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Abstract

Knowledge editing is a technique for efficiently
and accurately updating the knowledge of large
language models (LLMs) to alleviate obsoles-
cence and correct errors. However, most exist-
ing methods overfit to specific models, causing
edited knowledge to be discarded during each
LLM update and requiring frequent re-editing,
which is particularly burdensome in today’s
rapidly evolving open-source community. To
address this issue, we propose the problem of
cross-model knowledge editing and introduce
MindBridge, a scalable solution inspired by
the low coupling between modality process-
ing and LLMs in multi-modal models. Mind-
Bridge introduces the novel concept of mem-
ory modality, which encodes edited knowl-
edge as an independent modality. It first per-
forms LLM-agnostic pre-training of the mem-
ory modality and then integrates it with vari-
ous LLMs. Extensive experiments on multiple
LLMs and popular knowledge editing datasets
demonstrate that MindBridge achieves superior
performance even in editing tens of thousands
of knowledge entries and can flexibly adapt
to different LLMs. Our code is available at
https://github.com/CrashBugger/MindBridge.

1 Introduction

Large language models (LLMs) have revolution-
ized natural language processing, demonstrating re-
markable abilities in understanding and generation
(Achiam et al., 2023; Touvron et al., 2023; Brown
et al., 2020). These models leverage the knowl-
edge acquired during pre-training to answer user
queries. However, since the knowledge embedded
in LLMs is stored in static parameters, their internal
knowledge needs to be updated to keep pace with
the ever-changing world and avoid obsolescence.
Additionally, for personalized user information or
domain-specific knowledge, customizing LLM out-
put also requires updating the model’s knowledge.
Traditional methods, such as fine-tuning, continual
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Figure 1: (a) The cross-model knowledge editing prob-
lem. Current knowledge editing methods discard previ-
ously edited knowledge after every LLM update (e.g.,
when the base model is updated alongside LLaMA),
requiring frequent re-editing, which is labor-intensive.
This motivates us to explore whether edited knowledge
can transcend individual models, i.e., achieve cross-
model knowledge editing. (b) Analogizing memory
modality to visual modality. Different visual modal-
ity encoders exhibit low coupling with various LLM
backbones, and after efficient modality alignment, they
enable LLMs to see. Inspired by this, we propose mem-
ory modality, which decouples knowledge from a single
model, allowing knowledge editing through modality
bridging with different LLMs.

learning, or retraining, are computationally expen-
sive and may inevitably degrade the model’s gen-
eral capabilities(Kalajdzievski, 2024; Wang et al.,
2023). Fortunately, recent advancements in knowl-
edge editing offer a promising solution, enabling
efficient and precise modification of model knowl-
edge at a low computational cost.

Existing knowledge editing methods generally
fall into two categories (Yao et al., 2023). The first
one preserves LLM parameters, such as memory-
based methods (Mitchell et al., 2022a; Madaan
et al., 2022a) or methods that add extra parameters
to the model (Huang et al., 2023; Dong et al., 2022).
The second category modifies the parameters of the
edited model, such as meta-learning-based methods
(Mitchell et al., 2021; Tan et al., 2023) or locate-
and-edit methods (Meng et al., 2022a; Fang et al.,
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2024). While these methods have made significant
progress, most still face the issue of overfitting to
a single LLM. If the knowledge to be edited is
domain- or user-specific, re-editing this knowledge
becomes necessary whenever the LLM is updated,
which is both tedious and time-consuming, espe-
cially given the fast pace of updates in the open-
source community. This motivates us to explore
whether the edited knowledge can be loosely cou-
pled with the target model and is no longer limited
to a single LLM. We call this problem cross-model
knowledge editing, as shown in Figure 1(a).

To address this issue, inspired by the work on
multimodal large language models, we introduce
the memory modality, a novel concept that en-
codes edited knowledge as a standalone modality
to partially decouple a model’s knowledge from
the LLM itself. As illustrated in Figure 1(b), the
analogy to visual modality offers a clearer under-
standing of memory modality. The current main-
stream paradigm(Liu et al., 2024) involves concate-
nating pre-trained visual modality encoders (e.g.,
ViT (Dosovitskiy, 2020), CLIP ViT (Radford et al.,
2021)) with various LLM backbones (e.g., LLaMA,
Vicuna (Zheng et al., 2023b)) to enable LLMs with
visual perception. The low-coupling characteristic
between visual modality processing and LLMs al-
lows for independent updates of both components
(Chen et al., 2024; Jain et al., 2024). This low-
coupling property is precisely what is needed to
solve the problem of cross-model knowledge edit-
ing. By encoding editable knowledge as a separate
memory modality, pre-training a memory modal-
ity encoder to handle this knowledge, and subse-
quently concatenating it with multiple LLMs, we
achieve efficient cross-model knowledge editing.

Based on the idea of memory modality, we pro-
pose MindBridge, a two-stage solution for cross-
model knowledge editing. The first stage is memory
modality pre-training, where we introduce three
training objectives: memory injection, memory as-
sociation, and memory existence. These objectives
are designed to train the memory modality encoder
so that it can acquire relevant memories, perform
memory association, and determine whether cer-
tain memories exist. The second stage is memory
modality bridging, where we fine-tune a simple
projector to achieve efficient cross-modal align-
ment, enabling the output of the memory modality
to be understood and utilized by LLMs. This ap-
proach allows for efficient large-scale knowledge
updates, with minimal modifications required when

the LLMs are updated.
To test the effectiveness of MindBridge, we con-

duct extensive experiments on widely used knowl-
edge editing datasets, ZsRE and Counterfact, using
multiple LLMs, including GPT-XL, GPT-J, and
LLaMA3. Leveraging the low coupling charac-
teristic between the memory modality and LLMs,
MindBridge achieves efficient and scalable knowl-
edge editing across different models, delivering
excellent editing performance even in scenarios in-
volving tens of thousands of knowledge edits. Our
contributions can be summarized as follows:

• We introduce the novel problem of cross-
model knowledge editing, addressing the criti-
cal challenge of discarding previously edited
knowledge and repeatedly re-editing caused
by the rapid iteration of LLMs.

• We propose MindBridge, a scalable and effec-
tive solution that leverages the innovative con-
cept of a memory modality to achieve cross-
model knowledge editing.

• Extensive experiments on knowledge editing
datasets and multiple LLMs validate the ef-
fectiveness and scalability of MindBridge for
cross-model knowledge editing, even when
handling tens of thousands of edits.

2 Related Work

2.1 Knowledge Editing
Knowledge editing, aimed at inserting new knowl-
edge or modifying existing knowledge in LLMs to
alter their behavior, falls into two main paradigms
(Yao et al., 2023). Parameter-modifying editing
directly adjusts model parameters. This includes
locate-then-edit strategies like ROME (Meng et al.,
2022a), MEMIT (Meng et al., 2022b), and Al-
phaedit (Fang et al., 2024), which pinpoint rel-
evant knowledge before fine-tuning parameters.
Meta-learning approaches, such as KE (De Cao
et al., 2021), MEND (Mitchell et al., 2021), and
MALMEN (Tan et al., 2023), also belong to this
paradigm, training hypernetworks to generate pa-
rameter updates.

In contrast, parameter-preserving editing main-
tains original model weights and uses external com-
ponents for knowledge storage. T-Patcher (Huang
et al., 2023) adds neurons to the last feed-forward
layer to adjust output. SERAC (Mitchell et al.,
2022b) trains a counterfactual model using a clas-
sifier to determine response relevance. Database-
retrieval methods, including GRACE (Hartvigsen
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et al., 2024) (hidden vector database) and MELO
(LoRA block database), modify LLM computa-
tion based on retrieved knowledge. MemPrompt
(Madaan et al., 2022b) and IKE (Zheng et al.,
2023a) utilize retrieved demonstrations as prompts,
leveraging in-context learning.

While effective for targeted edits, existing knowl-
edge editing methods are often overfit to specific
LLMs and struggle with cross-model, large-scale
knowledge editing. After each iteration of the LLM,
the previously edited knowledge is lost, leading to
the need for frequent re-editing.

2.2 MultiModal Large Language Models

Recent advancements in multimodal large language
models (MM-LMMs) have enabled LLMs to pro-
cess diverse modality inputs like images, video, and
audio (Li et al., 2023a,b; Chu et al., 2023). Due to
the high cost of training MM-LLMs from scratch,
a more efficient strategy involves integrating pre-
trained unimodal foundation models with the LLM
backbone. This approach typically follows a two-
stage pipeline: Multimodal Pre-Training, which
aligns modality encoder features with the LLM,
and Multimodal Instruction-Tuning, which ensures
instruction following and zero-shot generalization
(Zhang et al., 2024a; Liu et al., 2024).

This decoupling of the LLM backbone from
modality encoders enables the reuse or iterative
updates of modality encoders without affecting
the LLM (Chen et al., 2024; Oquab et al., 2023),
offering insights for cross-model knowledge edit-
ing. Beyond traditional modalities, we propose the
novel concept of memory modality to achieve simi-
lar decoupling, partially separating model knowl-
edge and reasoning. This enables efficient knowl-
edge editing, allowing for the retention or indepen-
dent updating of previously edited knowledge even
when the LLM backbone is updated.

3 Problem Formulation

The goal of knowledge editing is to modify the
knowledge stored in a model. In this paper, we
focus specifically on editing memories composed
of factual knowledge. More concretely, for a triplet
(s, r, o) consisting of a subject s, relation r, and
object o (e.g., s = United States, r = President, o =
Biden), we aim to insert a new triplet (s, r, o∗) (e.g.,
s = United States, r = President, o∗ = Trump) into
the LLM to replace the previous knowledge, i.e.,
(s, r, o) → (s, r, o∗), where these two triplets share

the same subject and relation. Specifically, o∗ can
also represent knowledge that does not originally
exist in the LLM, i.e., (s, r, ∅) → (s, r, o∗).

Given a set of knowledge to be edited Dedit =
{(si, ri, o∗i ) | i = 1, 2, . . . , n}, a knowledge edit-
ing operation KE, and a model to be edited F ,
the goal of knowledge editing is to generate a new
model F ∗ through the knowledge editing operation
KE. This can be formulated as follows:

F ∗ = KE(F,Dedit),

s.t. F ∗(s, r) =

{
o∗, if (s, r, o∗) ∈ I(Dedit),

F (s, r), if (s, r, o∗) ∈ O(Dedit).

(1)

Here, I(Dedit) denotes the knowledge set that
requires editing and its neighborhood, such as para-
phrasing and rewriting, with Dedit ⊆ I(Dedit).
Meanwhile, O(Dedit) denotes the set of knowl-
edge items unrelated to the edited knowledge. For
simplicity, we will refer to these sets as I and O
moving forward. In some studies, I is also referred
to as in-scope examples, while O is termed out-of-
scope examples (Mitchell et al., 2022b).

Equation 1 specifies that the edited model F ∗

should correctly predict the edited knowledge and
its neighborhood. For inputs unrelated to the edited
knowledge, F ∗ should maintain consistent predic-
tions with the original model F . This ensures that
knowledge editing updates target knowledge while
minimizing interference with unrelated knowledge.

4 Method

As illustrated in Fig. 2, MindBridge is meticu-
lously structured into two primary stages. The first
stage, Memory Modality Pre-training (detailed in
Section 4.1), is specifically designed to obtain the
memory modality encoder, Em. The second stage,
Memory Modality Bridging (detailed in Section
4.2), is dedicated to training a projector to con-
struct the memory-to-language bridging module,
Pm. Ultimately, the edited model, F ∗, can be math-
ematically represented by Eq. 2. In MindBridge,
knowledge is encoded into memory modality fea-
tures, denoted as xmemory, through the synergistic
utilization of the memory modality encoder Em

and the bridging module Pm. These features are
subsequently concatenated with the textual input
(s, r) as soft prompts and provided to the LLM, F ,
for prediction.

xmemory = Pm(Em(s, r)),

F ∗(s, r) = F (xmemory ⊕ (s, r)).
(2)
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Figure 2: Overview of MindBridge. Given a massive collection of fact knowledge subject-relation-object triplets
(s, r, o∗) intended for editing, we first perform stage I: Memory Modality Pre-training. This phase utilizes three
training objectives – memory injection, memory association, and memory existence – to develop a memory modality
encoder capable of retaining relevant memories, making associations and determining whether specific memories
exist. In stage II: Memory Modality Bridging, we then train a projector to bridge the memory modality encoder
with LLMs, allowing these models to obtain and effectively leverage the relevant memories.

To fully appreciate the design of MindBridge, we
first review the general architecture of current main-
stream multimodal large language models (MM-
LLMs) (Liu et al., 2024; Bai et al., 2023). These
models typically consist of three shared design
elements: a modality encoder E, a modality-to-
language alignment module P , and a frozen LLM
F . The final constructed MM-LLMs resemble the
edited model presented in Eq.2. During inference,
MM-LLMs rely on the modality encoder E and
the bridging module P to extract modality features
and transform them into a text feature space un-
derstandable by LLMs. Drawing inspiration from
this architecture’s successful design, MindBridge
adopts a similar architecture to implement the train-
ing and bridging of memory modalities. Conse-
quently, the missing components in MindBridge are
the modality encoder and the modality-to-language
alignment module, which are addressed in its two
stages respectively.

4.1 Memory Modality Pre-training

In multimodal large language models, modality
encoders are typically pre-trained in advance to ex-
tract features from modality-specific inputs, such
as the commonly used vision modality encoders
ViT (Dosovitskiy, 2020) and CLIP-ViT (Radford
et al., 2021). Analogously, for the memory modal-
ity, pre-training a dedicated encoder, Em, is indis-

pensable. From the perspective of the knowledge
editing workflow, this encoder should be designed
to achieve the following three key objectives:

• Objective 1: Possess relevant memories for tar-
get knowledge, i.e., store tuples of (s, r, o∗) ∈
Dedit.

• Objective 2: Extract relevant memories based
on provided context, i.e., retrieve memories
associated with (o∗) from the given (s, r),
where (s, r, o∗) ∈ Dedit.

• Objective 3: Distinguish whether relevant
memories exist, i.e., to differentiate between
the set I and the set O.

We initialize Em using a pre-trained BERT (Ken-
ton and Toutanova, 2019) and use the [CLS] hidden
state of its output as the extracted memory modal-
ity features, i.e., Em(s, r) = BERT[CLS](s, r). To
achieve Objective 1, we adopt the Masked Lan-
guage Model (MLM) training objective to inject the
knowledge (s, r, o∗) ∈ Dedit into Em. Specifically,
we randomly mask one element of the (s, r, o∗)
triplet by replacing it with the [MASK] token and
then have Em reconstruct the masked element. We
refer to this loss function as the memory-injection
loss Linject, which can be expressed as follows:
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Linject = −E(s,r,o∗)∼Dedit[ ∑
xi∈{s,r,o∗}

logPEm(xi | [MASK], (s, r, o∗)\xi)
]
.

To achieve Objective 2, we need to enhance
the memory modality features extracted from the
[CLS] token so that they contain representations
related to o∗ based on (s, r). This process mir-
rors human associative memory, where observing
a segment of text triggers recall of associated in-
formation. To adapt the memory modality encoder
for this task, we feed the [CLS] representation out-
put by Em(s, r) along with (s, r, [MASK]) into
another dummy model M . The model M must
predict o∗ based on the associations made by the
memory modality given (s, r). In this case, M is
also a BERT model, sharing the same pre-trained
initialization parameters with Em, but its param-
eters remain frozen throughout the training pro-
cess. We refer to this loss function as the memory-
association loss Lassociate, which can be formulated
as follows:

Lassociate = −E(s,r,o∗)∼Dedit

[logPM (o∗ | Em(s, r)⊕ (s, r, [MASK]))] .

To achieve Objective 3, which involves determin-
ing whether relevant memories exist, we need to
ensure that Em(s, r) produces distinct representa-
tions for the sets I and O. We adopt a simple binary
classification task to accomplish this goal. Specifi-
cally, we feed Em(s, r), where (s, r, o∗) ∈ I ∪ O,
into a classification head H composed of two linear
layers to classify whether the input belongs to I or
O. This approach ensures that the internal repre-
sentations of I and O are clearly differentiated and
reside in distinct vector spaces. We refer to this
loss function as the memory-existence loss Lexist,
which can be expressed as follows:

ŷ = H(Em(s, r)),

Lexist = −E(s,r,o∗)∼I∪O

[
y log(ŷ)

+ (1− y) log(1− ŷ)
]
,

where y is the true label indicating membership in
I (y = 1) or O (y = 0).

Finally, the overall loss function for memory
modality pre-training is shown in Equation 3,
where λ1, λ2, and λ3 are coefficients for different

loss functions, with default values set to 1. Notably,
the memory modality pre-training phase is entirely
independent of the LLMs F that are to be edited.
Therefore, it can be trained independently to em-
bed a substantial amount of knowledge memory.
As LLMs are updated or replaced over time, Em

can be reused across various models, facilitating
efficient cross-model editing.

Lpre-training = λ1Linject + λ2Lassociate + λ3Lexist.
(3)

4.2 Memory Modality Bridging
After memory modality pre-training, we have ob-
tained a memory modality encoder Em, which has
stored the relevant memories of (s, r, o∗) and is
capable of extracting related memories and deter-
mining their existence based on context. Revis-
iting Equation 2, we observe that we still need
a memory-to-language module Pm to bridge the
memory modality to LLMs. This module allows
LLMs to understand and interpret the memories.

In mainstream MM-LLM works (Li et al., 2023a;
Liu et al., 2024; Jian et al., 2024), to obtain
the modality-to-language alignment modules P ,
a modality-conditioned text generation loss is typ-
ically used as the training objective. Drawing in-
spiration from this, we also adopt this training ob-
jective, enabling the LLM F to correctly predict o∗

based on the output of the memory modality and
the prompt (composed of s and r), as specifically
shown in Equation 4. Here, we use a simple two-
layer fully connected network as Pm, while keep-
ing the parameters of the LLM F and the memory
modality encoder Em frozen.

L1 = −E(s,r,o∗)∼Dedit

[logPF (o
∗ | Pm(Em(s, r))⊕ (s, r))] . (4)

However, training solely with this objective only
enables LLMs to comprehend knowledge present
in memory. For knowledge not contained in mem-
ories, the output from the memory modality may
lead to unpredictable behavior. Ideally, for knowl-
edge not present in memories, i.e., (s, r, o∗) ∈ O,
we expect the LLMs to ignore the memory modal-
ity’s output and maintain their original predictions.
To achieve this, we minimize the discrepancy be-
tween pre- and post-edit model predictions by re-
ducing the Kullback-Leibler (KL) divergence of
their prediction distributions(Cover, 1999), as il-
lustrated in Equation 5. Benefiting from the pre-
trained memory modality’s ability to differentiate
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representations of in-scope (I) and out-of-scope
(O) knowledge, LLMs can more readily discern
whether they possess the relevant memory.

L2 = E(s,r,o∗)∼O [KL (PF (· | (s, r))
∥ PF ∗(· | Pm(Em(s, r))⊕ (s, r))) ]. (5)

In summary, we combine the two training ob-
jectives of the bridging phase into a single loss
function, as shown in Equation 6, where λkl is the
coefficient, defaulting to 1. Although the memory
modality bridging phase is not LLM backbone ag-
nostic, it only requires fine-tuning Pm. Given that
the parameters involved in this fine-tuning are neg-
ligible compared to the total number of parameters,
it enables an efficient and rapid implementation of
memory modality bridging.

Lbridge = L1 + λklL2. (6)

5 Experiments

5.1 Experimental Setup
We first provide a brief overview of the datasets,
models, metrics, and baseline methods used in our
experiments. For more detailed information on the
experimental setup, please refer to Appendix A.

Models and Datasets. We conducted exper-
iments on three LLMs of varying sizes: GPT2-
XL (1.5B) (Radford et al., 2019), GPT-J (6B)
(Wang and Komatsuzaki, 2021), and LLaMA3 (8B)
(Dubey et al., 2024). For the benchmark, we eval-
uated MindBridge on two commonly used knowl-
edge editing datasets: the ZsRE dataset (Levy et al.,
2017) and the Counterfact dataset (Meng et al.,
2022a). For MindBridge, we designated the knowl-
edge in the dataset that required editing as Dedit,
and a portion of the knowledge that did not require
editing as O. Since the quantity of I in the dataset
is small and typically used only for testing, we
directly substitute Dedit for I during training.

Baseline Methods. We compare MindBridge
with seven baseline methods, categorized into two
groups: parameter-modifying knowledge editing
approaches—Fine-Tuning (FT-L) (Meng et al.,
2022a), r-ROME (Gupta et al., 2024a), MEMIT
(Meng et al., 2022b), EMMET(Gupta et al., 2024c)
and Alphaedit (Fang et al., 2024); and parameter-
preserving knowledge editing methods—GRACE
(Hartvigsen et al., 2024) and WISE (Wang et al.,
2024). For these baseline methods, we utilize
EasyEdit (Zhang et al., 2024b) for replication and
testing, applying the default parameter settings.

Metrics. Following previous work ((Fang et al.,
2024; Zhang et al., 2024b)), we adopt three metrics
to evaluate the performance of the edited model:
reliability (edit success rate), generalization (para-
phrase success rate), and locality (neighborhood
success rate). These are abbreviated as Rel., Gen.,
and Loc., respectively. We further compute the av-
erage of these three metrics, denoted as Avg., to
represent the overall editing performance.

5.2 Main Results

Table 1 shows the performance comparison be-
tween MindBridge and existing knowledge edit-
ing methods after editing 10,000 facts. We can
observe that, compared to baselines, MindBridge
demonstrates superior performance across multiple
LLMs, different datasets, and almost all metrics.
For example, on LLaMA3 and GPT-J, MindBridge
outperforms the best baseline by more than 20%
and 15% respectively on the Avg. metric, which
measures the comprehensive editing performance.
On the Gen. metric, MindBridge significantly out-
performs other editing methods in all experiments.
Furthermore, it is particularly important to note
that MindBridge is the only editing method among
these that can achieve cross-model editing. When
the LLM is updated, MindBridge can retain a large
amount of previously edited knowledge and quickly
bridge the memory modality encoder to the new
LLM, enabling rapid domain knowledge adaptation
while maintaining excellent editing performance.

5.3 Further Analysis

Ablation Study for Memory Modality Pre-
training. In the memory modality pre-training
stage, we designed three training objectives for
the modality encoder, each corresponding to its
intended function. To validate the effectiveness
of these three training objectives, we conducted
an ablation study to evaluate the impact of each
objective. We performed knowledge editing on
10,000 factual statements using GPT-J. The results,
as shown in Table 2, demonstrate that employing
only the Linject objective already yields promising
editing performance (with Rel. metric reaching
71.30% on the Counterfact dataset and 94.89% on
the ZsRE dataset). However, the generalization
and locality of the edits are limited. Upon incorpo-
rating the Lassociate training objective in addition
to Linject, the generalization capability of editing
is enhanced (with the Gen. metric increasing by
29.1%↑ on the Counterfact dataset and 8.73%↑
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Method Model Counterfact ZsRE

Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑

Pre-edited 0.28 0.42 \ \ 22.44 21.56 \ \

FT-L

G
PT

-X
L

0 0 22.84 7.61 15.60 15.83 28.21 19.88
WISE 1.79 1.99 50.38 18.06 24.88 24.84 99.98 49.90

AlphaEdit 66.00 30.90 42.98 46.62 51.82 42.97 53.72 49.50
EMMET 85.51 46.65 62.17 64.78 70.37 60.34 78.37 69.69
GRACE 100 0.39 68.75 56.38 100 3.17 100 67.72
r-ROME 0 0 0 0 0 0 0 0
MEMIT 45.36 39.70 66.25 44.08 47.20 24.70 60.34 50.44

MindBridge 95.60 81.10 38.18 71.62 78.14 68.17 85.67 77.33

Pre-edited 0.09 0.29 \ \ 23.01 22.25 \ \

FT-L

G
PT

-J

10.58 7.39 1.03 6.34 15.73 14.04 9.47 13.08
WISE 18.38 12.08 3.85 11.44 36.88 34.53 99.51 56.97

AlphaEdit 92.00 46.45 57.40 65.28 76.95 52.37 62.02 63.78
EMMET 85.51 46.65 62.17 64.78 70.37 60.34 78.37 69.69
GRACE 100 0.29 99.08 66.46 100 3.13 100 67.71
r-ROME 0 0 0 0 0.09 0.08 0 0.05
MEMIT 95.80 57.64 61.87 71.77 86.17 69.70 75.96 77.28

MindBridge 94.60 82.60 93.56 90.25 99.06 83.71 95.77 92.85

Pre-edited 0.7 1.3 \ \ 27.70 27.08 \ \

FT-L

L
L

aM
A

3

25.67 9.24 0.23 11.71 5.99 3.92 0.64 3.52
WISE 16.08 10.68 3.87 10.21 29.18 29.18 99.40 52.07

AlphaEdit 91.70 51.54 55.58 66.28 78.64 62.06 73.57 71.43
EMMET 60.53 31.81 32.28 41.54 62.94 59.64 31.95 51.51
GRACE 100 5.33 100 68.44 100 5.33 100 68.44
r-ROME 0.09 0 0.15 0.08 0.70 0.50 1.01 0.74
MEMIT 84.71 41.20 64.49 63.47 66.16 59.92 80.51 68.86

MindBridge 93.85 83.35 92.14 89.78 99.03 85.50 92.65 92.39

Table 1: Comparison of MindBridge with existing methods after editing 10,000 facts. The best results are shown in
bold, and the second best results are underlined.

on the ZsRE dataset). Furthermore, integrating
the Lexist training objective alongside Linject im-
proves the locality of editing (with the Loc. metric
increasing by 47.24%↑ on the Counterfact dataset
and 19.05%↑ on the ZsRE dataset). These findings
validate the effectiveness of each of the three train-
ing objectives. Ultimately, by combining all three
training objectives, MindBridge achieves the best
editing performance.

Impact on General Ability. Existing knowl-
edge editing methods may more or less affect the
general capabilities of models (Gu et al., 2024;
Gupta et al., 2024b). To test the impact of Mind-
Bridge on the general capabilities of edited models,
we evaluated the edited LLaMA3 (8B) on the Gen-
eral Language Understanding Evaluation (GLUE)
benchmark (Wang, 2018) and compared it with
AlphaEdit and MEMIT, which exhibit good perfor-
mance in comprehensive editing effectiveness. As
shown in Figure 3, MindBridge has the smallest
change in F1-score compared to Pre-edited on six
tasks, indicating that MindBridge can maintain the

Figure 3: F1-score of LLaMA3 (8B) on the GLUE
benchmark after editing 10,000 facts using MindBridge,
AlphaEdit, and MEMIT. The evaluation includes six
tasks: SST, MRPC, CoLA, RTE, MMLU, and NLI.

general capabilities of the model even in the face
of a large amount of knowledge editing.

Visualization of In-scope and Out-of-scope
Representations. To determine whether the mem-
ory modality can truly distinguish the presence of
relevant memories, we randomly selected 1,000
examples from the in-scope and out-of-scope data
of two datasets. Figure 4 shows the visualization
of the representations extracted by the memory

7



Traing objectives Counterfact ZsRE

Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑

Pre-edited 0.2 0.5 \ \ 24.20 22.93 \ \

Linject 71.30 34.20 41.16 48.88 94.89 75.28 74.23 81.47
Linject + Lassociate 83.70 63.30 73.12 73.37 97.75 84.01 85.18 88.98
Linject + Lexist 75.40 50.70 88.40 71.50 95.86 81.45 93.28 90.20

Linject + Lassociate + Lexist 94.40 80.50 89.26 88.05 99.40 84.87 96.15 93.47

Table 2: Ablation study of the three training objectives in MindBridge’s memory modality pre-training. Edited
LLM: GPT-J; 10,000 facts. Best results are highlighted in bold.

(a) Counterfact (b) ZsRE

Figure 4: Visualization of the dimensionality-reduced
distributions of representations extracted by the memory
modality encoder for I and O.

(a) GPT-J (b) LLaMA3

Figure 5: Scaling MindBridge to 60,000 edits on ZsRE.

modality encoder, reduced to two dimensions us-
ing t-SNE. It can be observed that the data from
I and O are separated in space, indicating that
the memory modality encoder is capable of distin-
guishing whether relevant factual memories exist,
thereby ensuring the locality of the edited LLM.

Scale Up to 60,000 Edits. We gradually ex-
tended MindBridge from 10,000 edits to 60,000
edits on the ZsRE dataset for GPT-J and LLaMA3,
and tested their editing performance. As shown
in Figure 5, despite the significant increase in the
number of edits, MindBridge consistently achieves
stable and superior editing performance. The Avg.
metric remains largely unchanged, with only a
slight decrease observed in the Locality metric.

From MindBridge to Multi-MindBridge. Just
as multimodal large language models are not lim-
ited to one or two modalities and can simultane-
ously support multiple modalities (Shu et al., 2023;

(a) Counterfact (b) ZsRE

Figure 6: Editing performance of Multi-MindBridge,
which simultaneously bridges two memory modality en-
coders trained on different datasets and evaluates them
on a single dataset.

Zhang et al., 2023), we propose Multi-MindBridge,
which explores the editing performance of bridg-
ing multiple distinct memory modality encoders
to the same LLM. We bridge encoders pretrained
on the Counterfact and ZsRE datasets (each with
10,000 edits) to the LLaMA3 (8B) model. The
results are shown in Figure 6. It can be observed
that compared to using a single encoder, the editing
performance only slightly decreases but enables
the LLM to simultaneously acquire the knowledge
memories from both memory modality encoders.
For more implementation details and exploratory
experiments of Multi-MindBridge, please refer to
Appendix B.2.

6 Conclusion

In this paper, we propose MindBridge, a scalable
cross-model knowledge editing method designed to
address the issue that most current knowledge edit-
ing methods are overfitted to a single model, lead-
ing to the problem of discarded edited knowledge
and frequent re-editing with each model update.
Based on the novel concept of memory modality,
MindBridge enables edited knowledge to transcend
individual models. Extensive experiments con-
ducted on two popular knowledge editing datasets
and various LLMs demonstrate the effectiveness
and scalability of MindBridge.

8



7 Limitations

Although MindBridge has demonstrated promis-
ing results in cross-model knowledge editing, it
still faces several limitations. One limitation stems
from resource constraints. We were unable to con-
duct tests on larger-scale models, restricting our
experiments to models with up to 8B parameters.
Furthermore, our focus was primarily on factual
knowledge. We did not delve into other forms of
knowledge, such as conceptual knowledge, which
we leave this for future work.
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A Experimental Setup

In this section, we provide a more detailed intro-
duction to the experimental setup, including the
datasets used, a detailed explanation of the eval-
uation metrics, and a thorough description of the
baselines.

A.1 Datasets
ZsRE. ZsRE (Levy et al., 2017) (Zero-Shot Re-
lation Extraction) is a question-answering dataset
widely used in knowledge editing tasks. Each data
entry includes a question, the subject of the ques-
tion, the updated answer, rephrased questions for
testing the generalization of edits, and unrelated
questions for testing the locality of edits. In the
experiments comparing with baselines (see Section
5.2), we randomly selected 10,000 samples from
this dataset as Dedit. Due to the limited amount
of in-scope data I and to prevent contamination
of test data, we directly used Dedit as a substitute
for I during the training of MindBridge. The re-
maining samples that did not require editing were
used as out-of-scope data O. For other baseline
methods, the edit data used were identical to those
of MindBridge.

Counterfact. Counterfact (Meng et al., 2022a)
is a more challenging knowledge editing dataset
compared to ZsRE. It consists of incorrect facts
that initially receive much lower scores than cor-
rect facts. Each entry in Counterfact includes a
subject, an attribute of the subject to be edited,

questions about attributes of non-identical subjects
for testing edit locality, and paraphrases for testing
edit generalization. The construction of the editing
data is similar to that of ZsRE.

A.2 Metrics

In this paper, we use three evaluation met-
rics—reliability, generalization, and locality—to
represent performance. For simplicity, they are
abbreviated as Rel., Gen., and Loc., respectively.
Their specific formulas are as follows, where 1(·)
denotes the indicator function.

Rel. =
1

|Dedit|
∑

(s,r,o∗)∈Dedit

1(F ∗(s, r) = o∗),

Gen. =
1

|I|
∑

(s,r,o∗)∈I

1(F ∗(s, r) = o∗),

Loc. =
1

|O|
∑

(s,r,o∗)∈O

1(F ∗(s, r) = F (s, r)).

Here, Rel. measures the proportion of edits that
have been successfully applied to a model, Gen. in-
dicates the proportion of edits to which the model
generalizes after editing, and Loc. reflects the ex-
tent to which the edited model retains knowledge
of unrelated facts. Note that the Loc. metric is only
evaluated on the edited model. Higher values for all
three metrics indicate better editing performance.

A.3 Baselines

Here, we introduce several knowledge editing base-
lines that are compared in this paper. We utilize
EasyEdit(Zhang et al., 2024b) for the reproduction
of these baselines. For the selection of hyperparam-
eters among them, we follow the default settings
provided in the code.

• FT-L is a fine-tuning method proposed by
(Meng et al., 2022a). FT-L directly fine-tunes
the feed-forward network (FFN) of a specific
layer, identified by causal tracing in ROME,
by maximizing the probability of all tokens in
the target sequence through last token predic-
tion.

• GRACE(Hartvigsen et al., 2024) is a lifelong
editing method. It writes new mappings into
a pre-trained model’s latent space, creating
a discrete, local codebook of edits without
altering model weights. The phenomenon of
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GRACE’s generalization collapse under exten-
sive editing has been evidenced and discussed
in (Wang et al., 2024).

• WISE(Wang et al., 2024) is a method specif-
ically designed for lifelong model editing. It
inserts side memory in the FFN layers to
preserve edited memory and trained a router
to select which memory module to activate.
To further enhance the support for contin-
ual editing, WISE incorporated a knowledge-
sharding mechanism to enable different edits
to be maintained in distinct parameter sub-
spaces.

• r-ROME is an improvement upon ROME.
Prior work has demonstrated that ROME can
suffer from disabling edits, leading to imme-
diate model collapse(Gupta et al., 2024b). r-
ROME identifies that this is caused by irreg-
ularities in ROME’s implementation, specif-
ically the asymmetric usage of key-vectors
in its update equation, and proposes a more
stable implementation, r-ROME.

• MEMIT (Meng et al., 2022b) is a scalable
multi-layer update algorithm that employs ex-
plicitly calculated parameter updates to insert
new memories. Building upon the direct edit-
ing approach of ROME, it designs an edit-
distribution algorithm to distribute parameter
updates uniformly across multiple layers of
parameters. This enables MEMIT to update
thousands of new pieces of knowledge.

• EMMET (Gupta et al., 2024c) unifies two
editing methods, ROME and MEMIT, under
a single optimization objective, namely, the
preservation memorization objective. Further-
more, it improves upon ROME by employ-
ing equality constraints to support batched
editing, achieving comparable performance to
MEMIT.

• AlphaEdit (Fang et al., 2024) extends the
locating-and-editing method by projecting the
perturbation introduced during the editing pro-
cess onto the null-space of the knowledge to
be preserved. Subsequently, it applies this pro-
jection to the model parameters. This mech-
anism ensures the model’s preservation of its
original knowledge following the edit.

B More Experimental results

B.1 Impact of Different Memory Modality
Encoders

We uses BERT-Base (110M) as the default modal-
ity encoder. To evaluate how different-sized BERT
models affect editing performance, we compared
DistillBERT (66M) (Sanh, 2019) and BERT-Large
(340M). As shown in Table 3, DistillBERT delivers
strong performance across GPT-J and LLaMA3. In
most cases, BERT-Base and DistillBERT outper-
form the others, with DistillBERT achieving the
best overall results on Counterfact and BERT-Base
excelling on ZsRE. Despite its larger size, BERT-
Large performs slightly worse than the other two
models.

B.2 Implementation Details and Further
Experiments of Multi-MindBridge

In Section 5.3, inspired by the idea that multimodal
large language models are not restricted to one or
two modalities, we proposed the implementation
of Multi-MindBridge. This allows LLMs to be
jointly bridged by multiple memory modality en-
coders while possessing the corresponding knowl-
edge memories. Here, we elaborate on its imple-
mentation details.

Given n pre-trained memory modality encoders
E1

m, E2
m, . . . , En

m with different knowledge mem-
ories and their corresponding memory modality-
language modules P 1

m, P 2
m, . . . , Pn

m, similar to
Equation 2, the model F ∗

multi after editing with
Multi-MindBridge can be expressed as follows:

xmulti =
n⊕

i=1

P i
m(Ei

m(s, r)),

F ∗
multi(s, r) = F (xmulti ⊕ (s, r)).

(7)

Here,
⊕

denotes the concatenation of outputs
from the modality encoders E1

m to En
m to form

xmulti. The resulting xmulti is then provided as
a soft prompt to the LLM, together with the text
prompt. Notably, in Multi-MindBridge, each mem-
ory modality encoder is independently trained us-
ing the same pipeline as MindBridge, and subse-
quently, they are combined and integrated into the
edited LLM.

In Section 5.3, we tested the performance of
Multi-MindBridge when bridging modality en-
coders trained on different datasets. The results
showed that compared to using a single encoder,
the editing performance only slightly decreased but
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Modality Encoder Model Counterfact ZsRE

Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑

DistilBERT (66M)

G
PT

-J 98.21 90.64 92.50 93.79 97.60 82.47 96.52 92.20
BERT-Base (110M) 94.71 83.57 93.61 90.63 99.09 84.22 95.95 93.09
BERT-Large (340M) 94.43 81.86 91.07 89.12 96.16 79.29 97.22 90.89

DistilBERT (66M)

L
L

aM
A

3 97.71 89.31 90.17 92.39 97.12 84.46 93.81 91.80
BERT-Base (110M) 93.97 83.58 92.08 89.88 98.50 85.02 92.44 91.99
BERT-Large (340M) 92.80 80.81 89.99 87.87 96.43 83.15 95.34 91.64

Table 3: Impact of different modality encoders on editing performance, 10,000 edits. Best results are shown in bold.

Figure 7: Editing performance of multiple memory
modality encoders bridged to LLaMA3 on the ZsRE
dataset, where each encoder handles 10,000 edits (non-
overlapping).

allowed the LLM to simultaneously acquire the
knowledge memory from two encoders. Here, we
test the editing performance of bridging multiple
encoders trained on the same dataset. Specifically,
we selected the ZsRE dataset and randomly sam-
pled 50,000 edits, training one memory modality
encoder for every 10,000 edits (with no overlap
between edits). We evaluated the editing perfor-
mance of bridging 1 to 5 encoders simultaneously
on LLaMA3. The experimental results are shown
in Figure 7. As can be observed, as the number
of simultaneously bridged encoders increases, the
editing performance gradually decreases but re-
mains satisfactory. Even when bridging up to 5
encoders, the Avg score still reaches 88.59%.

B.3 Impact of Editing Volume on General
Capabilities

(Gupta et al., 2024b) observed that when using
some model editing methods, the general capabili-
ties of the model tend to decline as the number of
edits increases. Here, we test whether MindBridge
exhibits a similar phenomenon. We conduct exper-
iments using LLaMA3 (8B), gradually increasing
the number of edits from 10,000 to 60,000. Simi-
lar to Section 5.3, we evaluate its performance on
the GLUE benchmark, which includes six tasks:

Figure 8: Change in F1-score on the GLUE benchmark
for the edited LLaMA3 (8B) as the number of edited
facts varies. 0 denotes the pre-edited model. Evaluation
includes six tasks: SST, MRPC, CoLA, RTE, MMLU,
and NLI.

SST, MRPC, CoLA, RTE, MMLU, and NLI. The
experimental results are shown in Figure 8. As can
be seen, with the increase in the number of edits,
the F1 scores for all tasks except NLI and CoLA
remain stable, and in some cases, even outperform
the pre-edited model. For NLI and CoLA, the F1
scores exhibit noticeable fluctuations as the number
of edits increases, but they do not show a consis-
tent downward trend. Overall, MindBridge demon-
strates good scalability in preserving the model’s
general capabilities.
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