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Abstract

Sequential recommendation aims to predict the next item a
user is likely to interact with based on their historical inter-
action sequence. Capturing user intent is crucial in this pro-
cess, as each interaction is typically driven by specific inten-
tions (e.g., buying skincare products for skin maintenance,
buying makeup for cosmetic purposes, etc.). However, users
often have multiple, dynamically changing intents, making
it challenging for models to accurately learn these intents
when relying on the entire historical sequence as input. To
address this, we propose a novel framework called Intent Ori-
ented Contrastive Learning for Sequential Recommendation
(IOCLRec). This framework begins by segmenting users’ se-
quential behaviors into multiple subsequences, which repre-
sent the coarse-grained intents of users at different points in
their interaction history. These subsequences form the basis
for the three contrastive learning modules within IOCLRec.
The fine-grained intent contrastive learning module uncov-
ers detailed intent representations, while the single-intent
and multi-intent contrastive learning modules utilize intent-
oriented data augmentation operators to capture the diverse
intents of users. These three modules work synergistically,
driving comprehensive performance optimization in intricate
sequential recommendation scenarios. Our method has been
extensively evaluated on four public datasets, demonstrating
superior effectiveness.

1 Introduction
Recommendation systems have become indispensable tools
for helping users navigate the vast array of available prod-
ucts and services (Zhang et al. 2021b). Sequential Recom-
mendation (SR), a specialized field within recommendation
systems, aims to uncover temporal patterns in user interac-
tions to predict future behaviors (Roy and Dutta 2022). The
core approach to addressing SR challenges involves mod-
eling the dynamic nature of user preferences by analyzing
sequences of their past interactions (Qiu, Huang, and Yin
2021; Dang et al. 2023).

Users’ interactions with items are driven by specific in-
tents (e.g., purchasing running shoes for exercise, buying
books for reading, etc.). Accurately identifying user intents
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Figure 1: An example that illustrates the dynamic changes
of a user’s interaction sequence and intents.

is crucial for understanding user behavior and has signifi-
cant potential to enhance and interpret recommendation sys-
tems (Chen et al. 2022; Zhang et al. 2021a). Existing re-
search primarily focuses on modeling user intent in the la-
tent space (Ma et al. 2020; Wu et al. 2023; Wang et al. 2024).
Recently, some studies have incorporated Self-Supervised
Learning (SSL) into intent modeling (Chen et al. 2022; Li
et al. 2023; Qin et al. 2024), significantly enhancing rec-
ommendation performance and robustness by enabling the
learning of higher-quality intent representations.

While existing approaches achieve strong performance by
modeling user intents, they often overlook the dynamic and
evolving nature of these intents during interactions, resulting
in suboptimal outcomes. Figure 1 illustrates the evolution of
a user’s interaction sequence, showing a shift in intent from
playing to drinking, then to reading, followed by decorating,
and finally returning to playing. When making recommen-
dations based on the user sequence s5 shown in the figure, it
is crucial to account for these various intents and their tran-
sitions. Relying solely on s5 as input may hinder the model’s
ability to fully capture the user’s varying intents and the un-
derlying transition patterns.

To effectively capture users’ varying intents, we propose a
novel framework named Intent Oriented Contrastive Learn-
ing for Sequential Recommendation (IOCLRec). We first
dynamically segment user historical interaction sequence
into several subsequences (e.g., si for i ∈ [1, 5] as shown in
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Figure 1), each representing a coarse-grained intent at dif-
ferent interaction times. These coarse-grained intents serve
as units for contrastive learning, and we design three con-
trastive learning modules accordingly. Specifically, in the
fine-grained intent contrastive learning module, we bring
closer the similar coarse-grained intent representations of
different users, clustering all coarse-grained intents to ob-
tain fine-grained intent representations. The single-intent
and multi-intent contrastive learning modules employ three
single-intent augmentation operators and two multi-intent
augmentation operators, respectively, to enhance both dom-
inant and diverse intents within the user behavior sub-
sequences. Extensive experiments on four public datasets
demonstrate that our approach effectively models user intent
and improves recommendation performance.

2 Related Work
2.1 Sequential Recommendation
Sequential recommendation aims to model the dynamically
changing interests of users based on their interaction se-
quences (Zheng et al. 2022; Du et al. 2023). Early works (He
and McAuley 2016; Rendle, Freudenthaler, and Schmidt-
Thieme 2010) primarily focused on capturing the transi-
tion patterns between items. With advancements in deep
learning, various deep sequential recommendation models
have emerged, including RNN-based (Hidasi et al. 2015)
and CNN-based (Tang and Wang 2018) approaches. More
recently, Transformer-based models have garnered signif-
icant attention. SASRec (Kang and McAuley 2018) uti-
lized a unidirectional Transformer to model users’ interac-
tion sequences, while Bert4Rec (Sun et al. 2019) employed
a bidirectional Transformer and a masked item prediction
task to capture user behavior information from both direc-
tions, enhancing the performance over SASRec. LSAN (Li
et al. 2021b) introduced a time-context-aware embedding,
and (Fan et al. 2022) proposed a novel Wasserstein self-
attention module to represent the relationship between items
and their positions. Despite these advancements, these mod-
els remain challenged by the issue of data sparsity.

2.2 Contrastive SSL for Recommendation
Contrastive self-supervised learning trains an encoder by
constructing different augmented views of an instance and
maximizing the mutual information between them. This ap-
proach has been widely applied in recommendation systems
to mitigate the issue of data sparsity. SGL (Wu et al. 2021)
introduced node-level data augmentation operators on user-
item graphs, generating multiple positive views of a node
to improve recommendations. S3-Rec (Zhou et al. 2020)
adopted a pre-training strategy to enhance data representa-
tion, using contrastive SSL during pre-training to maximize
the mutual information between attributes and sequences.
CL4SRec (Xie et al. 2022) created augmented views of
sequences through three random data augmentation tech-
niques: cropping, masking, and reordering. CoSeRec (Liu
et al. 2021) improved upon CL4SRec by introducing two
informative data operators that consider item correlations.
TiCoSeRec (Dang et al. 2023) and UniRec (Liu, Wang, and

Feng 2024) further incorporated temporal information to
generate augmented views of sequences. DuoRec (Qiu et al.
2022) and REDA (Bian et al. 2022) took a different approach
by generating augmented views at the model level rather
than directly modifying the original interaction sequences.
Unlike these methods, our approach further takes into ac-
count user intents when leveraging contrastive SSL.

2.3 User Intent for Recommendation
Recent studies have increasingly focused on improving rec-
ommendation performance by analyzing user intent (Li et al.
2019; Chen et al. 2020; Li et al. 2021a). DSSRec (Ma et al.
2020) introduced a seq2seq training strategy that leverages
future interactions as supervision signals, incorporating in-
tent variables to capture the mutual information between a
user’s historical and future interaction sequences. ICLRec
(Chen et al. 2022) clustered user sequences to create in-
tent prototypes, using random data augmentation to gener-
ate positive views. IOCRec (Li et al. 2023) applied global
and local modules to model multiple intents within a user
sequence, constructing positive views for each intent sepa-
rately. ICSRec (Qin et al. 2024) extracted supervision sig-
nals from user interactions and applied contrastive learning
to user subsequences based on these signals. Unlike these
methods, our approach further accounts for the dynamic na-
ture of user intents by designing three contrastive learning
modules, each tailored to capture the user’s intents at differ-
ent stages of their interaction history.

3 Preliminary
3.1 Problem Definition
Let the sets of users and items be represented by U and V ,
respectively. Each user u ∈ U is associated with an or-
dered sequence of items Su = {vu1 , vu2 , . . . , vu|Su|}, where
the length of the sequence is denoted by |Su|, and vup ∈ V
for 1 ≤ p ≤ |Su| indicates the item that user u interacted
with at position p. The goal of sequential recommendation
is to predict the next item in the sequence, vu|Su|+1, which is
formulated as follows:

argmax
vi∈V

P (vu|Su|+1 = vi | Su). (1)

3.2 Sequence Encoder
Given user sequence Su, we utilize the Transformer archi-
tecture (Vaswani et al. 2017) as the sequence encoder to cap-
ture the dynamic evolution of user intents, formulated as:

hu = fθ(S
u), (2)

where fθ represents the sequence encoder, θ denotes the
model parameters, and hu is the sequence embedding of Su.
To optimize the encoder for next-item prediction, we employ
the log-likelihood loss function, defined as follows:

LRec(u, p) = − log σ(hu
p ·evu

p+1
)−

∑
vj /∈Su

log(1−σ(hu
p ·evj

))

(3)
where LRec(u, p) denotes the loss score for the prediction
at position p in sequence Su, σ is the sigmoid function, hu

p
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represents the predicted next item at position p (Kang and
McAuley 2018), evu

p+1
and evj denote the embeddings of

item vup+1 and the sampled negative item vj for Su, respec-
tively. The item embeddings are retrieved from the embed-
ding table in fθ, which is jointly optimized with the Trans-
former model.

4 Method
Figure 2 illustrates the overall framework of IOCLRec. IO-
CLRec first constructs a coarse-grained intent set for each
user by dynamically segmenting their sequence. These sub-
sequences are then fed into three contrastive learning mod-
ules to effectively learn user intent representations.

4.1 Item Correlation Modeling
Users tend to interact with similar items based on analogous
intents. Therefore, before modeling user intent, it is essential
to first model item correlation. Given the powerful language
modeling capability of pre-trained language models, we first
use the BERT model (Devlin et al. 2018) to capture the se-
mantic information in the text descriptions of items. Specif-
ically, we place a special symbol [CLS] in front of the text
description Tvi

of the given item vi, which will serve as a
special token, and its vector representation will contain the
semantic information of the entire sentence. Then we feed
the concatenated sequence into the BERT model:

ti = BERT([[CLS], t1, ..., t|Tvi
|]), (4)

where ti ∈ Rd is the final hidden state of the [CLS] symbol,
which represents the semantic information of Tvi

, and d is
the dimension size of BERT.

Given items vi and vj , their correlation score Cor(vi, vj)
combines three components: their collaborative filtering
score C, their temporal interval T , and the cosine similar-
ity R of their text representations ti and tj . The scores C, T ,
and R are all normalized to ensure consistency in the scoring
mechanism. Cor(vi, vj) is defined as:

Cor(vi, vj) = ϕ(T,C,R), (5)

ϕ(x, y, z) =
x+Θ

e(x+Θ)/(Γy+Ωz)
, (6)

where Θ, Γ, and Ω are constants determined by the specific
dataset and the types of variables involved. In this scoring
mechanism, an increase in x or a decrease in y or z lowers
ϕ(x, y, z). For an item vi, if another item vj has appeared
in the same user sequence, vi and vj are considered neigh-
bors. We refer to the top k neighbors of vi as its k-neighbors,
which are the items with the highest correlation scores to vi.

4.2 Sequence Volatility Modeling
To measure the degree of variation in item correlation within
a user sequence and apply it to subsequent sequence selec-
tion strategies, we introduce the concept of sequence volatil-
ity. For a given sequence Su = {vu1 , vu2 , . . . , vu|Su|}, we de-
fine volatility of the sequence V (Su) as the standard devia-
tion of the correlations between adjacent items:

V (Su) =

√√√√ 1

|Su| − 1

|Su|−1∑
i=1

(
Cor(vui , v

u
i+1)− µ

)2
, (7)

µ =
1

|Su| − 1

|Su|−1∑
i=1

Cor(vui , v
u
i+1). (8)

4.3 User Coarse-Grained Intent Set Construction
User sequences often reflect various distinct intents. To fully
capture these diverse intents, we construct a coarse-grained
intent set for each user, where each element in the set is a
subsequence of the user’s original sequence. Following (Qin
et al. 2024), for a given sequence Su = {vu1 , vu2 , . . . , vu|Su|},
the coarse-grained intent set is constructed as follows:

I(Su) =



{{vu1 , vu2 }, {vu1 , vu2 , vu3 },
. . . , {vu1 , vu2 , . . . , vu|Su|}} |Su| ≤ m

I(sum) ∪ {{vu2 , vu3 , . . . , vum+1},
. . . , {vu|Su|−m+1, . . . , v

u
|Su|}} |Su| > m,

(9)
where m denotes the maximum sequence length, sum repre-
sents the subsequence of Su consisting of the first m items.

4.4 Fine-Grained Intent Contrastive Learning
Coarse-Grained Intents Clustering. We encode all subse-
quences in the coarse-grained intent sets of all users via Eq.
(2), denoted as ∪|U|

u=1I(S
u). We then apply K-means clus-

tering to these representations to obtain K intent centers,
denoted as {ci}Ki=1, which we refer to as fine-grained intent
representations. By performing a query operation, we can
identify the fine-grained intent representation corresponding
to each coarse-grained intent.
Similar Intent Contrastive Learning. We design a strategy
to identify comparable coarse-grained intents across differ-
ent users, which helps the model better distinguish between
various intents. For a subsequence sui that ends with the item
vui , we sample from the coarse-grained intent sets of other
users to create a set Q(sui ). This set includes subsequences
that end with the item vui and where the preceding k1 items
are k2-neighbors of the corresponding items in sui .

If |Q(sui )| < r (where r is a parameter), we relax the
conditions using the following strategies until |Q(sui )| ≥ r
or until all qualifying subsequences have been included:

• Gradually decrease the value of k1 until k1 = 0.
• Allow the last item of the subsequence to be a k2-

neighbor of vui , while still ensuring the preceding k1
items are k2-neighbors of the corresponding items in sui .

Next, we sample a subsequence s′ from Q(sui ) using
a curriculum learning strategy. Specifically, for any subse-
quence sj ∈ Q(sui ), we assess its complexity cj by evaluat-
ing both its volatility V and the number of changes D in the
corresponding cluster centers over the last g epochs (where
g is a parameter). Both V and D are normalized. The com-
plexity cj is calculated via Eq. (6):

cj = ϕ(0, V,D), (10)

We simulate the human learning process, progressing
from simple to complex. Each sequence sj in Q(sui ) is dy-
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Figure 2: The model architecture of IOCLRec. The user sequence Su is first segmented into multiple subsequences. These
subsequences, representing the user’s coarse-grained intents, serve as the units for three contrastive learning modules.

namically assigned a weight wj as follows:

wj = (1− e

eall
)

cmax − cj
cmax − cmin

+
e

eall
, (11)

where e denotes the current epoch, eall denotes the total
number of epochs, cmax is the maximum complexity among
all sequences in Q(sui ), while cmin is the minimum.

After obtaining the sampled s′, we use contrastive learn-
ing to reduce the distance between sui and s′ in the latent
space. The contrastive loss is defined as follows:

LCoarseICL = LICL(h1, h2), (12)

where h1 and h2 are the encoded representations for sui and
s′respectively, and

LICL(x1, x2) = −log
exp(sim(x1, x2))∑

xi /∈F exp(sim(x1, xi))

− log
exp(sim(x2, x1))∑

xi /∈F exp(sim(x2, xi))
,

(13)

where sim(·) denotes the dot product, and F is constructed
based on the False Negative Mitigation strategy (Liu et al.
2021; Qin et al. 2024). Specifically, F consists of the se-
quence representations in the mini-batch whose original se-
quences share the same ending item as the sequence repre-
sented by x1 when x2 is a sequence representation. Alter-
natively, if x2 is a fine-grained intent representation, F in-
cludes the sequence representations in the mini-batch whose

fine-grained intent representations match x2.
Coarse-to-Fine Intent Contrastive Learning. Assuming
h1 and h2 correspond to the fine-grained intent representa-
tions c1 and c2, respectively, we apply contrastive learning
to reduce their distances in the latent space:

LFineICL = LICL(h1, c1) + LICL(h2, c2). (14)

4.5 Single-Intent Contrastive Learning
The final item in each subsequence within a user’s coarse-
grained intent set serves as a crucial indicator of the user’s
primary intent during that interaction. Leveraging this sig-
nal, we propose three single-intent data operators for a given
subsequence sui .
In-Crop (IC). This operator selects a truncation position p
from the sequence sui , retains all items after vup to form a
new sequence, and ensures that this truncated sequence has
a minimum length of l. To ensure that the intent represented
by this new truncated sequence better reflects the intent as-
sociated with interacting with vui , we first identify all subse-
quences that meet the length requirement. Then we calculate
the average correlation score between each subsequence’s
items (excluding vui itself) and vui . The subsequence with
the highest average correlation score is selected as the final
result. This operator can be expressed as follows:

p = arg max
p∈[1,i−l+1]

1

i− p

i−1∑
k=p

Cor(vuk , v
u
i ). (15)
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In-Mask (IM). In this operator, h1 = η|sui | items are se-
lected from sui and removed, where η ∈ (0, 1) represents
the mask proportion. To ensure the augmented sequence bet-
ter reflects the intent associated with the user’s interaction
with vui , we calculate the correlation scores of all remaining
items in sui with vui via Eq. (5), generating a score sequence
O(sui ). We then sort O(sui ) in ascending order (denoted as
ascend(O(sui ))), and select the top h1 indices as target posi-
tions for masking. This can be formulated as:

(p1, p2, . . . , ph1
) = top-h1-indices(ascend(O(sui ))). (16)

In-Reorder (IR). This operator first employs IC to extract
the subsequence that most accurately reflects the user’s cur-
rent intent, then reorders the items in sui based on their corre-
lation with vui . Specifically, IC is applied to sui to obtain sub-
sequence sup:i = {vup , vup+1, . . . , v

u
i }. Next, the correlation

scores of all other items in sup:i with vui are calculated via Eq.
(5), resulting in a score sequence O(sup:i). This sequence is
then sorted in ascending order (denoted as ascend(O(sup:i))),
and the indices of the sorted sequence are extracted (denoted
as get-indices) to determine the sorted positions:

P1 = get-indices(ascend(O(sup:i))), (17)

where P1 is the set of sorted positions. Finally, the items in
sup:i are reordered according to these sorted positions.
Contrastive Self-Supervision. Given a user sequence Su,
subsequences within I(Su) that have a length greater than
ϵ|Su| are selected as candidates for data augmentation,
where ϵ controls the minimum length. Suppose sui is a quali-
fied subsequence, we randomly apply two single-intent data
operators to sui , yielding a pair of augmented sequences
(s̃ui1, s̃

u
i2) and their corresponding representations (h̃u

1 , h̃u
2 ).

Assuming the fine-grain intent representation corresponding
to subsequence sui is ci, we use contrastive learning to min-
imize the distance between (h̃u

1 , h̃u
2 ) and ci:

LSingleICL = LICL(h̃u
1 , ci) + LICL(h̃u

2 , ci). (18)

4.6 Multi-Intent Contrastive Learning
We introduce two multi-intent data operators to enhance the
transition and co-occurrence patterns of user intents for a
given subsequence sui .
In-Insert (II). This operator inserts the item most closely
related to the items between which an intent transition oc-
curs, thereby smoothing the user’s intent transition. It selects
h2 = γ|sui | target positions and inserts a new item after the
items at these positions, where γ ∈ (0, 1) is the insertion
rate. Specifically, for any position pt (t ∈ [1, i − 1]), we
calculate the intent transition score via Eq. (6):

Tran(pt) = ϕ(Sim(pt),Rec(pt), Intent(pt)), (19)

where Sim(pt) denotes the correlation score between items
vt and vt+1, and Rec(pt) represents the next-item prediction
loss for subsequence sut from the previous training epoch,
calculated via Eq. (3). Both Sim(pt) and Rec(pt) are nor-
malized. Intent(·) is a binary function, if sut and sut+1 corre-
spond to different fine-grained intents in the previous epoch,
Intent(pt) is set to a constant c, otherwise it is set to 0.

Dataset Beauty Sports Toys ML-1M
#Users 22,363 35,598 19,412 6,040
#Items 12,101 18,357 11,924 3,416

#Interactions 198,502 296,337 167,597 999,611
#Average Length 8.9 8.3 8.6 165.4

Sparsity 99.92% 99.95% 99.93% 95.16%

Table 1: Statistics of the experimented datasets.

The intent transition score is calculated for each position,
forming O(sui ) = {Tran(p1),Tran(p2), . . . ,Tran(pi−1)}.
These scores are then sorted in descending order (denoted
as descend(O(sui ))), and the top h2 indices are selected:

P2 = top-h2-indices(descend(O(sui ))), (20)

where P2 denotes the set of target positions. For each pt ∈
P2, we identify the item within the common neighbor set of
vt and vt+1 that has the highest total correlation score with
both vt and vt+1. We insert this item between vt and vt+1.
In-Substitute (IS). This operator also calculates the intent
transition score for each position in the sequence. However,
unlike II, this operator selects the h3 = δ|sui | positions with
the lowest intent transition scores for replacement, where
δ ∈ (0, 1) is the substitute rate. The item selection strat-
egy for this operator is the same as that of II.
Contrastive Self-Supervision. Given a user sequence Su,
subsequences within I(Su) that have a length greater than
ω|Su| are selected as candidates for data augmentation,
where ω controls the minimum length. Suppose sui is a
qualified subsequence, we apply the above two multi-intent
data operators to sui to obtain a pair of augmented se-
quences (s̃ui1, s̃

u
i2) and their representations (h̃u

1 , h̃u
2 ). These

augmented sequences are considered a positive pair, and the
contrastive loss is computed as follows:

LMultiICL = LICL(h̃u
1 , h̃u

2 ). (21)

4.7 Multi-Task Training
We use a multi-task learning paradigm to jointly optimize
the main sequential prediction task and other auxiliary learn-
ing objectives, which can be formulated as:

L = LRec+λLCoarseICL+α(LFineICL+LSingleICL)+βLMultiICL,
(22)

where λ, α and β are hyper-parameters that need to be tuned.

5 Experiments
5.1 Experimental Setting
Datasets. We conduct experiments on four public datasets.
Sports, Beauty and Toys are three subcategories of Ama-
zon review data introduced in (McAuley et al. 2015).
MovieLens-1M (Harper and Konstan 2015) is a dataset con-
taining users’ behavior logs on movies, denoted as ML-1M.

Following (Chen et al. 2022; Xie et al. 2022), we only
retain the ’5-core’ datasets, where each user and item has at
least 5 interactions. The statistics of all processed datasets
are shown in Table 1.
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Dataset Metric BPR Caser SASRec BERT4Rec CoSeRec DuoRec ICLRec IOCRec ICSRec Ours Improve

Sports

HR@10 0.0205 0.0260 0.0330 0.0331 0.0433 0.0478 0.0433 0.0452 0.0558 0.0628 12.54%
HR@20 0.0324 0.0402 0.0498 0.0546 0.0679 0.0711 0.0642 0.0679 0.0791 0.0890 12.52%
NDCG@10 0.0098 0.0135 0.0172 0.0176 0.0244 0.0235 0.0232 0.0214 0.0329 0.0363 10.33%
NDCG@20 0.0136 0.0179 0.0217 0.0231 0.0295 0.0298 0.0286 0.0281 0.0389 0.0429 10.28%

Beauty

HR@10 0.0358 0.0341 0.0624 0.0587 0.0721 0.0821 0.0741 0.0769 0.0944 0.1092 15.68%
HR@20 0.0593 0.0643 0.0903 0.0966 0.1033 0.1222 0.1077 0.1145 0.1295 0.1504 16.14%
NDCG@10 0.0187 0.0225 0.0339 0.0304 0.0389 0.0421 0.0397 0.0391 0.0572 0.0657 14.86%
NDCG@20 0.0232 0.0298 0.0385 0.0395 0.0472 0.0527 0.0488 0.0488 0.0660 0.0761 15.30%

Toys

HR@10 0.0185 0.0292 0.0668 0.0517 0.0742 0.0927 0.0828 0.0802 0.1041 0.1222 17.39%
HR@20 0.0316 0.0436 0.0946 0.0756 0.1029 0.1286 0.1149 0.1129 0.1365 0.1620 18.68%
NDCG@10 0.0101 0.0136 0.0341 0.0295 0.0426 0.0481 0.0476 0.0382 0.0649 0.0747 15.10%
NDCG@20 0.0137 0.0207 0.0435 0.0353 0.0494 0.0578 0.0561 0.0465 0.0731 0.0848 16.01%

Ml-1M

HR@10 0.0409 0.1389 0.1776 0.2167 0.1802 0.2946 0.2168 0.2604 0.3231 0.3457 6.99%
HR@20 0.0733 0.2176 0.2663 0.3224 0.2766 0.3894 0.3237 0.3719 0.4345 0.4541 4.51%
NDCG@10 0.0206 0.0649 0.0910 0.1008 0.0891 0.1683 0.1119 0.1422 0.1937 0.2048 5.73%
NDCG@20 0.0279 0.0848 0.1092 0.1317 0.1183 0.1946 0.1386 0.1691 0.2211 0.2321 4.98%

Table 2: Performance comparison across different methods. For each row, the best score is highlighted in bold, and the second-
best score is underlined. The final column shows the relative improvement over the top baseline result.

Evaluation Metrics. We follow (Wang et al. 2019) to rank
the whole item set without negative sampling. The evalua-
tion metrics include Hit Ratio@N (HR@N), and Normal-
ized Discounted Cumulative Gain@N (NDCG@N). We re-
port HR and NDCG with N ∈ {10, 20}.
Baseline Models. We pick four groups of baseline models:
• Non-sequential model: BPR (Rendle et al. 2012).
• General sequential models: Caser (Tang and Wang

2018) and SASRec (Kang and McAuley 2018).
• Sequential models with SSL: BERT4Rec (Sun et al.

2019), CoSeRec (Liu et al. 2021) and DuoRec (Qiu et al.
2022).

• Intent-guided sequential models: ICLRec (Chen et al.
2022), IOCRec (Li et al. 2023) and ICSRec (Qin et al.
2024).

Implementation Details. All baseline models are imple-
mented based on public resources or codes provided by
the respective authors. Our method is implemented in Py-
Torch. We set the number of self-attention blocks and atten-
tion heads to 2, the embedding dimension to 64. The batch
size is set to 256. We use the Adam optimizer (Kingma and
Ba 2014) with a learning rate of 0.001. Each data opera-
tor’s sampling ratio (i.e., η, γ, and δ) is varied within the
range [0.1, 0.9] (stepping by 0.1). Parameters ϵ and ω range
from 0.5 to 1 (stepping by 0.1). Parameters λ, α, β and the
dropout rate are set within the range {0.1, 0.2, 0.3, 0.4, 0.5}.
The number of clusters is chosen from {64, 128, 256, 512,
1024}. The values for k1, k2, g, l, r and m are set to 2, 5, 10,
3, 20 and 50, respectively. All experiments are conducted on
a single Tesla V100 GPU.

5.2 Performance Comparison
We evaluate our method against all baseline models across
various datasets, with the results presented in Table 2. Our

analysis leads to the following conclusions:
• The BPR model underperforms compared to general se-

quential models. SASRec, utilizing the attention mech-
anism, outperforms Caser. BERT4Rec, trained with a
masked item prediction task, surpasses SASRec in most
cases. CoSeRec and DuoRec further improve learned
sequence representations through contrastive learning,
yielding better results than SASRec.

• ICLRec and IOCRec use contrastive SSL to capture user
intent, outperforming most baselines. ICSRec introduces
an intent supervision signal, enabling even better learn-
ing of user intent and outperforming all other baselines.

• By constructing intent-level contrastive learning tasks,
our method consistently outperforms all baseline mod-
els across different datasets on all metrics. Specifically,
it achieves a performance improvement of 10.28-18.68%
on the three sparse datasets and 4.98-6.99% on the dense
dataset ML-1M, measured in terms of HR and NDCG.
The relatively smaller improvement on ML-1M may be
attributed to the generally longer user sequence lengths in
this dataset compared to the others, which leads to more
diverse user intentions and increases the difficulty for the
model to effectively learn distinct user intents.

5.3 Ablation Study
IOCLRec with Other Variants. To evaluate the contribu-
tion of each component in IOCLRec, we conduct ablation
experiments. Table 3 summarizes the NDCG@10 perfor-
mance of IOCLRec and its variants across four datasets.
In this table, (A) represents the full IOCLRec model, while
(B) through (E) represent variants where LCoarseICL, LFineICL,
LSingleICL, and LMultiICL in Eq. (22) are set to 0, respectively,
with all other components remaining unchanged. The results
show that IOCLRec outperforms its variants on all datasets,
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Model Dataset
Sports Beauty Toys ML-1M

(A)IOCLRec 0.0363 0.0657 0.0747 0.2048
(B)w/o CoarseICL 0.0325 0.0591 0.0682 0.1975
(C)w/o FineICL 0.0333 0.0629 0.0723 0.2006
(D)w/o SingleICL 0.0342 0.0611 0.0696 0.1993
(E)w/o MultiICL 0.0347 0.0628 0.0704 0.2012

Table 3: The NCDG@10 performance achieved by IO-
CLRec variants on four datasets.

Figure 3: Ablation study of data operators on two datasets.

indicating that all components are effective.
Effect of Data Operators. Figure 3 illustrates how each
data operator affects overall HR @20 performance. We re-
place each data operator with the original operators intro-
duced in CoSeRec (denoted by, e.g., IC→C) while keeping
everything else the same. When our operators are swapped
for traditional ones, recommendation performance drops.
Due to similar trends and space limitations, we have not in-
cluded results for the Toys and Sports datasets.

5.4 Hyper-parameter Sensitivity
Impact of λ, α, and β. Figures 4(a), 4(b), and 4(c) show
how recommendation performance varies with different val-
ues of λ, α, and β. The best performance for the Beauty and
Sports datasets is with λ = 0.3, α = 0.1, and β = 0.1. For
the Toys dataset, it’s λ = 0.2, α = 0.1, and β = 0.1. For
ML-1M, the best values are λ = 0.1, α = 0.1, and β = 0.1.
Impact of K. Figure 4(d) shows the performance for differ-
ent numbers of clusters K. The optimal K values are 256
for Beauty and Sports, 1024 for Toys, and 512 for ML-1M.

5.5 User Representation Case Study
We conduct a case study to evaluate the effectiveness of our
method in modeling user intents. Specifically, we randomly
select two user sequences from the Beauty dataset and com-
pute the product of their representations with their trans-
poses, producing two matrices. These matrices illustrate the
similarities between item representations within each user
sequence, as depicted in Figure 5. In this figure, each item is
labeled with its corresponding category: H for Hair Care,
S for Skin Care, T for Tools & Accessories, and M for

Figure 4: Performance of IOCLRec on HR@20 with varying
hyperparameters (λ, α, β, and K).

Figure 5: Item representation similarity heatmap.

Makeup. User1’s sequence primarily consists of items from
a single category, and our method successfully captures the
user’s stable intents, resulting in high similarity among item
representations within the sequence. In contrast, User2’s se-
quence contains items spanning multiple categories, which
our method effectively identifies, leading to lower similarity
among item representations within the sequence.

6 Conclusion
In this paper, we introduce IOCLRec, a novel sequence rec-
ommendation model designed to effectively capture evolv-
ing user intents. IOCLRec utilizes subsequences of user
interactions as units for three distinct contrastive learning
modules. The fine-grained intent contrastive learning mod-
ule enhances intent representations by identifying and clus-
tering similar subsequences. Meanwhile, the single-intent
and multi-intent contrastive learning modules use three
single-intent augmentation operators and two multi-intent
augmentation operators, respectively, to enhance both dom-
inant and diverse intents within user behavior subsequences.
Extensive experiments on four public datasets validate the
effectiveness of our proposed method.
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