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Abstract. Aspect Sentiment Triplet Extraction (ASTE) is an essential task in
aspect-based sentiment analysis. It aims to extract sentiment triplets from the
context, which generally consists of three subtasks: aspect term extraction, opin-
ion term extraction and sentiment classification. Existing methods mainly adopt a
bidirectional machine reading comprehension framework to capture correspond-
ing relations among subtasks. However, they input queries for different subtasks
into the same encoder simultaneously, which leads the model to confuse the sub-
task associated with the query. To address this issue, we propose a novel Query-
oriented Machine Reading Comprehension (QoMRC) framework which is a two-
stage approach. In the first stage, QOMRC utilizes predefined queries and adapter
tuning to efficiently generate three different query-oriented adapters for three sub-
tasks that capture task-specific features. In the second stage, we fuse the query-
oriented adapter and the shared encoder representation to obtain task-specific rep-
resentation, which also reserves the correlation among subtasks. In addition, to re-
duce the semantic gap between the initialized adapters and the pre-trained BERT,
we employ a layer-wise distillation approach in the first stage. Extensive exper-
iment results on benchmark datasets show the efficacy of our proposed method,
and indicate the necessity of capturing task-specific features.

Keywords: Aspect sentiment triplet extraction - Adapter tuning - Knowledge dis-
tillation.

1 Introduction

Aspect Sentiment Triplet Extraction (ASTE) [16], as a variant of the fine-grained Aspect-
based Sentiment Analysis (ABSA) [7], has been extensively studied recently [23, 21,

15,2]. Specifically, ASTE aims to extract the aspect terms (AT) with their correspond-

ing opinion terms (OT) and sentimental polarity (SP) simultaneously. As shown in Fig-

ure la, ASTE extracts sentiment triplets (AT, OT, SP), such as (service, slow, negative)

and (people, friendly, positive).
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Fig. 1: (a) An illustration of ASTE. (b) An overview of BMRC and QoMRC. The
BMRC-based methods (left) input queries for different subtasks into the same encoder
simultaneously, which leads the model to confuse the subtasks. Our method (right) uti-
lize predefined queries to guide the model to generate the task-specific representation.

Early methods adopt a pipeline framework [16, 15,22] extracts all terms (i.e., as-
pect terms, opinion terms and sentimental polarity) from the given text step by step,
and then pairs them. However, these pipeline-based methods ignore corresponding im-
plicit relations between multiple subtasks and could result in the error propagation. In
response to this, some researchers formalize ASTE task as a bidirectional machine read-
ing comprehension (BMRC) task [2, 11]. Specifically, BMRC-based methods manually
construct different categories of queries for each text, and then utilize these queries to
obtain answers. For the example in Figure 1b left, when they ask the model query what
aspect, the model will give the answers services and people. When they ask the model
query what opinion, the model will give the answers slow and friendly. When they ask
the model query what sentiment about the aspect-opinion pairs, the model will give the
answers negative and positive.

Although the BMRC-based methods can capture implicit relations between multiple
subtasks and could reduce propagation errors, they input queries of different subtasks
into the same shared encoder simultaneously which may lead to a lack of task-specific
features in the model. This problem makes the model confused about the subtask cor-
responding to the query. For the example in Figure 1a, when asking the model query:
What aspect given the opinion slow ?, the model may misidentify aspect term extraction
as opinion term extraction [25] and give the wrong answer friendly instead of service.
However, if the model is provided with the specific features of each task, it can more ac-
curately determine the corresponding subtask for the given query. Unfortunately, there
are two main technical challenges in designing effective solutions to inject task-specific
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features into the pre-trained model (e.g., BERT). First, it can be challenging to teach
abstract task-specific features explicitly to a model. Second, injecting different task fea-
tures into a pre-trained model can lead to catastrophic forgetting[13], where the model
forgets previously learned features while adapting to new tasks.

With the above analysis, in this paper, we propose a novel framework called Query-
oriented Machine Reading Comprehension framework (QoMRC) to obtain task-specific
representations, as shown in Figure 1b right. Specifically, QoMRC can be regarded a
two-stage approach. In the first stage, we predefine five categories of queries for three
subtasks: forward aspect query (FAQ) and backward aspect query (BAQ) for aspect
term extract (ATE), forward opinion query (FOQ) and backward opinion query (BOQ)
for opinion term extract (OTE), and sentiment query (SQ) for sentiment classification
(SC). The purpose of these predefined queries is to explicitly represent the task-specific
features, thereby enabling the model to learn more effectively. Subsequently, we effi-
ciently train three query-oriented adapters: aspect adapter, opinion adapter and senti-
ment adapter by using predefined queries. It is worth noting that we utilize adapter tun-
ing [6] which is an parameter-efficient fine-tuning approach to prevent catastrophic for-
getting and reduce training time. However, there is a significant semantic gap between
pre-trained models (e.g., BERT) and initialized adapters. To address this issue, we em-
ploy a technique called layer-wise task-specific knowledge distillation [17, 5, 32]. This
technique involves transferring the foundational knowledge learned by the pre-trained
model to the adapter. In the second stage, the model selects the corresponding adapter
based on the input query and fuses the representations from the adapter’s output and the
shared encoder’s output. During this stage, the parameters of these adapters are frozen,
and only the shared encoder is trained. In summary, the main contributions of our work
could be summarized as follows.

— We propose a novel QQMRC framework for ASTE task. Our framework is a two-
stage method which can inject task-specific features into the pre-trained model
(e.g., BERT).

— To bridge the significant semantic gap between the pre-trained model and query-
oriented adapters, we employ a technique called layer-wise distillation.

— we conduct extensive experiment results on benchmark datasets, where the experi-
mental results demonstrate the effectiveness of our proposed method.

2 Related Work

2.1 Aspect Sentiment Triplet Extraction

As a fine-grained task of aspect-based sentiment analysis [7,28-30], aspect sentiment
triplet extraction has attracted lots of researchers’ interest [23, 21, 15, 2]. It aims to ex-
tract aspect terms with their corresponding opinion terms and sentiment polarity. Gen-
erally, ASTE can be regarded as a composite task consisting of three subtasks: aspect
term extraction, opinion term extraction, and sentiment classification. Existing work can
be mainly divided into two types: pipeline-based methods and joint extraction methods.
Pipeline-based methods solve subtasks individually and ignore the interdependencies
between them. For example, Peng et al. [16] first proposed ASTE task. They solved
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three subtasks separately, and then paired them for forming the triplets. Another ap-
proach to addressing ASTE task is through joint extraction, which trains the model
in an end-to-end manner [23,21,27,31]. In this approach, the model is trained to si-
multaneously perform aspect term extraction, opinion term extraction, and sentiment
classification. By jointly optimizing the model for all subtasks, it can capture the corre-
lations and interactions between these subtasks, leading to more coherent and accurate
results. For example, Xu et al. [23] regarded ASTE as a sequence tagging task which
can capture relations among sentiment triplets. Chen et al. [3] designed a span-level
bidirectional to extract triplets in both aspect-to-opinion and opinion-to-aspect direc-
tions. In recent years, some researchers studied to utilized machine reading comprehen-
sion framework [2, 11, 26] to jointly extract sentiment triplets. These methods manually
constructed different queries to obtain sentiment triplets simultaneously.

2.2 Machine Reading Comprehension

Given a query, the machine reading comprehension framework aims to generate the
corresponding answer. By using MRC framework, the model can learn the interaction
between the query and context comprehensively. Recently, there have been many meth-
ods in the field of natural language processing (NLP) that utilized machine reading
comprehension to solve various tasks [10], including ASTE task. Machine reading com-
prehension framework typically requires manually constructed queries, which provide
a 0 convenient way for researchers to capture implicit relationships between subtasks.
Chen et al. [2] first proposed a bidirectional machine reading comprehension (BMRC)
framework to solve ASTE. By devising multi-turn queries, they effectively built the
associations among subtasks. Based on MRC framework, Zhai et al. [26] proposed a
context augmentation strategy and a discriminative model to address the issue of inter-
ference between multiple aspect terms.

Despite the success of MRC framework in ASTE task, the BMRC-based meth-
ods ignore task-specific features, leading to the problem of task confusion in the model.
How to efficiently inject task-specific features to address subtask confusion in the BMRC
framework is a challenging problem.

2.3 Knowledge Distillation

Knowledge distillation [17, 5, 32] mitigates the performance degradation resulting from
model compression. Specifically, knowledge distillation is a recently emerging approach
that seeks to obtain a small student model by distilling knowledge from a larger teacher
model, while still achieving comparable performance. For example, Sanh et al. [18] uti-
lize soft target to train the student model. Jiao et al. [8] and Sun et al. [19] aligned the
hidden representation between teacher and student models. In this paper, we use layer-
wise distillation to align the hidden layer outputs of adapters and pre-trained models,
thereby addressing the semantic gap between them.
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Fig.2: The overview of our proposed QoMRC framework. (a) The query-oriented
adapter tuning stage: we freeze the shared encoder and train three query-oriented
adapters based on different subtasks, respectively. (b) The query-oriented encoder tun-
ing: we freeze trained adapters and fuse the representation of the adapter and the shared
encoder based on the category of query to conduct joint training.

3 QoMRC Framework

In this section, we first present the problem statement of aspect sentiment triplet ex-
traction (ASTE), and then give an overview of our proposed QoMRC framework. After
that, we explain the technical details of QoMRC framework.

3.1 Problem Statement

Given a sentence S={w1, wa, ..., w; } consisting of [ tokens, the aim of ASTE task is to
extract a set of sentiment triplets I" = {(a;, 0;, si)}gll, where a;, 0;, s;, and |T'| denote
AT, OT, SP, and the number of sentiment triplets.

The BMRC-based methods typically require manual query design and adopt a multi-
turn interaction with the model. Specifially, they formalized ASTE task as a three-turn
MRC task. In the first turn, they constructed non-restrictive queries to extract aspect
terms or opinion terms. In the second turn, given the aspect terms or opinion terms ex-
tracted in the first turn, they constructed restrictive queries to extract the corresponding
opinion terms or the corresponding aspect terms. In the final turn, given the aspect-
opinion pairs, they constructed sentiment classification query to predict the sentiment
polarity for each pair.

3.2 An Overview of QoMRC

In this paper, we propose the QOMRC framework, which is shown in Figure 2. Our
framework is based on BMRC [2] but incorporates significant improvements. Specifi-
cally, QoMRC is a two-stage method. In the first stage, we train three query-oriented
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Fig. 3: The structure of query-oriented adapter.

adapters which can capture task-specific features by utilizing predefined queries. Other-
wise, we employ a trained teacher model to guide adapters in generating hidden repre-
sentations. In the second stage, we freeze trained adapters and fuse their representations
and the representations from the shared encoder to obtain task-specific representations
while also preserving task-shared features.

3.3 Predefined Query

To guide the model in capturing task-specific features, we divide queries in the BMRC
framework into five fine-grained categories: forward aspect query (FAQ) (i.e., what as-
pect?) aims to query all aspects from the context; backward opinion query (BOQ) (i.e.,
what opinion?) aims to query all opinions from the contexts; forward opinion query
(FOQ) (e.g., what opinion given the aspect service?) aims to query opinion based on
predicted aspect; backward aspect query (BAQ) (e.g., what aspect given the opinion
slow?) aims to query aspect based on predicted opinion; sentiment query (SQ) (e.g.,
what sentiment given the aspect service and the opinion slow?) aims to query senti-
mental polarity based on predicted query-opinion pairs. Note that FAQ and BOQ are
non-restrictive queries, FOQ, BAQ and SQ are restrictive queries. Specifically, for each
sentence, we have a FAQ and a BOQ. For each sentiment triplet instead of a sentence,
we have a FOQ, a BAQ and a SQ.

3.4 Query-oriented Adapter

In the query-oriented adapter tuning stage, we train three query-oriented adapters: as-
pect adapter, opinion adapter and sentiment adapter. These adapters retain task-specific
features which can be utilized to generate task-specific representation. For more conve-
nient use, we plug adapter layers among different transformer layers of the pre-trained
model instead of changing the internal structure of the pre-trained model, as shown
in Figure 3. Following the structure of the adapter proposed by [20], we devise each
query-oriented adapter to consist of three adapter layers that contain two transformer
layers and two projection layers.
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Specifically, for aspect adapter tuning, we need to identify all aspects from the con-
text (i.e., aspect term extract (ATE)). Besides, to fully capture task-specific features and
enhance the interaction between the aspect term and opinion term, we ask the model not
only FAQ (e.g., what aspect?) but also BAQ (e.g., what aspect given the opinion slow?)
for aspect adapter tuning. Although FAQ and BAQ perform the same task (i.e., ATE),
the constraints of BAQ are stronger compared to FAQ, further enhancing the model’s
ability to capture task-specific features. For a given sentence, the input of aspect adapter
training is described as follows:

Ings, = [CLS|FAQ[SEP]|sentence,
Ings, = [CLS|BAQ,[SEP]sentence,

where FAQ is the query “"what aspect?”, BAQ,, is the query “what aspect given the
opinion,”, x represents the x-th triplet in the sentence. Then the constructed sentences
Inggp are input into the frozen pre-trained model (i.e., BERT):

Hasp = BERT(InaSp) = ]R]\/v><(l+i+2)><d7 ?)

ey

where N denotes that the pre-trained model consists of N layers of transformer, and
each transformer could generate a hidden embedding of dimension (I + i + 2) x d. i
and 2 denote the length of query and identifier of BERT (i.e., [CLS] and [SEQ])[9],
respectively. d is the embedding dimension.

Then we fuse the output of a certain layer’s transformer in pre-trained with the
output of the adapter layer and input it into the next adapter layer, as shown in Figure 3:

Uit = [+ ] 5
= [hY Ful, o Wl Ul a)

where h"™ represents the n-th layer of the transformer block, and u" represents the

corresponding adapter layer for that transformer block. we use a simple and efficient

point-wise addition operation to fuse the representation of the pre-trained model and

the adapter.

Due to the lack of training for the adapter, directly inserting the adapter into the
pre-trained model for training would result in a significant semantic gap. To address
this issue, we use a layer-wise knowledge distillation algorithm. Specifically, we use
BERT-large as the teacher to distill the transformer layer output. We use mean squared
error (MSE) as the distillation loss:

’

N
[’]%:d = ZMSE(UZ,Sp7Htiea)’ (4)
=0

where N is total number of layers that need to be distilled. H., is the output of specific
transformer layer in the teacher model.

Subsequently, we obtain the output representation from the last layer of the adapter
and treat ATE as binary classification tasks. We propose two binary classifiers to predict
the start position and the end position of the answer, respectively.

p(yz) = softmaz(UaspWs),

() = softmaz(Uasy W), ©)
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where W, € R4*2 and W, € R?*? are learnable parameters. The loss function of ATE
is defined as cross-entropy:

Ltit2
Ll ==Y [yilog(p}) +ytlog(ps)], 6)

a=1

where p, is the predicted score, y, is the ground truth. Given the cross-entropy loss and
knowledge distillation loss, our loss for aspect adapter training is as follows:

‘C}zll = ‘Cclzsp + ﬁl%:d? (7)
For the opinion adapter, the input can be described as follows:

Ing,; = [CLS]|BOQ[SEP]sentence,

3
Ing,; = [CLS|FOQ,[SEP]sentence,

where BOQ is the query "what opinion?”, FOQ is the query “"what opinion given the
aspect,”. Subsequently, we train the opinion adapter using a similar method as men-
tioned above.

For the sentiment adapter, the input can be described as follows:

Inge, = [CLS]SQ.[SEP]sentence, 9)

where SQ is the query “what sentiment given the aspect, and the opinion,?”. For
the (n+1)-th sentiment adapter layer’s input, we only need to combine the n-th adapter
layer’s [CLS] vector with the correponding transformer layer’s [CLS] vector:

Hsen - BERT[CLS] (Insen) S RNX(I)Xd;
Un+1 = U[%’LS] + H;Len'

Sen

10)

Similar to aspect adapter, we use a layer-wise knowledge distillation algorithm to
distill the transformer layer output. Then we use a three-class classfier to predict senti-
ment polarity:

P(ya") = softmaz(UsenWsen), (11)

where Wye,, € R*3 is learnable parameters. The loss function of SC is defined as
cross-entropy, as shown in equation (6). The loss for sentiment adapter training consists
of knowledge distillation loss and SC loss.

3.5 Query-oriented Encoder

In this stage, we freeze the trained adapter in the first stage and train the shared encoder
to obtain query-oriented encoder. Given a sentence and its corresponding query, we
obtain its task-specific representation by fusing the representation of the last transformer
layer of the shared encoder (i.e., BERT) and the representation of the last adapter layer
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of the query-oriented adapter. Specifically, we regard FAQ and BAQ as ATE task and
fuse the representation of the shared encoder and aspect adapter as follows:

[wi,...,wr] = trans formery(Ingsp),
[u1,...,ur] = asp_adapter N (Ingsp), (12)

[hl, ...,hL] = [w1 + Uy, ..., wp, + ’LLL],

where M and N denote the last layer of BERT and the adapter, L is the length of Ingyp,
symbol + denotes the point-wise addition. Through the joint generation of the shared
encoder and the query-oriented adapter, [hq, ..., hr] is the task-specific representation
that retains the feature of the ATE task. Subsequently, we adopt equation (5) to predict
the span of the aspect term and calculate the ATE loss E?wp as equation (6).

Similarly, we fuse the representation of the shared encoder and opinion adapter for
FOQ and BOQ and obtain the OTE loss Egpi. We fuse the representation of the shared
encoder and sentiment adapter for SQ obtain the OTE loss £2,,,. The final loss is the
combination of the above loss:

L=L0,+ L0+ LY, (13)

It is worth noting that in the first stage, the three subtasks are trained independently
without interference, while in the second stage, the three subtasks are jointly trained.

3.6 Inference

In the same manner as Chen et al. [2], during inference stage, we use bidirectional MRC
to obtain sentiment triplet. Specifically, in the forward direction, we first ask the model
FAQ and obtain the aspect terms. Subsequently, based on the aspect terms provided by
the model, we ask FOQ and obtain the opinion terms. In the backward direction, we first
ask the model BOQ and obtain the opinion terms. Subsequently, based on the opinion
terms provided by the model, we ask BAQ and obtain the aspect terms. Each aspect-
opinion pair is valid only if its probability is higher than the given threshold. Finally,
we ask the model SQ and obtain the sentiment polarity about aspect-opinion pair.

4 Experiment

4.1 Experimental Datasets and Setup

Datasets. For the reliability and authority of experimental results, we conduct experi-
ments on four popular benchmark datasets that were created from the SemEval Chal-
lenges for ASTE task [23]. Three datasets are in restaurant domain and one dataset is
in laptop domain. The statistics of these datasets are shown in Table 1.

Experimental Setup. In this paper, our goal is to demonstrate the necessity of injecting
task-specific features into the BMRC framework. We use bert-large-uncased as our
shared encoder and the teacher model in all our experiments. We train the teacher model
following the method proposed by Chen et al. [2]. Each task-specific adapter contains
three adapter layers. The structure of adapter layers is designed following k-adapter
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Table 1: Statistic of ASTE-Data-v2[23]. #s, #t, #a, and #0 represent the number of
sentences, triplets, aspect terms, and opinion terms

Datasets #s #t #a #0
Train 1266 2338 2051 2061
resl4 Dev 310 577 500 497
Test 492 994 848 844
Train 906 1460 1280 1254
lap14 Dev 219 346 295 302
Test 328 543 463 466
Train 605 1013 862 935
resl5 Dev 148 249 213 236
Test 322 485 432 460
Train 857 1394 1198 1300
resl6 Dev 210 399 296 319
Test 326 514 452 474

[20]. The bert-large layers where adapter layers plug in are {0, 11, 23}. The model size
of the task-specific adapter is much smaller than the pre-trained model, which makes
the task-specific feature capture process more efficient. It is worth noting that the shared
encoder is fixed in the adapter tuning step and the adapter is fixed in the encoder tuning
step. We use AdamW [14] for optimization with weight decay 0.01 and warmup rate
0.1. The learning rate is set le-3 for classifier and le-5 for bert-large respectively. All
experiments are performed on a single NVIDIA GTX 3090 with 24G GPU memory.

4.2 Baselines and Evaluations

We compare QoMRC with the existing state-of-the-art methods. Peng-two-stage [16],
Unified [24], SPAN-ASTE [22], EMC-GCN [1], BMRC [2], BDTF [31], COM-MRC
[26], RBMRC [11], MVP [4]:

— Peng-two-stage [16] is a two-stage pipeline method. In the first stage, they ex-
tract both aspect-sentiment pairs and opinion. In the second stage, they pair up the
extraction results into triplets.

— Unified [24] is a generative framework. They exploit the pre-training sequence-to-
sequence model BART to solve all ABSA subtasks.

— SPAN-ASTE [22] is a span-level prediction method. They model the interaction
between the span of aspect terms and opinion terms when predicting their senti-
mental polarity.

— EMC-GCN [1] utilizes a biaffine attention module to model the relation probability
distribution between words in a sentence and transforms the sentence to a multi-
channel graph.

— BMRC [2] formalizes the ASTE task as a bidirectional machine reading compre-
hension task.

— BDTF [31] represents each triplet as a relation region in the 2D table and trans-
forms the ASTE task into detection and classification of relation regions.
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Table 2: Main results (F1-score) on the ASTE-Data-v2 datasets
[23]. The symbol * denotes that the corresponding results are re-
trieved from [26]. For fair comparison, we implement other base-
lines with bert-large.

Model resl4 lap14 resl5s res16
Peng-two-stage”™ 51.46 42.87 52.32 54.21
Unified” 65.25 58.68 59.26 67.62
SPAN-ASTE™ 71.85 59.38 63.27 70.26
EMC-GCN 71.10 58.23 59.02 68.09
BMRC 71.55 57.11 58.88 66.52
BDTF 74.09 64.23 65.03 72.18
COM-MRC 69.70 59.64 65.39 70.08
RBMRC 74.55 62.80 63.86 72.30
MvP 74.30 63.33 65.89 73.48
QoMRC 75.83 63.88 66.53 73.53

Table 3: Results (Precision and Recall) on the ASTE-Data-v2 datasets [23].

Model resl4 lap14 resls resl6
P R P R P R P R

Peng-two-stage™ 43.24 63.66 37.38 50.38 48.07 57.51 4696 64.24
Unified* 6552 6499 6141 56.19 59.14 5938 66.60 68.68
SPAN-ASTE* 72.89 70.89 63.44 5584 62.18 6445 6945 71.17
EMC-GCN 69.76 7249 6430 5321 6279 55.67 6347 7342
BMRC 71.18 7193 61.02 53.67 6023 5758 67.25 65381
BDTF 7521 7294  69.00 60.07 67.56 62.68 7143 7296
COM-MRC 68.51 7093 6133 58.04 6740 63.51 6726 73.15
RBMRC 75.59 73,54 66.06 59.85 63.60 64.12 70.56 74.12
QoMRC 7591 75775 6890 59.54 65.09 68.04 70.81 76.46

— COM-MRC [26] consists of three closely-related components: a context augmen-
tation strategy, a discriminative model and an inference method to address the issue
of interference between multiple aspect terms.

— RBMRC [11] optimize BMRC by incorporating four improvements: word seg-
mentation, span matching, probability generation, and exclusive classifiers.

— MVvP [4] introduces element order prompts to guide the language model to generate
multiple sentiment tuples, each with a different element order, and then selects the
most reasonable tuples by voting.

We measure the experimental results with standard evaluation metrics, including
Precision, Recall and F1 [16, 12]. The criterion for measuring the correctness of senti-
ment triplet predictions is that aspect term, opinion term, and sentiment polarity are all
predicted correctly.
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Table 4: The Fl-score of ablation study on four datasets.

Model resl4 lap14 res15 resl6
QoMRC 75.83 63.88 66.53 73.53
-w/o KD 75.52 62.56 66.20 72.97
-w/o aspect adapter 75.06 62.65 64.06 72.46
-w/o opinion adapter 74.94 61.86 64.02 73.61
-w/o sentiment adapter 75.00 62.00 64.85 72.90

4.3 Results

The main results (F1-score) are shown in Table 2. Our proposed QOMRC framework
outperforms all baselines in metric F1 except for BDTF on the lap14 dataset. Specif-
ically, on the res14, lap14, res15, and res16 datasets, the F1 scores of our method ob-
tain gains of 1.33, 1.08, 2.67, and 1.23, compared with another strong BMRC-base
method (i.e., RBMRC). This improvement indicates that our proposed QoMRC frame-
work can efficiently inject task-specific features into the MRC framework to alleviate
the model confusion about subtasks. Our method achieves an improvement of 1.74,
1.50 and 1.35 points over BDTF on the res14, res15 and res16 datasets. However, on
the lap14 datasets, our method shows a decrease of 0.35 points. The reason for this is
that BDFT is a table-filling approach, which has stronger constraints on the pairing of
aspect terms and opinion terms. On the other hand, our method does not focus on how
to correctly pair aspect terms and opinion terms, but rather injects task-specific features,
which causing our model have lower F1 on lap14. To further analyze the results, we pre-
sented the precision and recall in Table 3. From Table 3, it can be observed that BDFT
outperforms our method in some metrics. Indeed, the performance further supports the
analysis that BDFT has a stronger ability to pair aspect terms and opinion terms. De-
spite that, our method still outperforms all existing state-of-the-art models in terms of
overall performance. The experimental results further demonstrate the importance of
capturing task-specific features.

4.4 Ablation Study

In this subsection, we conduct an ablation study on four datasets to further demonstrate
the effectiveness of different modules of QoMRC. The results are shown in F1-score in
Table 4. We have four ablation settings, which are: removing the knowledge distillation
module (w/o KD), removing the aspect adapter module (w/o aspect adapter), removing
the opinion adapter module (w/o opinion adapter), and removing the sentiment adapter
module (w/o sentiment adapter). Specifically, removing the KD module indicates the
adapters are trained without the guidance of a trained teacher model. Removing the as-
pect adapter, opinion adapter and opinion adapter indicates not injecting the features of
the aspect term extraction (ATE) task, opinion term extraction (OTE) task, and senti-
ment classification (SC) task into the model, respectively. Based on the results in Table
4, it is evident that all the ablation variants exhibit significant decreases. The result
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Table 5: The case study conducted on the res14 dataset. We compare our QoMRC
framework with RBMRC.

Sentence RBMRC QoMRC
I trust the people at Go Sushi, {people, never {people, trust,
it never disappoints disappoints, pos} X pos}

Try the ribs, sizzling beef and| {ribs, try, pos}/ {ribs, try, pos}/
couple it with coconut rice | {sizzling, try, pos}x {beef, try, pos}/

Table 6: The subtasks results (F1-score) on the res14 dataset.

Model ATE OTE ASPE AOPE
RBMRC 85.65 88.05 80.19 78.94
QoMRC 86.92 88.25 81.36 80.36
-w/o KD 85.99 88.20 81.20 79.28
-w/o aspect adapter 85.12 88.08 81.12 79.80
-w/o opinion adapter 86.58 87.88 79.58 79.19
-w/o sentiment adapter 86.36 88.00 81.42 79.51

strongly supports the validity and non-redundancy of our QOMRC framework. The per-
formances of the four ablation variants will drop by an average of 0.63, 1.39, 1.34 and
1.26 points, respectively.

4.5 Case Study

In order to provide a more comprehensive understanding of the impact of capturing
task-specific features for mitigating model confusion subtasks, we conduct case study
on the resl4 dataset, and compare the results with RBMRC. As shown in Table 5,
RBRMC misidentify opinion trust as never disappointment in the first example, and
aspect beef as sizziling in the second example. With the help of task-specific features,
QoMRC can make correct inference. The case study further verify the validity of our
QoMRC method.

4.6 Subtasks Experiment

To further demonstrate the effectiveness of injecting task-specific features into MRC
framework in addressing model subtask confusion in MRC framework, we conducted
experiments involving four subtasks. The results on the res14 and res15 are shown in
F1-score in Table 6 and Table 7. ATE, OTE, ASPE and AOPE denote aspect term extrac-
tion, opinion term extraction, aspect-sentiment pair extraction and aspect-opinion pair
extraction. We also conducted experiments using RBMRC establish a comparison. It
can be observed that our QMRC framework outperforms the strong baseline RBMRC
in all subtasks. Due to the removal of task-specific features, the results for four subtasks
show a significant decrease. The results provide strong evidence for the importance of
task-specific features in the MRC framework.
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Table 7: The subtasks results (F1-score) on the res15 dataset.

Model ATE OTE ASPE AOPE
RBMRC 81.20 80.13 72.79 71.50
QoMRC 81.95 82.37 73.88 73.46
-w/o KD 81.68 81.21 72.24 72.97
-w/o aspect adapter 79.13 79.56 72.51 71.33
-w/o opinion adapter 81.10 78.45 71.05 70.28
-w/o sentiment adapter 81.01 80.13 73.27 71.64

Table 8: Comparison of our model with gpt-3.5-turbo.

Model res14 lap14 resl5s resl6
gpt-3.5-turbo (zero-shot) 60.42 42.19 40.20 45.97
gpt-3.5-turbo (few-shot) 62.36 44.65 41.25 50.47
QoMRC 75.83 63.88 66.53 73.53

4.7 Comparison with ChatGPT

As a new emerging technology, large language models have shown excellent perfor-
mance in natural language tasks, especially in generation tasks. To provide a more
comprehensive evaluation of our model, we have decided to compare it with ChatGPT
(gpt-3.5-turbo). Due to budget constraints, we tested gpt-3.5-turbo with 100 random
samples for each dataset. To provide a fairer comparison, we have two experimental
settings: zero-shot and few-shot. For the zero-shot setting, we directly concatenate the
prompt and context as input to ChatGPT to obtain the results, such as give the sentiment
triplet in the following sentence: Services are slow, but the people were friendly.. For
the few-shot setting, we include one examples in the prompt. The experimental results
are shown in Table 8. Compared to zero-shot and few-shot settings of gpt-3.5-turbo, our
method shows significant improvements.

5 Conclusion

In this paper, we propose a novel Query-oriented Machine Reading Comprehension
(QoMRC) for ASTE task which can be regarded as a two-stage method. Specifically,
in the first stage, we train three query-oriented adapters which can capture task-specific
features by utilizing predefined queries. In addition, we employed a technique called
layer-wise task-specific knowledge distillation to address a significant semantic gap
between pre-trained models(e.g., BERT) and initialized adapters. In the second stage,
we freeze trained adapters and fuse its representation and the representation from the
shared encoder to obtain task-specific representation while also preserving task-shared
features. Extensive experiment results on benchmark datasets show the efficacy of our
proposed method, and indicate the necessity of capturing task-specific features.
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