, the distribution 
of difficulty and discrimination shows minimal variation, suggesting a 
uniform challenge level across the board. However, it is important to 
highlight the presence of some samples with low discrimination, which 
likely indicates issues related to the quality of the text documents or 
inaccuracies in the ground truth. Furthermore, our analysis shows that 
the Inspec dataset contains relatively fewer low-quality data instances 
compared to others. This is attributed to Inspec’s composition, which 
mainly consists of abstracts from scientific and technical articles, en-
riched with authors’ tags. This implies that the source and nature of the 
dataset significantly influence the quality of data and, consequently, the 
performance and reliability of KE models.

Diagnostic Outcome Heat Map. In our concluding analysis, we 
showcase specific example of the diagnostic outcome from the DAEL ap-
plied to OpenKP dataset, demonstrating the validity of sample factors. 
In Fig.  5, we examine four keyphrase extraction algorithms evalu-
ated across all data within a single topic of OpenKP. The data are 
segmented into four subsets based on a spectrum of difficulty and 
discrimination, ranging from high to low. For the purpose of this 
analysis, we employ the traditional metric Precision@5 to gauge the 
performance of each model across these subsets. The results indicate 
a clear trend: as the difficulty decreases, the average performance of 
the algorithms improves. This trend showcases how the discrimination 
factor is instrumental in distinguishing between more and less capable 
methods, using traditional performance metrics as a benchmark.

Interestingly, in subsets of low-quality data, traditional models ex-
hibit some commendable performances. This observation suggests that 
despite the general advancement in keyphrase extraction methodolo-
gies, traditional models may still hold value, particularly in handling 
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Fig. 6. Hyper-parameter Sensitivity Study.

specific types of data. This nuanced finding underscores the impor-
tance of considering both novel and established approaches within the 
dynamic landscape of KE research.

5.6. Hyper-parameter analysis

In our work, the number of skills (i.e., 𝑃 ) plays a pivotal role as 
a hyper-parameter. It is instrumental in defining the effectiveness of 
topic clustering and influences the formulation of assessment skills. To 
explore the impact of 𝑃  on our analysis, this section is dedicated to 
examining its sensitivity. The performance of DAEL, measured by AUC 
with varying numbers of topics denoted by 𝑃 , is illustrated in Fig.  6. 
For OpenKP dataset, the experimental data reveals an initial increase in 
the effectiveness of ensemble result with the growth of 𝑃 , which is then 
followed by a decrease. Notably, the optimal number of topic clusters 
for the OpenKP is identified as 10. Specifically, when 𝑃  is set to a low 
value, the quality of document topic clustering is compromised, which 
in turn adversely affects the cognitive diagnosis of multi-dimensional 
abilities and the ensuing ensemble process. Conversely, when 𝑃  exceeds 
10, the ensemble results begin to stabilize and show less variation 
in effectiveness. In the case of Inspec, the effectiveness of ensemble 
result peaks when 𝑃  is set to 5. However, when 𝑃  reaches 10, it 
begins to decline sharply. This indicates that a large 𝑃  does not align 
with the characteristics of the Inspec dataset. To balance the ensemble 
performance between the two datasets, we have chosen to set 𝑃  to 10 
for the experiments conducted in our study.

5.7. Case study

In this section, we present a representative sample from OpenKP, 
followed by a brief analysis of certain cases in which our model fails. 
As shown in Fig.  7(a), the text ‘‘Evelyn Rodriguez was hit around 4 
pm..’’. clearly identifies ‘‘Evelyn Rodriguez’’ as a victim, which is one 
of the ground truth labels. In the context of legal domain keyphrase 
extraction, it is crucial to prioritize the victim’s name. Therefore, the 
ability to extract ‘‘Evelyn Rodriguez’’ serves as a key indicator of the 
ensemble model’s effectiveness. This rationale guided our selection of 
this particular case. To compare the ensemble results of both DAEL and 
weighted voting, we aggregate the results of three Keyphrase Extraction 
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Fig. 7. Visualized keyphrases extracted by DAEL (a) and traditional strategy (b).

(KE) methods — BERT-Chunk (Sun et al., 2021), RoBERTa-Rank (Sun 
et al., 2021), RoBERTa-Span (Sun et al., 2021) — using both our 
strategy and traditional weighted voting method.

Fig.  7(a) details the DAEL process. Upon inputting a new sample 
into the diagnostic module, we obtain its corresponding diagnostic 
results. The sample is identified as a legal news report, with its diffi-
culty and discrimination metrics indicating high textual quality. The 
abilities of the three KE methods in handling legal news topics are 
also revealed. Leveraging these diagnostic outcomes, DAEL adaptively 
adjusts the weights of different methods during aggregation, placing 
greater emphasis on approaches like BERT-Chunk and RoBERTa-Span 
that are better suited for extracting legal keyphrases. Consequently, 
the ensemble model prioritizes the victim’s name, "Evelyn Rodriguez’’, 
elevating its ranking and leading to an optimized ensemble result.

Conversely, Fig.  7(b) demonstrates the traditional method, which 
bases its aggregation on the historical performance of the three meth-
ods, evaluated solely on the metric Precision@5. Since their overall 
performance on this metric is similar, uniform weights are applied to 
all new samples. As shown in the ensemble results in Fig.  7(b), the 
traditional weighted voting method extracts the phrase ‘‘SUV’’, ranking 
it at the top, while overlooking the phase ‘‘Evelyn Rodriguez’’. How-
ever, this phrase is irrelevant to the legal domain and does not serve 
as a valid ground truth for the case. As a result, overall performance 
metrics, which primarily reflect average outcomes, overlook the unique 
characteristics of individual samples and the application of uniform 
weights fails to leverage the specific strengths of each method within 
the legal domain. In contrast, DAEL’s final results exclude the phrase 
‘‘SUV’’, indicating that DAEL’s ensemble strategy is better able to adapt 
to specific topics by prioritizing relevant phrases and downgrading 
irrelevant ones. This comparison highlights the adaptability and ef-
fectiveness of our proposed model. Unlike traditional methods that 
apply fixed weights during aggregation, DAEL’s weights are flexible and 
context-sensitive.

Despite its advantages, the DAEL model faces several challenges, 
primarily including ambiguous phrases, rare topics, and domain-
specific terminology. With respect to ambiguous phrases, the model 
requires a sophisticated semantic understanding of the entire document 
to distinguish between different interpretations of a given phrase. 
However, the DAEL model aggregates results from individual keyphrase 
extraction methods, without performing a holistic analysis of the docu-
ment. This limitation in context processing is the reason DAEL struggles 
with ambiguous phrases. In the case of rare topics and domain-specific 
terminology, the supervised model employed by DAEL has limited 
coverage of topics. For example, the training dataset KP20k (Meng 
et al., 2017) used in BERT-JointKPE is confined to the computer 
science domain. As a result, models trained on such datasets struggle 
to capture patterns that are relevant to rare topics or other domains. 
DAEL encounters a similar challenge when integrating these supervised 
methods, as effective performance on rare topics and specific domains 
requires the construction of domain-specific datasets for additional 
fine-tuning.
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5.8. Analysis of efficiency

To convincingly demonstrate that our DAEL model not only matches 
state-of-the-art performance but also offers significant advantages in 
terms of efficiency, we conducted a comparative analysis emphasizing 
the reduction in parameter count between the ensemble model and the 
distillation model. This comparison underscores the core benefits of 
computational efficiency and resource optimization in modern machine 
learning applications.

Ensemble models, by their design, aggregate outputs from multi-
ple individual models, which results in a significant increase in total 
parameter count. For instance, the ‘‘teacher’’ model in our frame-
work (i.e., Chunk-BERT, SpanBert-Rank and Bert-TagKPE), an ensemble 
model, comprises 300+ million parameters, indicative of the substantial 
computational overhead typical of ensemble approaches. However, 
through our innovative distillation approach, we reduced the complex-
ity by transferring knowledge from the ensemble model to a single 
‘‘student’’ model, labeled Chunk-BERT. Post-distillation, the student 
model’s parameter count is reduced to 100 million, approximately 33% 
of the original size.

Despite this dramatic reduction in model size, the distilled model 
(i.e., DAEL) outperforms existing SOTA (state-of-the-art) models in 
keyphrase extraction (KE) tasks. Specifically, on the OpenKP dataset, 
the ensemble model (i.e., AEKE) achieves an F1 score of 34.1, while 
the distilled model achieves an F1 score of 35.6. Besides, on the Inspec 
dataset, the ensemble model scores 29.8 (F1), while the student model 
achieves 31.3. The above results demonstrate that the reduction in 
complexity does not come at the expense of significant performance 
loss. Instead, our DAEL framework strikes an optimal balance be-
tween efficiency and accuracy, making it a highly viable alternative 
to traditional ensemble methods, especially in resource-constrained 
environments. This advancement is critical for applications requiring 
scalable, efficient computing solutions while maintaining competitive 
task performance.

Finally, it is important to clarify that, unlike previous methods, 
DAEL requires diagnosing each new sample to determine its topic, 
evaluating the performance of each method on that topic, and ulti-
mately adjusting the weights of predictions from different methods 
accordingly. However, this process is both automated and efficient, as 
the diagnostic model (NeuralCD) is implemented using a Multi-Layer 
Perceptron (MLP) layer, which does not require additional training. 
Moreover, since the sample sizes in our datasets are all within 6,616, 
the computational overhead remains manageable.

5.9. Leveraging LLMs as keyphrase extractor

To study the keyphrase extraction ability of large language models 
(LLMs) under zero-shot learning, we adopted a cue-based strategy. 
The experimental subjects include several open-source LLMs, such as 
ChatGLM3-6B (GLM et al., 2024), Baichuan2-7B (Yang et al., 2023), 
Qwen2-7B (Yang et al., 2024), and Llama3-8B (Dubey et al., 2024). 
For ChatGPT, we referenced the original test results provided by Song, 
Geng et al. (2023). The experimental results (see Table  6) show that 
the performance of these LLMs is comparable to some unsupervised 
learning methods. Notably, these models were not specifically trained 
or fine-tuned on the two datasets, yet the keyphrase extraction method 
based on direct cues still yielded good results. This suggests that LLMs 
have potential research value in keyphrase extraction tasks, particularly 
in cue design. More complex and effective cue strategies can be further 
explored in the future.

Compared to traditional methods, LLMs offer a new approach to 
keyphrase extraction, not only reducing reliance on labeled data but 
also providing more room for innovation through the flexibility of 
prompt design. This presents broad research prospects for improving 
keyphrase extraction tasks. However, compared to the method pro-
posed in this paper, the cue-based LLM approach is not ideal. This is 
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Table 6
Keyphrase extraction results of LLMs.
 LLMs OpenKP Inspec

 P@5 R@5 𝐹1@5 P@5 R@5 𝐹1@5 
 ChatGLM3-6B (GLM et al., 2024) 10.6 30.1 15.6 30.7 17.9 22.6  
 Baichuan2-7B (Yang et al., 2023) 7.7 19.2 11.0 21.0 12.2 15.4  
 Qwen2-7B (Yang et al., 2024) 13.4 37.5 19.8 27.8 16.8 20.9  
 Llama3-8B (Dubey et al., 2024) 6.0 17.1 8.9 30.9 17.7 22.5  
 ChatGPT (gpt-3.5-turbo) 11.4 32.8 16.9 26.8 15.3 19.5  
 DAEL (Diagnosis-Aggregation-Distillation) 24.8 67.8 35.6 40.5 26.2 31.3  
because the broad generalization of keyphrase understanding by large 
models means that many potential keyphrases could be considered 
appropriate, making it difficult to determine which is the most suitable 
one.

Thus, future research can focus on optimizing cue design and se-
lection strategies to improve LLM performance in keyphrase extrac-
tion tasks. Leveraging the powerful language generation capabilities of 
LLMs, more targeted and diversified cue strategies might enhance the 
precision and reliability of keyphrase extraction.

6. Conclusion

In this study, we have introduced and examined a novel method-
ology, termed Distillation-based Adaptive Ensemble Learning (DAEL), 
specifically designed to improve the efficiency of keyphrase extraction. 
Our approach uniquely combines the processes of diagnosis, aggrega-
tion, and distillation. The first stage involves a Cognitive Diagnosis 
module, which evaluates the distinct strengths of various keyphrase 
extraction models. This is followed by the deployment of an adaptive 
aggregation module, responsible for generating a customized weight 
distribution for each data instance. The final stage encompasses the 
knowledge distillation module, which concentrates the collective capa-
bilities of the ensemble into a single, more efficient model, significantly 
reducing computational requirements. Through rigorous testing on di-
verse real-world datasets, we have demonstrated the superiority of our 
model. This marks a substantial leap forward in the field of keyphrase 
extraction, setting a new benchmark when compared to existing leading 
techniques.

7. Discussion

This section discusses the advantages of our diagnostic approach, 
its ability to generalize across different domains, and potential future 
research directions. First, keyphrase extraction is inherently a chal-
lenging task, and even state-of-the-art methods struggle to achieve 
optimal performance, limiting the application of keyphrase extraction 
techniques in real-world scenarios. While neural networks and pre-
trained language models are often employed to improve performance, 
they lack explainability, particularly in their understanding of semantic 
information in text tasks. As previously mentioned, our framework 
introduces fine-grained metrics to assess the suitability of algorithms 
for specific contexts or datasets. All of our diagnostic results, including 
ability and sample factors, are highly interpretable, providing valuable 
insights for other research in this field. Model aggregation, for instance, 
is a simple and straightforward application. For example, we can use 
the SpanBert-Chunk for medical-themed data and the Bert-TagKPE 
for sports-themed data, allowing the models’ strengths to complement 
one another. Our diagnostic results consider the interaction between 
algorithms and samples, resulting in more accurate and appropriate 
outcomes.

Our experiments demonstrate the performance of DAEL on the 
Inspec and OpenKP datasets. The Inspec dataset primarily encompasses 
domains such as Computers and Control, and Information Technology. 
These fields are characterized by data-driven decision-making and 
domain-specific conventions, traits that are also prevalent in legal and 
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financial sectors. As a result, DAEL is naturally capable of generalizing 
to these domains. The OpenKP dataset, on the other hand, consists 
of approximately seventy thousand web pages sampled from the Bing 
search engine index. It includes content such as news articles, multime-
dia pages from video sites, and index pages with numerous hyperlinks. 
Unlike the Inspec dataset, the content in OpenKP is not restricted 
to any specific domain and often features informal text, including 
non-academic writings. Therefore, DAEL’s performance on the OpenKP 
dataset serves as a strong indication of its ability to generalize to 
informal text.

Looking ahead, several directions warrant further exploration. First, 
it is essential to enhance the adaptability of diagnostic techniques to a 
wide range of NLP tasks. Given the significant differences among vari-
ous NLP tasks, applying Cognitive Diagnosis techniques often presents 
challenges. Second, as NLP generative tasks resemble real-life subjec-
tive questions, we aim to explore new techniques for handling such 
response logs. Lastly, many opportunities remain for investigating how 
to apply diagnostic results. For example, understanding how to leverage 
diagnostic results to inform course learning and assist in model training 
is an area that deserves further study.
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