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Abstract

Synchronization phenomena are ubiquitous in the natural sciences and engi-
neering, but also in social systems. Among the many models that have been
proposed for a description of synchronization, the Kuramoto model is most
popular. It describes self-sustained phase oscillators rotating at heterogeneous
intrinsic frequencies that are coupled through the sine of their phase differences.
The second-order Kuramoto model has been used to investigate power grids,
Josephson junctions, and other systems. The study of Kuramoto models on
networks has recently been boosted because it is simple enough to allow for
a mathematical treatment and yet complex enough to exhibit rich phenom-
ena. In particular, explosive synchronization emerges in scale-free networks in
the presence of a correlation between the natural frequencies and the network
topology.

The first main part of this thesis is devoted to study the networked second-
order Kuramoto model in the presence of a correlation between the oscillators’
natural frequencies and the network’s degree. The theoretical framework in the
continuum limit and for uncorrelated networks is provided for the model with an
asymmetrical natural frequency distribution. It is observed that clusters of nodes
with the same degree join the synchronous component successively, starting with
small degrees. This novel phenomenon is named cluster explosive synchronization.
Moreover, this phenomenon is also influenced by the degree mixing in the network
connection as shown numerically. In particular, discontinuous transitions emerge
not just in disassortative but also in strong assortative networks, in contrast to
the first-order model.

Discontinuous phase transitions indicated by the order parameter and hystere-
sis emerge due to different initial conditions. For very large perturbations, the
system could move from a desirable state to an undesirable state. Basin stability
was proposed to quantify the stability of a system to stay in the desirable state
after being subjected to strong perturbations.

In the second main part of this thesis, the basin stability of the synchronization
of the second-order Kuramoto model is investigated via perturbing nodes sepa-
rately. As a novel phenomenon uncovered by basin stability it is demonstrated
that two first-order transitions occur successively in complex networks: an onset
transition from a global instability to a local stability and a suffusing transition
from a local to a global stability. This sequence is called onset and suffusing
transition.

Different nodes could have a different stability influence from or to other nodes.
For example, nodes adjacent to dead ends have a low basin stability. To quantify
the stability influence between clusters, in particular for cluster synchronization,
a new concept of partial basin stability is proposed. The concept is implemented
on two important real examples: neural networks and the northern European
power grid. The new concept allows to identify unstable and stable clusters
in neural networks and also explains how dead ends undermine the network
stability of power grids.
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Zusammenfassung

Synchonisation ist ein universelles Phänomen welches in den Natur- und
Ingenieurwissenschaften, aber auch in Sozialsystemen vorkommt. Verschiedene
Modellsysteme wurden zur Beschreibung von Synchronisation vorgeschlagen, wo-
bei das Kuramoto-Modell das am weitesten verbreitete ist. Das Kuramoto-Modell
zweiter Ordnung beschreibt eigenständige Phasenoszillatoren mit heterogenen Ei-
genfrequenzen, die durch den Sinus ihrer Phasendifferenzen gekoppelt sind, und
wird benutzt um nichtlineare Dynamiken in Stromnetzen, Josephson-Kontakten
und vielen anderen Systemen zu analysieren. Im Laufe der letzten Jahre wur-
den insbesondere Netzwerke von Kuramoto-Oszillatoren studiert, da sie einfach
genug für eine analytische Beschreibung und denoch reich an vielfältigen Phä-
nomenen sind. Eines dieser Phänomene, explosive synchronization, entsteht in
skalenfreien Netzwerken wenn eine Korrelation zwischen den Eigenfrequenzen
der Oszillatoren und der Netzwerktopolgie besteht.

Im ersten Teil dieser Dissertation wird ein Kuramoto-Netzwerk zweiter Ord-
nung mit einer Korrelation zwischen den Eigenfrequenzen der Oszillatoren und
dem Netzwerkgrad untersucht. Die Theorie im Kontinuumslimit und für unkor-
relierte Netzwerke wird für das Modell mit asymmetrischer Eigenfrequenzvertei-
lung entwickelt. Dabei zeigt sich, dass Cluster von Knoten mit demselben Grad
nacheinander synchronisieren, beginnend mit dem kleinsten Grad. Dieses neue
Phänomen wird als cluster explosive synchronization bezeichnet. Numerische
Untersuchungen zeigen, dass dieses Phänomen auch durch die Zusammensetzung
der Netzwerkgrade beeinflusst wird. Zum Beispiel entstehen unstetige Übergänge
nicht nur in disassortativen, sondern auch in stark assortativen Netzwerken, im
Gegensatz zum Kuramoto-Modell erster Ordnung.

Unstetige Phasenübergänge lassen sich anhand eines Ordnungsparameters und
der Hysterese auf unterschiedliche Anfangsbedingungen zurückführen. Unter
starken Störungen kann das System von wünschenswerten in nicht gewünschte
Zustände übergehen. Diese Art der Stabilität unter starken Störungen kann mit
dem Konzept der basin stability quantifiziert werden.

Im zweiten Teil dieser Dissertation wird die basin stability der Synchroni-
sation im Kuramoto-Modell zweiter Ordnung untersucht, wobei die Knoten
separat gestört werden. Dabei wurde ein neues Phänomen mit zwei nacheinander
auftretenden Übergängen erster Art entdeckt: Eine onset transition von einer
globalen Stabilität zu einer lokalen Instabilität, und eine suffusing transition
von lokaler zu globaler Stabilität. Diese Abfolge wird als onset and suffusing
transition bezeichnet.

Die Stabilität von Netzwerknoten kann durch die lokale Netzwerktopologie
beeinflusst werden, zum Beispiel haben Knoten neben Netzwerk-Endpunkten
eine geringe basin stability. Daraus folgend wird ein neues Konzept der partiellen
basin stability vorgeschlagen, insbesondere für cluster synchronization, um die
wechselseitigen Stabilitätseinflüsse von Clustern zu quantifizieren. Dieses Konzept
wird auf zwei wichtige reale Beispiele angewandt: Neuronale Netzwerke und
das nordeuropäische Stromnetzwerk. Die neue Methode erlaubt es instabile
und stabile Cluster in neuronalen Netzwerken zu identifizieren und erklärt wie
Netzwerk-Endpunkte die Stabilität gefährden.
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Chapter 1

Introduction

1.1 The second-order Kuramoto model

Synchronization is a pervasive phenomenon in the natural sciences and engineering,
but also in social systems (Arenas et al., 2008). This collective behavior emerges
from the interaction of neurons in the central nervous system, power grids, crickets,
heart cells, and lasers (Arenas et al., 2008; Pikovsky et al., 2003). Synchronization
arises due to the adjustment of rhythms of self-sustained weakly connected periodic
oscillators (Acebrón et al., 2005; Arenas et al., 2008; Pikovsky et al., 2003) and
can be treated mathematically by the model proposed by Kuramoto (Kuramoto,
1975). Certain species of fireflies, e.g., Pteroptyx malaccae, are able to achieve perfect
synchronization even for a stimulating frequency that is different from their intrinsic
frequency. In the early 1990s this motivated Ermentrout (Ermentrout, 1991) to
propose a model with frequency adaptation which has the ability to mimic such
perfect synchrony between coupled oscillators. Acebrón and his coauthors (Acebrón
and Spigler, 1998) pointed out that the Kuramoto model without inertia approached
the synchronized state too fast compared to experimental observations and an infinite
coupling strength is required to achieve perfect synchronization. The adaptive
frequency model, where both phase and frequency evolve in time and inertia slows
down synchronization, can solve such problems. Strogatz (Strogatz, 2001) and later
Trees et al. (Trees et al., 2005) showed that such a model can be obtained from
capacitively shunted junction equations to study synchronization in disordered arrays
of Josephson junctions. Moreover, Filatrella et al. (Filatrella et al., 2008) derived this
model from the classical swing equation to study self-synchronization in power grids.

1.2 Main research questions

The general Kuramoto model assumes that the natural frequencies of oscillators
are selected from unimodal and symmetric random distributions (Arenas et al.,
2008). In this case, a second-order phase transition to the synchronous state can
be observed (Arenas et al., 2008; Acebrón et al., 2005). However, the first-order
Kuramoto model can exhibit discontinuous phase transitions (Basnarkov and Urumov,
2008; Basnarkov and Urumov, 2007; Pazó, 2005). For instance, in one of the first
works on this topic, Pazó (Pazó, 2005) showed that, if uniform frequency distributions
are considered, first-order transitions emerge in fully connected Kuramoto oscillators.
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Chapter 1 Introduction

Very recently, Gómez-Gardeñes et al. (Gómez-Gardenes et al., 2011) verified that a
discontinuous synchronization transition can also occur in scale-free networks due to
a positive correlation between the natural frequencies and network topology. This
discovery has triggered many ensuing works, which analyzed explosive synchronization
analytically and numerically (Coutinho et al., 2013; Skardal et al., 2013; Chen et al.,
2013; Su et al., 2013; Zhang et al., 2013; Zou et al., 2014; Zhang et al., 2015; Leyva
et al., 2012; Peron and Rodrigues, 2012a), but on the first-order Kuramoto model.

Following these works, our first main research question is

1. What determines the synchronization transition in the second-order Kuramoto
model if the dynamics is correlated with the network topology?

To tackle this question, we firstly consider an ideal situation in uncorrelated networks
and the continuum limit, where the network size N → ∞, based on the theoretical
framework derived by Tanaka et al. (Tanaka et al., 1997a; Tanaka et al., 1997b).
The main difficulty here is to derive the self-consistent equation of the mean-field
quantities when the frequency distribution is asymmetric. We then investigate effects
of assortative mixing on the network synchronization in the presence of a positive
correlation between a heterogeneity of connections and the natural frequencies.

Discontinuous phase transitions and hysteresis emerge due to frequency-degree
correlations. Given perturbations, the system could jump from a desirable state to an
undesirable state. To quantify the probability of the system returning to the desirable
state after being subjected to a large perturbation, Menck et al. (Menck et al., 2013;
Menck et al., 2014) proposed the concept of basin stability. This measure quantifies
the basin of attraction of a desirable state, which can be non-local and nonlinear which
is why basin stability can also be applied to high-dimensional dynamical systems to
assess the stability of states.

Many complex networked systems, ranging from power grids to neural networks,
consist of many components (clusters) and exhibit multistability. A fundamental
property of complex networks is that perturbations on one component can signif-
icantly affect other components and potentially trigger cascading failure in power
grids (Machowski et al., 2011) or cause functional impairment on human brain ac-
tivation (Schnitzler and Gross, 2005). In realistic situations, a certain degree of
perturbations are largely unavoidable. If the system is multistable, then it is hard to
prevent a perturbed component jumping from one state to another. The problem is
now whether it is possible to obtain a likelihood for retaining a desirable state from a
statistical point of view.

This leads us to the second main research question

2. How to adapt the concept of basin stability to cluster synchronization?

To tackle the second question, we start by approximating basin stability as a
function of parameters including the dissipation parameter, the coupling strength and
the natural frequency in uncorrelated networks and in the continuum limit. To adapt
the situation of cluster synchronization, we propose a novel concept of partial basin

2



1.3 Contents and main findings

stability (PBS). This measure allows to quantify the likelihood that a component
m returns to a desirable state after another component a has been subjected to a
perturbation. PBS is related to the relative attracting basin of the desirable state
and provides a directed stability influence from component a to m.

Before addressing the above two questions, we explore the low-dimensional behavior
of the second-order Kuramoto model. The low-dimensional behavior of the first-
order Kuramoto model has been discussed by Watanabe and Strogatz (Watanabe
and Strogatz, 1994) for identical oscillators and was further developed by Ott and
Antonsen (Ott and Antonsen, 2008) for phase density functions with a Poisson kernel.
On the other hand, the low-dimensional behavior of the second-order Kuramoto
model still remains to be investigated.

1.3 Contents and main findings

The study of Kuramoto oscillators in complex networks has been boosted thanks to
rigorous mathematical treatments such as the Ott-Antonsen ansatz (Ott and Antonsen,
2008), the mean-field approximation (Strogatz, 2000), or stability analyses (Menck
et al., 2013). The main novel contributions of this thesis are the study of the
low-dimensional behavior of the second-order Kuramoto model with inertia by an
extension of the Ott-Antonsen ansatz (Chapter 3), the mean-field approximation
of the second-order Kuramoto model (Chapter 4), and advanced stability analyses
(Chapters 5 and 6).

The detailed contents of this thesis are as follows:
Chapter 2 provides an overview over the literature on the derivation of the second-

order Kuramoto model, the mean-field approximation, and the basin stability concept.
In Chapter 3, we generalize the Ott-Antonsen ansatz to second-order Kuramoto mod-

els in complex networks. With an additional inertia term, we find a low-dimensional
behavior similar to the first-order Kuramoto model, derive a self-consistent equation
and derive the time-dependence of the order parameter.

Correlations between intrinsic dynamics and the local topology have recently become
very popular in the study of synchronization in complex networks. In Chapter 4, we
investigate the influence of network topology on the dynamics of networks made up of
second-order Kuramoto oscillators. In particular, based on mean-field calculations, we
provide a detailed investigation of the phenomena of cluster explosive synchronization
(CES), analyzing the model in scale-free and small-world networks as a function of
several topological properties. We show that, in contrast to scale-free networks, the
transition to the synchronous state in small-world structures tends to be continuous
as the probability of rewiring increases. Moreover, we investigate the robustness
of discontinuous transitions by including an additional quenched disorder, and we
show that the phase coherence decreases with increasing strength of the quenched
disorder. In the presence of a positive correlation between the heterogeneity of
connections and the natural frequencies in scale-free networks, we numerically show
that discontinuous transitions emerge not just in disassortative, but also in strongly

3



Chapter 1 Introduction

assortative networks, in contrast to the first-order Kuramoto model. We also find
that the effect of assortativity on network synchronization can be compensated by
adjusting the phase damping. Our results show that it is possible to control collective
behavior of damped Kuramoto oscillators by tuning the network structure or by
adjusting the dissipation related to the phases movement. These results complement
the previous findings regarding CES and also fundamentally deepen the understanding
of the interplay between topology and dynamics under the constraint of correlating
natural frequencies and local structure.

In Chapter 5, we use basin stability in complex networks of second-order Kuramoto
models to demonstrate a novel phenomenon where two first-order transitions occur
successively: an onset transition from an unstable to a locally stable synchronous
state, and a suffusing transition from a locally stable to a globally stable synchronous
state; we call this sequence onset-suffusing transitions and provide an analytical
treatment of basin stability by a mean-field analysis. Considering small networks,
we start by investigating the global basin stability of a single-node system and then
extend it to two and four oscillators. We calculate the basin stability of the stable
fixed point over the whole parameter space, in which different parameter combinations
give rise to a stable fixed point and/or a stable limit cycle depending sensitively on
initial conditions.

In Chapter 6, we adapt basin stability to evaluate the stability of partial synchro-
nization, which plays a pivotal role in a wide variety of engineered and natural systems.
The novel stability measure, partial basin stability, is demonstrated on two important
real data case studies: neural networks and the northern European power grid. In
the case study of neural networks, a patient group of schizophrenia is compared to a
healthy control group. We are able to detect abnormal regions (the precuneus and
the left middle occipital gyrus) in the human brain from a dynamical point of view
which confirms previous findings based on observations. For the northern European
power grid, we provide new insights and uncover the local mechanisms of how dead
ends diminish power grid stability. Summarizing, the analyses of stability in real
systems can provide a better understanding of the interplay between structure and
collective behavior.

Finally, Chapter 7 concludes the main results of this thesis and discusses promising
avenues for future research.
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Chapter 2

Mean-field analysis and stability

The second-order Kuramoto model consists of an ensemble of network coupled phase
oscillators θi, for i = 1, . . . , N , and whose dynamics are governed by

θ̈i = −αθ̇i + Ωi + λ
N∑

j=1
Aij sin (θj − θi), (2.1)

where Ωi is the natural frequency of the i-th oscillator with a given probability density
g(Ω), α is the dissipation parameter, λ is the coupling strength and A is the adjacency
matrix. A accounts for the underlying topology with Aij = 1 if there is a link between
nodes i and j and Aij = 0, otherwise.

From a methodological standpoint, as the focus of this section, Tanaka et al. (Tanaka
et al., 1997a; Tanaka et al., 1997b) analyzed the collective behavior of a set of coupled
Kuramoto model with inertia using a mean-field analysis. In terms of stability against
perturbations, Menck et al. (Menck et al., 2014) quantified the stability of network
coupled oscillators in terms of the basin of attraction of a synchronized state against
large perturbations, termed basin stability, and intended to find the correlation
between the stability and underlying structures.

In section. 2.1, we introduce the mean-field approximation implemented on the
second-order Kuramoto model. In particular, we illustrate the derivation of the
second-order Kuramoto model from power grids, explain the basic behavior of the
single-node model in Sec. 2.1.1, and introduce the mean-field theoretical framework
on the second-order Kuramoto model in Sec. 2.1.3. In section 2.2, we illustrate the
basin stability formalism.

2.1 Second-order Kuramoto model

2.1.1 Illustration

To mimic essential properties of the nonlinear dynamics of a population of N inter-
connected dynamical units in power grids, we consider the a power grid model on
coarse scales (Filatrella et al., 2008).
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Chapter 2 Mean-field analysis and stability

The state of each unit (machine) i = 1, . . . N is determined by its phase angle φi(t)
and its velocity dφi(t)/dt. Each unit rotates with the same frequency Ω = 2π × 50
Hz or Ω = 2π × 60 Hz, thus

φi(t) = Ωt + θi(t), (2.2)

where θi indicates the phase difference to the reference phase Ωt.
During the rotation, the dissipated power is given by Pdiss,i = KD(φ̇i)2, where

KD is a fraction coefficient. The kinetic energy follows Ekinetic,i = Iiφ̇
2
i /2 and the

accumulated kinetic power is given by Pacc,i = dEkinetic,i

dt , where Ii is the moment of
inertia. If a power flow between machines i and j exists, the power transmission is
proportional to the sine of the phase difference, i.e. sin (φj − φi) and the transmitted
power follows Ptrans,ij = −P max,ij sin (φj − φi), where P max,ij is the maximal capacity
of the transmission line. If there is no power flow, Ptrans,ij = 0.

The power source Psource,i, which is fed into each machine i, has to be met by the
sum of the power transmitted within the grid plus the accumulated and dissipated

power, i.e., Psource,i = Pdiss,i + Pacc,i +
N∑

j=1
Ptrans,ij . Inserting the expressions of powers

into such equation, one gets

Psource,i = Iiθ̈φ̇i + KD(φ̇i)2 −
N∑

j=1
P max,ij sin (φj − φi). (2.3)

Via subsutiting Eq. (2.2) into Eq. (2.3) and assuming a small perturbation of
the synchronous frequency compared to the reference frequency θ̇i � Ω, Iiθ̈i and
KDθ̇2

i can be neglected compared to Iiθ̈iΩ and KDΩ2, respectively. Eq. (2.3) therein
becomes (Filatrella et al., 2008; Witthaut and Timme, 2012; Rohden et al., 2012)

IiΩθ̈i = Psource,i − KDΩ2 − 2KDΩθ̇i +
N∑

j=1
P max,ij sin (θj − θi). (2.4)

For the sake of simplicity, provided that the moment of inertia Ii and the line
maximal capacity P max,ij are the same for all elements of the grid, defining Ω ≡
(Psource,i − KDΩ2)/(IΩ), α ≡ 2KD/I and λAij ≡ P max/(IΩ), this finally yields the
original dynamics Eq. (2.1) (Filatrella et al., 2008; Witthaut and Timme, 2012;
Rohden et al., 2012; Ji et al., 2013).

2.1.2 Dynamics of the one-node model

Consider the one-node model, where one node is connected to a grid and, whose
dynamics follows

θ̈ = −αθ̇ + Ω + λ sin (θL − θ). (2.5)
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2.1 Second-order Kuramoto model

The grid is considered to be infinite in the sense that its state can not be effected by
the node’s dynamics. Hence as always θL ≡ 0. Such model also depicts the governing
dynamics of the driven pendulum (Strogatz, 2001), the Josephson junction (Strogatz,
2001), and the one-machine infinite bus system (Chiang, 2011).

The node can either converge to a fixed point or oscillate periodically. Menck et
al. (Menck et al., 2014) proposed a way to approximate its oscillating curve. For
λ = 0, the model (2.5) has one stable limit cycle with frequency ω(t) = Ω/α and
phase θ(t) = ω(t)t + θ(0). For large λ, a similar solution is still fulfilled with the

average frequency 〈ω〉 =
T∫

t=0
ω(t)dt/T ≈ Ω/α and θ(t) ≈ 〈ω〉 t + θ(0), where T is

a long integrating period. To derive an expression of the instant frequency, they
assumed ω(t) = 〈ω〉 + f(t), where f(t) remains to be solved. Inserting this into
Eq. (2.5) yields

ḟ = −αf − λ sin(〈ω〉 t + θ(0)), (2.6)

which has one special solution as follows

f(t) = − αλ

〈ω〉2 + α2

(
sin (〈ω〉 t + θ(0)) − 〈ω〉

α
cos (〈ω〉 t + θ(0))

)
. (2.7)

For 〈ω〉 	 α and via inserting 〈ω〉 ≈ Ω/α into Eq. (2.7), the instant frequency
therein is approximated by

ω(t) ≈ Ω/α + αλ

Ω cos(Ωt/α + θ(0)). (2.8)

Eq. (2.8) has a good agreement with numerical results (Menck et al., 2014). Integrating
Eq. (2.8) yields (Menck et al., 2014)

θ(t) ≈ Ωt/α + α2λ

Ω2 sin (Ωt/α + θ(0)) + θ(0). (2.9)

If Ω2 	 α2λ, θ ≈ Ωt/α + θ(0) which is consistent with the previous assumption.
For the one-node model, Chiang (Chiang, 2011) considered the following energy

function E(θ, ω) consisting of kinetic energy Ek(ω) and potential energy Ep(θ) func-
tions:

E(θ, ω) = Ek(ω) + Ep(θ), (2.10)

where ω ≡ θ̇, Ek(ω) = ω2

2 and Ep(θ) = −Ωθ − λ cos (θ).
Strogatz (Strogatz, 2001) provided useful guidelines for analyzing the dynamics

of the one-node model. Firstly, in the absence of damping and external driving, i.e.
α = 0 and Ω = 0, by introducing a dimensionless time τ = λt, Eq. (2.5) becomes the

7



Chapter 2 Mean-field analysis and stability

simplest version

d2θ

dτ2 = − sin (θ). (2.11)

Such system has two fixed points within the range of [0, 2π). One fixed point
(θ∗, ω∗) = (π, 0) is a saddle. The other is located at (θ∗, ω∗) = (0, 0). The origin
is a nonlinear center, as the system is reversible and conservative with the energy
function E(θ, ω) = ω2/2−cos(θ) = constant. A local minimal energy is located at the
fixed point with E(0, 0) = −1. Small obits around the center are small oscillations,
called librations. The obits grow with the increases in E until E = 1 along with the
heteroclinic trajectories linking saddles. With further increases in E, i.e. E > 1, the
system starts oscillating periodically over or below the heteroclinic trajectories.

Secondly, Strogatz (Strogatz, 2001) added linear damping to this system, i.e. α > 0
and Ω = 0. The system therein has one stable fixed point at (θ∗, ω∗) = (0, 0) and
one saddle (θ∗, ω∗) = (π, 0). With small damping, librations start converging to the
stable fixed point. The energy decreases monotonically along the trajectories with
the rate dE(θ,ω)

dt = d(ω2/2−λ cos(θ))
dt = −αω2, except for the fixed points with ω∗ = 0.

Thirdly, Strogatz (Strogatz, 2001) considered the original system (2.5) with damping
as well as external driving, i.e. α > 0 and Ω > 0. For notational convenience, one
could either set λ = 1 or introduce a dimensionless time τ =

√
λt. For Ω > 1, all

rotations converge to a unique and stable limit cycle and no fixed points are available.
For Ω < 1, two fixed points comprise a saddle and a sink, and they satisfy ω∗ = 0 and
sin(θ∗) = Ω. The linear stability of the fixed points is determined by the Jacobian
matrix

J =
(

0 1
− cos(θ∗) −α

)

with two eigenvalues

λ1,2 = −α ±√α2 − 4 cos(θ∗)
2 . (2.12)

The fixed point with cos(θ∗) = −√
1 − Ω2 with λ1 > 0 and λ2 < 0 is a saddle.

The other with cos(θ∗) =
√

1 − Ω2 is stable due to its real part of both eigenvalues
Re(λ1,2) < 0. Moreover, it is a stable node for α2 − 4

√
1 − Ω2 > 0 and a stable spiral,

otherwise.
For small α, suppose that we start from Ω > 1 and the system rotates periodically.

We slowly decrease Ω and, at some critical values Ωc < 1, rotations merge with the
saddle and are destroyed in a homoclinic bifurcation. Its critical value is determined
by

Ωc = 4α

π
, (2.13)
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2.1 Second-order Kuramoto model

as α → 0 based on the Melnikov’s analysis (Strogatz, 2001). Manik et al. (Manik
et al., 2014) reproduced such result according to Lyapunov’s second method. For large
α, we slowly decrease Ω from Ω > 1, rotations are destroyed by the infinite-period
bifurcation and fixed points appear. For small α, suppose that we start from a stable
fixed point and slowly increase Ω. Two fixed points collide and annihilate each other
in a saddle-node bifurcation with Ωc = 1.

Rohden et al. (Rohden et al., 2012) considered a two-nodes model consisting of one
generator (Ωg = Ω0) and one consumer (Ωc = −Ω0). The phase difference φ = θg −θc

follows

φ̈ = −αφ̇ + 2Ω0 − 2λ sin(φ).

Its stability diagram follows the same rule as in the one-node model.

2.1.3 Mean-field theory

Tanaka et al. (Tanaka et al., 1997a; Tanaka et al., 1997b) provided the mean-field
framework for investigating the hysteretic behavior in the large network size and
validated theoretical results with a uniform, bounded intrinsic frequency distribution.
The hysteresis exhibits the hysteretic response in each oscillator and is termed adaption
induced hysteresis. To compare to the case of without inertia, they took the following
general form of the second-order Kuramoto model

mθ̈i = −θ̇i + Ωi + λ

N

N∑
j=1

sin (θj − θi), (2.14)

where mθ̈i denotes the inertia of the i-th oscillator.
After a suitable coordinate transformation via replacing the coupling term by the

mean-field quantities (r, ψ) with reiψ = 1
N

∑
j eiθj , Eq. (2.14) is rewritten as

mθ̈i = −θ̇i + Ωi + λr(t) sin (ψ(t) − θi). (2.15)

The linear stability of the incoherent solution of such model with white noise,
inertia and the natural frequency distribution is rigorously analyzed (Acebrón et al.,
2000). In the limit of zero noise, Gupta et al. (Gupta et al., 2014) derived the critical
threshold λc, where the system exhibits the first-order transition from incoherent to
coherent states, as follows

1
λc

= πg(0)
2 − m

2

∫ ∞

−∞
g(Ω)

1 + m2Ω2 dΩ, (2.16)

where g(Ω) is unimodal with width σ. Without inertia, i.e. m → 0, Eq. (2.16)
reduces to the exact formula of the onset of collective synchronization of the first-
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Chapter 2 Mean-field analysis and stability

order Kuramoto model. For Lorentzian g(Ω), Olmi et al. (Olmi et al., 2014) obtained
an explicit formula of the critical coupling strength

λc = 2σ(1 + mσ), (2.17)

which is consistent with the results obtained by Acebron et al. (Acebrón et al., 2000).
For a Gaussian distribution and with a rather small m, Olmi et al. (Olmi et al., 2014)
derived the first corrective terms

λc = 2σ

√
2
π

⎧⎨
⎩1 +

√
2
π

mσ + 2
π

m2σ2 +
√( 2

π

)3
− 2

π
m3σ3

⎫⎬
⎭+ O(m4σ4). (2.18)

With the increases in m and σ for the Lorentzian distribution as well as the Gaussian
distribution, they (Olmi et al., 2014) also verified that the system becomes harder
and harder to achieve complete synchronization.

When the natural frequency distribution g(Ω) is unimodal, symmetric, and has
zero mean, the mean phase could be taken as a constant, e.g. ψ(t) ≡ 0. In the
continuum limit, where N → ∞, the fluctuations of the phase coherence r(t) vanish
and r(t) therein is assumed to be constant, e.g. r(t) ≡ r. In this case, the system
could be considered a set of a one-node model. With respect to parameter values in
the stability diagram, one oscillator could be located in the region of the stable limit
cycle, the stable fixed point or the region of bistability with the coexistence of such
two stable solutions.

Following the classical process of the first-order Kuramoto model, the set of
oscillators is splitted into one subgroup of oscillators locked to the mean phase and
the other subgroup of drifting oscillators whirling over (or below depending on the
sign of Ω) the locked subgroup. Therefore, the overall phase coherence r sums two
certain coherence rlock and rdrift, contributed by these two subgroups, respectively,
i.e.,

r = rlock + rdrift. (2.19)

To study the adaption induced hysteresis, two kinds of simulations are considered,
by increasing and decreasing adiabatically the coupling strength (Tanaka et al., 1997b;
Tanaka et al., 1997a), respectively. (I) When the coupling strength λ increases from
a small value, the phase coherence rI persists around a small fluctuation due to the
effects of network sizes until a critical coupling strength, denoted by λI

c. Above λI
c,

the system jumps to a weakly synchronized state. rI increases with further increases
in λ and saturates to a constant for sufficiently large coupling strengths. (D) When
the coupling strength λ decreases from a sufficiently large value, the system is initially
in the strongly synchronized state and rD remains nearly constant until a critical
coupling strength, denoted by λD

c . Beyond this threshold, the system jumps back to
a incoherent state. Hysteretic behaviors therein are observed. Two critical coupling
strengths λI

c and λD
c are almost the same for small m (e.g. m = 0.95) but its difference
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2.1 Second-order Kuramoto model

enlarges for large m (e.g. m = 2.0 or 6.0) (Tanaka et al., 1997a). λD
c is the same as

the first-order Kuramoto model’s (Tanaka et al., 1997b). Different dynamics regimes
are observed (Tanaka et al., 1997a; Tanaka et al., 1997b), including the incoherent
state (IS), the weakly synchronized state (WSS), the strongly synchronized state
(SSS), a transition state from WSS to SSS and vice versa.

In the case (I) of increasing λ, all oscillators initially drift around its own natural
frequency Ωi. With increasing λ, oscillators with small natural frequency below
the threshold ΩP , i.e. |Ωi| < ΩP , start being attracted to the locked group. With
further increases in λ, ΩP enlarges, oscillators with large natural frequency become
synchronized and the phase coherence rI increases. For sufficiently large coupling,
ΩP exhibits plateaus and rI ≈ 1. If the inertia is rather small, i.e. 1√

mλrI � 1, the
homoclinic bifurcation is tangent to the line (2.13), and Tanaka et al. (Tanaka et al.,
1997b) obtained the approximation of the threshold ΩP as ΩP = 4

π

√
λrI
m . During this

process, a secondary synchronization of drifting oscillators is observed for larger m.
The phenomenon was confirmed by Olmi et al. (Olmi et al., 2014), where the authors
validated the synchronized motions by comparing the evolution of the instantaneous
frequency ωi(t) = θ̇i of the secondary synchronized oscillators and also observed
such phenomenon in realistic Italian high-voltage power grid. But the underlying
mechanism needs further investigation.

In the case (D) of decreasing λ, initially almost all oscillators are locked to the
mean phase ψ if the starting coupling strength λ is large enough, and rD ≈ 1. With
decreasing λ further, locked oscillators are desynchronized and start whirling when
their natural frequency exceeds the threshold ΩD, i.e. |Ωi| > ΩD = λrD, where the
saddle node bifurcation occurs.

Therefore, given the synchronized boundary ΩP and ΩD, the contribution to the
locked coherence follows (Tanaka et al., 1997a; Tanaka et al., 1997b; Olmi et al.,
2014)

rI,D
lock = λrI,D

∫ θP,D

−θP,D

cos2 θg(λrI,D sin(θ))dθ, (2.20)

where θP = sin−1(ΩP /(λrI)) and θD = sin−1(ΩD/(λrD)).
The phase coherence from drifting oscillators takes the same form as in the first-

order Kuramoto model (Acebrón et al., 2005) and follows (Tanaka et al., 1997a;
Tanaka et al., 1997b; Olmi et al., 2014)

rI,D
drift =

∫
|Ω|>ΩP,D

∮
eiθρD(θ; Ω)g(Ω)dθdΩ, (2.21)

where ρD is the density of the drifting oscillators with phase θ given by the frequency Ω.
ρD(θ; Ω) is proportional to |ω|−1, i.e. ρD(θ; Ω) = Ω̂

2π |ω|−1, where ω̂ is the frequency of
the periodical solution of θ (Tanaka et al., 1997b). Via expanding the cosine function
by the Bessel functions and the Poicare-Lindstead method (Tanaka et al., 1997b),
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Chapter 2 Mean-field analysis and stability

Eq. (2.21) can be simplified as

rI,D
drift =

∫
|Ω|>ΩP,D

∫ T̂

0
cos(θ(t, Ω))g(Ω)dtdΩ, (2.22)

where T̂ = 2π
ω̂ is the period of the running periodical solution of θ.

Based on this theoretical framework, Tanaka et al. (Tanaka et al., 1997a) studied
a general distribution of g(Ω) with extended tails and solved the self-consistent
equations of the order parameter r analytically.

2.2 Basin stability

In the last decades, much research effort has been devoted to explore how the
synchronizability of network coupled oscillators depends on network topology (Pecora
and Carroll, 1998; Arenas et al., 2008), but from a local perspective, related to
the spectral properties of the underlying structure. The seminal work by Wiley,
Strogatz and Girvan (Wiley et al., 2006) initiated a new line of research by proposing
a new stability approach that is related to the size of the basin of attraction for a
synchronous state. Additional, they proposed two questions to be answered: How
likely will a network fall into sync, starting from random initial conditions? And how
does the likelihood of synchronization depend on the network topology? Alternatively,
Menck et al. (Menck and Kurths, 2012; Menck et al., 2013) addressed the first
questions differently: How likely a network returns to the synchronous state after
random perturbations? Substantially, Menck et al. (Menck et al., 2014) uncovered the
correlation between basin stability and the network architecture in the second-order
Kuramoto model.

Menck et al. (Menck et al., 2014) quantified the stability of network coupled
oscillators in terms of the basin of attraction of a synchronized state against large
perturbations, termed basin stability, and intended to find the correlation between
the stability and underlying structures.

The traditional linear stability is too local to adequately quantify how stable a state
is (Menck et al., 2013). Menck et al. (Menck and Kurths, 2012; Menck et al., 2013)
profound a new concept, termed basin stability, which quantifies the likelihood that
a system will retain a desirable state after even large perturbations. Basin stability
is non-local, nonlinear and easily applicable to high-dimensional systems, even with
fractal basin boundaries. It is related to the volume of the basin of attraction.
Although volumes of basins have been studied before, the concept has not yet been
applied on complex networks (Menck and Kurths, 2012; Menck et al., 2013; Menck
et al., 2014). Therefore, basin stability is a widely applicable tool.

Menck et al. (Menck and Kurths, 2012; Menck et al., 2014) implemented the novel
concept on the second-order Kuramoto model. To quantify how stable a synchronous
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state is against large perturbations depending on network topologies, they defined
basin stability BSi at each node i as (Menck et al., 2014)

BSi =
∫

χ(θi, ωi)ρ(θi, ωi)dθidωi, with θj = θ∗
j and ωj = 0 for all j �= i (2.23)

where χ(θi, ωi) is an indicator function with χ(θi, ωi) = 1 if (θi, ωi) belong to the
basin of attraction of the synchronous state, and χ(θi, ωi) = 0, otherwise. ρ is a
perturbation density function with the normalization condition

∫
ρ(θi, ωi)dθidωi = 1.

θj = θ∗
j and ωj = 0 for all j �= i indicate that initially all nodes in the synchronous

state except i. The value of BSi at node i expresses the likelihood that the system
returns to the synchronous state after i having been subjected to large perturbations.
BSi = 0 when the node i is unstable, and BSi = 1 when i is globally stable.

Numerically, basin stability BSi is estimated by means of a Monte-Carlo method.
More specifically, the system of equations is integrated independently for Mi different
initial conditions drawn according to ρ, one can count the number Si of initial
conditions at which the system converges to the synchronous state and calculate
basin stability as (Menck et al., 2014)

BSi = Si

Mi
. (2.24)

This is a repeated Bernoulli experiment, and thus the standard error e of basin
stability follows (Menck et al., 2014)

e =
√BSi(1 − BSi)

Mi
. (2.25)

e is independent of the system’s dimension.
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Chapter 3

Low-dimensional behavior

3.1 Introduction

In 2008, Ott and Antonsen (Ott and Antonsen, 2008) introduced an ansatz for studying
the behaviour of globally coupled oscillators. The Ott-Antonsen ansatz has been
considered to investigate continuously time-dependent collective behavior (Petkoski
and Stefanovska, 2012) and for the study of delay heterogeneity (Lee et al., 2009). In
addition, such ansatz has enabled to find nonuniversal transitions to synchrony in the
model with a phase lag for certain unimodal frequency distributions (Omelchenko
and Wolfrum, 2012).

Although these works have provided important contributions to synchronization
theory, only oscillators with global coupling have been taken into account (Omelchenko
and Wolfrum, 2012; Lai and Porter, 2013; Iatsenko et al., 2013; Lee et al., 2009;
Petkoski and Stefanovska, 2012). Thus, a natural extension of these works can
investigate how these results change when different coupling schemes are introduced.
Barlev et al. (Barlev et al., 2011) studied the dynamics of coupled phase oscillators,
but such approach involved integrating N ordinary differential equations. To overcome
this limitation, in this report we generalize the Ott-Antonsen ansatz to complex
networks in the continuum limit to investigate a time-dependent phase transition to
synchronization. We reduce the dimension of the system of equations from N to the
number of possible degrees in the network.

The Kuramoto model with inertia has been widely used as shown in Chapter 1.
Therefore a theory that investigates the low-dimensional character of such systems
giving access to their time-dependent behavior can bring important new insights
into the study of the second-order Kuramoto model. We substantially address this
problem for what is perhaps the simplest choice of inertia term. In this case, the
Fourier series expansion, the key approach of the Ott-Antonsen ansatz, no longer
applies directly. Thus, a generalized framework for the second derivative needs to
be developed, as already pointed out in recent studies (Sonnenschein et al., 2013;
Lai and Porter, 2013). In order to fill this gap, we derive self-consistent equations
and seek the time evolution of the order parameter. Comparison of analytical and
simulation results shows a good agreement. Our results shed light on the impact of
the topology on the global dynamics.
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In Sec. 3.2, we obtain the low-dimensional behavior of the first-order Kuramoto
model in complex networks. In Sec. 3.3, we investigate the extension of the ansatz to
the Kuramoto model with inertia. Sec. 3.4 shows the conclusions.

The findings presented here have been published in (Ji et al., 2014b).

3.2 First-order Kuramoto model

We consider the first-order Kuramoto model on an unweighted and undirected complex
network. The state of oscillator i is denoted by its phase θi(i = 1, 2, · · · , N), and the
governing equation of the model (Kuramoto, 1975) is

dθi

dt
= Ωi + λ

N∑
j=1

Aij sin(θj − θi), (3.1)

where Ωi stands for the natural frequency of oscillator i, which is distributed according
to some probability density g(Ω), λ specifies the homogeneous coupling strength
between interconnected nodes, and Aij is the element of the adjacency matrix A, i.e.,
Aij = 1 if nodes i and j are connected or Aij = 0, otherwise.

In uncorrelated networks, if N approaches infinity (in thermodynamic limit), the
probability of selecting an edge connected to a node with degree k, natural frequency
Ω, and phase θ at time t is kP (k)ρ(k; Ω, θ, t)/ 〈k〉, where we define P (k) as the degree
distribution and ρ(k; Ω, θ, t) as the probability distribution function of nodes with
degree k that have natural frequency Ω and phase θ at time t and 〈k〉 the average
degree (Ji et al., 2013; Peron and Rodrigues, 2012a; Ichinomiya, 2004).

In complex networks, in order to understand the dynamics of the system, it is
natural to use the definition of order parameter r (Ichinomiya, 2004) as

reiψ =
∑

i kie
iθi∑

i ki
(3.2)

instead of the definition reiψ =
∑

i
eiθi

N , which accounts for the mean-field in the fully
connected graph regime.

The magnitude r ∈ [0, 1] quantifies the phase coherence, while ψ denotes the average
phase of the system. In particular, r  0, if the phases are randomly distributed
over [0, 2π] and all nodes oscillate at its natural frequency. On the other hand, if all
oscillators run as a giant component, r  1. The system is known to exhibit a phase
transition from the asynchronous state (r  0) to the synchronous one (r  1) at a
certain critical value λc characterizing the onset of partial synchronization and, for
unimodal and symmetric frequency distributions g(Ω), the transition is continuous.
It turns out that for uncorrelated networks, λc is given by λc = 2

πg(Ω)λmax
(Restrepo

et al., 2005), where λmax is the maximal eigenvalue of the adjacency matrix.
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Figure 3.1: The order parameter as a function of time. Numerical simulations of the first-order
Kuramoto model [Eq. (3.1)] are conducted on a scale-free network with N = 10000,
P (k) ∝ k−3 and k ≥ 5. The coupling strength λ = 2.5 and θ are randomly selected
from −π to π at t = 0.

To characterize the macroscopic behavior of the oscillators, in the continuum limit,
we consider the order parameter

reiψ =
∫

dk

∫
dΩ
∫

dθP (k)kρ(k; Ω, θ, t)eiθ/

∫
dkP (k)k

=
∫

dkP (k)krkeiψk/

∫
dkP (k)k, (3.3)

where rk quantifies the local synchrony of oscillators with degree k

rkeiψk =
∫

dΩ
∫

dθρ(k; Ω, θ, t)eiθ. (3.4)

For simplicity, we assume that the natural frequencies Ωi are distributed according
to an unimodal and symmetric Cauchy-Lorentz distribution (g(Ω)) with zero mean.
We set ψ = ψk = 0 without loss of generality (Strogatz, 2000). The coupling term in
Eq. (3.1) can be written as

∑N
j=1 Aij sin(θj − θi) = kirIm[eψ−θi ] (Ichinomiya, 2004;

Peron and Rodrigues, 2012a; Ji et al., 2013). Thus the governing Eq. (3.1) can be
rewritten as

dθ

dt
= Ω + λkr

e−iθ − eiθ

2i
, (3.5)
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Chapter 3 Low-dimensional behavior

which shows that the oscillators are coupled via the mean-field order parameter r.
The restoring force tends to bring each oscillator towards equilibrium and the amount
of forcing is proportional to its degree k.

The evolution of ρ(k; Ω, θ, t) is governed by the continuity equation, i.e., ∂ρ
∂t + ∂ρv

∂θ =
0, where v(k; Ω, θ, t) = dθ

dt . We use the Ott-Antonsen ansatz (Ott and Antonsen, 2008)
and expand the density function in a Fourier series, i.e.,

ρ(k; Ω, θ, t) = g(Ω)
2π

{
1 +

[ ∞∑
n=1

[a(k; Ω, t)]neinθ + c.c.

]}
. (3.6)

where c.c stands for the complex conjugate. Substituting the expansion into Eqs. (3.4)
and in the continuity equation, we get that rk = a(k) and rk evolve according to

drk

dt
= −rk + Kkr

2 (1 − r2
k) for k ∈ [kmin, kmax] (3.7)

where kmin and kmax are the minimum and the maximum degree, respectively. This
method works efficiently compared to the reference (Barlev et al., 2011) especially
when the power law behavior has some cutoff (Del Genio et al., 2011). a(k) therein
allows a clear physical interpretation as measuring the internal synchrony of the
nodes with the same degree k. The global order parameter r is a sum of different rk

multiplied by their degree and degree distribution (see Eq. (3.3)).
To verify the accuracy of the time evolution of the order parameter rk (see Eq. (3.7)),

we compare the time evolution of the order parameter r with numerical simulations.
Eqs. (3.7) and (3.13) are solved by a 4th order Runge-Kutta method with time step
h = 0.01 and with the Cauchy-Lorentz distribution g(Ω) = 1

π(1+Ω2) . Fig. 3.1 shows
the results. Initially, the values of oscillators are selected at random from π to −π,
which implies that the initial value of each rk(0) tends to zero. In our simulations,
we set rk(0) = 0.001. As we can see in Fig. 3.1, the results obtained through the
solution of the reduced system in Eq. (3.7) are in good agreement with the numerical
simulations.

3.3 Kuramoto model with inertia

The analysis above shows the remarkable usefulness of the Ott-Antonsen ansatz of
the first-order Kuramoto model in complex networks, but what happens when we
consider the Kuramoto model with inertia? The simplest and most straightforward
way is to include one unity inertia term. This leads to the mean-field character of the
second-order Kuramoto model (Ji et al., 2013; Strogatz, 2014; Acebrón et al., 2005;
Dörfler et al., 2013)

d2θi

dt2 = −dθi

dt
+ Ωi + λkr sin(−θi), (3.8)

where k varies from the minimal to the maximal degree.
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3.3 Kuramoto model with inertia

As shown in Eq. (3.6), the main idea of the Ott-Antonsen ansatz is to expand
the probability density ρ(k; Ω, θ, t) in a Fourier series in θ. For the Kuramoto model
with inertia, the probability density ρ(k; Ω, θ, θ̇, t) is also a function of the additional
term θ̇. As θ̇ varies from −∞ to ∞, it is not possible to follow the same procedure
to derive the nonlinear evolution of the order parameter r. Due to the existence of
the inertia term and the bistable area of the stability diagram (Strogatz, 2014), we
rewrite Eq. (3.7) with two functions Λ(λk) and f(λk, r) ≡ a(λk)brc and get

drk

dt
= −rk + Λ(λk)r(1 − r2

k)
2 + f(λk, rk), (3.9)

where Λ(λk) indicates the effective coupling strength and a, b and c are constant.
f(λk, r) is a high-order term and is used to adjust the stationary solution. For the
Kuramoto model without inertia, we get Λ(λk) = λk and a = 0.

In order to solve Eq. (3.9), we first investigate the nonlinear dynamics on fully
connected networks. In this case, we normalize the coupling strength from λN to λ.
For the sake of convenience, we change the time scale to τ =

√
λrt, which yields

d2θi

dτ2 = −β
dθi

dτ
+ Ii + sin(−θi), (3.10)

where β ≡ 1/
√

λr and Ii ≡ Ωi/(λr). Thus β is identical for all oscillators and
the diversity of Ii is due to its natural frequency. According to the parameter
space (Ji et al., 2013; Strogatz, 2014), nodes are divided into three groups. Melnikov’s
method (Guckenheimer and Holmes, 1983) is used to show that oscillators are within
a stable fixed point area as β → 0 and I ≤ 4β/π; only limit-cycle oscillators exist for
I > 1; limit cycles and stable fixed points coexist otherwise.

Let us first investigate the stationary states of phases θ and θ̇ in terms of the natural
frequencies Ω separately. In Fig. 3.2, every single point represents the state of one
oscillator at time T (T >> 1) using simulations with N = 10000 nodes and degree
λ = 10. It is interesting to find that instead of three different regions mentioned
above, the oscillators fall into either of the following two groups. (i) If the natural
frequencies of nodes are within the boundary of the phase synchronization regime
[Ωlower, Ωupper] ≡ [−4

√
λr/π, 4

√
λr/π] which is the same as the above stable fixed

points area, these nodes converge to fixed points and the stationary state of phases
are functions of Ω, which are equal to arcsin(Ω/(λr)). This boundary is smaller
than that of the Kuramoto model, in which oscillators are in the locked state for all
|Ω| ≤ λr (Strogatz, 2000). (ii) In contrast, the oscillators with |Ω| > 4

√
λr/π are drift.

Thus, in networks, instead of three different areas of single pendulum model, only two
distinct areas could exist: fixed point and limit cycle. Nodes with the same natural
frequency are either converging to single fixed points or oscillating periodically; and
nodes always return to previous states even after large perturbations.

To investigate how the phase synchronization boundary changes with different
coupling strengths, we project the Fig. 3.2 on the I-β parameter space and color the
oscillators according to their stationary states in the parameter space. A comparison
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Chapter 3 Low-dimensional behavior

Figure 3.2: Phases θ and frequencies θ̇ vs natural frequencies Ω, which shows that phase-
locked oscillators only exist in red area but not in the yellow area. The read area
indicates parameter combination of stable fixed point. Stable fixed points and
limit cycles coexist in the yellow area. The white area represents the existence of
limit cycles. The stationary value of the order parameter r could be calculated
by numerically integrating the second-order Kuramoto model (3.8) or Eq. (3.12).
Thus nodes with natural frequencies between [−4

√
λr/π, 4

√
λr/π] = [−3.57, 3.57]

are synchronized. The boundary of bistable region are specified by |Ω| within
[4

√
λr/π, λr] = [3.57, 7.18].
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Figure 3.3: The definitions of three shaded areas are the same as that in Fig. 3.2 using the
second-order Kuramoto model (3.8). Two boundaries are compared between coupling
strengths 10 and 30. If oscillators are in locked state with black color and with
Chartreuse color otherwise. Increasing the coupling strength λ further, the vertical
line moves to the left.

between the dynamics with average degree 10 and that with 30 is shown in Fig. 3.3.
We can see that oscillators with the same coupling share the same β axis and the
diversity of I is due to the distribution of the natural frequencies Ω. All synchronized
nodes are inside the synchronized area, which is at the right side of the line I = 4β/π.

Therefore, after substituting the boundaries of the synchronized natural frequencies
[Ωlower, Ωupper] and the Cauchy-Lorentz distribution into the definition of the order
parameter r,

r =
∫ Ωupper

Ωlower

cos (θs)g(Ω)dΩ , (3.11)

where θs denotes the synchronized oscillator sin (θs) = I. Performing some mathe-
matical manipulations, we get

r = 2
πλr

[√
1 + (λr)2 arctan

(
4
√

λr + (λr)3√
(πλr)2 − 16λr

)
− arcsin

( 4
π

√
λr

)]
. (3.12)

Due to the difference of boundaries between the first-order Kuramoto model (
proportional to λ) and the second-order Kuramoto model (proportional to 4

√
λ/π),
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Chapter 3 Low-dimensional behavior

Figure 3.4: f(λ, r) as a function of stationary solution of self-consistent equation colored in
red and the fitting curve colored in blue.

we set Λ(λ) = 4
√

λ/π. When ṙ = 0,

f(λ, r) = r − 4
√

λr(1 − r2)/(2π), (3.13)

and this stationary solution should be met by the self-consistent Eq. (3.12). Here, we
use numerical methods to calculate the values of a, b and c. As shown in Fig. 3.4,
after substituting the stationary solutions λ and r of Eq. (3.12) into Eq. (3.13), f(λ, r)
is colored in red and we get the values a = 0.389, b = 1/4 and c = 3. When r is small,
f(λ, r) is close to 0 and cannot influence the time evolution of the order parameter
r(t), or vary the stationary solution, otherwise.

Let us consider again the nonlinear evolution of the order parameter r in complex
networks. From the above analysis, we get that Λ(λk) = 4

√
λk/π. To check the

validity of this assumption, we compare the stationary solution with simulation
results in Fig. 3.5. The theoretical predictions (green lines derived from Eq. (3.9)
with effective coupling and f(λk, r)) are in agreement with red lines of numerical
simulations.

The nonlinear evolution of r(t) is illustrated in Fig. 3.6, for a selection of coupling
strengths λ. Initial values of θi and θ̇i are the same as in Fig. 3.5. For the order
parameter formulation the initial value of r is set to a small value (r(0) ≪ 1). The r
formulation of Eq. (3.9) does not only reproduce the stationary states in Fig. 3.5, but
also matches the transition to synchrony. The analytic results and simulation results
are in good agreement.
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Figure 3.5: Order parameter r vs coupling strengths λ in the second-order Kuramoto model (3.8)
in scale-free networks. The red curves indicate the results from simulations on the
same network as in fig. 3.1. For each coupling, initial values of θ randomly select
from [−π, π] and we set θ̇ = 0. The green dots shows analytic prediction of the
stationary r(t) based on the self-consistent Eq. (3.9).
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Figure 3.6: Order parameter r(t) vs time t in the second-order Kuramoto model (3.8) in
scale-free networks. The simulations are conducted on the same network and the
coupling strength λ = 1 and λ = 3. Blue and yellow dots are analytic results got
from Eq. (3.9). In simulations, initial values of θ are randomly selected from −π to
π and that of θ̇ close to 0.
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3.4 Conclusions

In conclusion, we proposed a generalization for the Ott-Antonsen ansatz to com-
plex networks with a Cauchy-Lorentz distribution of the natural frequency for the
Kuramoto model. Compared to the ensemble approach (Barlev et al., 2011), the
dimension of ordinary differential equations was reduced from N to the number
of possible degrees in the network. We have investigated the collective dynamics
of the Kuramoto model with inertia and found the synchronization boundary is[
−4

√
λr/π, 4

√
λr/π

]
instead of [−λr, λr] as in the Kurmoto model without inertia.

Based on these results, we analytically derived self-consistent equations for the order
parameter and nonlinear time-dependent order parameter. The agreement between
the analytical and simulation results is excellent.
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Chapter 4

Cluster explosive synchronization in
complex networks

4.1 Introduction

Synchronization plays a prominent role in science, nature, social life, and engineer-
ing (Pikovsky et al., 2003; Strogatz, 2004; Arenas et al., 2008). In recent years, much
research has been devoted to investigate the effects of network topology on the emer-
gence of synchronization (Arenas et al., 2008). For instance, the Kuramoto oscillators
undergo a second-order phase transition to synchronization and the onset of synchro-
nization is determined by the largest eigenvalue of the adjacency matrix (Restrepo
et al., 2005).

Until 2011, only continuous synchronization transitions were known to occur in
networks of first-order Kuramoto oscillators (Arenas et al., 2008). However, Gómez-
Gardenez et al. (Gómez-Gardenes et al., 2011) reported the first observation of
discontinuous phase synchronization transitions in scale-free networks, triggering
further works on the subject (Leyva et al., 2012; Peron and Rodrigues, 2012b; Liu
et al., 2013; Zhang et al., 2013; Su et al., 2013; Zou et al., 2014; Skardal et al.,
2013; Skardal and Arenas, 2014; Sonnenschein et al., 2013). Gómez-Gardenez et
al. (Gómez-Gardenes et al., 2011) considered a new kind of interplay between the
connectivity pattern and the dynamics. More specifically, the authors considered
the natural frequencies of the oscillators to be positively correlated with the degree
distribution of the network by assigning to each node its own degree as its natural
frequency, rather than drawing it from a given symmetric distribution independent of
network structure, as performed in previous works (Arenas et al., 2008).

The phenomenon of explosive synchronization was proved to be an effect exclusively
due to the microscopic correlation between the network topology and the intrinsic
dynamics of each oscillator. Abrupt phase transitions were also previously observed
in other dynamical processes in complex networks, such as in the context of explosive
percolation in random (Achlioptas et al., 2009) and scale-free (Cho et al., 2009;
Radicchi and Fortunato, 2009) networks. Similar to explosive synchronization, the
explosive percolation has also a dynamical constraint related to the connectivity
patterns, which is called the Achlioptas process (Achlioptas et al., 2009). However,
Costa et al. (Costa et al., 2010) considered a representative model and demonstrated
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Chapter 4 Cluster explosive synchronization in complex networks

that the explosive percolation transition is actually a continuous, second-order phase
transition with a uniquely small critical exponent of the giant cluster size.

Relevant to model several physical systems (Rohden et al., 2012; Acebrón and
Spigler, 1998; Dörfler and Bullo, 2012; Trees et al., 2005), the second-order Kuramoto
model has also been investigated under the constraint of correlation between the
natural frequency and the degree distribution. Recently, we studied analytically
and numerically how the inclusion of an inertia term in the second-order Kuramoto
model influences the network dynamics (Ji et al., 2013). We observed a discontinuous
synchronization transition as in the case of the second-order Kuramoto model in a
fully connected graph with unimodal symmetric frequency distributions (Acebrón
and Spigler, 1998). However, differently from that observed in (Gómez-Gardenes
et al., 2011), where the authors found that nodes in scale-free networks join the
synchronous component abruptly at the same coupling strength, we verified that
nodes perform a cascade of transitions toward the synchronous state grouped into
clusters consisting of nodes with the same degree. We call this phenomenon cluster
explosive synchronization (CES).

It is important to remark that different kinds of cluster-like synchronization transi-
tions have been widely studied in the context of network theory in which patterns or
sets of synchronized elements emerge (Pecora et al., 2014; Zhou and Kurths, 2006),
when ensembles of coupled oscillators are nonidentical (Skardal et al., 2011) or under
the influence of noise (Lai and Porter, 2013) or delay (DHuys et al., 2008). Eigenvalue
decomposition can also be applied to analyze clusters of synchronized oscillators (Alle-
feld et al., 2007). Moreover, recent investigations on cluster synchronization have
revealed the interplay of the symmetry in the synchronization patterns (Pecora et al.,
2014; Nicosia et al., 2013; DHuys et al., 2008). Here, the term “cluster” is redefined
and nodes with the same degree are considered to pertain to the same cluster, in
contrast to the common definition of a cluster of nodes consisting of oscillators with
a common phase (Skardal et al., 2011). Our definition is based on the dynamical
behavior observed in the system composed of second-order Kuramoto oscillators
whose natural frequency is correlated with the network structure (Ji et al., 2013).

The early works on explosive synchronization (e.g. (Coutinho et al., 2013; Leyva
et al., 2012; Peron and Rodrigues, 2012a)) suggested that the correlation between
frequency and degree distributions is the only condition required for the emergence of a
discontinuous synchronization transition in scale-free networks. However, subsequent
papers have shown that different criteria to set the frequency mismatch between
the oscillators (Zhu et al., 2013), the presence of time-delay (Peron and Rodrigues,
2012b), non-vanishing degree-degree correlation (Liu et al., 2013; Zhu et al., 2013;
Li et al., 2013) or the inclusion of noise (Sonnenschein and Schimansky-Geier, 2013)
can dramatically change the type of the phase transitions, even in the regime of fully
connected graphs (Leyva et al., 2013; Zhu et al., 2013).

In the case of degree-degree correlation, Li et al. (Li et al., 2013) verified that
assortative scale-free networks no longer undergo a discontinuous transition, even
if the network presents a positive correlation between structural and dynamical
properties. This behavior was also observed in the synchronization of FitzHugh-
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Nagumo (FHN) oscillators coupled in scale-free networks under the constraint of
correlating frequencies and degrees (Chen et al., 2013). Furthermore, Zhu et al. (Zhu
et al., 2013) found that discontinuous transitions only emerge in networks subjected
simultaneously to negative degree-degree and frequency-frequency correlations. Effects
of degree-degree correlation on general network synchronization phenomena were also
analyzed in literature (cf. (Sorrentino et al., 2007; Di Bernardo et al., 2007; Chavez
et al., 2006) for studies in the context of the master stability function formalism).
For instance, Bernardo et al. (Di Bernardo et al., 2007) studied scale-free networks of
identical Rössler oscillators and showed that disassortative mixing enhances network
synchronization, when compared with uncorrelated networks (Di Bernardo et al., 2007).
On the other hand, regarding the synchronization of weighted networks, assortative
mixing can enhance synchronization, depending on the weighting procedure (Chavez
et al., 2006).

All these works considered only the first-order Kuramoto model. The influence of
network structure on the emergence of explosive synchronization in the second-order
Kuramoto model proposed in (Ji et al., 2013) has not been addressed yet, since only
uncorrelated networks have been considered (Ji et al., 2013; Ji et al., 2014a). Among
important network properties, the degree-degree correlation is observed in several
complex networks (Newman, 2003; Costa et al., 2010; Newman, 2002) and it plays
a fundamental role in many dynamical processes, such as epidemic spreading and
synchronization (Barrat et al., 2008). For example, the degree-degree correlation
can change the type of phase transitions of the first-order Kuramoto model with a
positive correlation between frequency and degree distributions (Zhu et al., 2013; Li
et al., 2013). In this way, since the frequency mismatch between oscillators has been
shown to play a crucial role in the emergence of abrupt transitions in the first-order
Kuramoto model, it is natural to ask about the effects of degree-degree correlations
on the overall dynamics in models with inertia.

Here, we extend the previous findings presented in (Gómez-Gardenes et al., 2011).
More specifically, we analyze the parameter space for both branches in the hysteretic
synchronization diagram, showing how the transition from a stable limit cycle to
stable fixed points takes place as a function of the node degree and coupling strength.
Furthermore, we also show that the critical coupling strength for the onset of syn-
chronization, considering the adiabatic increasing of the coupling strength, decreases
as a function of the minimum degree of the network. In addition, considering the
same increase of the coupling strength, we show that the onset of synchronization
decreases when the exponent of power-law degree distribution is increased. However,
the onset of synchronization is weakly affected by the exponent of the power-law
degree distribution when the coupling strength is decreased adiabatically.

Moreover, in order to compare with different topologies, we extend the results for
Watts-Strogatz networks by tuning a single rewiring parameter p ∈ [0, 1]. A first-order
phase transition appears for small p, while for large p, the first-order transition is not
obvious. If the transition behavior to synchronization is obtained from the relaxation
time, the time monotonically increases with p, which is a counter-intuitive result
compared to (Hong et al., 2002).
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To address the question of how robust discontinuous transitions are against degree-
frequency correlations, we include an additional quenched disorder on the natural
frequencies. More precisely, we show that the phase coherence decreases, contributing
to greatly increasing the irreversibility of the phase transition.

Finally, we investigate the effect of assortative mixing on phase transitions. We
find that the synchronization diagrams have a strong dependence on the network
assortativity, but in a different fashion compared to the first-order model (Li et al.,
2013). In fact, for negative and positive assortativity values, the synchronization
is observed to be discontinuous, depending on the damping coefficient. Moreover,
the upper branch in the synchronization diagrams associated to the case in which
the coupling is decreased is barely affected by different assortativity values, again
in contrast with the first-order Kuramoto model (Sendin̈a-Nadal et al., 2015; Chen
et al., 2013; Li et al., 2013; Zhu et al., 2013; Zhang et al., 2013; Su et al., 2013;
Liu et al., 2013). In other words, we show here that one is able to control the
hysteretic behaviour of the second-order Kuramoto model by tuning the network
properties, the phenomenon that was not investigated before. In order to compare
with different choices of frequencies distributions, we also investigate the dynamics
of damped Kuramoto oscillators in assortative networks using unimodal and even
distributions, without being correlated with the local topology. Similarly, as in the
case of frequencies proportional to degrees, we again observe very similar behavior for
the onset of synchronization over networks with different degree-degree correlations.

This chapter is organized as follows: In section 4.2 we define the second-order
Kuramoto model with correlation between the frequency and degree distributions
in uncorrelated networks. In particular, Sec. 4.2.1 is devoted to the derivation of
the self-consistent equations to calculate the order parameter as a function of the
coupling strength in order to determine the synchronized boundaries in Sec. 4.2.2. In
Sec. 4.2.3 and Sec. 4.2.4, we present our analytical and numerical results on scale-free
networks and Watts-Strogatz networks, respectively. In Sec. 4.2.5, we investigate the
influence of quenched disorder. In section 4.3, we study the second-order Kuramoto
model in networks with degree-degree correlations, i.e., non-vanishing assortativity.
Our final conclusions are shown in Sec. 4.4.

Some of the findings presented here have been published in (Ji et al., 2013; Ji et al.,
2014a; Peron et al., 2015).

4.2 Mean-field theory

The second-order Kuramoto model consists of a population of N coupled oscillators
whose dynamics are governed by phase equations of the following universal form (2.1).
In order to get analytical insights on how the topology effects the dynamics, we assume
that the natural frequency Ωi of a node i is proportional to its degree according to

Ωi = D(ki − 〈k〉), (4.1)
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where D is the strength of the connection between the natural frequency and degree.
In analogy with power grid networks modeled by the second-order Kuramoto model,
the choice of Ωi as in Eq. (4.1) assumes that in scale-free topologies, a high number
of nodes play the role of consumers (nodes with ki < 〈k〉) and nodes with high
degrees play the role of power producers (nodes with ki > 〈k〉). Note that the relation∑

j Ωj = 0 is satisfied, which means that the total consumed power (Ωi < 0) is
equivalent to the total generated power (Ωi > 0).

Substituting Eq. (4.1) in Eq. (2.1), we have (Ji et al., 2013; Ji et al., 2014a)

d2θi

dt2 = −α
dθi

dt
+ D(ki − 〈k〉) + λ

N∑
j=1

Aij sin(θj − θi). (4.2)

In this case, all oscillators try to rotate independently at their own natural frequencies,
while the coupling λ tends to synchronize them to a common phase. The local
connection between oscillators is defined by the adjacency matrix A.

To study the system analytically in the continuum limit, we define ρ(θ, t; k) as the
density of oscillators with phase θ at time t, for a given degree k, which is normalized
as∫ 2π

0
ρ(θ, t; k)dθ = 1. (4.3)

In uncorrelated complex networks, the approximation Aij = kikj/(N 〈k〉) is made and
a randomly selected edge connects to a node with degree k and phase θ at time t with
the probability kP (k)ρ(θ, t; k)/〈k〉, where P (k) is the degree distribution and 〈k〉 is
the average degree. The coupling term at the right-hand side of Eq. (4.2) is rewritten
accordingly, i.e.

∑N
j=1 Aij sin (θj − θi) = ∑N

j=1 kikj sin (θj − θi)/(N 〈k〉), which in the
continuum limit takes the form k

∫ ∫
P (k′)k′ρ(θ′, t; k′) sin (θ′ − θ)dk′dθ′/ 〈k〉. Thus,

the continuum version of Eq. (4.2) is given by

d2θ

dt2 = −α
dθ

dt
+ D(k − 〈k〉) + λk

〈k〉
∫ ∫

k′P (k′)ρ(θ′, t; k′) sin(θ′ − θ)dθ′dk′. (4.4)

In order to visualize the dynamics of the phases, it is natural to follow (Re-
strepo et al., 2005; Ichinomiya, 2004) and define the order parameter r as reiψ(t) =∑

i kie
iθi(t)/

∑
i ki, where ki is the degree of the node i and ψ is the average phase.

This order parameter is different from reiψ(t) = ∑i eiθi(t)/N , which accounts for the
mean-field in fully-connected graphs (Kuramoto, 2003).

The order parameter r quantifies the phase coherence. For instance, if the initial
values of θ and θ̇ are randomly drawn from a uniform distribution and each oscillator
rotates at its intrinsic frequency, then r ≈ 0. On the other hand, if the oscillators act
as a giant synchronous component, r ≈ 1.

In the continuum limit, the order parameter r can be expressed as

reiψ = 1
〈k〉
∫ ∫

P (k)kρ(θ, t; k)eiθ(t)dθdk. (4.5)
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Seeking to rewrite the continuum version in terms of the mean-field quantities r
and ψ, we multiply both sides of Eq. (4.5) by e−iθ, take the imaginary part, and we
include it in Eq. (4.4), obtaining

θ̈ = −αθ̇ + D(k − 〈k〉) + kλr sin(ψ − θ), (4.6)

which is the same equation that describes the motion of a damped driven pendulum.
In the mean-field approach, each oscillator appears to be uncoupled from each

other, and they interact with other oscillators only through the mean-field quantities
r and ψ. The phase θ is pulled towards the mean-phase ψ. In the case of positive
correlation between frequencies and degree, we cannot set ψ as constant, since the
frequency distribution is not necessarily symmetric.

To derive sufficient conditions for synchronization, we choose the reference frame
that rotates with the average phase ψ of the system, i.e., we define φ(t) = θ(t) − ψ(t).
If φ̇(t) = 0, the oscillator is synchronized with the mean field. Defining C(λr) ≡
(ψ̈ + αψ̇)/D and substituting the new variable φ(t) in the mean-field equation (4.6),
we obtain (Ji et al., 2013)

φ̈ = −αφ̇ + D[k − 〈k〉 − C(λr)] − kλr sin φ. (4.7)

4.2.1 Order Parameter

The solutions of Eq. (4.7) exhibit two types of long-term behavior, depending on the
size of natural frequency D(k − 〈k〉 − C(λr)) relative to kλr. To obtain sufficient
conditions for the existence of the synchronous solution of Eq. (4.7), we derive the
self-consistent equation for the order parameter r, which can be written as the sum
of the contribution rlock due to the oscillators that are phase-locked to the mean-field
and the contribution of non-locked drift oscillators rdrift, i.e., r = rlock +rdrift (Tanaka
et al., 1997a) (see section 2.1.3).

Locked order parameter

Let us assume that all locked oscillators have a degree k in the range k ∈ [k1, k2].
These oscillators are characterized by φ̇ = φ̈ = 0 and approach a stable fixed point
defined implicitly by φ = arcsin

( |D(k−〈k〉−C(λr))|
kλr

)
, which is a k-dependent constant

phase. Correspondingly, ρ(φ, t; k) is a time-independent single-peaked distribution
and

ρ(φ; k) = δ

[
φ − arcsin

(
D (k − 〈k〉 − C(λr))

kλr

)]
for k ∈ [k1, k2] , (4.8)

where δ is the Dirac delta function. Therefore, the contribution of the locked oscillators
is expressed as

rlock = 1
〈k〉
∫ k2

k1

∫ 2π

0
P (k)keiφ(t)δ

[
φ − arcsin

(
D(k − 〈k〉 − C(λr))

kλr

)]
dφdk,
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(4.9)

whose real part yields

rlock = 1
〈k〉
∫ k2

k1
kP (k)

√
1 −

(
D (k − 〈k〉 − C(λr))

kλr

)2
dk. (4.10)

We consider first a scale-free network with a degree distribution given by P (k) =
A(γ)k−γ , where A(γ) is the normalization factor and γ = 3. Substituting the degree
distribution P (k) and applying the variable transformation x(k) = D(k − 〈k〉 −
C(λr))/λkr, we obtain the following implicit equation for the contribution of the
locked oscillators

rlock = A(γ)
2D 〈k〉

[(
x(k2)

√
1 − x2(k2)

)
+ arcsin x(k2)

−
(

x(k1)
√

1 − x2(k1) + arcsin x(k2)
)]

.

(4.11)

Drift order parameter

We analyze the drifting oscillators for k ∈ kdrift ≡ [kmin, k1] ∪ [k2, kmax], where kmin
denotes the minimal degree and kmax is the maximal degree. The phase of the drifting
oscillators rotates with period T in the stationary state, so that their density ρ(φ, t; k)
satisfies ρ ∼ |φ̇|−1 (Tanaka et al., 1997a). As

∮
ρ(φ; k)dφ =

∫ T
0 ρ(φ; k)φ̇dt = 1, this

implies ρ(φ; k) = T −1|φ̇|−1 = Ω
2π |φ̇|−1, where Ω is the oscillating frequency of the

running periodic solution of φ (Tanaka et al., 1997a). After substituting ρ(φ; k) into
Eq. (4.5), we get

rdrift = 1
2π 〈k〉

∫
k∈kdrift

∫ T

0
kP (k)Ω|φ̇|−1eiφ(t)φ̇dtdk. (4.12)

Without loss of generality, we assume that φ̇ < 0 for k ∈ [kmin, k1] and φ̇ > 0 for
k ∈ [k2, kmax]. Thus the real part of equation (4.12) becomes

rdrift = 1
2π 〈k〉

(
−
∫ k1

kmin
+
∫ kmax

k2

)∫ T

0
kP (k)Ω cos (φ)dtdk. (4.13)

A perturbation approximation of the self-consistent equations enables us to treat
Eq. (4.13) analytically. After performing some manipulations motivated by (Tanaka
et al., 1997a), we get

rdrift =
(

−
∫ k1

kmin
+
∫ kmax

k2

)
−rk2λα4P (k)

D3 [k − 〈k〉 − C(λr)]3 〈k〉dk (4.14)
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Thus, the self-consistent equation for the order parameter r is obtained by summing
the contribution of locked and drifting oscillator as

r = rlock + rdrift, (4.15)

which are obtained from Eqs. (4.10) and (4.14), respectively.

4.2.2 Parameter space and synchronized boundaries

Determining C

The summation of Eq. (4.10) and Eq. (4.14) gives us the analytical solution for the
order parameter r. However, there is a quantity to be determined, namely the term
C(λr). Considering the sum of Eqs. (4.9) and (4.12) and taking its imaginary part,
we get

0 = 1
〈k〉
∫ k2

k1
kP (k)D(k − 〈k〉 − C(λr))

kλr
dk

+ 1
2π 〈k〉

(
−
∫ k1

kmin
+
∫ kmax

k2

)∫ T

0
kP (k)Ω|φ̇|−1 sin φdtdk.

(4.16)

Following a similar procedure to approximate
∫ T

0 cos φ(t)dt in Eq. (4.13) (Tanaka
et al., 1997a) for the integral

∫ T
0 sin φ(t)dt in Eq. (4.16), we obtain

0 = 1
〈k〉
∫ k2

k1
kP (k)D(k − 〈k〉 − C(λr))

kλr
dk

+ 1
2 〈k〉

(∫ k1

kmin
+
∫ kmax

k2

)
rk2λα2P (k)

D2 [k − 〈k〉 − C(λr)]2
dk

(4.17)

Therefore, through Eq. (4.17) we yield the evolution of C(λr) as a function of the
coupling λ, and then, together with Eqs. (4.10) and (4.14), we have the full recipe to
calculate the order parameter r.

It is known that systems governed by the equations of motion given by Eq. (4.7)
present a hysteresis as λ is varied (Tanaka et al., 1997b; Tanaka et al., 1997a; Strogatz,
2014). Therefore we consider two distinct cases: (i) Increase of the coupling strength
λ. In this case, the system starts without synchrony (r ≈ 0) and, as λ is increased,
approaches the synchronous state (r ≈ 1). (ii) Decrease of the coupling strength λ.
Now the system starts at the synchronous state (r ≈ 1) and, as the λ is decreased,
more and more oscillators lose synchrony, falling into the drift state.

Next, we study the following problem: why do phase transitions occur for a
continuously varying coupling strength? We illustrate the phase transitions using the
parameter space of the pendulum. For convenience, we non-dimensionalize Eq. (4.7) by
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4.2 Mean-field theory

τ =
√

kλrt (Strogatz, 2014), and set β ≡ α/
√

kλr and I ≡ D(k −〈k〉−C(λr))/(kλr),
yielding the dimensionless version:

d2φ

d2τ
+ β

dφ

dτ
+ sin φ = I. (4.18)

The variable β is the damping strength and I corresponds to a constant torque
(cf. a damped driven pendulum). The bifurcation diagram in the β − I parameter
space of Eq. (4.18) has three types of bifurcations (Strogatz, 2014): homoclinic and
infinite-period bifurcations periodic orbits, and a saddle-node bifurcation of fixed
points. An analytical approximation for the homoclinic bifurcation curve for small β
was derived using Melnikov’s method (Strogatz, 2014; Guckenheimer and Holmes,
1983) and the curve is tangent to the line I = 4β/π.

The parameter space is divided into three different areas corresponding to the stable
fixed point, the stable limit cycle and bistability. When I > 1 or D(k − 〈k〉) > kλr in
Eq. (7), in the stable limit cycle area, there is no stable fixed point and the oscillators
evolve to the stable limit cycle, regardless of the initial values of θ and θ̇. Therefore,
in this case, the oscillators are drifting and contribute to rdrift. When I < 1 and
I is below the homoclinic bifurcation curve, only stable fixed points exist and the
oscillators converge to the stable fixed points and contribute to rlock, regardless of the
initial values. Otherwise, depending on the situation of the decreasing or increasing
coupling strength, the oscillators within the bistable area converge to the stable
fixed point (contributing to rlock) or the stable limit cycle (contributing to rdrift),
respectively.

Our change of time-scale allows us to employ Melnikov’s analysis to determine the
range of integration [k1, k2] in the calculation of r = rlock + rdrift.

Increasing coupling

When the coupling strength λ is increased from λ0, the synchronous state emerges
after a threshold λI

c has been crossed. Here we derive self-consistent equations that
allow us to compute λI

c .
The stable fixed point and the stable limit cycle coexist in the bistable area.

Whether the oscillator will converge to the fixed point or rotate periodically depends
crucially on the initial values of θ and θ̇ for given parameter values of β and I. As
the coupling strength increases, the bistable area vanishes and we only get the stable
limit cycle in this region. The stability diagram for the increasing case is shown in
Fig. 4.1(a). Therefore, as we can see from this figure, for I > 1, Eq. (4.18) has only
one stable limit cycle solution. If 4β/π ≤ I ≤ 1, the system is no longer bistable and
only the limit cycle solution exists. If the coupling strength is increased further, the
synchronized state can only exist for I ≤ 4β/π, where Eq. (4.18) has a stable fixed
point solution sin (φ) = I. Solving the inequalities

|D (k − 〈k〉 − C(λr))|
kλr

≤ 1, (4.19)
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= 20kDegree

= 8kDegree

Stable limit cycle

Stable fixed point

Stable limit cycle

Stable fixed point

Degree k= 20

Degree k= 8

(a)

(b)

Figure 4.1: Parameter space of the pendulum [Eq. (4.18)]: (a) for increasing coupling strength
and (b) decreasing coupling strength. The red (dark gray) area indicates the existence
of a stable fixed point, whereas the gray area indicates the parameter combinations
that give rise to a stable limit cycle. The dots in the parameter space represent
oscillators with degree k = 8 and degree k = 20, which start with incoherence in (a)
[coherence in (b)], and approach synchronous states (incoherence), for increasing
(decreasing) coupling strength λ with α = 0.1, D = 0.1, 〈k〉 = 10, C = −3,
N = 3000, and P (k) � k−γ , where γ = 3.
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4.2 Mean-field theory

and

|D (k − 〈k〉 − C(λr))|
kλr

≤ 4α

π
√

kλr
, (4.20)

we get the following range of kI for the phase-locked oscillators

kI ∈
[
kI

1, kI
2
]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ 〈k〉+C(λr)
1+λr , 〈k〉+C(λr)

1−λr

]
if λr < b,

[ 〈k〉+C(λr)
1+λr , KI

2
]

if b < λr < 1,

[
KI

1 , KI
2
]

otherwise,

(4.21)

where b = 16α2

π2[〈k〉+C(λr)]+16α2 and

[
KI

1 , KI
2
]

≡
⎡
⎣B −

√
B2 − 4D4 (〈k〉 + C(λr))2

2D2 ,
B +

√
B2 − 4D4 (〈k〉 + C(λr))2

2D2

⎤
⎦ ,

(4.22)

where

B = 2D2(〈k〉 + C(λr)) + 16α2λr

π2 . (4.23)

Since λr is present in all equations, we define a new variable y = λr and analyze the
self-consistent equations computing r = y/λ.

In order to visualize the dynamics and deepen the understanding of phase transitions,
we sketch in Fig. 4.1(a) the phase trajectories of two randomly selected oscillators
with degree k = 8 and 20. When the coupling strength is close to 0, the oscillators
are in the stable limit cycle area and each node oscillates with their own natural
frequency. One can see that the critical coupling for the onset of synchronization of
the oscillator with degree k = 8 is lower and thus the small degree oscillator converges
to the fixed point at lower coupling strength.

Decreasing coupling

With a decreasing coupling strength λ, the oscillators start from the phase-locked
synchronous state and reach the asynchronous state at a critical coupling λD

c . In
order to calculate this threshold, we again investigate the range of degree kD of the
phase-locked oscillators. Imposing the phase locked solution in Eq. (4.7), we obtain
sin φ = |D(k−〈k〉−C(λr))|

kλr ≤ 1 and find that the locked oscillators are the nodes with
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degree k in the following range as a function of λr:

kD ∈ [kD
1 , kD

2 ] ≡
[

〈k〉 + C(λr)
1 + λr

D

,
〈k〉 + C(λr)

1 − λr
D

]
, (4.24)

when λr < D, or kD
1 = 〈k〉+C(λr)

1+ λr
D

and kD
2 → kmax otherwise. This allows us to

calculate rD and λD
c from the self-consistent Eqs. (4.10) and (4.14).

Following the same procedure for increasing coupling strength, we also sketch phase
trajectories of two oscillators with degree k = 8 and 20, respectively, in the parameter
space as shown in Fig. 4.1(b). For high coupling strength, the population acts like a
giant node and r  1. If I < 1, only a stable fixed point exists, whereas the oscillators
converge to fixed points. The oscillators with degrees k ≥ 20 are dragged out of
synchronization more easily. For I > 1 the oscillators with degree k = 20 are easier
to be out of synchronization compared to the ones with degree k = 8. In this way,
the order parameter r would first slightly decrease and then abruptly drop to lower
values.

4.2.3 Simulations on scale-free networks

We demonstrate the validity of our mean-field analysis by conducting numerical
simulations of the second-order Kuramoto model with α = 0.1 and D = 0.1 on
Barabási-Albert scale-free networks characterized by N = 3000, 〈k〉 = 10, kmin = 5
and the degree distribution P (k) ∼ k−γ , with γ = 3. Again, due to hysteresis, we have
to distinguish two cases. First, we increase the coupling strength λ from λ0 by amounts
of δλ = 0.1, and compute the order parameter rI for λ = λ0, λ0 + δλ, ..., λ0 + nδλ.
Second, we gradually decrease λ from λ0 + nδλ to λ0 in steps of δλ. Before each
δλ-step, we integrate the system long enough (105 time steps) to arrive at stationary
states, using a 4th order Runge-Kutta method with time step dt = 0.01.

Figure 4.2(a) shows the synchronization diagrams for the model defined in Eq. (4.2).
The system exhibits the expected hysteretic synchrony depending on initial conditions.
In the case of an increasing coupling strength λ, the initial drifting oscillators can
be entertained to locked oscillators after certain transience. The order parameter r
remains at a low value until the onset of synchronization, λI

c , at which a first-order
synchronization transition occurs, and r increases continuously after that. In the case
of decreasing λ, initially locked oscillators are desynchronized and fall into drift states
once λ crosses λD

c . For a high coupling strength, all oscillators are synchronized and
r = 1. As the coupling strength is decreased, the synchronized oscillators fall into
unsynchronized states. As the two discontinuous transitions take place at different
coupling thresholds, the order parameter exhibits hysteresis.

To validate our mean-field analysis with simulation results, we simultaneously solve
Eqs. (4.11), (4.14), (4.17), and (4.21) [(4.11), (4.14), (4.17), and (4.24)] for increasing
(decreasing) coupling strength. Note that the distribution of the natural frequencies
is proportional to the degree distribution, and ψ can not be set to a constant as has
been done in previous works (Strogatz, 2000). Recalling that C(λr) depends on ψ̇
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(a)

(b)

Figure 4.2: Analytical (in blue) and numerical (in red) analysis of the order parameter r
(a) and C(λr) with increasing coupling strength (b) for synchronization diagrams.
We set the value C(λr) to be 0 if λ < λI

c . The analytical plots are calculated
from Eqs. (4.11), (4.14), and (4.17) with the synchronized boundary Eq. (4.21)
for increasing coupling and for decreasing coupling (4.24). Here the simulations
are conducted with α = 0.1, D = 0.1, and Barabási-Albert scale-free networks
characterized by N = 3000, 〈k〉 = 10, and kmin = 5.
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Figure 4.3: (a) Average frequency 〈ω〉k and (b) order parameter 〈r〉k of each cluster from
simulations with 〈k〉 = 10. Solid lines denote synchronized clusters at the onset of
synchronization. Dashed lines denote clusters composed of large degree nodes. The
simulation parameters are the same as in Fig. 4.2.
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Figure 4.4: Synchronized degrees from analytical and simulation results with increasing coupling
strength. The yellow (light gray) shading shows the range of synchronized degrees
from the simulations and the red (dark gray) shading shows the range from the
analytical results.

and ψ̈, we assume that C(λr) ≈ 0 when λ < λI
c , as each node oscillates at its own

natural frequency. The oscillators with small degree synchronize first as shown in
Fig. 4.3, and being in high percentage in a scale-free network, they dominate the
mean field. The mean field rotates with a constant frequency ψ̇. As before, it is
convenient to analyze the system with y ≡ λr and r = y/λ. As we can see, the
analytical results are in good agreement with the simulations.

To deepen the understanding of the transition to synchrony, we calculate the average
frequency of all oscillators of degree k (Ji et al., 2014a), 〈ω〉k = ∑[i|ki=k] ωi/(NP (k)),
where ωi =

∫ t+T
t φ̇i(τ)dt/T and t is large enough to let all oscillators reach stationary

states. Figure 4.3(a) shows that each cluster, an ensemble of oscillators with same
degree, oscillates independently before the onset of synchronization. Oscillators with
small degree, denoted by a solid line, join the synchronous component simultaneously
at λI

c . For further increasing coupling strength λ, more clusters, denoted by dashed
lines, join the synchronized component successively according to their degrees, starting
from smaller ones, and correspondingly C(λr) increases.

What happens inside each cluster at the onset of synchronization? We define
the order parameter of each cluster denoted by 〈r〉k, 〈r〉k =

∫ t+T
t rkdt/T , where
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rkeiψk = ∑
[i|ki=k] eiθk/(NP (k)). When λ < λI

c and initial values of θ are selected
at random from [−π, π], the oscillators of each cluster follow the same dynamics.
Therefore, the oscillators are uniformly distributed over the limit cycle and 〈r〉k ≈ 0
as shown in Fig. 4.3(b). The order parameter of the synchronized clusters denoted by
a solid line in Fig. 4.3 jumps to 1 at the onset of synchronization. After that, other
clusters join the synchronized component and 〈r〉k approaches 1 as denoted by the
dashed lines.

In Fig. 4.4, we show the synchronized boundary kI ∈ [kI
1, kI

2] as a function of the
coupling strength λ calculated from analytical expressions and extensive simulations
for increasing λ. The analytical and simulation results are in good agreement. Note
that the discontinuity of evolution of the synchronized boundary gives rise to a
first-order phase transition in Fig. 4.2(a). After the transition to synchrony, the low
boundary kI

1 stays constant at the minimal degree kmin = 5, and, as more clusters
join the synchronized component, the upper boundary kI

2 increases with λ.
The above results are based on scale-free networks with the average degree 〈k〉 = 10.

To show more details, following the above process, we analyze the increasing coupling
case with an average degree 〈k〉 = 12 with minimum degree kmin = 6 as shown
in Fig. 4.5. We integrate the equations (4.11), (4.14), (4.17) with (4.21) and get
the evolution of the C(λr) and the order parameter r as a function of the coupling
strength λ. We observe that the critical coupling strength in this case is smaller than
that of scale-free networks with an average degree 〈k〉 = 10.

We follow the above process again and investigate the synchronization inside each
cluster. As expected, initially oscillators for each cluster oscillate around its natural
frequency and the order parameter r for each cluster remains at a low value (Fig. 4.6).
Increasing the coupling strength further, a first-order transition to synchronization
occurs at the threshold λI

c = 0.6. Clusters of nodes with a degree from k = 6 to
k = 10 join the synchronization component simultaneously. More clusters join the
synchronized component successively starting from low to high degrees.

We also evaluate the influence of the average degree on the critical coupling
threshold. Figure 4.7 shows the mean values of the critical coupling strength

〈
λI

c

〉
for

increasing λ with different minimal degrees kmin varying from kmin = 2 to kmin = 20.
In simulations, we define a transition to synchrony if the difference between r(λ)
and r(λ − δλ) is larger than, for example, 0.1. Due to the limitation of networks
size, fluctuations of

〈
λI

c

〉
are unavoidable. The plots have been obtained with the

same parameter values as above except minimal degrees kmin. One can observe that
the threshold values decrease with increasing minimal degrees initially and become
almost constant afterwards.

To investigate the system’s dynamical behavior in networks with different levels of
heterogeneity, in Fig. 4.8 we present the synchronization diagrams for the forward and
backward continuation of the coupling λ for networks with degree distribution P (k) ∼
k−γ considering different exponents γ. As expected, the onset of synchronization
decreases for the forward propagation of the coupling strength λ, similarly to that
observed in the first-order model (Gómez-Gardenes et al., 2011). Interestingly, the
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(a)

(b)

Figure 4.5: Results with increasing coupling strength λ. Part (a) shows the order parameter r
vs. λ. The red (blue) curve denotes the simulations (analytical) results. Part (b)
shows the C(λr) vs. λ. The critical coupling is 0.6. As in Fig. 4.2(b), we take the
value from solid lines. The analytical results are obtained from Eqs. (4.11), (4.14),
(4.17), and (4.21). Here the simulations are conducted with α = 0.1, D = 0.1
and Barabási-Albert scale-free networks characterized by N = 3000, 〈k〉 = 12, and
kmin = 6.
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Figure 4.6: Results are obtained with the same parameter values as in Fig. 4.5. Part (a) shows
the evolution of the average frequency of each cluster 〈ω〉k as a function of λ, and
(b) indicates the evolution of the order parameter of each cluster 〈r〉k of λ. Solid
lines indicate the clusters synchronized at the critical threshold. The simulation
parameters are the same as in Fig. 4.5.
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Figure 4.7: Mean values of critical coupling strength
〈
λI

c

〉
for increasing coupling with different

minimal degrees kmin. The gray shading indicates the standard deviation. Simulations
at each minimal degree are conducted as in Fig. 4.2. All networks have N = 3000.

branch associated to the backward propagation of the coupling λ is barely affected by
the changes of γ. A similar effect was recently reported in (Olmi et al., 2014), where
the authors observed a weak dependence of the critical coupling λD

c on the network
size N .

4.2.4 Simulations on Watts-Strogatz networks

Previous studies of first-order transitions to synchronization with natural frequency
correlated with degree are based on scale-free networks. Next, we also simulate the
model in Eq. (4.2) on Watts-Strogatz networks by tuning the rewiring parameter
p ∈ [0, 1].

Synchronization appears when a tiny fraction of shortcuts comes into the system,
moreover, the synchronizability increases with p as shown in (Hong et al., 2002).
Compared to these results, in Fig. 4.9, we observe counter-intuitive results that the
synchronizability decreases with the increasing of p. Synchronization exhibits strong
dependence on the rewiring probability p. For small p, the system has a tiny fraction
of short-cuts and most oscillators have a degree close to the average degree. Therefore,
a high percentage of oscillators have a small natural frequency D(k − 〈k〉) and tend
to synchronize to the mean-field quantities already for a small coupling strength. For
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large p, due to the divergence of oscillators and large natural frequencies, the system
needs a large coupling strength to recruit most oscillators into the synchronized
component.

Fig. 4.10 shows the order parameter 〈r〉k of each cluster k with increasing coupling
strength λ. The solid lines denote fist-order transitions of clusters which join the
synchronized component at the threshold. For small p, these clusters being in a high
percentage produce fist-order transitions as shown in Fig. 4.9.

Correspondingly, one can see in Fig. 4.11(a) for p = 0.1, clusters with degrees
from 8 to 10 synchronize to the zero mean-field value and other clusters join the
synchronized component successively. Compared to small p, in Fig. 4.11(b), clusters
join the synchronized component continuously.

4.2.5 Quenched disorder

In the preceding section, we showed that abrupt transitions occur in scale-free networks
of second-order Kuramoto oscillators, but the dependence of such discontinuous
transitions on perturbations in the correlation between natural frequencies and

1.= 3γ

4.= 3γ

Figure 4.8: Synchronization diagrams for networks with the degree-distribution P (k) ∼ k−γ for
different exponents γ. The analytical plots are calculated from the summation of
Eqs. (4.10) and (4.13). All networks have N = 3000 and 〈k〉 = 10.
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Figure 4.9: Order parameter r vs. coupling strengths λ for different p. Synchronizability
decreases with p’s increase. A first-order phase transition is obvious for p = 0.1.

topological properties is unknown. To address this question, here we consider the
inclusion of quenched disorder on the natural frequencies in order to disturb such
correlations (Skardal and Arenas, 2014; Zou et al., 2014). More precisely, to check
the robustness of cluster explosive synchronization, we set Ωi = D(ki − 〈k〉) + εi,
where ε ∈ [−q, q] is randomly drawn from a uniform distribution g(ε). Therefore, the
equations of motion in the continuum limit are given by

φ̈ = −αφ̇ + D [k − 〈k〉 − C(λr)] + ε − kλr sin φ. (4.25)

As we increase the width of the distribution g(ε), the topological influence on the
natural frequency is decreased.

We can calculate the contribution of locked oscillators rq
lock through

rq
lock = 1

〈k〉
∫ q

−q

∫ kq
2(ε)

kq
1(ε)

kP (k)g(ε) ×
√

1 −
[

D(k − 〈k〉 − C(λr)) + ε

kλr

]2
dkdε, (4.26)

where the degree range of the synchronous oscillators kq ∈ [kq
1(ε), kq

2(ε)] in the
presence of quenched disorder is determined by the conditions

|D [k − 〈k〉 − C(λr)] + ε|
kλr

≤ 1, (4.27)
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Figure 4.10: Order parameter of each cluster vs. coupling strengths λ for p = 0.1 and p = 1.
Clusters with natural frequencies close to 0 tend to synchronize to the mean-
field quantities at the threshold and first-order transitions of these clusters are
represented by solid lines.
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Figure 4.11: Average frequency of each cluster 〈ω〉k vs. coupling strengths λ. In (a), for
p = 0.1, clusters being in high percentage join in the synchronized component at
the threshold and determine the 0 mean frequency. Other clusters join to the 0
mean-field afterwards according to the degree difference to the average degree. In
(b), clusters join the synchronized component continuously.
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and

|D [k − 〈k〉 − C(λr)] + ε|
kλr

≤ 4α√
kλr

. (4.28)

Similarly, one can also get the contribution of drift oscillators denoted by rq
drift as

follows

rq
drift =

−
∫

dε

(∫ kq
1(ε)

kmin
dk +

∫ kmax

kq
2(ε)

dk

)
−rk2λα4P (k)g(ε)Θ (D [〈k〉 + C(λr) − k] − ε)

[D(k − 〈k〉 − C(λr)) + ε]3 〈k〉

+
∫

dε

(∫ kq
1(ε)

kmin
dk +

∫ kmax

kq
2(ε)

dk

)
−rk2λα4P (k)g(ε)Θ (D [k − 〈k〉 − C(λr)] + ε)

[D(k − 〈k〉 − C(λr)) + ε]3 〈k〉 ,

where Θ(·) is the Heaviside function. Figure 4.12 shows the synchronization diagrams
considering the same network configuration as in Fig. 4.2, but taking into account
different values for the quenched disorder. As we can see, the phase coherence of the
lower branches decreases, enlarging the hysteresis area with increasing q. Interestingly,
the upper branches decrease as the strength of the quenched disorder is increased and
the onset of the transition increases accordingly. Therefore, the additional quenched
disorder decreases the phase coherence and diminishes the abrupt transitions.
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Figure 4.12: Synchronization diagrams with respect to different probabilities q with q = 0
(a), q = 1 (b), q = 2 (c), and q = 6( d). Analytical results are obtained from
the summation of rq

lock and rq
drift. Here, we use the same network topology as in

Fig. 4.2 with N = 3000, α = 0.1, D = 0.1, and set g(ε) = 1/2q with ε ∈ [−q, q].
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4.3 Effects of assortative mixing

4.3.1 Synchronization in correlated networks

We consider networks where each node is a phase oscillator evolving according to the
second-order Kuramoto model (2.1) (Arenas et al., 2008; Acebrón et al., 2005). The
collective dynamics of the oscillators is measured by the macroscopic order parameter,
defined as r(t)eiψ(t) = 1

N

∑N
j=1 eiθj(t), where the modulus 0 ≤ r(t) ≤ 1 and ψ(t) is

the average phase of the oscillators. The system governed by Eq. (2.1) exhibits
hysteretic synchrony (Tanaka et al., 1997b; Tanaka et al., 1997a). The onset of
synchronization (r > 0) is characterized by a critical coupling λI

c when the coupling
strength is progressively increased from a given λ0. On the other hand, starting at
synchronouos state and decreasing progressively the coupling strength, the oscillators
fall into an incoherent state (r ≈ 0) at coupling λD

c ≤ λI
c (Tanaka et al., 1997b;

Tanaka et al., 1997a) (see section 2.1.3).
Here we study the second-order Kuramoto model [see Eq. (2.1)] in which the

natural frequency distribution g(Ω) is correlated with the degree distribution P (k)
as Ωi = ki − 〈k〉 (Ji et al., 2013) instead of Eq. (4.1), where ki is the degree of
the oscillator i and 〈k〉 is the average degree of the network. At first glance that
particular choice for the frequency assignment could sound odd; however, it is not
difficult to find physical scenarios where this configuration is plausible. For example,
such correlation between dynamics and network topology can arise as a consequence
of a limited amount of resources or energy supply for the oscillators. In fact, studies
on optimization of synchronization in complex networks (Skardal et al., 2014; Buzna
et al., 2009; Brede, 2008) have shown that, for a given fixed set of allowed frequencies
{Ω1, Ω2, ..., ΩN }, the configuration that maximizes the network synchronization is
reached for cases in which frequencies are positively correlated with degrees. Therefore,
this correlation between frequencies and local topology can be seen as an optimal
scenario for the emergence of collective behavior in complex networks.

We study networks presenting nonvanishing degree-degree correlation. Such a
correlation is quantified by a measure known as assortativity coefficient, A , which is
the Pearson coefficient between degrees at the end of each link (Newman, 2002), i.e.

A =
M−1∑

i jiki −
[
M−1∑

i
1
2(ji + ki)

]2
M−1∑

i
1
2(j2

i + k2
i ) −

[
M−1∑

i
1
2(ji + ki)

]2 , (4.29)

where −1 ≤ A ≤ 1, ji and ki are the degrees associated to the two ends of the edge i
(i = 1, ..., M), and M is the total number of edges in the network. In order to tune the
degree of assortativity of each network, we use the method proposed in (Xulvi-Brunet
and Sokolov, 2004). The algorithm allows us to obtain networks with a desired value
of assortativity without changing the degree of each node. At each step, two edges are
selected at random and the four nodes associated to these edges are ordered from the
lowest to the highest degree. In order to produce assortative mixing (A > 0), with a
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(a) (b)

(c) (d)

Figure 4.13: Synchronization diagram r(λ) with (a) α = 0.2, (b) α = 0.4, (c) α = 0.6 and (d)
α = 0.8 for assortativity A = −0.3. With increasing α, onset of synchronization
and hysteresis decrease. The natural frequency of each oscillator is Ωi = ki − 〈k〉
and the networks have N = 103 and 〈k〉 = 6. The degree distribution follows
a power-law P (k) ∼ k−γ , where γ = 3. Curves in which points are connected
by solid lines (resp. dashed lines) correspond to the forward (resp. backward)
continuations of the coupling strength λ.

probability p, one new edge connects the first and the second node and another new
edge links the third and fourth nodes. In the case when one of the two new edges
already exists, the step is discarded and a new pair of edges is chosen. This same
heuristic can also generate disassortative networks (A < 0) with only a slight change
in the algorithm. After selecting the four nodes and sorting them with respect to
their degrees, one must rewire, with probability p, the highest degree node with the
lowest one and, likewise, the second and third nodes. After rewiring the network, if
the degree of assortativity is higher or smaller than the designed A, p is decreased or
increased respectively and the network is rewired following the procedures described
above. In order to avoid dead loops, the increasing and decreasing steps of p should
not be equally spaced.
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(a) (b)

(c) (d)

Figure 4.14: Synchronization diagram r(λ) for (a) A = −0.3, (b) A = −0.1, (c) A = 0.1 and
(d) A = 0.3. The dissipation coefficient is fixed at α = 1 with natural frequencies
given by Ωi = ki − 〈k〉, as in Fig. 4.13. All networks considered have N = 103,
〈k〉 = 6 and P (k) ∼ k−γ , where γ = 3.

4.3.2 Numerical Results

In this section we present the results obtained by numerically evolving the equations
of motions considering Eq. (2.1) in assortative networks constructed according to the
model described in the previous section. In all simulations the initial networks are
constructed through the Barabási-Albert (BA) model with 〈k〉 = 6 and N = 1 × 103.

The order parameter r is calculated with forward and backward continuations of
the coupling strength λ. More specifically, by increasing the value of λ adiabatically,
we integrate the system long enough and calculate the stationary value of r at each
coupling λ0, λ0 + δλ, ..., λ0 + nδλ. Similarly, for the backward continuation, we start
at the value λ = nδλ + λ0 and decrease λ by amounts of δλ until λ = λ0. In both
processes we use δλ = 0.5.

We investigate the dependency of the hysteresis on the dissipation parameter
α. Fig. 4.13 shows the forward and backward synchronization diagrams r(λ) for
networks with assortativity A = −0.3, but different values of α within the interval
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(a) (b) (c)

Figure 4.15: Contour plot on α-A plane colored according to (a) the maximal order parameter
MO, (b) the maximal order parameter difference MD and (c) the hysteresis area
S. A and α are varied within the interval [−0.3, 0.3] and [0.2, 1], respectively. For
each pair (α, A), 40 times simulations are performed with the coupling strength in
the interval as in Fig. 4.13, i.e, λ ∈ [0, 25].

[0.2, 1]. As we can see, the area of hysteresis and the critical coupling for the onset of
synchronization in the increasing branch tends to decrease as α is increased, which
also contributes to increase the maximal value of the order parameter.

Next, we fix the dissipation coefficient α = 1 and vary the network assortativity in
the interval [−0.3, 0.3]. Fig. 4.14 shows the synchronization diagram r(λ) for networks
with different values of assortativity. As A increases, the hysteresis becomes less
clear and the onset of synchronization in the decreasing branch tends to increase.
Surprisingly, the critical coupling of the increasing branch for the second-order
Kuramoto model is weakly affected, which is in sharp contrast with results concerning
models without inertia (Liu et al., 2013; Li et al., 2013). More precisely, in the
first-order Kuramoto model with frequencies correlated with degrees, the critical
coupling for the onset of synchronization in scale-free networks increases as the
network becomes more assortative (Li et al., 2013; Liu et al., 2013). The same
phenomenon was observed in the synchronization of FHN oscillators (Chen et al.,
2013).

In order to evaluate more accurately the dependency of the synchronization transi-
tions on the level of assortativity and the dissipation parameter, we introduce the
maximal order parameter MO, the maximal order parameter difference MD, and
the hysteresis area S in the synchronization diagrams as a function of A and α,
respectively, as follows:

MO = 〈max (r(λ))〉 , (4.30)

MD =
〈
max |rI(λ) − rD(λ)|

〉
, (4.31)

S =
〈∫

|rI(λ) − rD(λ)|dλ

〉
, (4.32)

55



Chapter 4 Cluster explosive synchronization in complex networks

where λ ∈ [λ0, λ0 + nδλ], 〈�〉 denotes the average of different realizations, and | � |
the absolute value. rI(λ) and rD(λ) are the order parameters for increasing and
decreasing coupling strength λ, respectively. If r(λ) increases as λ grows, then MO is
usually obtained at the maximal coupling strength λ0 + nδλ, i.e., MO = r(λ0 + nδλ).
MD ∈ [0, 1] quantifies the hysteresis difference. If the system shows a continuous
phase transition with a perfect match between increasing and decreasing coupling
strength diagrams, then S  0. In this way, S is a quantitative index to evaluate the
hysteretic behavior related to the emergence of synchronization.

Comparing Figs. 4.13 and 4.14 we observe a clear dependence of the synchronization
diagrams on the assortativity A and on the dissipation parameter α. Moreover, note
that it is also possible to obtain similar dependencies of r on λ by selecting different
values of α and A. In order to better grasp this apparent equivalence in the dynamical
behavior of the system for different choices of the parameters A and α, we show in
Fig. 4.15 the quantities defined in Eqs. (4.30), (4.31) and (4.32) as a function of α
and A. As we can see in Fig. 4.15(a), similar values for the maximal order parameter
MO are obtained according to the initial setup of the model. More specifically, the

(a) (b)

(c) (d)

Figure 4.16: Parameters are the same as in Fig. 4.13, except that the natural frequencies are
randomly selected from a Lorentzian distribution g(Ω) = 1/(π(1 + Ω2)) .
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level of synchronization of the network can be chosen by tuning the assortativity or
the dissipation parameter in the dynamical model. Therefore, for the second-order
Kuramoto model in the case of frequencies positively correlated with degree, high
levels of coherent behavior are obtained by either strongly assortative or disassortative
networks, once the dissipation parameter α is properly selected. Interestingly, the
maximal gap between the increasing and decreasing branches quantified by MD
(Fig. 4.15(b)) has a maximum around A  −0.1 and α ∈ [0.4, 0.5], showing that
the area of metastability in the stability diagram of the model (Ji et al., 2013) is
maximized for this set of parameters.

A similar effect can also be observed for the hysteresis area S in Fig. 4.15(c). The
maximal S in the synchronization diagram is reached for networks with A = −0.1 and
α = 0.2. Furthermore, similar values of S are obtained by different sets of α and A,
which shows an interesting interplay between the topological parameter (assortativity)
and the dynamical one (dissipation). More precisely, topological properties related
to degree-degree correlations can be counterbalanced by the dissipation parameter
in the dynamical model. This property could have interesting applications in the

(a) (b)

(c) (d)

Figure 4.17: Parameters are the same as in Fig. 4.14, except that natural frequencies are
randomly selected from a Lorentzian distribution g(Ω) = 1/(π(1 + Ω2)).
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(a) (b) (c)

Figure 4.18: Contour plots similar as in Fig. 4.15 for networks with a natural frequency distribu-
tion given by g(Ω) = 1/(π(1 + Ω2)).

control of synchronization in networks modeled by the second-order Kuramoto model.
In particular, if one is interested to reduce hysteresis in a system, such task can
be accomplished by either increasing the dissipation or the degree mixing in the
network. Therefore, the question usually addressed in studies regarding the first-order
Kuramoto model that is whether assortativity could enhance synchronization or
not (Zhu et al., 2013; Li et al., 2013) turns out to be harder to answer for the damped
version of the model. The reason for that is that the asymptotic behavior of the
system strongly depends on the combination of parameters A and α, which allows at
the same time much more options to control the system by tuning such parameters.

In order to analyze how assortative mixing influences the dynamics of networks
of damped Kuramoto oscillators without the constraint of having Ωi ∝ ki, we also
compute the same forward and backward synchronization diagrams considering a
Lorentzian distribution g(Ω) = 1

π(1+Ω2) for different values of degree assortativity A.
Similarly as before, as a first experiment, we fix the assortativity at A = −0.3 and
vary the dissipation parameter α as indicated in Fig. 4.16. Again, as we increase α
the hysteresis area tends to decrease. The same effect is observed for a fixed α with
varying A, as depicted in Fig. 4.17.

Calculating MO as a function of α and A we note, however, a slightly different
dependence compared to the case where frequencies are proportional to degree. As
we can see in Fig. 4.18(a), for a fixed value of α, MO is weakly affected by the
change of the degree mixing, except for the case α = 0.2. Nonetheless, the model with
frequencies correlated with degrees presents larger fluctuations for the maximum value
of coherent behavior, comparing Figs. 4.15(a) and 4.18(a). Furthermore, the maximum
value of MD [Fig. 4.18(b)] for Lorentzian frequency distributions is obtained for
slightly disassortative networks with low values of the dissipation parameter α. We
also note that, for large α, the maximum gap MD starts to decrease, in contrast to
the case with frequencies correlated with degree (Fig. 4.15(b)), where MD is close to
zero for almost the entire range considered of α for which A > 0. Finally, analyzing
S in Fig. 4.18(c) we note the same interplay between topological perturbations in the
networks, accounted for by changes in assortative mixing, and dynamical features in
the oscillator model characterized by the dissipation parameter α. As shown in this
figure, similar values of S are achieved by controlling the parameters α and A, and
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highly and poorly hysteretic synchronization diagrams can be obtained by different
strategies, i.e., changing the network structure (A) or the dynamical nature of the
oscillators (α).

4.4 Conclusions

First-order synchronization transitions for the Kuramoto model in complex networks
have been known as a consequence of positive correlation between network structure,
represented by the degree distribution, and the intrinsic oscillatory dynamics, repre-
sented by the natural frequency distribution of the oscillators (Coutinho et al., 2013;
Leyva et al., 2012; Peron and Rodrigues, 2012a; Gómez-Gardenes et al., 2011).

We have shown that the cluster explosive synchronization happens in the second-
order Kuramoto model presenting a correlation between natural frequency and degree,
as verified for the first-order Kuramoto model (Gómez-Gardenes et al., 2011). The
synchronization diagram exhibits a strong hysteresis due to the different critical
coupling strengths for increasing and decreasing coupling strength. As a function
of the coupling strength, we have derived self-consistent equations for the order
parameter. Furthermore, the projection of the phase transition on the parameter
space of a pendulum has enabled the derivation of the analytical expression of the
synchronized boundaries for increasing and decreasing coupling strength. We have
solved the self-consistent equation and the synchronized boundaries simultaneously,
and the analytical results have been compared to the simulations and both show a
good agreement. Moreover, following the same process, numerically and analytically,
we have shown that the onset of synchronization for increasing coupling strength
decreases with increasing scaling exponents but the onset of synchronization for
decreasing coupling strength keeps constant.

Following the previous processes, we have simulated the model on Watts-Strogatz
networks and found a counter-intuitive phenomenon in which phase coherence de-
creases with the rewiring probability p. The order parameter and average frequency
of each cluster have also been investigated for small and large p respectively.

To evaluate the robustness of abrupt transitions against the degree-correlated
natural frequency, an additional quenched disorder is included. Numerically and
analytically, we have shown that phase coherence and abrupt transitions decrease with
the increasing of the strength of the quenched disorder. The hysteresis in scale-free
networks with different scaling exponents has also been investigated here, but the
underlying mechanism for the occurrence of hysteresis in scale-free networks remains
open.

Additionally, we have numerically shown that such transitions for the second-
order Kuramoto model also depend on the degree mixing in the network connection.
More precisely, discontinuous transitions of networks of second-order Kuramoto
oscillators can take place not only in disassortative ones but also in assortative
ones, in contrast to what have been observed for the first-order Kuramoto model in
which the correlation between topology and dynamics is also present (Li et al., 2013).
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The reason behind this phenomenon can be regarded as an effect of the dynamical
equivalence of changes in the network structure, played by assortative mixing, and
changes in the oscillator model (dissipation parameter). In other words, a given final
configuration of a network of second-order Kuramoto oscillators can be achieved by
tuning the network structure or by adjusting the dissipation related to the phases’
movement. As previously mentioned, this finding can have important applications on
controlling network synchronization where, for instance, there are costs associated to
lead the system to a given desirable state, allowing the adoption of different strategies
to accomplish such a task.

Our results show that the hysteretic behavior of the order parameter vanishes
for some assortativities, suggesting that the transition might become continuous.
However, to properly determine the nature of the phase transition, a more detailed
study should be addressed. Moreover, the theoretical description of sychronization in
correlated networks is still an open problem and mean-field theories that account for
degree-degree correlations should also be developed.

What we learn from the emergence of cluster explosive synchronization is that
inertia affects the onset of synchronization of different clusters and, to enhance
synchronization, one could increase the coupling strength, vary the value of the
dissipation parameter, or tune the degree mixing in the network connection. As a
future study, it would be interesting to further analyze the present model relating the
recent approaches on mean-field approximation of first-order Kuramoto oscillators
in assortative networks (Restrepo and Ott, 2014) and the low-dimensional behavior
of the second-order model (Ji et al., 2014b). The impact of topology on dynamics
with more sophisticated correlation patterns between local structure and natural
frequencies as well as the formulation of the model considering networks of stochastic
oscillators (Sonnenschein and Schimansky-Geier, 2012) are subjects for further work.
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Chapter 5

Basin stability on complex networks

5.1 Introduction

Phase transition towards synchronization, as an important emergence of collective
behaviors, has been widely studied in the last two decades taking advantage of the
recent theory of complex networks (Arenas et al., 2008; Boccaletti et al., 2006). More
recently, abrupt transitions have attracted much attention, since the discovery of a
discontinuous percolation was reported in random (Achlioptas et al., 2009) and scale-
free networks (Cho et al., 2009; Radicchi and Fortunato, 2009), even the explosive
percolation transition was proven to actually be continuous (Riordan and Warnke,
2011; Costa et al., 2010).

In the context of abrupt transitions, hysteresis was presented in terms of initial
conditions (Gómez-Gardenes et al., 2011; Leyva et al., 2012; Peron and Rodrigues,
2012b; Ji et al., 2013). Therefore, depending on the strength of perturbations
being suffered, the system will either regain an equilibrium state or diverge. Linear
stability analysis has been applied to characterize local stability using Lyapunov
exponents (Pikovsky et al., 2003), but this is only valid for small perturbations.
By considering also large perturbations, Menck et al. (Menck et al., 2013; Menck
et al., 2014) proposed basin stability (BS), which is a non-local and nonlinear
concept and easily applicable to high-dimensional systems, based on the basin of
attraction (Ott, 2006). BS is quantified as the ability to regain an equilibrium state
after being subjected to perturbations and so regarded as a stability metric of the
stable equilibrium. However, an analytical study of BS is very hard because the
boundary of the basin of attraction of a general nonlinear dynamical system is usually
too difficult to be discerned.

In this chapter, we start by investigating BS of a single oscillator (Chiang, 2011;
Strogatz, 2014) derived in Sec. 5.2.1 and analytically approximate BS in Sec. 5.2.2.
In Sec. 5.2.3, we substantially investigate BS of the synchronization of a second-order
Kuramoto model in complex networks. We demonstrate a novel phenomenon that
there are two first-order transitions occurring successively: an onset transition from
instability to local stability and a suffusing transition from local to global stability.
We call this sequence onset-suffusing transitions. By combining a mean-field approach
with a basin stability derivation, we provide an analytical treatment. The analytical
results are in good agreement with the simulations.
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In terms of small networks, in section 5.3.1, we attempt to explain the basic
dynamics using the classical model of the single oscillator. We investigate its parameter
space using basin stability. A stable fixed point and a stable limit cycle coexist in
the bistable area. Basin stability is used to characterize the parameter space not
only in one oscillator but also in a two-node and a four-node topology as shown
in section 5.3.2 and 5.3.3 respectively. The coexistence could also be found in a
four-node topology using basin stability. Finally, conclusions are shown in section 5.4.

Some of the findings presented here have been published in (Ji and Kurths, 2014a;
Ji and Kurths, 2014b; Ji et al., 2015)

5.2 Onset and suffusing transitions towards

synchronization

5.2.1 Mean-field theory

We start with the second-order Kuramoto model in the following general form
(2.1) (Ji et al., 2013; Rohden et al., 2012; Tanaka et al., 1997a; Acebrón and Spigler,
1998; Tanaka et al., 1997a; Menck et al., 2014). Although, the following mean-field
approximation is similar to that of section 4.2, we will show the full analytical process
to avoid misunderstanding.

Following the random graph model proposed in (Chung and Lu, 2002), under the
assumption that the degrees of vertices are uncorrelated, given the degree sequence
{ki} with expectation degree of vertex i as ki, the probability of the edge between nodes
i and j is Aij = kikj/

∑
j kj (Sonnenschein and Schimansky-Geier, 2012; Ichinomiya,

2004; Chung and Lu, 2002), which implies that the degree of oscillator i is equal
to the expected number of adjacent oscillators, i.e. ki = ∑j Aij . Substituting this
approximation into Eq. (2.1), the coupling term becomes λki

∑
j kj

sin (θj−θi)
N〈k〉 , where

〈k〉 denotes the average degree. Following (Ichinomiya, 2004), the order parameter is
defined

reiψ =
∑

j

kjeiθj

N 〈k〉 , (5.1)

where r is the magnitude, ψ the average phase and i is the imaginary unit. Its
continuum limit version is shown before as Eq. (4.5). r ∈ [0, 1] is qualified to measure
the phase coherence of the network. In particular, r ≈ 0 and r = 1 correspond with
fully incoherent and fully synchronous state respectively. Multiplying both sides of
Eq. (5.1) by e−iθi and substituting the imaginary part into Eq. (2.1), we rewrite
Eq. (2.1) in terms of the mean-field quantities (r, ψ) as follows:

θ̈i = −αθ̇i + Ωi + λkir sin (ψ − θi). (5.2)
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Figure 5.1: The stability diagram of a single oscillator with three regions: the limit cycle (grey),
the stable equilibrium (red), and bistability (both limit cycle and stable equilibrium
coexist) (yellow). The homoclinic bifurcation curve is tangent to the line I = 4β/π,
as β → 0.
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5.2.2 Basin stability on a single oscillator

Towards understanding of the stability of the mean field Eq. (5.2), we start with a
single oscillator (Chiang, 2011; Strogatz, 2014) with:

θ̈ = −αθ̇ + Ω − λ sin (θ), (5.3)

where λ is a parameter. It can be seen that when λ = λkir, Ω = Ωi and ψ = 0,
Eq. (5.3) becomes Eq. (5.2). For convenience, we set ω ≡ θ̇. Eq. (5.3) is topologically
invariant. Nodes with the same λ and Ω belong to the same set, but its stationary
state might vary depending crucially on initial condition if within the region of
bistability. We consider Ω > 0. When Ω < λ and α > 0, Eq. (5.3) possesses two
equilibria: a stable equilibrium (θ∗

1, ω∗
1) = (arcsin (Ω/λ), 0) and an unstable saddle

(θ∗
2, ω∗

2) = (π − arcsin (Ω/λ), 0), restricted within the range of θ ∈ [−π, π].
The stability diagram of the single oscillator with a unit coupling strength was

fully investigated (Strogatz, 2014). Hence, we change the time scale of Eq. (5.3) to
τ =

√
λt (Strogatz, 2014), which yields

d2θ(τ)
d2τ

= −β
dθ(τ)

dτ
+ I − sin (θ(τ)), (5.4)

where β = α/
√

λ and I = Ω/λ. The stability diagram is shown in Fig. 5.1 in terms
of the parameter pair (β, I). A time-independent Melnikov function (Guckenheimer
and Holmes, 1983) depending on the parameters (β, I) follows

M(β, I) = 2πI − 8β. (5.5)

A homoclinic bifurcation occurs at M(β, I) = 0 (Guckenheimer and Holmes, 1983)
with the homoclinic bifurcation line tangent to the line of I = 4β/π when β is
close to 0 (Guckenheimer and Holmes, 1983; Strogatz, 2014). This implies that the
system is bistable with the stable fixed point (θ∗

1, ω∗
1) and a limit cycle when 4β < πI;

Otherwise, if 4β > πI, (5.4) converges to the stable equilibrium under any large
perturbation, i.e. the stable equilibrium is globally stable. In the grey region, the
oscillator attracts to the stable limit cycle.

It is sufficient and convenient to investigate Eq. (5.3) instead of Eq. (5.2) without
loss of generality. The following energy function for the system (Strogatz, 2014;
Chiang, 2011)

E(θ, ω) = F (ω) + U(θ), (5.6)

which is the same as in Eq. (2.10) (see section 2.1.3) and where F (ω) = (1/2)ω2 is the
kinetic energy function and U(θ) = −Ωθ − λ cos (θ) is the potential energy function.
It can be seen that U(θ) reaches its local minimum and maximum at θ = θ∗

1 and θ∗
2

respectively. Also, dE
dt = −αω2 indicates that it decreases strictly, except at the two

fixed points when α > 0. Therefore, the system is indeed dissipative when α > 0.
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5.2 Onset and suffusing transitions towards synchronization

In the absence of dissipation, i.e., α = 0, the total energy is static due to dE(θ,ω)
dt = 0,

namely, a conserved quantity (Strogatz, 2014). The system either oscillates around
the stable fixed point (θ∗

1, ω∗
1) = (arcsin (Ω/λ), 0), named librations, or diverges to

infinity (Strogatz, 2014) as shown in Fig. 5.2. The heteroclinic trajectories that link
(θ∗

0, ω∗
0) to the saddle (θ∗

2, ω∗
2) = (π − arcsin (Ω/λ), 0) depict the basin boundary of

the stable equilibrium when α ≈ 0. We denote the point at the left boundary of this
heteroclimic trajectory as (θ∗

0, ω∗
0), which can be calculated by the energy function.

The local minimal energy lies at the stable equilibrium (θ∗
1, ω∗

1) with

E(θ∗
1, ω∗

1) = −Ω arcsin (Ω/λ) − λ
√

1 − Ω2/λ2 (5.7)

and the local maximal energy lies at the saddle (θ∗
2, ω∗

2) with

E(θ∗
2, ω∗

2) = −Ω(π − arcsin (Ω/λ)) + λ
√

1 − Ω2/λ2. (5.8)

In comparison, for a dissipative system, i.e., α > 0, since a trajectory of (5.3)
starting from any initial state eventually converges to the stable equilibrium or
diverges, all trajectories that converge to the stable equilibrium comprise of the basin
of attraction of this stable equilibrium (Ott, 2006; Strogatz, 2014).

Based on the volume of the basin of attraction, Menck et al. (Menck et al.,
2013; Menck et al., 2014) proposed the concept of basin stability (BS) as the
proportion of trajectories that converge to the stable equilibrium under suffering large
perturbations(Menck et al., 2014):

BS =
B∫

−B

π∫
−π

χ(θ, ω)ρ(θ, ω)dθdω, (5.9)

where χ(θ, ω) indicates the synchronized state, χ(θ, ω) = 1 if (θ, ω) belongs to
the basin of attraction of the equilibrium or χ(θ, ω) = 0, otherwise. ρ(θ, ω) is
the density distribution of the perturbation of (θ, ω) from (−π, π) × (−B, B), with∫ ∫

ρ(θ, ω)dθdω = 1. BS ∈ [0, 1] measures how stable the stationary state is. If
BS = 0, the equilibrium is unstable, i.e. any small perturbation can cause a permanent
drift from the stationary state; on the other hand, if the stationary state is globally
stable, BS = 1 can be derived.

In what follows, we are to estimate BS of the equilibrium (θ∗
1, ω∗

1) by considering
two extreme situations. As demonstrated in Fig. 5.3(a), its BS linearly grows with
respect to α in the interval (α0, αc).

First, we treat the case that the system is weakly dissipative in terms of α ≈ 0
denoted by α0. At a weak dissipation within the region of bistability, as shown in
Fig. 5.4, the oscillator could converge to the stable fixed point if the initial conditions
belong to the grey region, otherwise it attracts to the stable limit cycle. In this
case, the heteroclinic trajectory can approximate the boundary of the attraction
basin of the stable equilibrium. That means the basin of attraction of the stable
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Chapter 5 Basin stability on complex networks

Figure 5.2: Isoenergetic curves of the single oscillator in the phase plane without dissipation
with respect to the energy function (5.6). From left to right, three red cross points
stands for (θ∗

0 , ω∗
0), (θ∗

1 , ω∗
1) and (θ∗

2 , ω∗
2).
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5.2 Onset and suffusing transitions towards synchronization

Figure 5.3: Basin stability BS as a function of dissipation α with λ = 2 (a) and the coupling
strength λ with α = 0.1(b). The red analytical curves are obtained from Eq. (5.14).
For each pair of parameters (α, λ), the numerical values of BS are calculated by
counting the proportion of trajectories that converge to the stable equilibrium, among
the total 104 trajectories with initial values of (θ, ω) randomly drawn within the range
[−π, π] × [−15, 15], following a uniform distribution. Each trajectory is obtained by
integrating the system sufficiently long for the system to reach the stationary states.
Here, we take Ω = 1.
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Figure 5.4: The basins of attraction of the stable equilibrium at the weak dissipation (α = 0.01)
with Ω = 1 and λ = 2. The analytical solution follows Eq. (5.12).
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5.2 Onset and suffusing transitions towards synchronization

Figure 5.5: The basins of attraction of the stable fixed point at the threshold value α = 0.575 of
strong dissipation with Ω = 1 and λ = 2. The analytical solution follows Eq. (5.12).
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Chapter 5 Basin stability on complex networks

equilibrium is an ensemble of all the librations in the absence of dissipation. It has
been shown that the boundary of the basin of attraction is the stable manifold of the
saddle (θ∗

2, ω∗
2) (Chiang, 2011) and the energy along the trajectory is nearly static

and close to that of the saddle, because dE
dt = −α0ω2 ≈ 0. Thus, each point on the

stable manifold of the saddle (θ∗
2, ω∗

2) has approximately the same energy as this
saddle. Therefore, we can approximate the coordinate (θ, ω) of the basin boundary
of (θ∗

1, ω∗
1) by the curve with E(θ, ω) = E(θ∗

2, ω∗
2), which is composed of two parts:

ω±(θ) = ±
√

2(Ωθ + λ cos (θ) + E(θ∗
2, ω∗

2)) respectively and symmetrically. If we take
the perturbation (θ, ω) following the uniform distribution in the box [−π, π]×[−B, B],
for α0 � 1, BS could be approximately calculated by the area between ω±(θ) as

BS(α0, Ω, λ) =
∫ θ∗

2

θ0
[ω+(θ) − ω−(θ)]dθ/(4Bπ), (5.10)

where θ0 is the solution of
√

2(Ωθ0 + λ cos (θ0) + E(θ∗
2, ω∗

2)) = 0 with θ0 �= θ∗
2.

Second, the stability diagram of Eq. (5.3) depends on the parameter pair (β, I)
with β = α/

√
λ and I = Ω/λ, so that the homoclinic bifurcation occurs at 4β = πI.

This implies that a small value of α/
√

λ allows the system in a region of bistability
when 4β < πI, namely, α < αc ≡ πΩ/(4

√
λ) (Guckenheimer and Holmes, 1983;

Strogatz, 2014); Otherwise, if 4β > πI, namely, α > αc, (5.3) converges to the stable
equilibrium under any large perturbation, i.e. the stable equilibrium is globally stable
(BS = 1).

As α increases so that the parameter pair (β, I) is close to the homoclinic bifurcation
curve, as shown in Fig. 5.5, the limit cycle approaches the saddle and coincides with
the basin boundary of attracting the stable equilibrium. In this case, the upper
boundary of the basin of the stable fixed point can be approximated by the curve of
the stable limit cycle. Furthermore, if α increases further, the system always globally
converges to the stable equilibrium.

Hereby, we consider the scenario of near this threshold αc. When a oscillator is in the
state of limit cycle, numerical simulations show that the mean frequency 〈ω〉  Ω/α,
which implies that the phase dynamics of this limit cycle can be approximated as
θ(t)  Ωt/α + θ(0). Let ω = Ω/α + f(t), where f(t) is the residual term to be solved.
Inserting this approximation into the governing Eq. (5.3) for a single oscillator yields

ḟ + αf + λ sin θ = 0. (5.11)

The specific solution to Eq. (5.11) is

f(t) = λα2

α4 + Ω2 (Ω
α

cos θ − α sin θ). (5.12)

For convenience, we write f as f(θ, α, Ω, λ). To validate the approximation, sim-
ulations are conducted in Figs. 5.4 and 5.5 and the analytical solutions and the
simulations match well to each other.
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5.2 Onset and suffusing transitions towards synchronization

Interestingly, it can be seen that this limit cycle is close to the boundary of the basin
of attraction of the stable equilibrium at α = αc. Thanks to Eq. (5.12), BS(αc, Ω, λ)
can be calculated as

BS(αc, Ω, λ) =
π∫

−π

Ω/αc + f(θ, αc, Ω, λ) + B

4Bπ
dθ. (5.13)

Therefore, combining Eq. (5.10) at the weak dissipation and Eq. (5.13) at the
threshold, BS is approximated as follows

BS(α, Ω, λ) = BS(α0, Ω, λ) − BS(αc, Ω, λ)
α0 − αc

(α − α0) + BS(α0, Ω, λ), (5.14)

for α ∈ (α0, αc); BS(α, Ω, λ) = 1 for α > αc. The analytical curves in the panel
Fig. 5.3 (a) vs. α and the panel Fig. 5.3 (b) vs. λ are in good agreement with the
simulations.

5.2.3 Transitions in complex networks

In complex networks, the oscillators interact with each other via the mean-field prop-
erties (r, ψ), as formulated by Eq. (5.2). With λ = λkir, each oscillator can be treated
as a single oscillator as Eq. (5.3). Given all other parameters, the order magnitude r
can be regarded as a function with respect to λ, denoted by r(λ), as illustrated in
Fig. 5.6. The low-dimensional behaviors of the first-order (Ott and Antonsen, 2008)
and the second-order Kuramoto model (Ji et al., 2014b) were found to be Lorentzian.
For simplicity, we take α = 1 and the distribution of the natural frequency as the
Cauchy-Lorentz distribution with the density g(Ω) = 1/[π(1 + Ω2)]. In this case,
oscillators with a natural frequency within the interval [−4

√
λkir/π, 4

√
λkir/π] that

imposes 1 = α > π|Ωi|/(4
√

λ) are in a phase synchronization regime (Ji et al., 2014b).
Therefore, the self-consistent order parameter rki

of oscillators with the same degree
ki following (Ji et al., 2014b) can be derived.

With the increasing of the coupling strength, a first-order transition occurs at the
onset of synchronization Kc (Risken, 1984); when λ < λc, the coupled oscillators are
totally desynchronizing with r  0; however, when λ > λc, the order parameter r
starts to monotonically increase. Given the stationary solution for r vs. λ, we find
that when λ < λc, BS at each node is also close to 0, as illustrated in Fig. 5.6.

At λ = λc, if |Ωi| < λckir(λc), BS indicates that nodes with degree ki and the
natural frequency Ωi undergo a first-order transition accordingly. This sort of first-
order transition is named onset transition, which means a transition from an unstable
(BS = 0) to a stable synchronous state (BS > 0). In particular, if the parameter
pair (β, I) with β = α/

√
λckir(λc) and I = |Ωi|/(λckir(λc)) is located in the region

of stable equilibrium in the stability diagram (4β > πI), then BS jumps from 0 to 1
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Figure 5.6: BS against the coupling strength λ with Ωi = 0.2 (a), Ωi = 1.3 (b) and Ωi = 7.0
(c). The simulations are implemented on scale-free networks with N = 10000,
P (k) ∝ k−3 and k > 4. Numerical values of BS are calculated by counting
the proportion of trajectories that converge to the stable equilibrium, among the
total 104 trajectories with initial values of (θ, ω) randomly drawn within the range
[−π, π] × [−15, 15]. Analytical solutions are obtained from Eq. (5.14). Here, we
consider nodes with degree 10.
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5.2 Onset and suffusing transitions towards synchronization

directly, as illustrated in Fig. 5.6(a). With higher r(λc), more nodes have the onset
transition at λc.

In comparison, if the parameter pair (β, I) with β = α/
√

λckir(λc) and I =
|Ωi|/(λckir(λc)) with degree ki is located in the bistable region (4β < πI), the onset
transition occurs with BS jumping from 0 to BS(α, |Ωi|, λckir(λc)), which is less than
1. Then, increasing λ will trigger the other first-order transition when λ = λ′

c for
the other critical value. In this case, BS jumps to 1, as shown in Fig. 5.6(b), when
the parameter pair (α/

√
λkir, |Ωi|/(λkir)) crosses the homoclinic bifurcation curve.

In the case of α/
√

λkir � 1, this critical value λ′
c = |Ωi|2π2

16α2kir
can be calculated by

the Melnikov’s analysis (Guckenheimer and Holmes, 1983). This sort of first-order
transition is named suffusing transition, which means a transition from a locally
(0 < BS < 1) to globally stable state (BS = 1), which is in fact a homoclinic
bifurcation of the system (5.2). Here, we observe the novel phenomenon that the
onset and suffusing transitions occur successively with respect to the increasing
coupling strength. We call this sequence onset-suffusing transitions.

With a large natural frequency |Ωi| > λckir(λc), BS of nodes with degree ki

increases with increasing coupling strength. When |Ωi| ≤ λkir, the nodes become
stable. When the coupling strength is further increased, the suffusing transition
occurs at (α/

√
λkir, |Ωi|/(λkir)) crossing the homoclinic bifurcation curve with BS

jumping to 1, as shown in Fig. 5.6(c). When λkir is higher than but close to |Ωi|, as
shown in Fig. 5.6(b-c), the analytical results are slightly larger than the simulations,
because in this case BS is concave upward with positive slopes instead of linearly
increasing within (α0, αc).

When |Ωi| < λckir(λc), the order parameter r can identify the onset transition as
shown in Fig. 5.6(a)-(b), which coincides with the basin stability. However, since
r is a global index that is dominated by the nodes with low natural frequencies,
r cannot reflect the synchronization transition characteristic of these nodes with
high natural frequency. As shown by Fig. 5.6(c), the onset transition of node with
|Ωi| > λckir(λc) does not coincide with that of r. Moreover, the suffusion transition
cannot be disclosed by r, either.

The simulations are conducted with the increment step equal to 0.1 of the coupling
strength λ. For each λ, we overlap 104 times of random perturbations of the initial
values of (θ, ω) within the range of (θ, ω) ∈ [−π, π]× [−15, 15] following a uniform dis-
tribution. For each overlap of perturbation, we integrate the system, for a sufficiently
long duration, for example, 105, so that the distribution of the state of the oscillator
approaches a stationary distribution. Combining with the self-consistent equation as
in (Ji et al., 2014b), we can analytically estimate BS by Eq. (5.14), regarded as a
function with respect to the coupling strength and the natural frequency. As Fig. 5.6
shows, analytical and numerical results are in a good agreement.
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Chapter 5 Basin stability on complex networks

5.3 Basin stability on small networks

5.3.1 Projection on the parameter space

Defining the relative size of the volume of basin of attraction as basin stability
BS ∈ [0, 1], a new non-local and nonlinear measure was recently proposed to quantify
how stable the synchronous sate is against even large perturbations (Menck et al.,
2013; Menck et al., 2014). To estimate the basin stability of a stable fixed point in
case of single machine infinite bus system, we randomly select 25000 initial values of
(θ, θ̇) from [−π, π] × [−10, 10], integrate the system long enough and then count the
percentage of initial values reaching a stable fixed point.

According to the stability diagram of a single oscillator as shown in figure 5.1 (Ji
et al., 2014b; Ji et al., 2013; Strogatz, 2014; Ji et al., 2015), a stable fixed point
and a stable limit cycle coexist in the bistable area. Whether the system will evolve
to the fixed point or to the limit cycle depends crucially on the initial conditions.
When parameter values are located in the limit cycle area (resp. stable fixed point
area) BS is 0 (resp. 1). Shown in figure 5.4 is the phase space for a set of parameter
values corresponding to the bistable area in fig. 5.1. The system has one stable fixed
point θf = arcsin(Ω/λ) for 0 < Ω < λ, and one saddle θs = π − θf . The basin of
attraction of the stable fixed point θf is colored gray and that of the stable limit
cycle is colored white. The saddle is located on the right side of the stable fixed point
at the intersection between the basin of attraction of θf and θ̇ = 0 line.

In figure 5.7, we project the basin stability BS over the parameter space of the
single oscillator for λ = 1. As can be observed from figure 5.3, basin stability increases
with α in the bistable area, and then jumps to unity when α crosses the homoclinic
bifurcation line α = Ωπ

4
√

λ
(Strogatz, 2014). It is also evident that one can use basin

stability to locate the homoclinic bifurcation line as the locus of the points where
basin stability BS becomes unity for the first time when α is incremented gradually
from 0 to 1.

5.3.2 Two oscillators

What happens if the network is a set of two or more nodes? Consider first two
oscillators, out of which one is a generator with Ωg = +Ω and one consumer with
Ωc = −Ω, the dynamics is governed by

θ̈g = −αθ̇g + Ω + λ sin (θc − θg), (5.15)
θ̈c = −αθ̇c − Ω + λ sin (θg − θc). (5.16)

The phase difference δθ = θg − θc satisfies

δθ̈ = −αδθ̇ + 2Ω + 2λ sin (−δθ), (5.17)

which is the same as the equation of motion of the single oscillator. Following the
same process as in section 5.3.1, we investigate the dynamics of the two oscillators.
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5.3 Basin stability on small networks

Figure 5.7: Basin stability over parameter space of the single oscillator. The different areas
same as shown the figure 5.1 are separated by the two lines: Ω/λ = 1 and the
homoclinic bifurcation line. When α → 0, the bifurcation line is tangent to the line
α = Ωπ/(4

√
λ). For fixed coupling strength λ = 1, basin stability BS is calculated

over the parameter space by varying the value of α and Ω from 0 to 1 separately.
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For Ω > λ, the oscillators converge to one stable limit cycle which oscillates around
Ω/α. For 4α

√
λ

π < Ω < λ, there could be one stable limit cycle and one stable fixed
point at

δθ = arcsin (Ω/λ), (5.18)

which depends on initial conditions of δθ and δθ̇. Fig. 5.1 illustrates the coexistence
of the stable limit cycle and the stable fixed point. Also basin stability BS decreases
with increasing λ from 4α

√
λ

π to λ for fixed α and λ. For λ < 4α
√

λ
π , only one stable

fixed point exists with basin stability S = 1.

5.3.3 Four oscillators

In section 5.3.1 and section 5.3.2, we have shown the coexistence of a stable limit
cycle and a stable fixed point in a single oscillator and in the two-oscillators topology
respectively. Further, basin stability has been used to quantify how stable the fixed
point is. What happens when the number of the nodes is increased by 2? Here
we focus on the nonlinear stability of four-node topology ranging from a basic ring
network with two generators separated by two consumers of fig. 5.8(a) to the network
of globally-coupled phase oscillators of fig. 5.8(d).

The 4-nodes model takes the following form in the simplest case:

θ̈i = −αθ̇i + Ωi + λ
4∑

j=1
Aij sin (θj − θi). (5.19)

In order to compare the parameter space of a medium-dimensional dynamical system
with that of the single oscillator, we vary the values of α and Ω for fixed coupling
strength λ = 1. In figure 5.9, we show basin stability over the parameter space of
α and Ω for the networks combining two generators with ΩG1 = ΩG2 = Ω and two
consumers with ΩC1 = ΩC2 = −Ω as shown in fig. 5.8.

Instead of perturbing only one oscillator (Menck et al., 2013), in this paper, we
perturb all oscillators and then calculate basin stability. In order to assess basin
stability, we randomly select for each pair of α and p initial values of (θ,θ̇) from
[−π, π] × [−15, 15], integrate the system long enough and then find the percentage
of initial values reaching the synchronized state. For every pair of α varying from 0
to 2 with 0.05 interval and Ω varying from 0 to 2 with the same gap, we repeat the
same process to calculate the basin stability and then sketch the parameter space
as shown in fig. 5.9. This way we find that there are three different regions namely
a stable limit cycle, bistability and a stable fixed point. Comparing the parameter
space of fig. 5.9(a) and (d), we see that the volume of the bistable area decreases as
the network becomes more connected.
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5.3 Basin stability on small networks

Figure 5.8: Connection of 2 generators (G1 and G2) and 2 consumers (C1 and C2). Squares
denote consumers and circles represent generators. (a) Two generators fully connect
to 2 consumers, but the two generators or the two consumers are not connected
directly. In configuration (b) (resp. (c)), the two generators (resp. consumers) are
also connected with one additional dashed blue diagonal line. (d) Both generators
and consumers are fully connected with two additional dashed diagonal lines.

Figure 5.9: The panels show basin stability over the parameter space of α and Ω for λ = 1
for the networks corresponding to fig. 5.8. Comparing the parameter space of (a)
and (d), we can see that the volume of the bistable area decreases as the network
becomes more connected.
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5.4 Conclusions

In term of the volume of the basin of attraction, basin stability is quantified to
measure the system’s ability to regain an equilibrium state subjected to perturbations.
We have demonstrated the novel phenomenon uncovered by the basin stability that
two first-order transitions occur successively in a second-order Kuramoto model
in complex networks: an onset transition from instability to local stability and a
suffusing transition from local to global stability; we call this sequence onset and
suffusing transitions. We have presented analytical analysis of this phenomenon by
a mean-field approach and the theoretical results show a good agreement with the
simulations. Our findings enhance the understanding of the stability of microscopic
mechanisms towards synchronization and its application complement the stability
theory of complex network dynamical systems. Moreover, the transitions uncovered
by the basin stability can be applied to, e.g. ’heal’ dead ends to enhance power
grid stability (Menck et al., 2014), any dynamical system with hysteresis loop and
elsewhere (Rohden et al., 2012; Acebrón and Spigler, 1998; Tanaka et al., 1997b;
Tanaka et al., 1997a).

Parameter values and the size of a disturbance are two crucial factors to determine
the stability of nonlinear power systems. Motivated by the question of how stable a
state is, basin stability was proposed based on the volume of the basin of attraction.
We have evaluated the basin stability for a one-node system and a four-node network.
Basin stability has been projected over the parameter space not only for the 2
dimensional system but also for medium dimensional dynamical system. This study
illustrates a new way of investigating the stability even for high dimensional systems.
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Chapter 6

Partial basin stability and its
applications

6.1 Introduction

Complex networked systems, such as the human brain, power grids, in general exhibit
mulstability and have more than one attractor. For each attractor, its basin of
attraction, an ensemble of initial conditions that approach to this attractor as time
increases, plays an important role in understanding its corresponding stability (Nusse
and Yorke, 1996). In realistic situations in networks, a certain degree of perturbations
are largely unavailable. Depending on which basin of attraction the system lies in
after being perturbed, the qualitative behavior of the system could be fundamentally
different varying from one desired state to unpredicted ones.

Stability analysis is a crucial point and is of highest actual importance from
various aspects (economy, future society, sustainability, etc.) (Machowski et al., 2011;
Buldyrev et al., 2010). Many previous efforts were devoted to evaluate the stability
given small and large perturbations. With a small perturbation, master-stability
function (Pecora and Carroll, 1998) could be used to identify the coupling-parameter
region for identical oscillators with linear coupling terms. To complement such linear-
stability paradigm, basin stability, a non-local and nonlinear method, was profound
in Refs (Menck et al., 2013; Menck et al., 2014) based on the volume of the basin of
attraction and it indicates the likelihood that the whole system returns to a stationary
state under large perturbations. The method therein is proposed especially for global
synchronization.

Besides global synchronization, partial (cluster) synchronization is playing a more
important role in the understanding of dynamics of complex systems (Pecora et al.,
2014), e.g. it is momentous in brain networks (Schnitzler and Gross, 2005). At each
cluster, knowledge of the attracting basins can not account for the functional role of
the cluster as shown in Fig. 6.1. It is of paramount importance that perturbations to
one cluster can affect other clusters, potentially inducing all clusters change behavior.
Therefore, in order to account for the specific characteristics of partial synchronization,
we here introduce the concept of partial basin stability, and we focus on the single
but fundamental property: the stability influence between clusters. The stability
influence interprets how likely the cluster m returns to the desired state after any
perturbation on the cluster a. To the best of our knowledge, the concept has not
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Figure 6.1: Thought experiment: Balls on the seansaw. Two tracks with balls a and m are
located on the two sides of the seesaw. Each track has 3 stable fixed points labeled
Aa, Ba and Ca (or Am, Bm and Cm). The location of one ball perturbs the other
one, potentially causing it to change the stationary state. Arrows indicates the
direction of balls after perturbations. If a is perturbed from Ba to Aa, m would roll
from Bm to Cm to keep the balance on the seesaw.

yet been employed. We denote partial basin stability from cluster a to cluster m by
PBSa→m.

We will start in Section 6.2 by formulating the general form of the new concept
of partial basin stability. We substantially implement the new concept on neural
networks in section 6.3 and power grids in section 6.4. In section 6.5, we conclude
our results.

All sections are novel contributions of this thesis.

6.2 Partial basin stability: general formulation

Consider a general nonlinear dynamical system that is formulated by the following
ordinary differential equation

ẋ = f(x), (6.1)

where x ∈ R
n is the state vector and f : Rn → R

n stands for the evolution law. The
state vector x is partitioned into several component vectors xa ∈ R

na , a = 1, · · · , N ,
with

∑N
a=1 na = n. Then, system (6.1) can be rewritten as

ẋa = fa(x1, · · · , xN ), a = 1, · · · , N (6.2)

where fa : Rn → R
na is the evolution law at component a with f = [f


1 , · · · , f

N ].

The interaction from components a to m can be described as ∂fm/∂xa: if it equals to
zero, then we say that there is no interaction from a to m. For simplicity, we denote
by xI = [x1


, · · · , xa−1

, xa+1


, · · · , xN 
]
 the vector composed of the components
excluding xa.
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6.2 Partial basin stability: general formulation

Towards depicting the interaction from a perturbation of component xa to the
dynamics of xm, in the present paper, we propose a novel definition named partial
attractor, which describes the attraction of component a towards m. In detail, let Am

be a subset in R
nm . Given the initial values of xI (0) = xI

0 , if A m attracts xm(t)
under the perturbation of xa, namely,

lim
t→∞ dist(xm(t), Am) = 0

for initial values x(0) = x0 with xI
0 fixed but xa

0 perturbed, where dist(·, ·) denotes
the Hausdorff distance in R

nm , then we call Am partial attracting set (of xm) of
the perturbation of xa given the initial values xI

0 . We denote it as Am|xI
0 . The

attraction can be defined in diverse senses, for instance, in the sense of Lyapunov,
Milnor and SBR (Alexander et al., 1992). If this partial attracting set is forward
invariant under the perturbation of xa

0 and minimum (among all these invariant and
attracting sets), then we call it a partial attractor from components a to m given
initial values xI

0 .
Consider a partial attractor Am|xI

0 . Now we extend the concept of basin stability
proposed in (Menck et al., 2013; Menck et al., 2014) to partial basin stability that
quantifies the probability that a component vector xm(t) returns to the attracting
set Am under the perturbation of the initial value of xa

0 and given the initial values
of others, i.e. xI

0 . Hereby, we define the partial basin stability PBSa→m(Am|xI
0 ) as

follows

PBSa→m(Am|xI
0 ) =

∫
1Am(x0)ρa(xa

0)δxI
0

(xI )dx0, (6.3)

where 1Am(x0) is an indicator function of the asymptotic dynamics of x(t) such that
1Am(x) = 1 if xm(t) converges to Am as t → ∞ with given initial values x0 and
1Am(x0) = 0, otherwise; ρa(xa

0) is the density of the initial value of xa in the state
subspace R

na ; δ·(·) stands for the Dirac-Delta.
It can be seen that partial basin stability measures the likelihood that a component

xm returns to the desired state Am under the perturbation of component xa, which
follows the density ρa(·), but, given all other initial values. So, PBSa→m = 1 indicates
that the component m is global stable at Am with respect to perturbations on xa;
PBSa→m = 0 means that the component m is relatively unstable, i.e., even a very
small perturbation on xa can trigger xm to depart from Am.

In the scenarios of networked systems, partial basin stability can serve to quanti-
tatively evaluate the local influence in terms of stability between nodes or between
communities (or clusters). We should highlight that there is an essential difference
between partial basin stability and the concept arising in (Menck et al., 2013; Menck
et al., 2014). In (Menck et al., 2013; Menck et al., 2014), the authors quantified
the influence of node dynamics to the dynamics of the whole network which can be
regarded as a projection of basin stability on the subspace of one node. However,
we focus here on the local interaction between nodes (groups) and disregard the
dynamics of other components xJ except xm, towards understanding the directed
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interacting influence of dynamics between two nodes/groups.
Partial basin stability PBSa→m(Am|xI

0 ) is calculated by numerical integration
using Monte Carlo methods. Given initial values of xI

0 , choose Ma times of initial
values xa

0 independently and randomly following the density ρa(·); then, generate
Ma realizations of the trajectory of x(t), denoted by Xk(t), k = 1, · · · , Ma up to a
sufficiently long time T ; count the number of Xm(t), of which the m-th component
converges to the desired state Am, denoted by Sa→m; finally, partial basin stability
can be numerically approximated by:

PBSa→m(Am|xI
0 ) ≈ Sa→m/Ma.

In particular, when a = m, PBSa→a is termed as self-loop stability of the node a.
In what follows, we implement the concept of partial basin stability on two significant

applications: neural networks and power grids.

6.3 Neural networks

6.3.1 Kuramoto model with synaptic plasticity

The human brain, as a typical example of cluster synchronization, is an assemble of
functionally specialized clusters, and its remarkable processing capabilities rest on local
communications within and long-range communication between clusters (Schnitzler
and Gross, 2005). Therefore, it would be particularly useful to the directed interaction
influence between neural clusters in terms of the probability that the desired state of
a cluster is preserved under perturbations on other subnetworks.

We mimic oscillations of the brain network by the first-order Kuramoto model
with synaptic plasticity (Maistrenko et al., 2007). This network comprises of N =∑M

a=1 5×Na nodes, which is divided into M subnetworks, named regions. Each region
a has 5 × Na oscillators. Among them, 4Na oscillators are excitatory, described as:

θ̇a
i = ωa

i +
M∑

m=1

λa,m

4Nm

5Nm∑
j

Δ(j)Ka,m
ij sin (θm

j − θa
i )

− 1
Na

5Na∑
j

(1 − Δ(j))Ka,a
ij sin (θa

j − θa
i ),

(6.4)

and Na are inhibitory oscillators, described as:

θ̇a
i = ωa

i + 1
4Na

5Na∑
j

Δ(j)Ka,a
ij sin (θa

j − θa
i )

− 1
Na

5Na∑
j

(1 − Δ(j))Ka,a
ij sin (θa

j − θa
i ),

(6.5)
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6.3 Neural networks

Figure 6.2: Average fiber link densities λa,m by DTI between regions a and m in groups of (a)
healthy control and (b) schizophrenia.

where ωa
i indicates the intrinsic frequency of the oscillator i in the region a, Ka,m

i,j

indicates the coupling between the oscillators i and j, respectively, within the regions
a and m, and λa,m indicates the coupling strength between a and m. The excitation
and inhibition of oscillators are identified by the indicator Δ(·): if j is excitatory,
Δ(j) = 1 and Δ(j) = 0, otherwise. This implies that excitatory oscillators always
have positive influences to other oscillators, within the same region and between
regions but the influences of inhibitory oscillators are negative and restricted within
the region where it is located.

The coupling strengths between oscillators subjected to the spiking time-dependent
plasticity (STDP) induce the coexistence of a desynchronized and a synchronized
state (Tass and Majtanik, 2006), which can be formulated as follows (Maistrenko
et al., 2007):

K̇a,m
i,j =

{
ε(α − Ka,m

i,j )e(θi−θj)/τp , : θi − θj ∈ [−π, 0]
ε(−Ka,m

i,j )e−(θi−θj)/τd , : θi − θj ∈ [0, π]. (6.6)

It can be seen that the coupling strength Ka,m
i,j is nonnegative and its upper-bound is

α. Multi-stability including synchronization exists when τp �= τd (Maistrenko et al.,
2007). Among these states, in the present paper, we investigate partial basin stability
of the synchronous state.

The inter-regional connections λa,m are defined by the mean linking density of fibers
between region m and region a, measured from the magnetic resonance imaging (MRI).
The brain regions follow the automated anatomical labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002) and are used to parcellate the brain into 90 regions of interest
(ROIs), with 45 in each hemisphere. The neuroanatomical matrix was obtained by
the Diffusion Tensor Imaging (DTI) technique (Le Bihan et al., 2001). Here, we focus
on two groups of subjects: schizophrenia patients, recruited from the community
based mental health teams in Nottinghamshire and Leicestershire, UK, matched
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Figure 6.3: Regional pair-wise PBS in healthy control (a) and schizophrenia (b) with Ma = 100.
PBSa→m is projected on the space of regions a and m and indicate how likely m
returns to the synchronous states after m being subjected after any perturbation.

with a number of healthy controls, also recruited from the local community via
advertisements. We average structural matrices from both groups respectively, which
are shown in Figure 6.2. The self-coupling is set as λa,a = 1. This way, we obtain global
brain structural networks, corresponding both groups of subjects (healthy control and
schizophrenia) respectively. Each network contains 90 regions/subnetworks. Thus,
we name Λ = [λa,m] structural connectivity matrix for the schizophrenia and healthy
control respectively. As shown in Fig. 6.2, the two structural connectivity matrices
look very similar.

The inter-regional connections λa,m are defined by the mean linking density of
fibers between region m and region a, measured from the magnetic resonance imaging.
Here, we focus on the group of schizophrenia patients in comparison with healthy
controls. we model neural networks such that each contains 90 regions and each
region comprises of nodes of the first-order Kuramoto model with synaptic plasticity.

Thus, we simulate the Kuramoto oscillators (6.5) with the STDP rule (6.6) and
the two structural connectivity matrices respectively. The parameters are set as
ωa

i = 2 − i/(5Na − 1), Na = 1, M = 90, α = 10.0, ε = 0.5, τp = 0.15 and τd = 0.3.
Ordinary differential equations are solved by a 4-th order Runge-Kutta method.
Synchronous behaviors are measured by the oscillating dynamics of excitatory nodes:
If θ̇a

i of the excitatory oscillators within the same region a are synchronized, we
say that a is at a synchronous state. That is, θ̇a

i = θ̇a
j , ∀i, j in the region a with

Δ(i) = Δ(j) = 1.
To measure the stability influence in terms of partial basin stability from region a

to region m, we perturb oscillators in the region a and check whether the oscillators in
the region m return back the synchronous state or not after a long time. In detail, the
oscillators in each region initially take values at the synchronous state. We perturb
the states at region a randomly in [−α, α] following the uniform distribution for
independent Ma times and count the number by which the oscillators in region m
converge back to the synchronous states for each group, denoted by sg

a→m, where
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6.3 Neural networks

g = HC, SZD stand for the healthy control and schizophrenia groups, respectively.
Thus, to evaluate the influence between different groups, partial basin stability from
a to m in the group g is calculated by

PBSg
a→m = Sg

a→m

Ma
.

In particular, the self-loop stability is defined by PBSa→a.
To understand these features of PBS with brain regions of schizophrenia in compar-

ison to the healthy control, we define the following quantities to depict the difference
of partial basin stability between the schizophrenia and healthy control as follows:

Stm =
∑

a

1 − H(PBSHC
a→m − PBSSZD

a→m),

InStm =
∑

a

1 − H(PBSSZD
a→m − PBSHC

a→m),

where H(·) is the Heaviside step function, Stm ∈ [0, 90] (InStm ∈ [0, 90]) for all
m = 1, · · · , 90 quantifies the capability of partial stability (instability) of the region
m by counting the number of regions in the schizophrenia group with larger (smaller)
values of PBS than that in the healthy control.

As shown in Fig. 6.3, for both schizophrenia and healthy control groups, most
regions have available stability influence on themselves with PBSa→a < 1 but seldom
affect the synchronous states of other regions with PBSa→m ≈ 1. Some regions
show crucial difference between these two groups. To quantitatively demonstrate the
stability influence of the schizophrenia compared to the healthy control, we define
stability St and instability InSt as shown in Fig. 6.4.

To simplify notation, given the threshold values of stability and instability, de-
noted by Stc and InStc respectively, all regions with Stm > Stc are collected as
schizophrenia-stable regions and all regions with InStm > InStc are defined as
schizophrenia-unstable regions. We find that the the right precuneus (PCUN.R)
and the left middle occipital gyrus (MOG.L) are schizophrenia-stable and the left
precuneus (PCUN.L) is the schizophrenia-unstable region. The locations of these
schizophrenia-stable (in blue) and schizo-unstable (in red) regions are plotted in
Fig. 6.5 by the BrainNet software (Xia et al., 2013).

PCUN.R and PCUN.L show receiving significant influence from many other regions.
The precuneus is a key component in the brain default mode network. As a “rich club”
member, it has many long distance connections, is able to exert widespread influence
on both cortical and limbic functions (Fransson and Marrelec, 2008), and it is involved
in many different behavioral functions including reflective and self-related process-
ing (Kjaer et al., 2002), awareness and conscious information processing (Cavanna,
2007), empathy (Harvey et al., 2013), episodic memory (Dörfel et al., 2009) and visuo-
spatial processing (Wenderoth et al., 2005). Many of these functions are impaired in
schizophrenia, and most notably studies have reported altered precuneus function
associated with impaired self-processing (Zhao et al., 2013), insight (Faget-Agius
et al., 2012), and empathy (Harvey et al., 2013) in schizophrenia patients.
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Figure 6.4: Bar-plots of partial stability, Stm, and partial instability, InStm, with respect to
regions with the thresholds Stc = 80 and InStc = 80. The schizophrenia-stable
regions: right precuneus (PCUN.R) and left middle occipital gyrus (MOG.L), and
the schizophrenia-unstable region: left precuneus (PCUN.L) are outlined.

MOG.L are schizophrenia-stable. The middle occipital gyrus is considered as a
part of the visual dorsal stream in sighted subjects (Dumoulin et al., 2000) and
identifies a functional preference for processing spatial properties of both auditory
and tactile stimuli (Renier et al., 2010). This functioning was observed impaired in
schizophrenia patients and so the middle occipital gyrus has been reported abnormal
in the schizophrenia. For instance, additional activation during visual hallucinations
was found in the middle occipital gyrus (Oertel et al., 2007). In this region, the group
differences were attributable to patients having a significantly reduced number of
voxels with preferential responses to low spatial frequencies in the visual stimulus
compared with controls (Martinez et al., 2008). An elevation of cerebral blood flow
(rCBF) of this region occurred during nonverbal theory of mind task in schizophrenia
patients (Brunet et al., 2003).

Via evaluating the stability of regions of a schizophrenia group compared to a group
of healthy control, we find that right precuneus and left middle occipital gyrus are
schizophrenia-stable and the left precuneus is schizophrenia-unstable. Our results are
in agreement with these findings achieved via brain functional imaging, however, from
the respective of dynamical system theory. The results would vary with increasing
values of a coupling term, but our main findings are retained as shown in Fig. 6.6
and 6.7. The stability influence could be due to an impact of global topology (e.g. in
neural networks) or local connection schemes. Partial basin stability quantifies the
stability influence between different clusters and enhances the understanding of how
perturbations spread, and it is a crucial point and is of highest actual importance
from various aspects (economy, future society, sustainability etc).
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6.3 Neural networks

Figure 6.5: The locations of schizophrenia-stable (blue) and schizophrenia-unstable regions (red)
on the brain cortex surface and all. We put one node on each region with equal
size but different color to denote its stability. Nodes are in gray if its stability
Stm < Stc or instability InStm < InStc. The colormap indicates the fibers’
number difference δλa,m between the group of schizophrenia and healthy control.
Here, we only show the links from/to the schizophrenia-stable (PCUN.R, MOG.L)
and schizophrenia-unstable (PCUN.L) regions.
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Figure 6.6: Partial basin stability PBSa→m from regions a to m in groups of healthy control
(a) and schizophrenia (b). In simulations, Mp

a = 100. Here, we used different
parameters with ωa

i = 2 − i/(5Na − 1), Na = 1, M = 90, α = 10.0, ε = 0.6
(increased), τp = 0.15 and τd = 0.3.

Figure 6.7: Compared to health normal group, the schizophrenia-stable regions of right precuneus
(PCUN.R) and left middle occipital gyrus (MOG.L) and the schizophrenia-unstable
region of left precuneus (PCUN.L) in the group of schizophrenia with Stc = 80
and InStc = 80. Here, we used different parameters with ωa

i = 2 − i/(5Na − 1),
Na = 1, M = 90, α = 10.0, ε = 0.6 (increased), τp = 0.15 and τd = 0.3.
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6.3.2 Materials

28 patients satisfying DSM-IV criteria for schizophrenia (32.6 ± 8.9 years, 23 males/5
females) and 32 patients parental socio-economic status (Rose and Pevalin, 2003)
matched healthy controls (33.4 ± 9.1 years, 22 males/10 females) were included.
Patients were recruited from the community-based mental health teams (including
Early Intervention in Psychosis teams) in Nottinghamshire and Leicestershire, UK.
The diagnosis was made in a clinical consensus meeting in accordance with the
procedure of Leckman et al. (Leckman JF et al., 1982), using all available information
including a review of case files and a standardized clinical interview (SSPI) (Liddle
et al., 2002). All patients were in a stable phase of illness (defined as a change of no
more than ten points in their Global Assessment of Function [GAF] score, assessed
6 weeks prior and immediately prior to study participation). The study was given
ethical approval by the National Research Ethics Committee, Derbyshire, UK. All
volunteers gave written informed consent.

Diffusion-weighted images were acquired using a single-shot, spin-echo, echo pla-
nar imaging (EPI) sequence in alignment with the anterior commissure-posterior
commissure (AC-PC) plane. The acquisition parameters were as follows: Repetition
Time (TR) = 8.63 s, Echo Time (TE) = 56.9 ms, voxel size = 2 mm isotropic, 112 ×
112 matrix, Field of View (FoV) = 224 × 224 × 104, flip angle = 90o, 52 slices, 32
directions with a b-factor of 1000 s/mm2, EPI Factor = 59, total scan time = 6.29
min.

For DTI images, we first used FMRIB Software Library v5.0 (Jenkinson et al., 2012)
to remove the eddy-current and extract the brain mask from the B0 image. Then, we
used TrackVis (Wang et al., 2007) to obtain the fiber images by the deterministic
tracking method, with anatomical regions defined using the AAL convention on the
basis of co-registered T1 image from each subject. This enabled us to determine the
presence of streamlines connecting every pair of brain regions. All the processes were
performed using the PANDA suite (Cui et al., 2013).

6.4 Power grids

Decarbonizing the energy system requires a strongly increasing usage of low-carbon
energy sources (Pachauri and Blair, 2006). The cheapest and widespread way is to link
new renewable sources to the nearest neighbor in a power grid, which finally formulates
a tree-like connection scheme (Menck et al., 2014). Such tree-like connections, so-
called dead ends and dead trees, strongly diminish stability (Menck et al., 2014), i.e.
given even a small perturbation, some nodes have a rather small probability to return
to the synchronous state where all frequencies equal the reference frequency (50 or 60
Hz).

One of the fundamental problems is that perturbations on one node could cause the
whole network failure (Cornelius et al., 2013). Tree-like connection schemes, so-called
dead ends and dead trees, could strongly diminish the network stability and cause
cascading failure.
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Figure 6.8: Contour plot of PBSa→m, where, a, m = 1, 2, . . . , N .

We use the classical power grid model based on the swing equation as follows
⎧⎪⎨
⎪⎩

θ̇i = ωi

ω̇i = −αωi + Ωi + λ
N∑

j=1
Aij sin (θj − θi),

(6.7)

where θi, ωi, and Ωi are, respectively, the phase, the frequency, and the net power
input at generator i = 1, · · · , N , α is the dissipation constant, and the coupling
constant λ is the same for all different transmission lines. Aij accounts for the
underlying topology with Aij = 1 if nodes i and j are connected and Aij = 0,
otherwise. Aij sin (θj − θi) describes the power flows along transmission lines. In
order to reach an equilibrium, the total energy generation and consumption should
be balanced, i.e.,

∑Ωi = 0, and we say that i is a net generator if Ωi > 0, or a net
consumer if Ωi < 0. ωi = 0, ∀i = 1, · · · , N describe complete synchronization.

Towards partial basin stability, we define the partial attracting set as the frequencies
of most nodes m close to 0, which is named dominant frequency. That is: A ε

m =
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Figure 6.9: The load scenario of the northern European power grid was chosen randomly with
half net generators (circles) and half net consumers (squares). The colors of nodes
scale the values of self-loop stability, i.e., PBSa→a, for all nodes. The weighted
arrows unveil the existence of non-local influences by the way that the widths of
arrows are proportional to the values of 1 − PBSa→m with a �= m. The subplot
specifies a two-nodes motif where a net consumer connects a net generator in the
grid.
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{(θm, ωm) : |ωm| ≤ ε} for some small 0 < ε � 1. We write A ε
m by Am for

simplicity. Then, partial basin stability from nodes a to m can be used to discover
local mechanisms and its calculation follows

PBSa→m(Am|(θI
0 , ωI

0 )) =∫ ∫
1Am(θ(0), ω(0))ρ(θa(0), ωa(0))δ(θa(0),ωa(0))(θI

0 , ωI
0 )dθa(0)dωa(0),

(6.8)

where ωI
0 = 0. We write PBSa→m(Am|(θI

0 , ωI
0 )) by PBSa→m for simplicity in this

section.
Numerically, we calculate PBSa→m in the following way. Given the initial values of

θa and ωa of node a, we integrate system (6.7) for a sufficiently long period of length
t1 + t2 and disregard the first t1 time period. In order to quantify the stationary
state, we average the frequencies in the duration [t1, t1 + t2] as follows

ω̃m = 1
t2

∫ t1+t2

t=t1
ωmdt. (6.9)

If ω̃m is within the dominant frequency, i.e. |ω̃m| ≤ ε, we say that the node m is
synchronized.

We integrate this system (6.7) for Ma times with independent different initial values
of (θa(0), ωa(0)) following the density ρ(θa, ωa). Then we count the number, for which
node m converges to the dominant frequency, namely, |ω̃m| ≤ ε, and we denote it
as Sa→m. Then, partial basin stability is calculated by PBSa→m = Sa→m/Ma.
PBSa→m = 1 means that the synchronization of node m is independent of any
perturbation on node a but PBSa→m < 1 implies the existence of a non-local
influence from a to m.

6.4.1 Northern European power grid

Here, we implement partial basin stability to investigate the non-local influence on the
northern European power grid, which is extracted from the electricity transmission
network in the nordic countries published in the svenska kraftnät, 2009 annual report.
This grid has N = 236 nodes, and E = 320 transmission lines (Menck et al., 2014).
The load scenario is chosen to be the same as in the reference (Menck et al., 2014)
with half generators ( N/2 with Ωa = +1) and half consumers (N/2 with Ωa = −1),
as illustrated in Fig. 6.9. The simulation parameters are set with α = 0.1 and λ = 8.
Ordinary differential equations are solved by a 4-th order Runge-Kutta method with
time step 0.01. In power grids, the dominant frequency is defined by setting ε = 10−4.

We have investigated the stability influence from nodes a to m in terms of PBSa→m

on the northern European power grid. All situations are shown in the contour plot
6.8. The visualization on the grid is shown in Fig. 6.9. A power grid operates in the
coexistence regime of stable fixed points and stable limit cycles (Rohden et al., 2012).
In most cases, a perturbation on node a has a high probability to trigger itself away
from a synchronous state, namely, PBSa→a < 1. Most importantly, local stability
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influences from the perturbation of node a towards the synchronization of another
node m, namely, PBSa→m < 1, although rare, could also be observed indicated by
the red arrows.

It is surprising that some nodes that link to dead ends have a large value of partial
basin stability, which contradicts to the fact that nodes adjacent to dead ends are
likely to have low basin stability (Menck et al., 2014). This is owing to the difference
of how the concepts of basin stability and partial basin stability measure stability:
basin stability is counted when the whole system reaches synchrony, while, partial
basin stability is counted when the single node a goes into the dominant frequency.
It is valuable to concentrate on the very few transmission lines that have indeed
influences between nodes, i.e., PBSa→m < 1 for some a �= m.

Dead ends are easily perturbed by its neighbors or nodes on the same dead trees.
Hence, the dead ends can both undermine the network stability and enhance the local
stability. The influence is determined by local connection schemes. Therefore, to
discover the underlying mechanism, we have investigated a two-node motif especially,
as shown by the subplot of Fig. 6.9, and observe a non-local influence to a dead end.
studied a two-node motif separating from a large system.

6.4.2 Two-nodes motif

Dead end separating from a large system has been fully investigated in previous
studies (Strogatz, 2014; Menck et al., 2013; Menck et al., 2014; Ji et al., 2013).
Depending on the pair of parameters projected on the stability diagram, the system
either converges to a synchronous state (in the region of a fixed point), attracts to a
limit cycle (in the region of a limit cycle), or has two stationary states in terms of
initial values (in the region of bistability).

It is still unclear how dead ends undermine the global stability of its neighbor in
the dead trees but enhance the local stability. Therefore, we investigate a simple
two-nodes motif: node 1 links to a dead end 2 and a large system. Accordingly, the
dynamics of these two nodes follows

θ̈1 = −αθ̇1 + Ω1 + λ sin (θ2 − θ1) + λ sin (θl − θ1), (6.10)
θ̈2 = −αθ̇2 + Ω2 + λ sin (θ1 − θ2), (6.11)

where θl indicates the phase of the large system and could be taken as a constant.
Without loss of generality, we set θl = 0. In the region of bistability, when Ω1 = −Ω2,
the system could converge to synchrony with θs

1 = 0, θs
2 = arcsin (Ω2/λ) and ωs

1 =
ωs

2 = 0. When Ω1 = Ω2, the synchronous solution is indicated by θs
1 = arcsin (2Ω2

λ ),
θs

2 = arcsin (Ω2
λ ) + arcsin (2Ω2

λ ) and ωs
1 = ωs

2 = 0.
Initially, the two nodes are at synchronous states. The node 1 is subjected to a

random perturbation with (θ1 − θs
1, ω1 − ωs

1). Will the node 1 and/or node 2 return
back to the synchronous state? After a long transition, if node 1 returns to the
dominant frequency, then this contributes to the self-loop stability PBS1→1; if node
2 will not return back to the dominant frequency, then PBS1→2 < 1.
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Recalling that the stationary solution is quantified by the mean frequency. Therefore,
given a perturbation on the node 1, we calculate ω̃1 and ω̃2, respectively, for nodes 1
and 2. After independently and randomly drawing perturbations (θ1 − θs

1, ω1 − ωs
1)

from the state space [−π, π] × [−10, 10], we find 4 attractors, and show the projection
of different attractions on (θ1, ω1) for node 1 in Fig. 6.10(a) and (θ2, ω2) for node 2
in Fig. 6.10(b). The basins of the different attractors are shown in Fig. 6.11. In what
follows, we explain these 4 attractors in details.

Yellow denotes the fully synchronous state with (θs
1, ωs

1) and (θs
2, ωs

2). Black denotes
the partial synchronous state, in particular node 1 oscillates around 0 but node
2 converges to the limit cycle. Red denotes a kind of synchronous states, each
node oscillates around zero but with large amplitudes. Orange indicates that both
oscillators are attracted to limit cycles. Each node runs around its own natural
frequency, i.e. not synchronized. In terms of partial basin stability, PBS1→1,2 counts
the probability that the node 1 or 2 synchronize to the dominant frequency, ω̃1,2 ≈ 0.

In Fig. 6.12 we show PBS1→1,2 with respect to the coupling strength λ. As
expected, PBS increases with the increasing of λ. At each coupling strength, color
bars show the volume of different attractors. PBS1→1 sums the volumes of the
bottom three attractors. PBS1→2 is proportional to the yellow attractor.

Next, we discuss the limit cycles in black and orange, separately.

Black attractor

In the regime of the black attractor, the node 1 oscillates periodically around 0, the
node 2 runs periodically around ω̃2 = Ω2/α and θ2 ≈ ω̃2t + θ2(0). To simplify the
situation, we assume that the first node is at the synchronous state with constant
phase θ1 = 0, and ω2 = ω̃2 + f2, where f2 is a residual term to be solved, yielding

ḟ2(t) = −αf2(t) − λ sin (ω̃2t + θ2(0)) . (6.12)

The special solution to this equation is

f2(t) = −α sin (θ2(0) + ω̃2t) + ω̃2 cos (θ2(0) + ω̃2t)
α2 + ω̃2

2
. (6.13)

Therefore,

ω2(t) = ω̃2 + −α sin (θ2(0) + ω̃2t) + ω̃2 cos (θ2(0) + ω̃2t)
α2 + ω̃2

2
. (6.14)

Orange attractor

In the state of the orange attractor, nodes 1 and 2 run around its natural frequency
ω̃1 = Ω1/α and ω̃2 = Ω2/α, respectively. Therefore, θ1(t) ≈ ω̃1t + θ1(0) and
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6.4 Power grids

Figure 6.10: Projections of 4 attractors in the phase space (θ1, ω1) (a) and (θ2, ω2) (b), respec-
tively for nodes 1 and 2. Attractors are in different color.
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Figure 6.11: Basin of attraction of 4 different attractors in different colors. Here, we set
Ω1 = −Ω2 = 1, α = 0.1 and λ = 8.
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6.4 Power grids

Figure 6.12: Partial basin stability PBS with respect to the coupling strength λ. In color
bars, the volume of different colors is proportional to the percentage of different
attractors.
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θ2(t) ≈ ω̃2t+θ2(0). Following the same above process, we assume that ω1 = ω̃1 +f1(t)
and ω2 = ω̃2 + f2(t). Substituting the assumption into Eq. (6.11) yields

ḟ1(t) = −αf1(t) + λ sin (ω̃2t + θ2(0) − ω̃1t − θ1(0)) − λ sin (ω̃1t + θ1(0)), (6.15)

and

ḟ2(t) = −αf2(t) + λ sin (ω̃1t + θ1(0) − ω̃2t − θ2(0)). (6.16)

Due to ω̃2 = −ω̃1, for convenience, we set δθ12 ≡ θ1(0)+θ2(0) and rewrite Eq. (6.15)
and Eq. (6.16), as follows

ḟ1(t) = −αf1(t) − λ sin (2(ω̃1t + θ1(0)) − δθ12) − λ sin (ω̃1t + θ1(0)), (6.17)

and

ḟ2(t) = −αf2(t) + λ sin (−2ω̃2t − 2θ2(0) + δθ12). (6.18)

Via discarding higher order terms, we get the approximation of f1(t) and f2(t) as

f1(t) ≈ λα
cos (δθ12 − 2θ1(t)) + 2 cos (θ1(t))

2ω̃1
, (6.19)

and

f2(t) ≈ λ
a sin (δθ12 − 2θ2(t)) + 2ω̃2 cos (δθ12 − 2θ2(t))

a2 + 4ω̃22 . (6.20)

Therefore,

ω1(t) ≈ ω̃1 + λα
cos (δθ12 − 2θ1(t)) + 2 cos (θ1(t))

2ω̃1
, (6.21)

and

ω2 ≈ ω̃2 + λ
a sin (δθ12 − 2θ2(t)) + 2ω̃2 cos (δθ12 − 2θ2(t))

a2 + 4ω̃2
2

. (6.22)

In Fig. 6.13, simulations are conducted to validate the analytical solution.
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6.4 Power grids

Figure 6.13: Analytical and simulation results of the limit cycle of the node 2 in the state of
the black attractor (a). In the state of the orange attractor, the panels (b) and (c)
show the limit cycles for the nodes 1 and 2, respectively. The analytical solutions
are obtained from Eqs. (6.14) (a), (6.21) (b) and (6.22) (c). The δθ12 = −0.5 is
determined by the initial phase difference.
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6.5 Conclusions

In this chapter, we implement the concept of partial basin stability on two examples
of networked systems: neural networks and the northern European power grid, both
from real data.

The neural network of the brain is well known to be partitioned into different
functional sub-networks (clusters/regions) according to its functional and anatomical
features. Partial synchronization in each sub-network is essential for specific cognition
behavior. Long-distant axonal and synaptic couplings play an important role in
the information transmission. Hence, we will measure such interactions by partial
synchronization between sub-networks in terms of partial basin stability.

As illustrated in (Menck et al., 2014), tree-like connection schemes (so-called-dead
ends and dead trees) are crucial to diminish basin stability of the whole network. To
deepen the understanding of the underlying mechanism how dead ends and dead trees
undermine the power grid stability, we evaluate the influence of the perturbation of
a randomly selected node a on the remote nodes m, in particular dead ends, using
partial basin stability.
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Chapter 7

Conclusion and outlook

Nonlinear dynamics has been boosted in the past few years thanks to theoretical
and methodological developments and the discovery of a plethora of rich phenomena.
For instance, the properties of low-dimensional behavior were first characterized by
Watanabe-Strogatz theory (Watanabe and Strogatz, 1994) and later further improved
by Ott and Antonsen (Ott and Antonsen, 2008). Others include discontinuous
phase transitions induced by the correlation between dynamics and topology (Gómez-
Gardenes et al., 2011), and basin stability (Menck et al., 2013) in terms of the
attracting basin of desirable states. This thesis was motivated by these fascinating
phenomena and explored novel extensions for the Kuramoto model with inertia.

I hope that the contributions of this thesis as summarized below not only provide
novel theoretical and methodological insights for the Kuramoto model with inertia,
but also spark new ideas on inertia effects of related systems.

7.1 Summary

In the following, I summarize the main contributions of this thesis and give an outlook
to further avenues for research. The relevant papers are also listed for reference.

As mentioned above, the Ott-Antonsen ansatz triggered many works on the low-
dimensional behavior of the first-order Kuramoto model. Regarding the second-order
Kuramoto model, we explored its low dimensional behavior in terms of the ansatz
considering stationary density functions of phase oscillators following a Poisson kernel,
which unfortunately turns out to be an unsuccessful approach due to the problem
of the Fourier expansion of the density functions. Alternatively, we have derived
self-consistent equations for the order parameter yielding a nonlinear time-dependent
function (Sec. 3.3).

Relevant papers: (Ji et al., 2014b).
The first research question of this thesis was devoted to discontinuous phase transi-

tions in the presence of a positive correlation between the dynamics and the network
topology (Chapter 4). Subsequently, we focused on basin stability in complex networks
(Chapter. 5) and its extension to cluster synchronization (Chapter 6). To achieve
these goals, we have employed a mean-field approximation with an asymmetrical
natural frequency, simulations in the presence of heterogeneous connections, and
other approaches.
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As the first main part of this thesis, we substantially extended the first-order
Kuramoto model with frequency-degree correlation to the Kuramoto model with
inertia to demonstrate phase transitions to synchronization, by considering the natural
frequency of each oscillator proportional to its degree (Sec. 4.2). Unlike explosive
synchronization (Gómez-Gardenes et al., 2011), where all nodes synchronize at the
same time, we have found that nodes of the same degree can form clusters, where low
degree nodes join the synchronous component simultaneously and high degree nodes
synchronize successively. We called the newly observed phenomenon cluster explosive
synchronization (Sec. 4.2). However, abrupt phase synchronizations depend not only
on the degree-frequency correlation but also on assortative mixing. In particular, we
have shown the existence of discontinuous phase transitions in disassortative as well
as assortative networks. Furthermore, we have found that the effects of assortative
mixing in the connections can be compensated by adjusting the dissipation associated
to the oscillators’ phases (Sec. 4.3). In other words, similar dynamical states can be
obtained by either tuning the network structure or the intrinsic characteristics of its
units. This might have important potential applications, e.g., for power grids.

Relevant papers: (Ji et al., 2013; Ji et al., 2014a; Peron et al., 2015).
In the context of abrupt transitions, different initial conditions allow hysteresis.

For large perturbations the system could move from desirable states to undesirable
states. The corresponding probability of returning to the desirable states is quantified
by basin stability (Menck et al., 2013).

As the second main part of this thesis, we firstly investigated the transitions
uncovered by basin stability of synchronized states of different oscillators in the
continuum limit and have found that two first-order transitions occur successively
consisting of an onset transition from instability to local stability and a suffusing
transition from local to global stability (Sec. 5.2).

Relevant papers: (Ji and Kurths, 2014a; Ji and Kurths, 2014b; Ji et al., 2015).
Basin stability indicates how likely the whole system returns to a desirable state.

For cluster synchronization, we have proposed a new concept of partial basin stability
to quantify the stability influence between clusters (Sec. 6.2). This concept was
applied to two highly relevant examples: neural networks (Sec. 6.3) and the northern
European power grid (Sec. 6.4). For the case of neural networks, we have identified
abnormal regions (the precuneus and the left middle occipital gyrus) in the human
brain in a patient group of schizophrenia from a dynamical point of view, which
confirms previous findings based on observations (Sec. 6.3). For power grids, we have
explained how dead ends can decrease the network stability (Sec. 6.4).

We believe that partial basin stability will provide a powerful tool to deepen the
understanding of the underlying mechanisms of perturbation spreading in research
areas such as medicine, systems biology, and earth system analysis.
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7.2 Outlook

7.2 Outlook

We have provided a theoretical framework of cluster explosive synchronization for
the second-order Kuramoto model with frequency-degree correlations in uncorrelated
networks (in the continuum limit). Still, the underlying mechanism for the occurrence
of hysteresis in scale-free networks still remains an interesting open question and the
effects of, e.g., time delays and noise might give rise to novel phenomena. Further,
while we have numerically illustrated the effects of assortative mixing, a mean-field
approximation is still missing and also a theoretical framework of the second-order
Kuramoto model in assortative networks in the continuum limit is still subject
for further research (Restrepo and Ott, 2014). Moreover, as specified by Tanaka
et al. (Tanaka et al., 1997a; Tanaka et al., 1997b), while a framework exists for
uniform, Lorentzian, and Gaussian intrinsic frequency distributions in the second-order
Kuramoto model, the results are still open for asymmetrical natural distributions.

The above results are derived, provided that the stationary solution of the order
parameter r is assumed to be constant, especially when the network size approaches
infinity or in the continuum limit. But due to the effects of inertia, drifting oscillators
as well as locked oscillators contribute to the phase coherence, and a secondary
synchronization within the drifting oscillators emerges. Fluctuations of r are, therefore,
unavoidable due to the inertia effects, and the underlying mechanisms need to be
further investigated.

As illustrated in Ref. (Filatrella et al., 2008), the system is either capable to
withstand a perturbation or looses its stability depending on not only the strength
of perturbations, but also on the duration, which has not yet been included in the
definition of basin stability. It would be interesting to investigate how the duration
of perturbations affects, e.g., the stability of dead ends and dead trees (Menck et al.,
2014).
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