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ABSTRACT
Recommendation systems have attracted attention from academia
and industry due to their wide range of application scenarios. How-
ever, cold start remains a challenging problem limited by sparse
user interactions. Some scholars propose to transfer the dense in-
formation from the source domain to the target domain through
cross-domain recommendation, but most of the work assumes that
there is a small amount of historical interaction in the target domain.
However, this approach essentially presupposes the existence of at
least some historical interaction within the target domain. In this
paper, we focus on the domain-level zero-shot recommendation
(DZSR) problem. To address the above challenges, we propose a
knowledge-aware cross-semantic alignment (K-CSA) framework
to learn transferable source domain semantic information. The mo-
tivation is to establish stable alignments of interests in different
domains through class semantic descriptions (CSDs). Specifically,
due to the lack of effective information in the target domain, we
learn semantic representations of source and target domain items
based on knowledge graphs. Moreover, we conduct multi-view
K-means to extract item CSDs from the learned semantic repre-
sentations. Further, K-CSA learns universal user CSDs through the
designed multi-head self-attention. To facilitate the transference of
user interest from the source domain to the target domain, we de-
vise a cross-semantic contrastive learning strategy, grounded in the
prototype distribution matrix. We conduct extensive experiments
on several real-world cross-domain datasets, and the experimental
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results clearly demonstrate the superiority of our proposed K-CSA
compared with other baselines.

CCS CONCEPTS
• Information systems→ Information retrieval; • Computing
methodologies → Knowledge representation and reasoning.

KEYWORDS
Zero-shot Recommendation, Knowledge Graph, Cross-domain Rec-
ommendation, Semantic Representation
ACM Reference Format:
Junji Jiang, Hongke Zhao, Ming He, Likang Wu, Kai Zhang, and Jianping
Fan. 2023. Knowledge-Aware Cross-Semantic Alignment for Domain-Level
Zero-Shot Recommendation. In Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management (CIKM ’23), Octo-
ber 21–25, 2023, Birmingham, United Kingdom. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3583780.3614945

1 INTRODUCTION
Recommendation systems aim to recommend items by learning
users’ personalized interests and providing basic network services
to match user needs quickly. In the past few decades, many methods
have been proposed on how to utilize users’ historical behaviors to
achieve better recommendations, such as collaborative filtering [14,
55], feature interaction [12, 40], sequential recommendation [16, 19]
and cross-domain recommendation [3, 48]. However, improving
the performance of cold-start recommendation systems remains a
significant and challenging problem. Especially when a new domain
appears, the interactions ae missing, and this cold start scenario is
called domain-level zero-shot recommendation (DZSR) [54].

DZSR poses practical challenges in the realm of recommendation
systems. When a new domain is introduced, the traditional single-
domain recommendation methods prove ineffective due to the ab-
sence of historical user-item interactions specific to the target do-
main. Moreover, even cross-domain recommendation methods are
constrained. As shown in Figure 1, general cross-recommendation
assumes that there are overlapping users in the source domain and
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Figure 1: The difference between cross-domain recommen-
dation and DZSR. Solid lines denote available interactions
while dashed lines denote unavailable interactions.

the target domain and establishes relations based on this, while
the target domain users and interactions in DSZR are completely
unavailable. The main challenges can be summarised as 1) The
first challenge originates from the discrepancies in the distribution
of items across the source and target domains. The accumulated
interaction records in the source domain cannot directly represent
user interests in the target domain. This requires the development
of techniques that can bridge the gap and proficiently capture user
preferences; 2) The second challenge emerges from the reality that
identical items may provoke diverse degrees of user interest across
different domains. The shift in the contextual backdrop from the
source to the target domains can induce considerable fluctuations
in user preferences.

To solve the problem of sparse interaction in the target domain
and provide high-quality recommendations, some scholars conduct
knowledge transfer from the perspective of user behavior modeling
in the source domain and try to establish connections between
items in the source domain and the target domain. Previous re-
search [7, 45] has proposed the usage of text as an intermediary.
Nevertheless, textual information has been demonstrated to intro-
duce bias, as the same text can hold different connotations depend-
ing on the context. For instance, the word "Python" in the title of a
book might pertain to a tutorial on Python programming language
in a programming context, whereas it could denote a book on ani-
mals in a natural science context. To address this issue, Tiger [54]
introduced the knowledge graph to model richer knowledge infor-
mation to eliminate bias. Therefore, it is intuitively plausible that
user preferences can still propagate even if the original item sets
from different domains do not directly overlap. KG contains a large
number of structured and semantic triple-connected entities, which
can serve as a bridge to project common knowledge. However, al-
though Tiger jointly models the item semantics of source and target
domains in the knowledge extraction stage, it fails to learn cross-
domain representation information during the high-order feature
interaction phase of user and item representations. This guides the
model to learn only the semantic information of the source domain.

One effective way to address the aforementioned problems is to
introduce the idea of class semantic descriptions (CSDs) from classic
zero-shot learning problems [25, 36, 43, 47]. CSDs represent a kind
of high-order semantic information, describing the core features
that help to identify categories. For example, to distinguish animals,

we can first define some CSDs like “swim”, “wing” and “fur”. Then,
at the training stage, we can train classifiers to recognize these CSDs.
For domain-level zero-shot recommendation, our goal is to obtain
high-quality CSDs as auxiliary data for supervising knowledge
from existing items in the source domain that are transferred to
unseen classes in the target domain. In this paper, we generate
semantic CSDs for item and user respectively, possessing these
properties: 1) item-CSDs, we use the KG embedding method based
on the item content, ensuring that the item’s representation has the
basic properties we proposed, that is, it has a good intra-domain
and inter-domain generalization performance. 2) user-CSDs, we
further integrate item CSDs into user CSDs learning, so that user
information on a single domain can be effectively transferred.

In this paper, we propose a knowledge-aware cross-semantic
alignment (K-CSA) framework to learn transferable source do-
main semantic information. Specifically, we first employ knowledge
graphs to jointly learn semantic representations of items in source
and target domains. To obtain generalized high-level information,
prototypes are extracted from items through the multi-view K-
means algorithm. The prototype extracts the mutual information of
the source and target domain items, which avoids the tendency of
the model to learn local information only by using source-domain
item representations. Furthermore, we leverage the multi-head
self-attention mechanism to learn high-order user CSDs with dif-
ferent view prototype information. To transfer user interest from
the source domain to the target domain, we design cross-semantic
contrastive learning based on the prototype distribution matrix.
This effectively aligns item and user semantics across domains. In
the model optimization stage, we introduce negative samples from
the target domain for optimization. To verify the effectiveness of
K-CSA, we conduct extensive experiments on four public datasets.
The main contributions of this paper are summarized as follows:

• We are the first to introduce the class semantic descriptions
(CSDs) modeling to domain-level zero-shot recommendation.

• To transfer user interest from the source domain to the target
domain, we align the items through the knowledge graph. Then
K-CSA constructs the item CSDs based on multi-view K-Means
and extracts user CSDs based on the self-attention mechanism.

• We introduce cross-semantic contrastive learning through the
prototype distribution matrix, to enhance the alignments of item
and user CSDs across domains.

• Extensive experiments are conducted to verify the effectiveness
of our proposed K-CSA and the applicability of produced repre-
sentations for multiple recommendation scenarios.

The rest of this paper is organized as follows. Section 2 briefly
introduces related work. Subsequently, Section 3 introduces the
problem definition of DZSR. The details of our proposed K-CSA
are presented in Section 4. Section 5 provides extensive experiment
results and case studies to show the effectiveness of K-CSA. Finally,
we summarize the paper and future plans in the final section.

2 RELATEDWORK
Our paper is mainly related to three areas of research: 1) cold-
start recommendation, 2) cross-domain recommendation, and 3)
knowledge-aware recommendation.
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2.1 Cold-start Recommendation
Many cold-start solutions have been developed for users or items
with limited interactions, aiming to improve recommendation deci-
sions. Various machine learning techniques have been employed
such as meta-learning [8, 21, 27, 29] and leveraging additional
data [4, 26, 30]. Meta-learning enables local updates of model param-
eters with a small number of samples, allowing for rapid adaptation
to user preferences and estimation based on limited items. Recent
studies have observed similarities between the intuitions of Zero-
Shot Learning (ZSL) and Cold-Start Problem (CSP), as both involve
two spaces: one for basic features and another for auxiliary de-
scriptions. The goal is to predict unseen basic features for certain
samples using auxiliary descriptions. Consequently, several zero-
shot models for CSP have been proposed, such as LLAE [22] and
MAIL [10]. LLAE employs a low-rank linear auto-encoder to map
between user behavior and user attributes (i.e., user characteristics),
while MAIL ensures the hidden features of user attributes and user
behavior are highly aligned by performing cross-modal reconstruc-
tion between two autoencoders. However, existing cold-start work
does not fully consider domain differences in the context of DSZR.

2.2 Cross-domain Recommendation
To address the widespread information sparsity in recommendation
systems, transfer learning [1, 49] has been developed to fuse infor-
mation for cross-domain recommendation (CDR). There have been
various approaches to facilitate knowledge transfer for CDR. Some
studies have explored cross-domain relevance at the attribute level,
focusing on linking user and item features, such as user reviews[35],
item tags [11], and knowledge graphs [15]. Others have delved
into techniques like sharing embeddings [6, 53] or mapping embed-
dings [18, 28] of overlapping users/items. For instance, DTCDR [53]
integrates multi-domain knowledge by sharing common user em-
beddings in the combination layer, while HeroGRAPH [6] enhances
entity representations by merging in-domain and heterogeneous
graph embeddings linked to multiple domains. Moreover, some
methods, such as XPTRANS [17], have ventured into collaborative
training by creating interconnections between models. However,
traditional CDR approaches often still require sparse data within
the target domain. Recently, an increasing number of attention
has been paid to using large language models (LLMs) to solve the
cold-start problem [44].

2.3 Knowledge-aware Recommendation
Knowledge graphs (KGs) are rich structured information reposito-
ries that can significantly enhance recommender systems. DKN [38]
employs knowledge-aware convolutional neural networks (KCNN)
for improved news representations using KGs, while KRED [24]
refines article representations, aiding in news recommendations.
Leveraging KGs’ natural entity connections, RippleNet [37] prop-
agates user preferences across KGs to address user-item interac-
tion sparsity using a memory network. KGCN [39] and KGAT [41]
harness knowledge graph convolution networks for item repre-
sentations, and Studie [5] adopts a multi-task framework for both
recommendation and KG embedding. In KG reasoning, KPRN [42]
focuses on finding high-quality KG paths between nodes, employing
a path encoder for selection. In contrast, PGPR [46] and ADAC [50]

apply reinforcement learning for path-finding tasks in KGs. Lastly,
in [23], a subgraph generator extracts significant KG subgraphs to
infer relations between items.

3 PROBLEM FORMULATION
In this section, we first give the definition of the DZSR problem.
There are source domain and target domain, denoted as S and T
respectively. The objective is to transfer the user behavior infor-
mation from the domain S to T . D represents one of the domains
in the paper. User set and item set can be denoted as UD and VD .
Different from traditional cross-domain recommendation, DZSR
assumes that there are no feasible interactions in domain T . So the
relation between source domain users and target domain users is
denoted asUT ∈ US . For item, the item sets are totally different
for the two domains, i.e.,VT ∩VS = ∅. All possible interaction set
between users and items is ID = UD×VD . For IT , the interaction
is unavailable for the training phase.
Task Description. With the above definitions, we define the task
of DZSR as follows: Input: the source domain user-item interaction
set IS , the user and item set in the two domain {US,UT ,IS,IT }.
Output: a trained model F (·) that forecasts the interactions in
target domain by ÎT = F (UT ).

4 METHODOLOGY
In this section, we present the details of our K-CSA framework. Our
method contains the following components: 1) Knowledge-Aware
Representation Learning, 2) Cross-domain CSDs Construction, and
3) Cross-semantic Contrastive Learning. First, the Knowledge-Aware
Representation Learning mechanism employs the item’s title to
align with the entities of the knowledge graph and subsequently
extract the knowledge subgraph. Bert is introduced to obtain the
semantic representation for each entity. After the information prop-
agation of the subgraph, K-CSA reads out the representation of each
item. Secondly, the Cross-domain CSDs Construction mechanism
is developed to generate universal item and user CSDs. Specifically,
we first obtain prototypes through multi-view K-means clustering
and reconstruct item CSDs based on prototype representations.
Additionally, user CSDs are constructed based on the designed
multi-head self-attention mechanism. Finally, the Cross-semantic
Contrastive Learning mechanism enhances the learned universal
CSDs by comparing item CSDs through the prototype distribution
matrix. The overall architecture of our method is shown in Figure 2.

4.1 Knowledge-Aware Representation Learning
Since items from S and T are separated due to the lack of interac-
tions inT . One of themain challenges for DZSR is to learn universal
item representations. For instance, when watching the movie La
La Land, the user notices that the main character IS reading the
book The Hero’s Journey. Then the user selects the Hero’s Jour-
ney in the book domain. Consequently, the embedding for La La
Land and The Hero’s Journey should be similar in the cross-domain
representation space. So we propose to use the knowledge graph
to enhance the semantic representation. Specifically, we leverage
ConceptNet [33], a semantic network that represents words and
phrases as nodes connected by relationships, aiding natural lan-
guage understanding. We utilize ConceptNet to extract universal
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Figure 2: The overall framework of our proposed K-CSA model involves Knowledge-Aware Representation Learning through
semantic learning based on knowledge graph and Cross-domain CSDs Construction.

semantic entities. The knowledge graph contains over 8 million
entities and 21 million edges. The definition of knowledge graph is
denoted as: G = {(ℎ, 𝑟, 𝑡) |ℎ, 𝑡 ∈ E, 𝑟 ∈ R}, where (ℎ, 𝑟, 𝑡) represents
that a relation 𝑟 from head ℎ to tail 𝑡 , and E and R denote the entity
set and relation set respectively.

To associate items within the recommendation dataset with en-
tities present in the knowledge graph, we adopt the methods pro-
posed by KB4Rec [51] to obtain the relevant entities for each item.
We extract the product title from the item’s metadata and employ it
as input for the Google Knowledge Graph Search API, retrieving the
top-ranked entity. In this study, we utilize the initial 64 characters
of the title to formulate the query keywords. Furthermore, through
the related entity, the edges from items to entities are constructed,
and we extract the n-hop subgraph from ConceptNet based on all
the connected entities. A relation-based attention mechanism calcu-
lates the entity-level embeddings. And the initial entity embeddings
are calculated by SBert [31]. The equations are as below:

𝑥
(𝑙 )
𝑖

= 𝜎 (𝜉 (𝑙 )𝑥 (𝑙−1)
𝑖

+∑
𝑗∈N𝑖

𝛼𝑙
𝑖 𝑗
𝑥
(𝑙−1)
𝑗

),

𝛼
(𝑙 )
𝑖 𝑗

=
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (r⊤𝑖 𝑗𝑊 𝑙

𝑘
[𝑥 (𝑙−1)

𝑖
| |𝑥 (𝑙−1)

𝑗
] )∑

𝑗 ∈N𝑖 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (r⊤
𝑖 𝑗
𝑊 𝑙

𝑘
[𝑥 (𝑙−1)

𝑖
| |𝑥 (𝑙−1)

𝑗
] )
,

(1)

where 𝑥𝑖 denotes the embedding for entity 𝑖 , and N represents
the neighbors for entity 𝑖 . 𝛼𝑖 𝑗 represents the attention score for
the entity 𝑖 and 𝑗 .𝑊𝑘 is the learnable parameter. 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (·)
and 𝜎 (·) are the activation functions. 𝜉 is an irrational number to
enhance the expressiveness of the graph attention mechanism.

After the information propagation on knowledge CSDs, we ag-
gregate the embedding to the item embedding.

𝐸𝑣 =
1

|N𝑣 |
∑︁
𝑒∈N𝑣

𝑥𝑒 , (2)

where 𝐸𝑣 is the aggregated item knowledge embedding and N𝑣
represents the neighbor entities for item 𝑣 .

4.2 Cross-domain CSDs Construction
The generation of item CSDs, predicated on the knowledge graph,
enables the mapping of items from the source and target domains
into a shared semantic space. The ensuing objective is the cross-
domain learning of user CSDs. One idea is to aggregate the item
CSDs of the source domain based on the item-user interest graph.
However, due to disparities in the entity distribution of item titles
between the source and target domains, directly learning graph rep-
resentations on the source domain remains insufficient. Therefore,
we propose to build prototypes based on the common entities of
items on the source and target domains and build user CSDs based
on the representation of the prototypes.

Specifically, we employ multi-view K-means to learn multiple
prototypes. During the selection of the initial center point for the
K-means algorithm, we choose to sample from the entities of the
knowledge subgraph. To prevent local entities in the source domain
from interfering with the generation of generic prototypes, we con-
vert the proportion of entity-connected source and target domain
items into sampling probabilities, and the formula is as follows,

𝑝𝑒 = min((1 − |𝑟S𝑒 − 𝑟 T𝑒 |) · 𝑝𝑖𝑛𝑖𝑡 , 𝑝𝜏 ), (3)

where 𝑝𝑒 is the sampling probability for entity 𝑒 . 𝑟S𝑒 and 𝑟 T𝑒 rep-
resent the ratio of the source domain and target domains in the
neighbors of entity 𝑒 . 𝑝𝑖𝑛𝑖𝑡 is a hyperparameter that controls the
overall probability and 𝑝𝜏 > 1 denotes the cut-off probability.

According to the sampling probability, we sample 𝑘 entities for
𝑁 views and use them as the embedding of the initial center point.
After the K-means algorithm of each view converges, we connect
the prototypes of 𝑁 view groups as item CSDs.

𝐻𝑣 =𝑊V [𝐻𝑃1𝑣 |𝐻𝑃2𝑣 | · · · |𝐻𝑃𝑁𝑣 ], (4)

where 𝐻𝑃𝑖𝑣 is the corresponding prototype embedding for item
𝑣 in the view 𝑖 . [·|·] means concat operation. This ensures that
item CSDs can obtain common information across domains while
avoiding being trapped in the representation of local information.

Given the reconstructed item CSDs, K-CSA further learns uni-
versal user CSDs. Based on the historical interactions, we design
a self-attention structure that considers both fine-grained item
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representation and universal item CSDs. First, we use the item rep-
resentation to compute the query matrix, and the item CSDs to
compute the key and value matrices,

𝑄𝑢 =𝑊𝑄E𝑢 , 𝐾𝑢 =𝑊𝐾H𝑢 , 𝑉𝑢 =𝑊𝑉H𝑢 , (5)

where E𝑢 and H𝑢 represent the history knowledge embedding and
item CSDs matrices for user 𝑢. Next, the result obtained by a single
attention head can be obtained by the following formula,

ℎ𝑒𝑎𝑑𝑖 = softmax(
𝑄𝑢
𝑖
𝐾𝑢
𝑖√
𝑑

)𝑉𝑢𝑖 . (6)

Finally, we concat the multi-head attention vectors and calculate
the user CSDs as follows,

𝐻𝑢 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝜎 ( [ℎ𝑒𝑎𝑑1 |ℎ𝑒𝑎𝑑2 | · · · |ℎ𝑒𝑎𝑑𝑀 ]𝑊U )), (7)

where 𝐻𝑢 denotes the user CSDs and𝑊U is the hyperparameter
matric. 𝜎 represents the activation function.

4.3 Cross-semantic Contrastive Learning
Our motivation is to learn universal item and user CSDs across
source and target domains. However, directly adopting BPR loss
for optimization still makes the model fall into the local optimum
of the source domain. Therefore, we propose to address this issue
through contrastive learning across semantics. The core problem
is that only the item CSDs of the source domain are applied in the
aggregation of user CSDs. Therefore, our goal is to make user CSDs
similar to item CSDs of the same cluster category on the target
domain according to the results of the multi-view prototype. For
each user and item, we construct the prototype distribution matrix
as follows,

M𝑢 =


[𝑚1,1
𝑢 , · · · ,𝑚1,𝐾

𝑢 ]
.
.
.

[𝑚𝑁,1𝑢 , · · · ,𝑚𝑁,𝐾𝑢 ]

 , M𝑣 =


[𝑚1,1

𝑣 , · · · ,𝑚1,𝐾
𝑣 ]

.

.

.

[𝑚𝑁,1𝑣 , · · · ,𝑚𝑁,𝐾𝑣 ]

 , (8)

where M𝑢 and M𝑣 represent the distribution matrix of user 𝑢 and
item 𝑣 . Among them,𝑚𝑖, 𝑗𝑣 ∈ {0, 1} marks whether item 𝑣 belongs
to 𝑗-th category of 𝑖-th view, which is set to 1 if yes, 0 otherwise.
𝑚
𝑖, 𝑗
𝑢 ∈ [0, 1] is the prototype distribution of normalized user history

interaction items calculated by,

𝑚
𝑖, 𝑗
𝑢 =

1
|I𝑢 |

∑︁
𝑣∈I𝑢

𝑚
𝑖, 𝑗
𝑣 , (9)

where I𝑢 is the historical interaction of user 𝑢. Hence the similarity
between user and item can be calculated by cosine similarity,

𝑠𝑢𝑣 =
𝑀𝑢 ·𝑀𝑣

| |𝑀𝑢 | | | |𝑀𝑣 | |
. (10)

We set a threshold for cosine similarity to sample positive and
negative examples from the target domain for contrastive learning.
A 2-layer feed-forward neural network is utilized to map item
CSDs to the size user CSDs. The loss function for cross-semantic
contrastive learning is shown as follows,

�̂�𝑣 =𝑊
𝐹
2 (𝜎 (𝑊 𝐹

1 𝐻𝑣 + 𝑏
𝐹
1 )) + 𝑏

𝐹
2 ,

L𝐶𝑆 =
∑
𝑢∈US

∑
𝑣+,𝑣−∈VT − log exp(𝐻𝑢 ·�̂�𝑣+/𝜏 )∑

𝑖− ∈VT exp(𝐻𝑢 ·�̂�𝑣− /𝜏 )
.

(11)

4.4 Model Optimization
For the prediction results, we directly map the user CSDs on the
source domain and perform inner product with the item CSDs on
the target domain to predict the possibility of interaction between
user 𝑢 and item 𝑖 .

𝑦𝑢𝑣 =
𝐻𝑢�̂�𝑣

|𝐻𝑢 | |�̂�𝑣 |
. (12)

In this paper, we utilize the Bayesian Personalized Ranking (BPR)
loss [32] to directly capture information from interactions. The BPR
loss is a ranking objective function that is commonly used in rec-
ommendation systems. Its design ensures that the predicted score
of observed interactions is higher than that of sampled unobserved
ones. The BPR loss is formulated as the following objective function:

L𝐵𝑃𝑅 =
∑︁

𝑢∈US , 𝑖, 𝑗∈VS

−𝑙𝑜𝑔𝜎 (𝑦𝑢𝑖 − 𝑦𝑢 𝑗 ) . (13)

Optimization Objective. We define our optimization objective
with the integration of the aforementioned losses and weight decay
regularization term in the following equation,

L = L𝐵𝑃𝑅 + 𝜆1L𝐶𝑆 + 𝜆2 | |Θ| |2, (14)

where the parameters are denoted as Θ. 𝜆1 and 𝜆2 are the learning
weights. The learning process of K-CSA is shown in Algorithm 1.

Algorithm 1 The Training Algorithm of K-CSA

Require: Source domain user-item interaction set IS ; Source do-
main user set US ; Source domain item set VS ; Target domain
item set VT

Ensure: Parameters of K-CSA Θ
1: Random initialize model parameters Θ
2: while not converged do
3: for 𝑣 ∈ VS do
4: Extract knowledge subgraph of 𝑣
5: Calculate item knowledge embedding 𝐸𝑣 based on Eq.1

and Eq.2
6: end for
7: for 𝑛 in 1 to 𝑁 do
8: Sample initial prototypes based on Eq.3 and conduct K-

Means Algorithm
9: for 𝑣 ∈ VD do
10: Get the n-th view 𝐻

𝑃𝑛
𝑣

11: end for
12: end for
13: Calculate the item CSDs based on Eq.4
14: Construct the item prototype distribution matrix
15: Calculate the user CSDs based on Eq.5, Eq.6 and Eq.7
16: Construct the user prototype distribution matrix
17: Calculate the L𝐶𝑆 based on Eq.11
18: Calculate the L𝐵𝑃𝑅 based on Eq.13
19: Calculate the overall loss based on Eq.14
20: end while
21: return Parameters Θ
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Table 1: Statistics of the experimental datasets.

Dataset AB AM ML LFM

#User 11,240 11,240 6,040 18,029
#Item 47,377 16,100 3,655 311,994
#Interaction 202,223 142,395 997,580 1,006,639
#Entity 3,599,000
#Relation 2,089
#Triple 32,372,637

5 EXPERIMENTS
In this section, we perform extensive experiments on four public
real-world datasets for model performance evaluation by answering
the following research questions:

• RQ1: Compared with various state-of-the-art models, how does
K-CSA perform for domain-level zero-shot recommendation?

• RQ2: Is K-CSA stable given different source domain data?
• RQ3: What is the impact of major components in K-CSA?
• RQ4: How do the key hyperparameters of K-CSA impact its
performance with different settings?

• RQ5: Are the item and user CSDs interpretable?

5.1 Experimental Setting
1) Dataset.We follow the dataset used in Tiger [54]. We conduct
experiments on the following four real-world datasets including
different overlap levels of users and items:

• Amazon Movies TV (AM) and Amazon Books (AB) are two sub-
sets of the Amazon datasets, which contain product reviews and
metadata from Amazon and nowadays have become popular
benchmark datasets for recommender systems. We use “review-
erID” to bridge users across the two datasets.

• Movielens(ML) dataset contains anonymous movie ratings to
describe users’ preferences on movies, which is widely used in
the evaluation of recommender systems.

• LastFM(LFM) dataset contains music listening information from
the world’s largest online music service Last.fm. The ML and
LFM datasets are used to extend the source domain and verify if
Tiger can benefit from the public datasets without overlapping
entities in the target domain

For the AB and AM datasets, we retain only users with at least
five historical interactions in both datasets. User interactions on
the source domain are preserved for training, while interactions
on the target domain are assumed to be invisible to comply with
the DZSR specification. Regarding the ML and LFM datasets, there
is no overlap between users and Amazon data. They are used as
supplementary datasets to verify the performance of K-CSA under
different data richness. The data statistics are shown in Table 1.
2) Baselines. Regarding baselines, we benchmark K-CSA against
a range of models, encompassing both existing methods and their
variants. We meticulously reproduce these baselines in accordance
with their original publications and open-source codes, striving to
guarantee fair comparisons within our experiment. The baseline
models incorporated in our study include:

Random: Random baseline is introduced as a common baseline in
zero-shot learning problems. Any worthwhile model is expected to
perform better than random outcomes.
Content-based methods: Textual content serves as an alternative
way for universally representing items.
• SBert [31]: is a modification of the widely-used BERT architec-
ture, specifically designed for sentence-level representation and
similarity tasks.

• DeBERTa [13]: A model that introduces disentangled attention
and a decoding-enhanced objective to improve the performance
of the original BERT architecture.

Knowledge graph-basedmethods:Given that conventional knowl-
edge graph embedding models acquire entity embeddings through
a fully self-supervised approach, relying on the knowledge graph’s
structure, they can be considered as natural benchmarks for evalu-
ating zero-shot recommendation performance.
• TransE [2]: is a prominent embedding model for knowledge
graph representation learning, which encodes both entities and
relations as continuous vectors in a shared latent space.

• KGCN [39]: is a powerful model for recommender systems,
which leverage the rich information provided by knowledge
graphs to enhance recommendation quality.

• KGAT [41]: is a model that integrates knowledge graphs by
leveraging graph attention mechanisms.

Cold start-based methods: One way to solve the DZSR problem
is to degenerate the problem into a cold-start recommendation on
a single domain, that is, put all the items of the target domain into
the source domain.
• MvDGAE [52]: extract multifaceted meaningful semantics on
HINs as multi-views for both users and items, effectively enhanc-
ing user/item relationships on different aspects.

• MetaKG [9]: effectively captures the high-order collaborative
relations and semantic representations, which could be easily
adapted to cold-start scenarios.

DSZRmethods:Most cross-domain recommendation methods are
restricted due to the need for interaction with the target domain.
The first work of DZSR is naturally added as a baseline.
• Tiger [54]: is a cutting-edge model designed for DSZR, which
focuses on learning transferable interest graph embeddings.

3) Evaluation Metrics.We evaluate all models using two popu-
lar metrics: Hit Ratio (H@K), Normalized Discounted Cumulative
Gain (N@K) and Mean Reciprocal Ranking (MRR@K), where K is
obtained from the classical setting {10, 100} taking into account
both precision and recall properties. Higher values for all measures
mean better performance. During the testing phase, all models
are asked to rank all items that each user has not interacted with.
To reduce the effect of random noise, each experiment was inde-
pendently repeated 10 times under the same conditions, and the
average performance is reported here.
4) Parameter Settings. All the methods are implemented by Py-
torch, and we tune the hyperparameters of both our model and
baselines by the Adam [20]. The embedding size produced by SBert
is 1024 and further mapped into 512 by the feed-forward layer for
efficiency. To ensure a fair comparison, all the other baselines are
set the same and share the same batch size 1024. The size of 𝐻𝑢 and
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Table 2: Performance comparison for different methods. The results are obtained from 10 individual runs for every setting.
The best is highlighted in bold.

Model Source Target H@10 N@10 MRR@10 H@100 N@100 MRR@100

Random - AM 0.061 0.0276 0.0148 0.6202 0.1294 0.0639
SBert AB AM 0.1299 0.0484 0.0272 1.2899 0.2583 0.1115

DeBERTa AB AM 0.2265 0.0866 0.0499 1.3154 0.2973 0.1236
TransE AB AM 0.3201 0.1571 0.0806 1.4852 0.3718 0.1653
KGCN AB AM 0.5366 0.2488 0.1278 3.6032 0.8149 0.3464
KGAT AB AM 0.5122 0.2235 0.1275 2.8814 0.8033 0.3495
MvDGA AB AM 0.7312 0.3211 0.1737 4.5213 1.0215 0.4225
MetaKG AB AM 0.7955 0.3446 0.1786 5.1387 1.1894 0.5171
Tiger AB AM 0.9311 0.3748 0.2194 7.3063 1.5401 0.7468
K-CSA AB AM 0.9562 0.3941 0.2285 8.5633 1.8835 0.7718

Random - AB 0.0208 0.0091 0.0054 0.2103 0.0436 0.0210
SBert AM AB 0.0503 0.0194 0.0100 0.4576 0.094 0.0408

DeBERTa AM AB 0.0545 0.0235 0.0123 0.4122 0.0933 0.0390
TransE AM AB 0.0619 0.0284 0.0166 0.3908 0.0909 0.0383
KGCN AM AB 0.0858 0.0483 0.0261 0.7111 0.165 0.0678
KGAT AM AB 0.0913 0.0512 0.0279 0.9934 0.1936 0.0905
MvDGA AM AB 0.1536 0.0814 0.0443 1.2352 0.2265 0.1031
MetaKG AM AB 0.2213 0.0922 0.0471 1.4993 0.3047 0.1447
Tiger AM AB 0.3052 0.1361 0.0700 1.9624 0.4511 0.2111
K-CSA AM AB 0.3541 0.1699 0.0859 2.4714 0.5262 0.2512

�̂�𝑣 are set to 512. The head of multi-head self-attention is 3. For the
key hyperparameters, 𝑝𝑖𝑛𝑖𝑡 and 𝑝𝜏 are set to 2 and 0.2 respectively.
The layer 𝐿 of the graph attention mechanism for semantic mod-
eling is searched from [1, 2, 3, 4, 5] and the number 𝑁 of views for
K-Means is searched from [2, 4, 6, 8, 10]. The hyperparameters 𝜆1
and 𝜆2 for loss function are searched from [0.01, 0.1, 0.5, 1, 10].

5.2 Performance comparison (RQ1)
The performance of K-CSA compared with other baselines on two
source and target domain settings is shown in Table 2. The results
are obtained from 10 individual runs for every setting. From the
evaluation results, we summarize the following observations:

• K-CSA constantly outperforms all baselines on the two different
source-target domain settings. Through the cross-domain CSDs
construction, K-CSA improves the generalization and robustness
of DZSR by learning universal item and user CSDs. We attribute
the significant performance gain of K-CSA to two key aspects: 1)
K-CSA effectively alleviates the domain bias brought by direct
learning representations on both source and target domains. 2)
In addition to extracting the textual information of the item,
the generalization performance of the model is enhanced to a
certain extent by constructing the cross-domain item relationship
through the graph.

• Knowledge graph-based methods perform better than content-
based methods. This superiority could be attributed to the struc-
tured representation of concepts and their interrelations afforded
by knowledge graphs, facilitating more intricate and comprehen-
sive semantic modeling. In the context of DZSR, the source and

target domains are intrinsically connected through the underly-
ing semantics of items, rather than through explicit user-item
interactions. While content-based approaches rely on item de-
scriptions or user-generated content, which may vary drastically
between domains, knowledge graphs establish robust semantic
links that transcend these domain-specific characteristics. By
capturing the overarching semantic structure, knowledge graph-
based methods can create a more coherent and accurate mapping
between source and target domain items.

• KGAT and KGCN demonstrate superior performance compared
to TransE, illustrating the advantage of training entity embed-
dings using user behaviors from the source domain. KGAT and
KGCN utilize user behaviors to inform the learning process, yield-
ing embeddings that are much more relevant and tailored to
specific tasks. Hence they successfully distill recommendation-
oriented knowledge from the broader, structure-oriented knowl-
edge graph, thereby enhancing the overall quality and relevancy
of recommendations. Further, KGAT manifests additional advan-
tages resulting from the graph attention mechanism.

• Compared with the best state-of-the-art method Tiger, the de-
ployment of CSDs within K-CSA plays a crucial role in improving
the method’s performance, which fuses multi-view semantic in-
formation and alleviates the domain bias in DZSR. Meanwhile,
cross-semantic contrastive learning further amplifies the efficacy
of our proposed model. This learning paradigm seeks to under-
stand and relate to different semantics across domains, facilitating
a richer and more general representation of items. Furthermore,
the fine-grained modeling of knowledge graphs employed by
KCSA represents a significant advantage over the other baseline
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Figure 3: Performance comparison of K-CSA with different
source domain datasets.

Table 3: Ablation studies for different mechanisms in K-CSA.
The best is highlighted in bold.

Model
H10 N10 MRR10 H100 N100 MRR100

AB (Source) - AM (Target)
K-CSA-NK 0.8513 0.3655 0.2015 6.9832 1.3844 0.7369
K-CSA-NC 0.8212 0.3512 0.1903 6.1241 1.3062 0.7127
K-CSA-NS 0.9215 0.3784 0.2142 7.2447 1.4969 0.7413
K-CSA 0.9562 0.3941 0.2285 8.5633 1.8835 0.7718
Model AM (Source) - AB (Target)

K-CSA-NK 0.2818 0.1033 0.0693 1.9323 0.4142 0.1936
K-CSA-NC 0.2561 0.0982 0.0644 1.7182 0.3689 0.1774
K-CSA-NS 0.3156 0.1451 0.0712 2.2342 0.4692 0.2233
K-CSA 0.3541 0.1699 0.0859 2.4714 0.5262 0.2512

methods. By acknowledging and employing the vast and intricate
connections within knowledge graphs, our method substantially
improves the precision of semantic extraction.

5.3 Multi Source Domain Performance (RQ2)
We further test the performance of K-GCA on source domain data
with different richness. We consider the cases of non-overlap users
and partial-overlap users. This corresponds to the history available
setting and history protected setting in Tiger [54], respectively. We
show the results in Figure 3.

It is obvious that no matter whether the target domain is AB
or AM, when the domain data of non-overlap users is fully used,
the performance of the model is lower than that of partial-overlap.
Intuitively, since the source domain does not overlap users with
the target domain, there is a larger gap in the interest distribu-
tion of users. For example, in e-commerce platforms with different
marketing strategies, users will prefer products with higher cost
performance in promotional platforms. On the luxury e-commerce
platform, users pay more attention to quality and brand. Although
DZSR with non-overlap users is challenging, K-CSA still achieves
promising results.

In the partial-overlap user scenario, when the target domain
is AB, out-domain data can improve the performance of K-CSA
on AB. This can be attributed that ML and LFM are video and
audio respectively, which is more similar to partial-overlap AM.
Therefore, consistent user CSDs can be obtained during training
in the source domain, avoiding the noise introduced by different
data distributions. Additionally, according to Figure 3(a), simply

increasing the source domain data does not guarantee performance
improvement.

5.4 Ablation study (RQ3)
In this section, we perform model ablation studies to evaluate the
effects of different mechanisms of K-CSA in contributing to DZSR
performance. In particular, 1) K-CSA-NK represents K-CSA without
knowledge graph, we directly utilize the representations from SBert;
2) K-CSA-NC removes the item and user CSDs construction mech-
anism, and the user representation is learned through a common
multi-head attention mechanism; 3) K-CSA-NS only utilizes the
BPR loss for optimization. The performance for different variants
is shown in Table 3.
• For K-CSA-NK, performance drops in both settings. This is con-
sistent with our conclusions in Section 5.2 that knowledge graph-
based methods are better than content-based methods for K-CSA.
The decline in performance stems from the lack of structural link-
age of items between the two domains. This significantly hampers
its ability to deliver accurate cross-domain recommendations,
especially in a zero-shot setting. Therefore, these findings affirm
the value of knowledge graphs K-CSA.

• K-CSA-NC performs the worst in the three variants. The reason
is that directly applying and training semantic representations
obtained from knowledge graphs leads to models falling into
domain bias, especially in the absence of target domain interac-
tions. This elucidates the pivotal role of CSDs in enhancing the
robustness and accuracy of K-CSA.

• Based on the result, K-CSA-NS slightly performs slightly worse
than K-CSA, which is mainly due to the lack of alignments for the
CSDs in source and target domains. To elaborate, the alignments
allow the model to relate and contrast the semantic features of
items in different domains, thereby enhancing the comprehen-
siveness and generalization of item CSDs.
Our results show that K-CSA achieves the best performance

compared to these variants, further emphasizing the benefits of
learning universal CSDs and alignment of source and target domain
items through cross-semantic contrastive learning.

5.5 Hyperparameter analysis (RQ4)
In this section, we examine the sensitivity of several important
parameters of our K-CSA model as shown in Figure 4.
• Effect of number of attention layer 𝐿 for knowledge graph.
This hyperparameter controls the number of neighbor hops for
extracting information from the knowledge graph. The larger
𝐿 means that more knowledge graph information is extracted.
Specifically, when the target domains are AB and AM, K-CSA
achieves the optimal performance when 𝐿 is set to 3. This shows
that the model extracts favorable information when extracting
3-hop neighbors while preventing semantic noise introduced by
too many neighbor hops.

• Effect of the view 𝑁 of prototypes.We investigate the influ-
ence of the view count 𝑁 on our model’s performance. It can
be instinctively understood that a larger 𝑁 allows the model
to encapsulate the representation of multiple item CSDs. Our
findings suggest that the optimal value for 𝑁 is dependent on
the target domain; for the AM domain, the peak performance
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Figure 4: Performance comparison of K-CSA with different
source domain datasets.

was observed when 𝑁 = 6, while for the FM domain, optimal
results were obtained with 𝑁 = 4. The rationale behind these
observations is twofold. On one hand, when 𝑁 falls short of the
optimal threshold, augmenting the view count can enhance the
depth and richness of information captured by the model. On the
other hand, an excessively large 𝑁 might lead to the inclusion of
superfluous information, which, in turn, might compromise the
quality of item CSDs.

• Effect of the parameter 𝜆1 of contrastive learning loss. Fur-
ther, we validate the effect of hyperparameter 𝜆1, which coordi-
nates the balance of L𝐵𝑃𝑅 and L𝐶𝑆 . According to the results, it
is obvious that our method achieves the best performance when
𝜆1 is set to 0.1. When 𝜆1 is greater than 0.1, the loss of optimized
contrastive learning affects the effect of the core BPR loss, thus
causing the performance of the model to decline.

5.6 Case Study (RQ5)
In this section, we conduct case studies to investigate the effective-
ness and interpretability of the CSDs.
• Interpretability of item CSDs. We perform a case study to
show the quality of item CSDs. As shown in Figure 5, the result
is derived from the setting that AM is the source domain and
AB is the target domain. We observe that the item CSDs from
the same user are similar, and the cosine similarity is 0.767. The
similarity in CSDs across the same user affirms the strong align-
ment in item semantics within the same source domain. This
inherent characteristic provides a dependable foundation for
DZSR, promoting reliable semantic integration. On the contrary,
the divergent CSDs among different users point out the indi-
vidualized semantic interpretations, as denoted by the negative
cosine similarity. This deviation presents a compelling narrative
of individuality in item usage and perception.

• Interpretability of user CSDs.We perform the case study with
sampled item and user CSDs as illustrated in Figure 6, to show the
interpretability of the learned user CSDs.We show the items the
user has interacted with in the source domain and their potential

AM

AB

AM

AB

Item CSDs similarity: 0.7667 

Item CSDs similarity: 0.0734 

Figure 5: Case study of item CSDs. The upper case shows
CSDs from different domains of the same user, and the lower
case represents CSDs from different users.

Items interacted with in domain AB
Items interacted with in domain AM
Items not interacted with in domain AM
User in domain AB

(a) The target domain is AM.

Items interacted with in domain AB
Items interacted with in domain AM
Items not interacted with in domain AB
User in domain AM

(b) The target domain is AB.

Figure 6: Case study of user CSDs. CSDs are mapped to a
two-dimensional space through t-SNE.
items in the target domain in different settings. To visualize the
CSDs, we leverage the t-SNE algorithm [34] to map the mean
representation into a two-dimensional vector. The scatterplot
analysis in further corroborates that items genuinely engaged by
users in the target domain exhibit semantic similarity with those
interacted with in the source domain, which is further transferred
to user CSDs. Simultaneously, K-CSA shows its adeptness in
distinguishing items yet to be engaged within the target domain,
thus reinforcing the potency of its discrimination capability.

6 CONCLUSION
In this paper, we demonstrate the main challenge of DZSR in mod-
eling transferable representations in source and target domains. To
tackle the problem, we propose a new framework called K-CSA
to construct universal user and item CSDs. First, we leverage the
knowledge graph to involve semantic information and aggregate
the semantic representation through the graph attention layer. Sec-
ondly, we introduce the concept of CSDs and conduct multi-view
K-means to learn multiple prototypes. Then the item CSDs are re-
constructed based on the prototype representations. Furthermore,
to alleviate the domain bias since lacking target domain interactions,
we design the multi-head self-attention mechanism to integrate the
fine-grained item representations and universal item CSDs. Thirdly,
we propose the cross-semantic contrastive learning mechanism
through prototype distribution. Our extensive experiments validate
the effectiveness of our proposed model in different DZSR settings.
In our future work, it is interesting to fuse multimodal data to en-
hance the performance and robustness in non-overlap DZSR. It will
extend the application of K-CSA in industrial scenarios.
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