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Review-based Item Recommendation?

* E-commerce platforms (e.g., Amazon, Alibaba) allow users to post their
reviews towards products. The reviews may contain the opinions of
users and the features of the items.
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Background - formal definition

To begin with, we first define the review-based item recommendation. It
estimates the probability that a user rating at the candidate items based on
the input feature representation.

predicts the rating R, ; of item i by user u. General schema:

R, i = f(user_reviews, item_reviews)
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Background - previous methods

CNN, RNN based-methods

v ConvMF [D.H. Kim et al. Recsys’16]

* Convolutional Matrix Factorization

» Utilizing CNN to extract item latent features from item reviews

v" Parallel CNN model: DeepCoNN [L. Zhang et al. WSDM’17]
* Deep Cooperative Neural Networks
* Jointly modeling user & item reviews; Dual CNN

v' TransNet [R. Catherine et al. Recsys’17]
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Background - previous methods

Deep Models with Attention for review-based recommendation

v D-Attn [S. Seo et al. Recsys’17

e Dual Local and Global attention for selective features

e Combining local and global attention on review text
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v" MPCN [Tay et al. KDD’18], CARL [Wu et al. TOIS’19], DAML [Liu et al.
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Background - shortcomings

Although these works achieved significant performance improvement,
they still suffer from two intrinsic issues:
1. largely ignoring the explicit sentiment polarity of reviews

2. neglect the personalized interaction of reviews with user/item

{

implicitly mining the semantic information and interactions of reviews may lead to
sub-optimal prediction because the reviews’ sentiment label has not been applied

to the training process
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2. Our method: Sentiment-aware Interactive Fusion Network



Our solution - Sentiment-aware Interactive Fusion Network
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Exploring the explicit sentiment and personalized interaction : ol review

1. There exists a large amount of sentiment labels which carry the user attitudes and
preferences (i.e., which kinds of item user may like or dislike)

2. itis necessary to model the interactions between each review and user/item features.

\ e.g., weigh and fuse
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Our solution - Sentiment-aware Interactive Fusion Network
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Overall architecture of SIFN:

1. An Encoding Module (BERT embedding + Sentiment Learner)
2. Sentiment Prediction ( MLP + softmax)

3. Rating Prediction (Rating Learner : aggregation + fusion)
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Our solution - Sentiment-aware Interactive Fusion Network
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3. Experiments
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Experiments

Dataset Dataset # Users | #Items | # Ratings | Density
v Benchmark Amazon dataset: Music Instruments 1,429 900 10,261 0.798%
Office Products 4,905 | 2,420 53,228 | 0.448%

e Music Instruments, Office Products, Digital Music 5540 | 3,568 | 64,664 | 0.327%
Tools 16,638 | 10,217 | 134,345 | 0.079%

Digital Music, Tools, Video Games ; Video Games 24303 | 10,672 | 213577 | 0.089%

Baseline methods

(1) MF-based methods: PMF; ConvMF+
@ Neural-based methods: DeepCoNN; D-Attn; NARRE; CARP

Mean Squared Error (MSE) as the evaluation metric
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Experiments

Methods

Music Instruments ‘ Office Products

Digital Music

Tools

Video Games

Average

PMF [8]

1.398(+45.7%)

1.092(+35.7%)

1.206(+33.7%)

1.566(+39.3%)

1.672(+37.4%)

1.386(+38.6%)

| | | | |

| | | | |
ConvMF+ [6] |  0.991(+234%) | 0.960(+26.9%) | 1.084(+263%) | 1.240(+23.4%) | 1.449+27.7%) | 1.145(+25.7%)
DeepCoNN [18] |  0.814(+6.76%) | 0.860(+18.4%) | 1.058(+245%) | 1.061(+105%) | 1.145(+8.56%) | 0.988(+13.9%)
D-Attn [12] | 0.982(+227%) | 0.825(+14.9%) | 0.911(+12.3%) | 1.043(+8.92%) | 1.144(+8.48%) | 0.981(+13.3%)
NARRE [2] | 0.803(+5.48%) | 0.848(x17.2%) | 0.898(+11.0%) | 1.029(+7.68%) | 1.129(+7.26%) | 0.941(+9.6%)
CARP [7] | 0.773(+1.81%) | 0.719(+2.36%) | 0.820(+2.56%) | 0.960(+104%) | 1.084(+3.41%) | 0.872(+2.4%)
LSEN [ _o7so [ o702 [ o799 [ o090 [ 1047 ] 0851 |

Overall performance

1. MF-based methods (e.g., PMF) consistently fall behind other methods

2. Neural-based methods (e.g., D-Attn) outperform MF-based ones by a large margin
3. our proposed SIFN model still outperforms CARP by 1.81%~3.41%, which shows the

superiority of the well designed interactive& Fusion module
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Experiments
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-
e the performance of SIFN_sa drops as it just assumes every i
review contributes equally for user-item rating. E
o the performance of SIFN_fn also declines since the interac- i
tions of user and item reviews are not fully exploited. i
e SIFN_in also declines because it is inefficient to perform i

e SIFN_sa: replaces the sentence attention with a simple av- i
. i second-order operations in the same space with FM.

erage sum pooling over all the reviews.

e SIFN fn: removes the fusion network so that user and item
features are disentangled without explicit interactions.

e SIFN_in: replaces the interactive network with commonly
used Factorization Machine (FM) [11] to estimate the ratings.

e SIFN_w2v: replaces the BERT encoding of text reviews with
commonly used pre-trained word embedding GloVe [9].

e SIFN_sp: removes the sentiment prediction task so that the
model focuses on user-item rating prediction.

e Not surprisingly, without BERT encoding, SIFN_w2v is in-
capable of representing deep semantic of reviews.

e Without sentiment prediction in SIFN_sp, there is no super-
vision towards attending sentiment-aware words in reviews,
which are vital for the rating prediction.



Experiments

(a) I hated this thing. They are noisy, and the cables feel really cheap. r=
1) 0.254 0.124 0.146 0219 7 =1.08
) 0.085 0.116 0.109 0.126 0.107 F=1.97

(b) This pedaltrain holds my pedals perfectly. Simple & light. I love it! r =

1) 0212 0176 0.161  0.263 7 = 4.98
(2) 0.157  0.134 0115  0.106 0.174 F=4.11
Case study

1. Inreview (a), SIFN aligns the sentiment words, e.g., “hated” and “cheap”’, with a rating of
1.08, which is consistent with actual value
2. Inreview (b), SIFN accurately predicts a rating of 4.98 by extracting the sentiment words,

e.g., “love” and “perfectly”, while SIFN_sp is incapable of achieving this
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4. Conclusion
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Conclusion

1. We highlight the explicit sentiment polarity in each review, and focus on modeling the
multiple feature interactions between each review and user/item.

2. We propose a novel Sentiment-aware Interactive Fusion Network (SIFN) model with two
main components, Sentiment Leaner and Rating Learner.

3.  We conduct extensive experiments on five datasets so that the results demonstrate the

effectiveness of our proposed method.
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