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Abstract

We present a unified biologically inspired approach to simulate ant colonies
inspired by the key observation of collective behaviors of ants in nature. To
generate the trajectories of virtual ants, we construct a motion controller to
determine the motion states and the paths of virtual ants, considering dynamic
internal and external interactions. The motion controller computes a target posi-
tion for each ant at every time step according to its motion states. The motion
states include four states: basic movement, the stop state, and two dynamic
interactions (i.e., internal and external, respectively referring to interaction with
neighbors for necessary information transfer about the destination, and interac-
tion with surroundings such as food sources, nests, and obstacles) to represent
basic exploration, casual or intentional stop, and purposeful movement, respec-
tively. Based on the motion states, the motion controller plans an optimal path
for each virtual ant. Through many simulation experiments, we demonstrate
that our method is controllable, scalable, and flexible to simulate hybrid colonies
with a large number of ants.
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1 INTRODUCTION

Collective behaviors are common for most insect species including ants. In the real world, ants work collectively for
foraging, defending, and food conveying. However, due to the tiny body of individual ants, the high density of an ant
colony, and the often complicated living environment of ants in nature, it is hard to capture the ground-truth movement
data of ants in the real world. As a result, this imposes an additional challenge for the realistic simulation of large-scale
ant groups.

Previous works on the simulation or animation of insect groups have been mainly focused on flying insects, but it is
nontrivial to extend these existing methods for ant colony simulation due to their significant differences in biological
mechanism. Researchers have done works on simulating the unidirectional or bidirectional trail pheromone of ants1–3

and proposed cellular automaton models to simulate nonblocking traffic flow on ant trails.4 Because of the complex living
environment of ants, the aforementioned trail models cannot be straightforwardly applied to model collective behaviors of
ant groups at scale. In addition, some existing methods have been focused on body control to make ants locomotive5,6 and
on simulating collective transportation of ants to carry an object.7 Despite certain successes of the above existing works
focused on the simulation of specific behaviors of ants, to date, researchers have not yet proposed a unified, generalized
motion control model for ant colonies, to the best of our knowledge.
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FIGURE 1 (a) An ant colony transports food between a food source and the nest. (b) An ant colony adapts to dynamic external
disturbance. (c) An ant colony expresses a heart shape under the constraint of arranged obstacles

In this paper, we propose a unified motion control model for ant colonies. Our approach is inspired by a key biological
observation on collective behaviors of ant colonies, that is, ants in a same group share information through secreting
pheromone or physical contact.8–10 Specifically, our approach can model the probabilistic interactions among ants and
with the environment, and further generate a collision-avoidance path for each virtual ant. In addition, our approach
offers an intuitive way for users to interactively control the geometric shapes of virtual ant colonies. Figure 1 shows some
simulation results of our method.

The main contributions of this work can be summarized below.

• Unified biologically inspired motion controller for ant colonies. The motion controller coordinates the collec-
tive behavior of ant colonies by managing and switching each individual's motion state as one of the following: basic
movement state, stop state, and two different interaction states. With this motion controller, we can effectively simulate
various behaviors of ant colonies, including foraging behavior, where ants automatically find the food source and gen-
erate a bidirectional path between the food source and the nest; avoiding behavior, where ants avoid obstacles ahead;
and escaping behavior, where the colony flees from an external attack.

• Intuitive and scalable control. Our method is able to simulate both small and large sizes of ant colonies in either
simple or complex environments. The steerable characteristic of our simulation is realized by adjusting some parame-
ters of our algorithm such as the moving speed and the size of the colony, or changing the motion scenario interactively
by adding or removing key objects. Our approach also offers interactive animation control for real-time simulation
applications.

Not limited to the simulation of ant colonies in this work, our approach can be potentially extended for many other
applications that need collaborative coordinations among many entities to achieve certain tasks, such as microrobots or
nanorobots, drone groups, and other biological organisms. Our approach can also be used to generate various realistic
group formations consisting of a large number of individuals (such as humans, insects, and ants), for special visual effects
in entertainment and virtual reality applications.

The remainder of this paper is organized as follows. Section 2 introduces related works that are most relevant to ant
simulation. Section 3 gives a pipeline overview of our approach. In Section 4, we explain the details of our method, which
contains theoretically basic rules and our algorithm. We show simulation results in Section 5 and discuss the limitations
and future research directions of this work in Section 6.

2 RELATED WORK

Motion control of multiagent groups. Numerous methods have been proposed for behavior simulation or motion
control of multiagents in a group, especially focused on human crowds, bird flocks, and recent insect swarms.

Most of existing approaches regard agents in a group as autonomous individuals and execute global path planning
together with local navigation and collision avoidance for individuals. As the two most seminal force-based approaches,
the boid's model11 generates movements of individuals using heuristic rules: separation, alignment and cohesion, and the
social force model12 combines sociological factors with physical forces to model interactions among pedestrians. Follow-
ing the above works, many approaches have been proposed, for example, some rule-based methods for crowds13 consider



XIANG ET AL. 3 of 16

hierarchical rules based on individual behavior, variations of the social force model (e.g., the work of Pelechano et al.14)
control individuals in dense crowds, and the anticipatory model predicts and resolves collisions in crowds.15 Compared
with real video of bird flocks, a self-organized aerial display that combines the three usual rules in the boid's model with
starling behavior has been proposed.16 Though force-based methods appear easy to be formulated and succeed in simu-
lating multiagent groups, the simulation results are affected by the instability numerical values, for example, forces vary
quickly and can reach extremely large; meanwhile, researchers often suffer from tedious parameter tuning to obtain better
simulation results.

Velocity-based approaches spring up these years, often using a cost function to select a velocity in the velocity space for
each individual at every time step. Researchers have proposed vision-based steering approaches to simulate collision-free
crowds by using visual perceptions of individuals on the environment,17 compute pedestrian trajectories to match real
density-dependent avoidance behavior among people,18 and steer agents by constantly minimizing the risk of collision
and improve simulation quality.19 Recently, an implicit crowd simulation method20 incorporating general dissipation
functions in optimization-based backward Euler has been proposed to provide collision-free motions of crowds with
high-quality collective behaviors. The aforementioned approaches cannot directly be applied to simulate ant colonies,
mainly because individual behaviors (interactions) of ants not only benefit their collision avoidances but also have
important responsibilities to transfer information for foraging or other purposes.

From the macroscopic point of view, continuum crowd approaches often use a dynamic potential field to integrate global
navigation with local collision avoidances and protect large crowds from explicit collisions,21 and deal with interagent
collisions through unilateral incompressibility constraints for dense crowds.22 A nonequilibrium continuum dynami-
cal model has also been proposed for the collective motion of large groups like bird flocks.23 Though the continuum
methods can simulate flow-like, smooth and dense crowds or bird flocks without collisions, they cannot be used in ant
colony simulation because ants are discrete in the colony, even though sometimes the colony's motion is similar to a track
flow (e.g., the track between a food source and their nest). Some researchers also simulate pedestrian dynamics using a
two-dimensional cellular automation.24 Furthermore, Wang et al.25 propose a first-of-its-kind hybrid model to simulate
various behavior patterns of insect swarms, based on a noise function and potential fields.

Data-driven (example-based) approaches learn features of motion from real data and use the learned features to build
statistical models to simulate crowds26 and insect swarms,27 or use the analyzed features to reverse engineer underlying
individual rules for bird flocks.28 Based on examples, some approaches blend existing crowd data to generate a new crowd
animation,29 clone crowd motions from the existing examples to animate large crowds,30 and diversify context-aware
motion for crowd simulation.31 Recently, a biologically plausible dynamics model32,33 has been proposed to compute
collision-free trajectories for flying insect swarms through a hybrid formulation that combines a force-based model with
a data-driven noise model to display interactions among insects. However, due to the complex living environment and
the extraordinary high density of ants in many situations (e.g., tracks between the food sources and the nest), it is hard to
obtain accurate motion data of ant colonies in real world.

Though many methods specialized for motion control of multiagents have been proposed, to the best of our knowledge,
none of them can directly deal with the simulation of ant colonies. Arguably, one of the main reasons is the significant
distinctions of biological mechanism between ant colonies and other animal groups, such as communication mechanism
and different living environments.

Ant simulation. Previous works have been done to compute trails for foraging ants. For example, cellular
automation-based models34 can simulate one-dimensional unidirectional pheromone flow in an ant trail by controlling
nonmonotonic variation of speed with the trail density and apply to a 2D robotic trail simulation for pedestrians,35 and
then study the spatio-temporal organization of ants on the trail to build bidirectional trails for other traffic systems.4 In
addition, researchers have developed mathematical models to analyze biological mechanisms or motion rules of ants36,37

and provide a physics-based model for repulsively interacting self-propelled particles undergoing single-file motion.38

However, directly applying the motion rules derived from the above data analyses often fails to produce realistic visual
simulation of ants for CG applications, due to the intrinsic simplicity of the derived rules.

Researchers have also explored the modeling of ants' locomotion. Guo et al.6 describe a control pipeline to automate
insects' locomotion on a predefined moving path. Later, Guo et al.7 further simulate collective transport of virtual ants
on a predefined transmission path, by applying forces for the ants around the object to solve the positioning problem.
These methods are primarily focused on the body joints' locomotion on a preset path to complete a special task; nev-
ertheless, none of them can be straightforwardly extended to simulate a variety of behaviors of an ant colony at scale
and simulate adaptive ant behaviors in dynamically changing environments, due to the hard-coded fixed tasks in their
methodologies.
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FIGURE 2 The pipeline of our approach

FIGURE 3 Illustration of the grid map used in our approach. Each cell in the mth row of the nth column has a unique key key(m,n) and
links with a series of ants and scenario objects that are located in this cell. Note that the node “−1” denotes empty

3 APPROACH OVERVIEW

As Figure 2 illustrates, our approach can be conceptually regarded as a two-phase computational process. At the data
preprocessing stage, the whole motion area, which refers to the whole space of the scene, is formulated as a 2D grid map
(Figure 3). The motion scenario can be preset with food sources, nests, and obstacles, and the motion data are initialized
with the colony size, and the primary position, orientation, moving speed, and other motion states of each ant. Then, at
the motion control stage, each ant moves to a new position without collisions at every time step. A motion controller is
constructed here to have a local exploration process for each ant to sense the surroundings and decide which motion state
the ant should turn into. After the local exploration for each ant, the motion controller modulates its orientation to avoid
collisions or out-of-bounds and then computes its target position. For simplicity, in all of our experiments, the ants share
the same moving speed, although our motion control model can be trivially extended to have time-varying speeds for
different ants. Thus, the motion controller can continuously update orientation and position of ants, and generate paths
for them.

The motion state of each ant could be (i) the stop state where the ant stops moving for a while, (ii) the interaction with
neighbors state referring to its interaction with neighbors, (iii) the interaction with environment referring to its interaction
with the environment, and (iv) the basic movement state where the ant runs randomly to explore the map. Specifically,
Figure 4a illustrates possible motion state transitions for deciding a target moving orientation for an ant (see Section 4 in
detail), and the interaction system is illustrated in Figure 4b, where external disturbance can be interactively introduced in
real-time simulations. Our approach can simulate various ant behaviors such as foraging, avoiding, and escaping through
interactions, and our method has the capability to adapt to a dynamically changing environment in real time.

4 BIOLOGICALLY INSPIRED MOTION CONTROLLER

In this section, we will describe the details of the biologically inspired motion control model in our approach. As illustrated
in Section 3, we define four motion states for an ant: stop, basic movement, interaction with environment, and interaction
with neighbors. Figure 4a shows the possible transitions among these motion states. Note that ants prefer interacting with
the environment to avoid obstacles or escape from external attacks rather than turning into the other states.
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FIGURE 4 The state machine of an ant. (a) illustrates the state transition diagram of an ant when deciding its move at the next time step.
(b) illustrates the interaction system in our approach. Specifically, the priorities for the ant to interact with the environment are obstacles >
external disturbance > food = nest

We describe the pipeline of the motion control process below, where Step 2 and Step 3 aggregate as the local exploration
process and decide a preferred target position p∗(t + 1) and an orientation O∗(t + 1).

(1) Randomly choose to either enter the stop state (in Section 4.1) and quit the movement within a certain period, or turn
to Step 2 for active motion updating.

(2) Enter the basic movement state and calculate a target orientation. Details about the basic movement state are
explained in Section 4.1.

(3) Search in a valid range of distance to check possible interactions. If any interaction happens, enter the correspond-
ing interaction state and recalculate a moving orientation according to the obtained information. Details on the
interactions are elaborated in Section 4.2.

(4) Check the boundary and collision avoidances for each ant, adjust the moving orientation to O(t + 1), and then
calculate the target position p(t + 1) accordingly.

(5) Move forward one step for each ant.

Except for the current position and orientation, we assign each ant with a status label Sc ∈
{

Snothing, Sfood, Snest
}

, which
denotes where the ant comes from, and Sc represents what information it can transmit to other ants in the colony. Here,
Sc = Snothing if the ant has not visited a food source or a nest; Sc = Sfood if the ant has visited a food source and laden with
food; and Sc = Snest if the ant has visited its nest. In our simulation, ants are always unaware of the exact positions of their
destinations (food sources or the nest), and the ants transfer information by recognizing the Sc labels of their neighbors
to find the destinations. The label of each ant (Sc) will change when the ant arrives at a destination, and then, the ant will
decide a new destination (refer to Section 4.2.2). Specifically, the ants with Sc = Snest (or Sfood) may come from different
nests (or food sources).

As mentioned in Section 3, we divide the motion area into a grid map (refer to Figure 3), which is utilized as a HashMap,
and each cell in this map has a unique key. Each ant is associated with a key, and each key links with none or a few ants
and/or scenario objects. An ant searches for neighbors or the neighboring objects from its located cell and the neighboring
cells within a certain distance threshold.

The motion control module in our approach is described in Algorithm 1, and the interaction (i.e., information transfer)
process within the motion control module is described in Algorithm 2. Together with the size of the ant colony M in
Algorithm 1, the start position p0, start moving orientation O0, and the initial speed speed are initialized at the beginning
of the simulation. Particularly, the initial values of p0, O0, and Sc for an ant may differ in various motion scenarios with
different purposes. For example, we set p0 as the position of its belonging nest, Sc as Snest, and O0 as a random unit vector
to simulate the scenario when an ant leaves its nest and goes foraging. For those scenarios when ants are not initialized
in the nest, we will select an appropriate p0 for each ant to avoid overlapping.

4.1 Basic motion control
In the basic movement state, an ant chooses a new orientation randomly as we assume it knows nothing about its neigh-
bors and environment. An ant enters the basic movement state first when it decides not to be still during the period of the
time step Δt. When an ant enters the basic movement state, a direction is randomly selected as illustrated in Figure 5a. To
ensure the smoothness of the basic motion, the ant can only slightly change its moving orientation. That is, the critical
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deviation angle 𝜃 should not be too large. In our simulation, we empirically set 𝜃 to 𝜋∕6. Through the basic movements
of ants, most of the motion area can be visited sooner or later.

For those ants that are not always active in moving, we set a stop state to simulate their stop situations. In the stop state,
ants stay at their current positions and hold their orientations for a certain period. Specifically, ants turn into the stop
state in the following situations.

1) Casual stop. Active ants randomly stop to take a rest (the probability is 0.005 in our simulation).
2) Collecting food. Ants that are not laden with food arrive at a food source and pause there to collect food. The Sc label

of the ants will become Sfood when the stop time runs out, and the ants start to move toward the nest.
3) Dropping food. Ants with the Sfood label arrive at the nest and stop moving for a certain period to unload food. As soon

as the stop time runs out, the Sc label turns into Snest and the ants start to move back to the food.

Current 
OrientationNew 

Orientation

(a)

New 
Orientation

Current 
Orientation

(b)

External 
Disturbance

(c)

FIGURE 5 Selection of the moving orientations. (a) shows the selection domain in the basic movement state. The new orientation is
randomly selected from a certain range ( − 𝜃, 𝜃) deviating from the current orientation. (b) exhibits the avoiding behavior when an ant
interacts with an obstacle. (c) shows the escaping behavior when facing an external disturbance
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TABLE 1 Situations when information transfer happens
between two ants, where j ∈ Ni and the neighbor j comes
from ant i's destination

S i
c S j

c Information transfer from
ant j to ant i

Situation 1 Snothing Sfood Information about the food

Situation 2 Snest Sfood source where j comes from.
Situation 3 Sfood Snest Information about the nest

where j comes from.

Note. Ant j does not know the exact location of its coming place; it can
only transfer information to ant i by body contact to lead i closer to
the destination. Figure 6 illustrates the possible information transfer
processes in detail.

Food 
Source

(a)

Nest

(b)

FIGURE 6 Information about a food source or the nest is transferred between two ants. In both (a) and (b), the left ant is the focal ant i
and the right one is the neighboring ant j who comes from a food source or i's belonging nest. Due to physical contact with j, the focal ant i
knows the current body rotation of the neighbor; then, i changes its moving orientation to the neighbor's latest arrival position to move closer
to the food source or the nest

4.2 Interactions
Besides the basic movement process, ants also navigate in the current and nearby cells in the grid map, avoid collisions,
escape from external disturbances, and develop a trail between a food source and the nest through interactions. Inter-
actions among ants facilitate information transfer and correct the moving orientations of the ants to their destinations.
Interactions with the environment enable the ant colonies to adapt to dynamically changing environments.

4.2.1 Interaction with neighbors
The idea of the interaction with neighbors is inspired by a well-studied biological phenomenon where two ants can com-
municate with each other through physical contacts.8–10 In our method, we assume that physical contact happens once
two ants are sufficiently close to each other. This type of information transfer forms information chains in the colony,
thus speeding up the generation of the bidirectional foraging-transporting trail between a food source and a nest.

For each ant i, its neighbors Ni are defined as the ants that are close to ant i within a certain distance. An ant will interact
with a neighbor if the neighbor can transfer information to it. Information transfer between two ants may happen under
the following situations (also refer to Table 1 and Figure 6):

(1) Si
c = Snothing and S𝑗

c = Sfood, 𝑗 ∈ Ni: Specifically, the ant i has not yet visited a food source or the nest, while
the neighbor comes from a food source. In this case, the ant i can get information about the food source from the
neighboring ant j.

(2) Si
c = Snest and S𝑗

c = Sfood, 𝑗 ∈ Ni: The ant i has visited the nest and attempts to find a food source, while the neighbor
comes from a food source and is laden with food. Information about the food source will be transferred from the
neighbor j to the ant i. This information can also contribute to the automatic generation of a path from the nest to a
food source. The information transfer mechanisms in the above Situations 1 and 2 are illustrated in Figure 6a.
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(3) Si
c = Sfood and S𝑗

c = Snest, 𝑗 ∈ Ni: This represents that the ant i comes from a food source, laden with food, and is
looking for the nest to unload food. The neighbor j comes from ant i's belonging nest, and it can transfer information
about the nest to the ant i. This situation explains the mechanism of path generation from a food source to the nest,
and Figure 6b illustrates this information transfer process.

Through various compositions of the above Situations 2 and 3, an ant colony can generate a bidirectional and connected
trail between a food source and the nest. Ants change their moving orientations when any of the aforementioned situations
happen.

4.2.2 Interaction with environment
To simulate the interactions between ants and environment, we consider several external factors that may affect an ant
colony in our simulation experiments. These factors are basically composed of food sources, nests, obstacles, and exter-
nal disturbances, and the corresponding ant behaviors are called avoiding obstacles, collecting food, dropping food, and
fleeing from external attacks, respectively.

Interaction with Obstacles: It is instinct for animals to avoid barriers ahead, thus in our approach, we set obstacles
in the environment to simulate the avoiding behavior of ants. In our method, the avoiding behavior takes action when an
obstacle locates in front of an ant, and the distance is in a critical value. The motion controller will change the moving
direction of the ant accordingly, similar to the obstacle avoidance policy used in steering behavior.39 As illustrated in
Figure 5b, the new orientation of the ant is vertical to the line from the ant's current position to the obstacle.

Interaction with Food Source or Nest: An ant interacts with a food source or the belonging nest to collect food or
drop food, and the Sc of the ant will change after the interactions. The premise for an ant to interact with a food source is
that it is unladen with food (Sc = Snest or Sc = Snothing) and arrives at a food source. In this case, the ant switches to the
stop state to collect food, and the Sc of the ant is changed into Sfood after the interaction and then the ant starts moving to
look for the nest to drop food. Similarly, an ant interacts with a nest when it is laden with food (Sc = Sfood) and arrives at
the nest. In such a case, the ant will switch to the stop state to drop food, and then, the Sc is changed into Snest and the ant
goes again for foraging. The cyclic switches of Sc accelerate the foraging and the transporting processes for the ants even
though they never know the accurate positions of their destinations. Moreover, an ant with Sc = Snothing also interacts
with the nest upon arrival, and then, Sc of the ant changes to Snest while the ant keeps moving.

Interaction with External Disturbance: The escaping behavior is performed when there is an external interference
in the motion area. The dangerous area is a circle centered at the disturbance point, and the ants within this circular area
will escape. In our approach, the ants within the range of external attack run away in a direction that is far away from the
center of attack (see in Figure 5c).

4.3 Target position computation
After performing the interactions in local exploration, the motion controller determines the preferred moving orientation
O∗(t + 1) for each ant without checking collisions. The preferred velocity v∗(t + 1) = vO∗(t + 1) of each ant at time t + 1
is calculated by the predefined speed v and O∗(t + 1). The predicted position p∗(t + 1) is the position that an ant moves
with its preferred velocity in a time step:

p∗(t + 1) = p(t) + v∗(t + 1)Δt, (1)

where Δt = 1 s in our simulation.
Boundary check will be performed when the predicted position of an ant has been calculated to constrain it inside the

motion area, and then, the motion controller determines the target moving orientation O(t + 1) to avoid collisions for
the ant:

O(t + 1) = w0O∗(t + 1) + (1 − w0)Rd(t + 1), (2)

where w0 is the weight assigned to the preferred target orientation O∗(t + 1) to ensure certain continuity, and Rd(t + 1)
represents the sum of the weighted repulsive orientations:

Rd(t + 1) =
nc∑

d=1
wdR∗

d(t + 1). (3)
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Here, nc represents the total number of the ants that could collide with the current ant, and R∗
d(t + 1) is the predicted

repulsive orientation, which is the unit vector pointing from the dth colliding ant to the current ant:

R∗
d(t + 1) =

p∗
d(t + 1) − p∗(t + 1)

‖‖‖p∗
d(t + 1) − p∗(t + 1)‖‖‖2

. (4)

We assign a weight wd = C∕||p∗
d(t + 1) − p∗(t + 1)||k2 to each repulsive orientation in Equation (3), where C and k

are constants. wd has a negative correlation with the predicted Euclidean distance between the current ant and the dth
colliding ant.

Based on the target moving orientation O(t+1) of an ant, the motion controller calculates the velocity v(t + 1) =
vO(t + 1) of the ant. Finally, the ant moves to the target position:

p(t + 1) = p(t) + v(t + 1)Δt. (5)

5 RESULTS AND EVALUATIONS

We have implemented our algorithm in C++ on a desktop computer equipped with Intel© Core i7 4.00 GHz, 32-GB RAM,
and NVIDIA© Geforce GTX 1060 GPU. By regarding the grid map mentioned in Section 3 as a HashMap, the computation
cost of neighbors search is reduced to (1) because the neighbors search is often limited to the current and neighboring
cells no more than a fixed distance. The computational complexity of our algorithm is (M), where M is the size of the
ant colony.

Figures 7 and 8 show several simulation results with 500 ants. We present our simulation result in terms of ant colony
animations and preset a couple single-colony scenarios (Figure 7) and a couple hybrid-colony scenarios (Figure 8). In
hybrid-colony scenarios, we divided all the ants into several colonies, thus ants may come from different nests. We

FIGURE 7 Different ant colony simulations using our approach in single-colony motion scenarios. The black hole, the white stack, and
the rocks are the nest, the food source, and the obstacles. (a) Single colony with a food source. (b) Single colony with a food source and
multiple obstacles
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FIGURE 8 Different ant colony simulations using our approach in hybrid-colony motion scenarios. Note that each ant can only leave its
belonging nest and return to the belonging nest. (a) Hybrid colonies with multiple food sources. (b) Hybrid colonies with multiple food
sources and obstacles

0 500 1000 1500 2000 2500 3000

1

2

3

4

5

6

7

8

9

10

Ant Colony Size

A
ve

ra
ge

 C
om

pu
tin

g 
T

im
e 

m
s/

fr
am

e

0
10
20
30
50
100
200

FIGURE 9 Comparison of the average computing costs with different numbers of obstacles and different colony sizes. The legends under
the diagram represent different numbers of the obstacles

compare the simulation results without obstacle (Figures 7a and 8a) and with obstacles (Figures 7b and 8b) in the
single-colony and hybrid-colony motion scenarios. In Figures 7 and 8, each example of the two groups of simulation
results abstractly shows the same moving process: Ants start from their belonging nest and gradually find a food source
through the combination of random exploration and information transfer, and finally build a connected trail between the
food source and their belonging nest for food finding and transporting. Comparing the generated path between the food
source and the nest in our result with the (shortest) straight line segment between the two, we found that the ants in our
algorithm can autonomously generate a relatively short foraging-transporting path between the food source and the nest.
We set a nest, a food source, and different numbers of obstacles in the simulation scenario and calculated the average
computing costs for different scales of ant colonies. As Figure 9 shows, the computational complexity of our algorithm
is approximately linear to the size of the simulated ant colony. From Figure 9, we can also find that our method is very
efficient because it can update a frame of simulating 3000 ants in 10 ms. From the same figure, we also find that the com-
puting time is not seriously affected by different setups of motion scenarios because the average computing time of the
simulations with the same colony size but different numbers of obstacles is similar.
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FIGURE 10 Comparison on the trails between our method and the traffic trail model38 with 300 ants. The first row is the trail generated
by our method and the second row is the trail generated from the traffic trail model

We also compared our method with the traffic trail model,38 as shown in Figure 10. The traffic trail model regards ant
individuals as self-propelled particles and simulates an ant trail with the absence of jamming, and the trail is constructed
through the physical forces for acceleration. By contrast, our motion control model considers virtual ants as autonomous
agents and they can autonomously construct trails through information transfer. Besides, the trails in our simulation are
curvy and bidirectional, compared with the predefined straight and unidirectional trail in the traffic trail model. Obviously,
the trails resulted from our method are more realistic and closer to what can be observed in the real world.

5.1 Outspread experiments
We also did some outspread experiments to test the controllability and flexibility of our motion control model in a variety
of scenarios. To test whether our method can effectively adapt to dynamic changes in an environment, we add in-time
changes on the connected ant trail between the nest and the food source.

Adaptation to dynamic changes in an environment. The tested dynamic changes in an environment include
adding and removing obstacles, repositioning the food source, and adding external disturbances. Without the loss of gen-
erality, in our experiments, we only set one food source and one nest in the motion scenarios, and an ant colony with
500 ants was tested in our experiments.

We performed a series of experiments on dynamic obstacle changes. As shown in Figure 11, we interactively added three
rocks on the trail and ants responded by constructing a new trail that is relatively near to the old one; then, we gradually
removed the obstacles and the trail gradually went back to the original one. We also show the simulation results from
the dynamic replacement of the food source (Figure 12). In this experiment, we replaced the food source; as a response,
the ants dispersed to seek for the food source; and finally, the ants rebuilt a trail between the nest and the food source
again. Furthermore, we have experimented to add external disturbances in real-time simulation. In Figure 13, we added
an external disturbance on the trail, and then, the ants escaped to rebuild a new trail. The original trail was recovered
after the removal of the external disturbance.

FIGURE 11 Results of adaptation to the dynamic changes of obstacles in environment. The size of the ant colony is 500. The figure
illustrates the changes of the trail before and after adding obstacles and removing obstacles. (a) Original trail. (b) The reconstructed trail after
putting three obstacles. (c) The reconstructed trail after removing two obstacles. (d) The reconstructed trail after removing all obstacles
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FIGURE 12 Adaptation to the repositioning of the food source. In this experiment, the colony has 500 ants. (a) Original trail.
(b) Repositioning the food source. (c) The reconstructed trail

FIGURE 13 Adaptation to an external disturbance. 500 ants are simulated in this experiment, and the green vertical arrow here directs to
the center of the dangerous area. (a) Put an external disturbance on the original trail. (b) The reconstructed trail under the disturbance.
(c) The reconstructed trail after the disturbance

FIGURE 14 Results of group shape constraint by setting up way points with 500 individuals. (a) Three way points. (b) Four way points.
(c) Five way points

In sum, our experiments show that our method is effective to handle dynamic changes in environment, and the
connected path between the food source and the nest can be rebuilt as a relatively optimal path for foraging.

Group shape constraint. Group shape constraints have been studied before,40–42 but these models control the move-
ments of individuals mechanically, besides collision avoidances. Directly applying such models for ants would fail to
produce realistic ant formation animations. Taking advantage of the variety of mechanisms in our motion controller, we
can extend our approach to handle user-specified group shape constraint and produce natural group shape formations.
Two examples are described below.

In Figure 1, obstacles are used to constrain the shape of an ant colony with 500 ants. Two ways can be used to realize
this work: the first one is to collocate the obstacles before the ants run out of the nest; hence, the ants can only move in
the fixed zone. The other is to add rocks on the generated trail to decentralize the ants and restrain them in a fixed area.

Not limited to constrain shapes of ant colonies, Figure 14 shows the results by constraining the shape of a group through
way points. The group changes its shape under the control of our motion controller, and the way points act as intermediate
transit destinations. The individuals in the group tend to move toward a target way point through information transfer.
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FIGURE 15 An interactive simulator built upon our motion controller. The ant colony is controlled in real time by changing the motion
scenario or modifying parameters of the ant colony

Real-time simulator. Because our method can adapt to efficiently dynamic changes in environment, it can work in
real time. We develop an interactive simulator to simulate collective ant colonies, as shown in Figure 15. In this simulator,
users can change the environment by adding or removing food sources, obstacles, and nests in real time, and the users can
also disturb the moving ants. Users are also allowed to adjust various parameters of our approach, including the colony
size and the moving speed of the ants. For animation results, please refer to the supplementary demo video.

6 DISCUSSION AND CONCLUSIONS

In this paper, we present a unified biologically inspired approach to simulate ant colonies. Specifically, we utilize motion
states to distinguish different motion situations, including basic movement, interactions, and stop. Besides, we also set
several constraint rules in the motion states. Thus, through flexible combinations of states and constraints, we can sim-
ulate a variety of ant colony behaviors, including seeking food, going back to the nest, avoiding collisions, escaping from
external disturbances, and information transfer. In addition, our method offers flexible controls to users through real-time
parameter changes or environment dynamic changes.

In our experiments, we simulated foraging, avoiding, and escaping behaviors of ants in a relatively simple environment.
However, the actual environment can be more complex and the ants may conduct much more varieties of behaviors, for
example, collectively transforming food, adapting to terrain changes, and resisting natural enemies. These behaviors can
be simulated by straightforwardly appending new rules into our motion controller framework.

Our method can be potentially applied in other research fields. The motion control framework can be used to manip-
ulate microrobots or nanorobots, drone groups, and other biological organisms that perform collaborative tasks. For
example, the information transfer mechanism may facilitate collective transportations for microrobots or nanorobots, and
the motion control framework may manipulate groups of drones into various formations for entertainment or military use.

Due to the complex living environment and the large size and high density of some ant colonies, it is very difficult to
obtain comprehensive, accurate movement data of ants in the real world. As one of our future works, we plan to collect
some data sets to develop data-driven schemes to simulate more realistic ant colonies. Such data sets would allow us
to quantitatively evaluate the realism and accuracy of our motion controller. In addition, our motion controller can be
potentially extended to simulate group behaviors and visual effects of other animals or insects, not limited to ants. For
example, group shape morphing is another future research direction, building upon our current work.
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