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I. CLASSICAL CHAOS. KICKED ROTOR MODEL AND THE CHIRIKOV STANDARD MAP.

Emergence of statistical description and thermodynamics in dynamical systems (aka thermaliza-

tion) is closely related to the concept of chaos leading to the ergodic behavior. In classical systems
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chaos implies strong usually exponential sensitivity of the trajectories to small perturbations. In

FIG. 1 Examples of trajectories of a particle bouncing in a cavity (i) non-chaotic circular (top left image)

and (ii) chaotic Bunimovich stadium (top right image). The bottom panel shows evolution of two initially

close trajectories in the chaotic regime. The images are taken from scholarpedia and wikimedia.

Fig. 1 we illustrate the motion of a particle in a regular and chaotic two-dimensional cavity. The

top left panel illustrates long time trajectory of a particle in a regular circular cavity. It is visually

clear that the motion of the particle is completely regular and thus non-ergodic. Indeed long time

average is clearly not-equivalent to the micro-canonical ensemble average with all points in real

space and all directions in the momentum space being equally probable. On the other hand the top

right figure showing the trajectory chaotic Bunimovich stadium looks much less regular. Moreover

in this chaotic regime if we compare two trajectories, which are initially close to each other then

we see that after few bounces they become completely uncorrelated both in terms of positions and

direction of motion (bottom graph). This is a consequence of the chaotic dynamics in the system.

There are many examples of dynamical systems exhibiting chaotic behavior. In this course we
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will focus on Hamiltonian systems since our goal is connecting the microscopic laws of Nature and

statistical physics. One of the simplest examples of Hamiltonian systems with a chaotic dynamics

is the kicked rotor, analyzed in detail by Boris Chirikov in 1950th. The Hamiltonian of the system

is very simple

H(p, ϕ, t) = p2

2m
−K cos(ϕ)δ(t− nT ) (I.1)

It essentially represents a freely rotating particle (it is easier to think about p as an angular

momentum and ϕ as a canonically conjugate angle) which periodically exhibits a momentum kick,

which depends on the position (angle). We are choosing an opposite sign convention in front of

K than usual because then the time averaged Hamiltonian reduces to the conventional pendulum

with the energy minimum at ϕ = 0. Clearly the sign of K is not important since one can always

shift ϕ→ ϕ+π. Note that this is a problem with a time-dependent Hamiltonian not static as it was

the case with billiards. We have to pay this price because in static problems with a single degree

of freedom there is no chaos as the momentum is a unique function of the (conserved) energy and

position. Let us write the equations of motion for our rotor

dϕ

dt
=
∂H
∂p

=
p

m
,
dp

dt
= −∂H

∂ϕ
= −K sin(ϕ)δ(t− nT ). (I.2)

These equations of motion can be easily integrated between the kicks. Let us denote by pn and

ϕn the momentum and the angle of the particle just before the n-th kick, i.e. at time t = nT − ϵ,

where ϵ→ 0. Then it is easy to see that the equations of motion result in the following recursion

relation

ϕn+1 = ϕn + Tpn+1 (I.3)

pn+1 = pn −K sin(ϕn) (I.4)

These equations give us a discrete map (known as the standard Chirikov map) allowing one to

uniquely determine the position (angle) and the momentum and arbitrary moment of time. Namely

if nT < t < (n+1)T then clearly p(t) = pn+1, ϕ(t) = ϕn+pn+1(tmodT ). It is clear that without loss

of generality we can assume that the momentum is periodic function defined modulo 2π/T . This

immediately follows from the invariance of the equations of motion above under pn+1 → pn+1+2π/T

and ϕn+1 → ϕn+1 + 2π.

Let us now qualitatively analyze the time evolution following from the Chirikov map. To

simplify notations we assume m = T = 1, which can be always done by appropriately rescaling

time units and K. Then the dynamics is determined by the value of K and the initial angle and
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momentum. First we assume that K ≪ 1 and p0 ≪ 1. Then from equations (I.4) it is clear that

both momentum and the angle change very little during each period so instead of solving discrete

equations we can take the continuum limit with respect to the period and write

∂ϕ

∂n
≈ p, ∂p

∂n
= −K sin(ϕ) → ∂2ϕ

∂n2
≈ K sin(ϕ). (I.5)

This equation represents the motion of a pendulum in a cosine potential and is completely regular.

Depending on the initial conditions there are two types of trajectories corresponding either to

oscillations p ≪ K or to full rotations if p ≫ K. A more careful look shows that we even do not

need to assume that the initial momentum is small, the only crucial assumption is that K ≪ 1.

Next we need to check the stability of the found trajectory. It might happen that if we include

corrections to the continuum approximation we will immediately recover chaos. However, as proven

by Kolmogorov, Arnold and Moser this does not happen. In particular, they formulated the KAM

theorem, which states that regular motion is stable against small perturbations. We can check the

stability of the above solution perturbatively. In particular, Eqs. (I.4) can be written as

ϕn+1 − 2ϕn + ϕn−1 = −K sin(ϕn) (I.6)

If K is small we can assume that ϕ is a nearly continuous variable and expand it into the Taylor

series

d2ϕ

dn2
+

1

12

d4ϕ

dn4
≈ −K sin(ϕ) (I.7)

In general the second fourth derivative term in the equation above is quite dangerous. But our goal

is to treat it perturbatively. From the unperturbed solution we see that (at least in the localized

regime) the natural frequency of oscillations is
√
K. This means that each derivative with respect

to n brings an extra factor of
√
K (Check this by an explicit calculation.) Thus the fourth derivative

term is proportional to K2 and is small when K ≪ 1.

When K is large continuum approximation for the map clearly fails. Momentum has large

jumps from kick to kick and so does the phase. Because both are determined modulo 2π it is

intuitively clear that the motion will be random, i.e. chaotic. However, this property of global

chaos is very hard to prove and the rigorous analytical proof does not exist even now. Let us follow

much less ambitious goal and analyze stability of the fixed points of the map:

ϕn+1 = ϕn + pn+1 = ϕn, pn+1 = pn −K sin(ϕn) (I.8)

It is clear that there are only two possible solutions pn = 0, ϕn = 0 and pn = 0, ϕn = π. Now

let us perturb the trajectories a little bit and see whether they will remain stable. The linearized
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equations then read

δϕn+1 − 2δϕn + δϕn−1 = −K cos(ϕ0)δϕn = ∓Kδϕn, (I.9)

where the plus and minus signs refer to the fixed points ϕ = 0 and ϕ = π, respectively. We might

recognize equations of motion for coupled harmonic oscillators where ±K plays the role of the

frequency squared. Because this is a translationally invariant system we will seek the solution in

the following form

ϕn+1 = λϕn = λnϕ0 (I.10)

For a harmonic chain you might recognize standard procedure of going to normal Fourier modes if

λ = exp[iq]. But here we have to be careful because frequency
√
±K can be imaginary. After this

substitution the system (I.9) reduces to a simple quadratic equation

λ2 − (2∓K)λ+ 1 = 0, (I.11)

which has two solutions

λ1,2 = 1∓ K

2
±
√
∓K +

K2

4
. (I.12)

Now let us analyze these two solutions separately for the two fixed points. We start from the ϕ = 0

point corresponding to the − sign. Then we have two solutions

λ1,2 = 1− K

2
±
√
K2

4
−K (I.13)

It is clear that for 0 < K < 4 the expression in the square root is negative leading to the imaginary

contribution to λ. In the same range of K the absolute value of the real part of λ is less than one.

This means that our solution is stable. Indeed if we introduce a small deviation in phase then as

the discrete time n increases will not grow. Moreover in this range we can check that

|λ2| = (1−K/2)2 +K −K2/4 = 1 (I.14)

implying that λ = exp[iω], exactly like for a harmonic chain. So any small deviation will oscillate

around the fixed point.

If K > 4 then the situation changes completely. Now we are getting to real solutions for λ and

the solution with the negative sign

λ2 = 1− K

2
−
√
K2

4
−K
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clearly gives |λ2| > 1 implying it is unstable: any small fluctuation exponentially grows without

bound with time, at least in the linearized regime. This exponential growth does not prove the

chaos yet but this is a strong indicator that the dynamics is chaotic. The exponent characterizing

the rate of growth log(λ) is called the Lyapunov exponent. In chaotic systems with many degrees

of freedom there are many Lyapunov exponents and typically the largest of them determines the

rate of divergence of nearby phase space trajectories.

The analysis of the other attractor with ϕ = π is even simpler

λ1,2 = 1 +
K

2
±
√
K +

K2

4
. (I.15)

Clearly for any positive K there are two real solutions with one larger than one. So this point is

always unstable. This is not very surprising since this attractor corresponds to the situation, where

a mass sits on top of the potential. It is interesting that if instead of δ kicks one applies fast periodic

motion of the pendulum: K = K0 + a sin(νt) then one can stabilize the top equilibrium ϕ = π.

This is known as the Kapitza effect (or Kapitza pendulum) and there are many demonstrations

how it works. In Fig. 2 we show the phase space portrait of the kicked rotor at different values of

K. It is clear that as K increases the system becomes more and more chaotic. At K = Kc ≈ 1.2

there is a delocalization transition, where the chaotic region becomes delocalized and the system

increases its energy without bound.

Transition from regular (localized) to chaotic 
(delocalized) motion as K increases. Chirikov, 
1971 

K=0.5 K=Kg=0.971635 K=5 (images taken 
from 
scholarpedia.org) 

FIG. 2 Phase space portrait (Poincare cross-section) for the kicked rotor at different values of the parameter

K. Note that the opposite convention K → −K or θ → θ + π is used in the images.

To summarize this section we note that dynamics of Hamiltonian systems can be both regular

and chaotic. Chaotic dynamics usually leads to ergodicity and thermalization. It is characterized

by exponential sensitivity of the phase space trajectories to the initial conditions: small changes
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Fermi Acceleration

The so-called Fermi acceleration – the acceleration of a particle through col-
lision with an oscillating wall – is one of the most famous model systems for
understanding nonlinear Hamiltonian dynamics. The problem was introduced
by Fermi [1] in connection with studies of the acceleration mechanism of cos-
mic particles through fluctuating magnetic fields. Similar mechanisms have
been studied for accelerating cosmic rockets by planetary or stellar gravita-
tional fields. One of the most interesting aspects of such models is the deter-
mination of criteria for stochastic (statistical) behavior, despite the strictly
deterministic dynamics.

Here, we study the simplest example of a Fermi acceleration model, which
was originally studied by Ulam [2] : a point mass moving between a fixed
and oscillating wall (see Fig. 7.1). Since then, this model system has been
investigated by many authors, e.g., Zaslavskii and Chirikov [3], Brahic [4],
Lichtenberg, Lieberman, and their coworkers [5]–[8], and it is certainly one of
the first examples of the variety of kicked systems which appear in numerous
studies of nonlinear dynamics.

!
!
v

!

"

L

!
"2a

fixed wall

oscillating wall

Fig. 7.1. Model for Fermi acceleration.
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Fig. 7.2. Different wall oscillations.

FIG. 3 Illustration of the setup for the Fermi-Ulam problem. See text for details.

exponentially grow in time. We saw that at least in some regimes regular dynamics is stable against

small perturbations. There is a rigorous KAM theorem proving this. Then the transition to chaos

occurs gradually (as we increase non-linearity in the system) through the overlapping resonances

of the regular motion. The corresponding theory formulated by Chirikov has many implications

to our understanding of chaotic systems. The situation is much less clear in thermodynamic limit,

i.e. when we have infinitely many degrees of freedom. There is no analogue of the KAM theorem

in this case and it is generally believed that infinitesimal non-linearity is sufficient to cause chaos

and ergodicity. However, in the first part of the course, we mentioned an example of the Fermi-

Pasta-Ulam problem, for which this is obviously not the case and the system remains non-ergodic

even as one increases its size. Perhaps one-dimensional systems are really exceptional but until

now the issue of ergodicity in the thermodynamic limit is not resolved.

A. Problems

1. Fermi-Ulam problem.

Consider the following Fermi-Ulam problem (do not confuse with the Fermi-Pasta-Ulam prob-

lem). The setup is shown in Fig. 3 A particle freely moves up or down without any force (there
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is also a version of this problem with gravity) between two walls separated by the length L. The

top wall is still so the collision of the particle with the wall is a simple reflection. The bottom wall

undergoes small in amplitude fluctuations: z = a cos(ωt) where a≪ L. The goal of this exercise is

to understand the motion of the particle in this setup.

• Write down the map describing the discretized dynamics of the momentum of the particle and

the phase of the bottom wall between consequent collisions. Can you find any fixed points

of this map? Use your intuition for guessing which trajectory should be time invariant.

• Analyze qualitatively fast and slow limits of the particle motion. In which limit can you

anticipate the chaotic behavior and in which limit do you expect the regular motion? Perform

the stability analysis of the fixed points and see if it supports with your qualitative reasoning.

• Using Mathematica or other software simulate the trajectories of this map in different regime

(focus only on the points where the collision with the bottom wall occurs). Plot these points

in a two-dimensional graph (if you have sufficiently many points this graph will give you the

Poincar cross-section.)

2. Kapitza Pendulum

Kapitza pendulum is another famous example of a periodically driven system, which can have

both periodic and chaotic behavior.

The setup for this pendulum is shown in Fig. 4. It represents a usual pendulum in the ver-

tical gravitational field, where the top suspension point undergoes small amplitude oscillations

of amplitude a ≪ L and frequency ω. Here is a link a short fragment of a video (in Russian)

where the famous Russian mathematician Vladimir Arnold, one of the co-authors of the KAM

theorem, makes his own experimental demonstration of stable motion of the Kapitza pendu-

lum around inverted position: Kapitza pendulum. V. Arnold mathematically proved that this

motion is stable for small perturbation. The full 8 minute video can be found on youtube:

http://www.youtube.com/watch?v=ZBSLK3Jbd2I

• Write the Lagrangian for this system as a function of the angle θ (counted from the average

position of the suspension) and the velocity θ̇

• Write the equations of motion for the Kapitza pendulum. Find the stationary points.

http://physics.bu.edu/~asp/teaching/EtudesRu_britva_short.mov
http://www.youtube.com/watch?v=ZBSLK3Jbd2I
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Figure 1: Schematic representation of the Kapitza pendulum, i.e. a rigid pendulum
with vertically oscillating point of suspension, and its phase portraits. (a) The Kapitza
pendulum. (b) Non-driven regime: the pendulum performs small oscillations around the
stable lower equilibrium which are represented by the red line in the phase portrait. (c)
Dynamical stabilization regime: the pendulum performs small oscillations around the
stable upper equilibrium which are represented by the red line in the phase portrait. In
the phase portraits the green lines correspond to rotations, the black lines to oscillations,
the blue lines are the separatrices and the points represent the region of chaotic motion.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

with the recent experimental findings on a AC-driven electron glass [19]. In
this experiment, the energy absorbed by the electrons from the AC-driving,
is related to the variation in the conductance which can be directly mea-
sured and it is convincingly shown that at high frequency (short period) the
electron glass does not absorb energy. Moreover, it is shown that the criti-
cal frequency is set by the electron-phonon interactions and it is much lower
than the maximum rate of energy exchange which is set by electron-electron
interactions. Finally, we will show a strong evidence for this transition using
examples of classical and quantum interacting spin systems.

2. The Kapitza pendulum

Before addressing the many-particle problem we will discuss a much
simpler example of a periodically driven system, the so called Kapitza pen-
dulum [13] and show how the Magnus expansion can be used to derive the
effective potential. The Kapitza pendulum is a classical rigid pendulum with
a vertically oscillating point of suspension (see Fig. 1).

4

FIG. 4 Kapitza pendulum

• Analyze stability of these stationary points in the fast and slow limits. You should find that

under certain conditions there is a new stable equilibrium near θ = π.

• Using mathematica or other software analyze the phase portrait of this pendulum at different

regimes. As in the previous problem you can use stroboscopic map analyzing the position

and velocity at integer multiples of the oscillation period

II. QUANTUM CHAOTIC SYSTEMS. RANDOM MATRIX THEORY.

From the early days of quantum mechanics (von Neumann 1929) it was clear that the classical

concept of quantum chaos and quantum ergodicity does not directly apply to quantum mechanical

systems. The main reason is that the Schrödinger equation is linear and for linear systems one can

not have exponentially departing trajectories, at least in terms of distances between wave-functions.

In 1950th E. Wigner suggested a general framework for describing equilibrium (stationary) prop-
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erties of complex systems using the random matrix theory. His argument was that any complex

Hamiltonian is an exponentially large matrix, which exact form is not important for understanding

statistical properties of energy levels. Instead one should regard the Hamiltonian as a matrix with

random coefficients, which satisfy general symmetries (for example the time reversal invariance).

The success of this theory was tremendous and now predictions of this theory serve as one of the

main indicators of quantum chaos.

To get a sense about the random matrix theory (RMT) let us first consider a simple 2 × 2

Hamiltonian, which entries we treat as random numbers taken from some Gaussian distribu-

tion (for more details see V. Kravtsov, “Random matrix theory: Wigner-Dyson statistics and

beyond”, arxiv:0911.0639, another good source for reading is T. Guhr, A. MüllerGroeling, H. A.

Weidenmüller“Random-matrix theories in quantum physics: common concepts”, Physics Reports

299, 189-425 (1998):

H =

 ε1 V/
√
2

V ∗/
√
2 ε2

 (II.1)

Here we wrote the factor 1/
√
2 in the off-diagonal matrix elements for convenience. If the system

is invariant under time reversal (there is no external magnetic field or other similar terms in the

original Hamiltonian) then the eigenstates of the Hamiltonian can be all chosen to be real and

hence V = V ∗. Otherwise ℜ[V ] and ℑ[V ] are treated as independent random entries. This matrix

can be easily diagonalized and the eigenvalues are

E1,2 =
ε1 + ε2

2
± 1

2

√
(ε1 − ε2)2 + 2|V |2 (II.2)

We can now compute the statistics of level separation. For simplicity we assume that we deal with

real matrices and that the individual entries in this matrix have the Gaussian distribution with

zero mean and the same variance σ

P (E1 − E2 = ω) =
1

(2π)3/2σ3

∫
. . .

∫
dε1dε2dV δ(

√
(ε1 − ε2)2 + 2V 2 − ω) exp

[
−ε

2
1 + ε22 + V 2

2σ2

]
.

(II.3)

This integral can be evaluated in steps. First let us change variables ε2 = ε1 +
√
2ξ. Then the

integral over ε1 is a simple Gaussian and we are left with

P (E1 − E2 = ω) ≡ P (ω) = 1

πσ2

∫ ∫
dξdV δ(

√
2ξ2 + 2V 2 − ω) exp

[
−ξ

2 + V 2

2σ2

]
. (II.4)

Then we go to the cylindrical coordinates: V = r cos(ϕ), ξ = r sin(ϕ). The remaining integrals are

very simple and we obtain

P (ω) =
ω

2σ2
exp

[
− ω2

4σ2

]
(II.5)
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This distribution has a characteristic property of the repulsion between levels at small separation

(probability of having the levels very close to each other linearly vanishes with ω) and Gaussian

decay at large level separation. It turns out that these two features survive level statistics in

larger systems and the level distribution is well described by the approximate expressions (Wigner

Surmise)

P (ω) = Aβω
β exp[−Bβω

2], (II.6)

where β = 1 if we have time reversal invariance (orthogonal ensemble) and β = 2 if we do not

have time reversal symmetry (unitary ensemble). The coefficients Aβ and Bβ are found from the

normalization and from fixing the mean level spacing. The exact Wigner-Dyson distributions do

not have a closed analytic form but they are qualitatively (and even quantitatively) close to the

Wigner Surmise (especially for the unitary ensemble β = 2). In particular, for β = 1 the normalized

distribution with average spacing being equal to one is well approximated by

P (ω) =
π

2
ω exp

[
−π
4
ω2
]
. (II.7)

Before checking how this distribution works in different situation let us contrast it with our

expectations in non-ergodic situations. Of course for small single-particle systems the statistics of

levels is well described by the details of the potential. Like in the harmonic potential the levels

are equidistant, in a square well the levels spacing grows with energy and so on. But we always

keep in mind systems with many degrees of freedom. The simplest example of such non-ergodic

system is an array of harmonic oscillators with some incommensurate frequencies. Then different

many-body energy levels can be expressed as

E =
∑
j

njωj , (II.8)

where nj are the occupation numbers and ωj are frequencies. If we look into large energies with

large occupation numbers nearby energy levels (which are very closely spaced) can come from very

different sets of {nj}. This means that they are effectively uncorrelated with each other. It is

also intuitively clear that at large E there is no particular pattern in the number of levels entering

the interval [E,E + δE] thus we are essentially dealing with uncorrelated random numbers. As

we know from the first part of the course we expect that the distribution of these numbers is well

described by the Poisson statistics, i.e. the probability of having n energy levels in a particular

interval δE is given by

Pn =
λn

n!
exp[−λ], (II.9)
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where λ is the average number of these levels in this interval (e.g. averaged over many nearby

intervals). This Poisson statistics is very different from the Wigner - Dyson statistics. In particular,

there is no level repulsion since the Hamiltonian is completely diagonal in the single-particle basis.

The probability that within the given interval δE = ω there are no levels is simply expressed by

P0(ω) = exp[−ω], (II.10)

which is very different from the Wigner Surmize (II.7). This statement is in fact known in literature

as the Berry-Tabor conjecture (1977), which states that in the ”generic” case the quantum energy

eigenvalues behave like a sequence of independent random variables (i.e. have Poisson statistics)

provided that the underlying classical dynamics is completely integrable. In Fig. 5 we show level

0.7r

0.4
r

Ω

(1, 1)

(0, 0)

Figure 1. One of the regions proven by Sinai to
be classically chaotic is this region Ω
constructed from line segments and circular
arcs.

Traditionally, analysis of the spectrum recovers
information such as the total area of the billiard,
from the asymptotics of the counting function
N(λ) = #{λn ≤ λ}: As λ → ∞, N(λ) ∼ area

4π
λ

(Weyl’s law). Quantum chaos provides completely
different information: The claim is that we should
be able to recover the coarse nature of the dynam-
ics of the classical system, such as whether they
are very regular (“integrable”) or “chaotic”. The
term integrable can mean a variety of things, the
least of which is that, in two degrees of freedom,
there is another conserved quantity besides ener-
gy, and ideally that the equations of motion can be
explicitly solved by quadratures. Examples are the
rectangular billiard, where the magnitudes of the
momenta along the rectangle’s axes are conserved,
or billiards in an ellipse, where the product of an-
gular momenta about the two foci is conserved,
and each billiard trajectory repeatedly touches a
conic confocal with the ellipse. The term chaotic
indicates an exponential sensitivity to changes
of initial condition, as well as ergodicity of the
motion. One example is Sinai’s billiard, a square
billiard with a central disk removed; another class
of shapes investigated by Sinai, and proved by him
to be classically chaotic, includes the odd region
shown in Figure 1. Figure 2 gives some idea of how
ergodicity arises. There are many mixed systems
where chaos and integrability coexist, such as the
mushroom billiard—a semicircle atop a rectangu-
lar foot (featured on the cover of the March 2006
issue of the Notices to accompany an article by
Mason Porter and Steven Lansel).

Figure 2. This figure gives some idea of how
classical ergodicity arises in Ω.

s = 0 1 2 3 4

y = e
−s

Figure 3. It is conjectured that the distribution
of eigenvalues π2(m2/a2 + n2/b2) of a
rectangle with sufficiently incommensurable
sides a, b is that of a Poisson process. The
mean is 4π/ab by simple geometric reasoning,
in conformity with Weyl’s asymptotic formula.
Here are plotted the statistics of the gaps
λi+1 − λi found for the first 250,000
eigenvalues of a rectangle with side/bottom
ratio 4

√
5 and area 4π , binned into intervals of

0.1, compared to the expected probability
density e−s .

January 2008 Notices of the AMS 33

FIG. 5 Level statistics in a rectangular cavity with the ratio of sides a/b = 4
√
5 (Z. Rudnick, What Is

Quantum Chaos?, Notices of the AMS 55, 32 (2008)). The levels are given by a simple formula: En,m =

π2(m2/a2 + n2/b2).

statistics for a rectangular cavity with sides a and b, which have the following ratio: a/b = 4
√
5.

Clearly they agree perfectly well with the Poisson statistics. Yet the Berry-Tabor conjecture is not
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proven in general and there are notorious exceptions. For example level statistics in a square well

a = b is not given by the Poisson distribution because of commensurability of the spectra. Usually

commensurate frequencies result from additional symmetries (like e.g. in a hydrogen atom) and

lead to extra degeneracies. In quantum systems level statics (Poisson vs. Wigner-Dyson) is used

as one of the main indicators for the quantum chaos.

A. Examples of the Wigner-Dyson distribution.

Random matrix statistics found many applications, which extend much beyond the framework

of the original derivation. Let us illustrate this with several examples. Fig. 6 illustrates statistics

FIG. 6 Level statistics of 1726 level spacings taken from absorption spectra of different heavy nuclei. The

data is taken from K.H. Bchhoff (Ed.), Nuclear Data for Science and Technology, Reidel, Dordrecht (1983)

of nearby level spacings of heavy nuclei. The data shows distribution of 1726 level spacings taken

from different nuclei. The figure also shows the Poisson and the Wigner-Dyson distributions (for

an orthogonal ensemble). It is clear from the figure that the latter works much better, while the

Poisson statistics is completely off.

Next let us consider level statistics in a classical chaotic system. We will choose a Sinai billiard:

a square (rectangle) with a circle in the middle Fig. 7 indicates close statistics between classical

chaos and the random matrix theory. Clearly the statistics of level spacings in the Sinai billiard

perfectly agrees with the Wigner-Dyson ensemble. At the same time this billiard together with

Bunimovich stadium is one of the classical examples of chaotic systems. This situation is generic:
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FIG. 7 Sinai billiard, which is a classical chaotic systems, similar to the Bunimovich stadium considered

earlier. Left panel illustrates the Billiard and the classical trajectory (image source Wikipedia). Right

panel shows level spacing statistics for the same billiard together with the Poisson and the Wigner-Dyson

distributions (image source O. Bohigas, M.J. Giannoni, C. Schmit Phys. Rev. Lett. 52, 1 (1984)).

energy levels in classical chaotic systems are typically well described by the Wigner-Dyson statistics.

In Fig. 8 we show another example of the level statistics for a classical chaotic system also analyzed

0.7r

0.4
r

Ω

(1, 1)

(0, 0)

Figure 1. One of the regions proven by Sinai to
be classically chaotic is this region Ω
constructed from line segments and circular
arcs.

Traditionally, analysis of the spectrum recovers
information such as the total area of the billiard,
from the asymptotics of the counting function
N(λ) = #{λn ≤ λ}: As λ → ∞, N(λ) ∼ area

4π
λ

(Weyl’s law). Quantum chaos provides completely
different information: The claim is that we should
be able to recover the coarse nature of the dynam-
ics of the classical system, such as whether they
are very regular (“integrable”) or “chaotic”. The
term integrable can mean a variety of things, the
least of which is that, in two degrees of freedom,
there is another conserved quantity besides ener-
gy, and ideally that the equations of motion can be
explicitly solved by quadratures. Examples are the
rectangular billiard, where the magnitudes of the
momenta along the rectangle’s axes are conserved,
or billiards in an ellipse, where the product of an-
gular momenta about the two foci is conserved,
and each billiard trajectory repeatedly touches a
conic confocal with the ellipse. The term chaotic
indicates an exponential sensitivity to changes
of initial condition, as well as ergodicity of the
motion. One example is Sinai’s billiard, a square
billiard with a central disk removed; another class
of shapes investigated by Sinai, and proved by him
to be classically chaotic, includes the odd region
shown in Figure 1. Figure 2 gives some idea of how
ergodicity arises. There are many mixed systems
where chaos and integrability coexist, such as the
mushroom billiard—a semicircle atop a rectangu-
lar foot (featured on the cover of the March 2006
issue of the Notices to accompany an article by
Mason Porter and Steven Lansel).

Figure 2. This figure gives some idea of how
classical ergodicity arises in Ω.

s = 0 1 2 3 4

y = e
−s

Figure 3. It is conjectured that the distribution
of eigenvalues π2(m2/a2 + n2/b2) of a
rectangle with sufficiently incommensurable
sides a, b is that of a Poisson process. The
mean is 4π/ab by simple geometric reasoning,
in conformity with Weyl’s asymptotic formula.
Here are plotted the statistics of the gaps
λi+1 − λi found for the first 250,000
eigenvalues of a rectangle with side/bottom
ratio 4

√
5 and area 4π , binned into intervals of

0.1, compared to the expected probability
density e−s .

January 2008 Notices of the AMS 33

s = 0 1 2 3 4

GOE distribution

Figure 4. Plotted here are the normalized gaps
between roughly 50,000 sorted eigenvalues

for the domain Ω, computed by Alex Barnett,
compared to the distribution of the

normalized gaps between successive
eigenvalues of a large random real symmetric
matrix picked from the “Gaussian Orthogonal

Ensemble”, where the matrix entries are
independent (save for the symmetry

requirement) and the probability distribution
is invariant under orthogonal transformations.

One way to see the effect of the classical dy-
namics is to study local statistics of the energy
spectrum, such as the level spacing distribution
P(s), which is the distribution function of nearest-
neighbor spacings λn+1 − λn as we run over all
levels. In other words, the asymptotic propor-
tion of such spacings below a given bound x is∫ x
−∞ P(s)ds. A dramatic insight of quantum chaos

is given by the universality conjectures for P(s):
• If the classical dynamics is integrable, then

P(s) coincides with the corresponding quantity for
a sequence of uncorrelated levels (the Poisson en-
semble) with the same mean spacing: P(s) = ce−cs ,
c = area/4π (Berry and Tabor, 1977).
• If the classical dynamics is chaotic, then P(s)

coincides with the corresponding quantity for the
eigenvalues of a suitable ensemble of random
matrices (Bohigas, Giannoni, and Schmit, 1984).
Remarkably, a related distribution is observed for
the zeros of Riemann’s zeta function.

Not a single instance of these conjectures is
known, in fact there are counterexamples, but
the conjectures are expected to hold “generically”,
that is unless we have a good reason to think oth-
erwise. A counterexample in the integrable case
is the square billiard, where due to multiplici-

ties in the spectrum, P(s) collapses to a point
mass at the origin. Deviations are also seen in the
chaotic case in arithmetic examples. Nonetheless,
empirical studies offer tantalizing evidence for
the “generic” truth of the conjectures, as Figures
3 and 4 show.

Some progress on the Berry-Tabor conjecture in
the case of the rectangle billiard has been achieved
by Sarnak, by Eskin, Margulis, and Mozes, and by
Marklof. However, we are still far from the goal
even there. For instance, an implication of the
conjecture is that there should be arbitrarily large
gaps in the spectrum. Can you prove this for
rectangles with aspect ratio 4

√
5?

The behavior of P(s) is governed by the statis-
tics of the number N(λ, L) of levels in windows
whose location λ is chosen at random, and whose
length L is of the order of the mean spacing
between levels. Statistics for larger windows also
offer information about the classical dynamics and
are often easier to study. An important example
is the variance of N(λ, L), whose growth rate is
believed to distinguish integrability from chaos [1]
(in “generic” cases; there are arithmetic counterex-
amples). Another example is the value distribution
ofN(λ, L), normalized to have mean zero and vari-
ance unity. It is believed that in the chaotic case
the distribution is Gaussian. In the integrable case
it has radically different behavior: For large L, it
is a system-dependent, non-Gaussian distribution
[2]. For smaller L, less is understood: In the case
of the rectangle billiard, the distribution becomes
Gaussian, as was proved recently by Hughes and
Rudnick, and by Wigman.

Further Reading
[1] M. V. Berry, Quantum chaology (The Bakerian
Lecture), Proc. R. Soc. A 413 (1987), 183-198.

[2] P. Bleher, Trace formula for quantum integrable
systems, lattice-point problem, and small divisors, in
Emerging applications of number theory (Minneapolis,
MN, 1996), 1–38, IMA Vol. Math. Appl., 109, Springer,
New York, 1999.

[3] J. Marklof, Arithmetic Quantum Chaos, and
S. Zelditch, Quantum ergodicity and mixing of eigen-
functions, in Encyclopedia of mathematical physics,
Vol. 1, edited by J.-P. Françoise, G. L. Naber, and T. S.
Tsun, Academic Press/Elsevier Science, Oxford, 2006.
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FIG. 8 Another chaotic system analyzed by Sinai (left panel) and illustration of classical trajectories (middle

panel). Right panel shows level spacing statistics, which again perfectly agrees with the Wigner-Dyson

ensemble (Z. Rudnick, What Is Quantum Chaos?, Notices of the AMS 55, 32 (2008)).

by Sinai.

As a next example we illustrate statistics of the level spacing of the high energy hydrogen atom

in a magnetic field. Fig. 9 shows statistics of calculated level spacings in a hydrogen atom in strong

external magnetic field. The top panel describes low energy spectra where the classical motion

is regular and the level statistics is Poissonian. The bottom panels shows the high energy region

corresponding to the classical chaotic motion. The plot clearly illustrates the crossover from the
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FIG. 9 Statistics of calculated highly excited energy levels in a hydrogen atom in external magnetic field.

Energy Ẽ increases from the top to the bottom panel, meaning that the bottom panel describes higher

excited states. The transition from the Poisson to the Wigner-Dyson statistics is clearly visible on this plot.

The data is taken from Ref. D. Wintgen, H. Friedrich, Phys. Rev. A, 35, 1464 (1987)

Poisson statistics to the Wigner dyson statistcis as the system become more chaotic.

Our next example will be more somewhat more exotic. In Fig. 10 we show statistics of time

intervals between bus arrival times in the city of Cuernavaca (Mexico). The crosses illustrate the

actual data and the solid curve is the Dyson-Wigner distribution for the Gaussian unitary ensemble.

The agreement is very good. Of course this does not yet imply that there is an underlying linear

model (though this is not impossible) describing arrival times. But this illustration shows something

generic about Wigner-Dyson statistics: level repulsion (driven maximizing the ridership in a given

bus or other reasons) and a Gaussian or exponential tail at long times. Just to demystify things a

little bit, the Maxwell-Boltzmann distribution of the magnitude of the velocity in three-dimensions
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FIG. 10 A histogram of spacings between bus arrival times in Cuernavaca (Mexico), in crosses; the solid

line is the prediction from random matrix theory. (M. Krbálek and P. Seba, J. Phys. A: Math. Gen. 33,

L229 (2000).

also looks very similar to the Dyson-Wigner ensemble.

As a final example of the situation where the random matrix statistics naturally emerges let us

mention the distribution of zeros of the Riemann zeta-function. For ℜ(s) > 1 the latter is formally

defined as

ζ(s) =
∑
n≥1

1

ns
(II.11)

and for other values of s by an appropriate analytic continuation. As was proven by Euler the

Riemann zeta function is related to the prime numbers again for ℜ(s) > 1:

ζ(s) =
∏

p=prime

1

1− p−s
. (II.12)

The proof of this result is very simple and elegant. Notice that

ζ(s)

2s
=

1

2s
+

1

4s
+

1

6s
+ . . .
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is a sum of inverse powers of all even integers, i.e. integers multiple of two. Thus

ζ(s)− 1

2s
ζ(s) = I2(s) = 1 +

1

3s
+

1

5s
+ . . . .

Then let us do a similar exercise and analyze I2(s)/3
s. It is very easy to see that

I3(s) = I2(s)−
1

3s
I2(s) = ζ(s)

(
1− 1

2s

)(
1− 1

3s

)
= 1 +

1

5s
+

1

7s
+

1

11s
+ . . . (II.13)

is a sum of inverse powers of all integers which are neither a multiple of two nor three. Continuing

this exercise and using the fundamental theorem of arithmetic, stating that any number has a

unique decomposition in prime numbers, we prove Eq. (II.12).

This product representation of the Riemann’s zeta-function allows us to map it to the partition

function of the non-interacting harmonic chain with the frequencies of the normal modes related

to the prime numbers. Recall that the partition function for a single oscillator is

zp(β) =
∑
n

exp[−βωpn] =
1

1− exp[−βωp]
, (II.14)

where we set the units ℏ = 1. If we associate prime numbers with different modes and require that

ωp = log(p), β = s

then we will see that

Z(β) =
∏
p

zp(β) = ζ(β) (II.15)

The (complex) zeros of the zeta function are thus the complex zeros of the partition function of

this model. As we will discuss later the structure of complex zeros of the partition function (also

known as Lee-Yang or Fisher zeros) contains the information about phases and phase transitions.

The Riemann’s zeta function has many fascinating properties. One of them that the non-

trivial zeros of ζ(s), i.e. zeros which are not negative integers, lie on the line ℜ(s) = 1/2. This

conjecture is called the Riemann’s hypothesis and it remains one of the greatest unsolved problems

in mathematics. By now it was checked for the zeros up to the first 1022. In Fig. (11) we show the

distribution of the normalized spacings of the 109 zeros of the Riemann’s zeta function centered

around the zero number 1.3 1016. This distribution is astonishingly well described by the Wigner-

Dyson statistics of the unitary ensemble. This agreement shows that there is some deep connection

between prime and random numbers.
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FIG. 11 Distribution of the spacings between one billion zeros of the Riemann’s zeta function near zero

number 1.3 1016 and the Wigner-Dyson statistics for the unitary ensemble. A. M. Odlyzko, “Dynamical,

Spectral, and Arithmetic Zeta Functions”, Amer. Math. Soc., Contemporary Math. series 290, 139 (2001)

III. QUANTUM DYNAMICS IN PHASE SPACE. ERGODICITY NEAR THE CLASSICAL LIMIT.

Before moving our discussion to many-particle interacting systems to which laws of statistical

mechanics and thermodynamics apply we will try to reconcile two apparently different languages

for describing chaotic systems: classical, where we rely on the sensitivity of the time evolution to

small perturbations and the quantum, where we look into the statistics of the energy levels. In

general this task remains unresolved, but at least we will try to formulate quantum dynamics in

the way, which is similar to the classical one, understand quantum dynamics in the semiclassical

limit and formulate a very powerful Berry’s conjecture for the semiclassical eigenstates.

A. Quick summary of classical Hamiltonian dynamics in phase-space.

We will generally deal with Hamiltonian systems, which are defined by specifying a set of

canonical variables pj , qj satisfying canonical relations

{pi, qj} = δij , (III.1)

where {. . . } denotes the Poisson bracket.

{A(p⃗, q⃗), B(p⃗, q⃗)} =
∑
j

∂A

∂pj

∂B

∂qj
− ∂B

∂pj

∂A

∂qj
= BΛA, (III.2)
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where

Λ =
∑
j

←−
∂

∂pj

∂

∂qj
−
←−
∂

∂qj

∂

∂pj

is the sympectic skew symmetric operator. It is easy to check that any orthogonal transformation

Q = R(λ)q, P = R(λ)p (III.3)

preserves both the Poisson brackets and the symplectic operator. A general class of transformations

which preserve the Poisson brackets are known as canonical transformations and can be expressed

through the generating functions (see e.g. L. Landau and E. Lifshitz, Classical Mechanics). It is

easy to check that infinitesimal canonical transformations can be generated by gauge potentials

qj(λ+ δλ) = qj(λ)−
∂A(λ, p⃗, q⃗)

∂pj
δλ, (III.4)

pj(λ+ δλ) = pj(λ) +
∂A(λ, p⃗, q⃗)

∂qj
δλ, (III.5)

where λ parametrizes the canonical transformation and the gauge potential A is some function of

canonical variables and parameters. Then up to the terms of the order of δλ2 the transformation

above preserves the Poisson brackets

{pi(λ+ δλ), qj(λ+ δλ)} = δij + δλ

(
∂2A

∂pj∂qi
− ∂2A

∂pj∂qi

)
+O(δλ2) = δij +O(δλ2). (III.6)

Hamiltonian dynamics is a particular canonical transformation parametrized by time

∂qj
∂t

= {H, qj} =
∂H

∂pj
,
∂pj
∂t

= {H, pj} = −
∂H

∂qj
(III.7)

Clearly these Hamiltonian equations are equivalent to Eqs. (III.5) with the convention At = −H.

One can extend canonical transformations to the complex variables. Instead of doing this in all

generality we will focus on particular phase space variables which are complex wave amplitudes.

E.g. for Harmonic oscillators for each normal mode with the Hamiltonian

Hk =
p2k
2m

+
mω2

k

2
q2k (III.8)

we can define new linear combinations

pk = i

√
mωk

2
(a∗k − ak), qk =

√
1

2mωk
(ak + a∗k) (III.9)

or equivalently

a∗k =
1√
2

(
qk
√
mωk −

i
√
mωk

pk

)
, ak =

1√
2

(
qk
√
mωk +

i
√
mωk

pk

)
. (III.10)
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It is clear that in new variables the Hamiltonian reads

Hk = ωka
∗
kak. (III.11)

Let us now compute the Poisson brackets of the complex wave amplitudes

{ak, ak} = {a∗k, a∗k} = 0, {ak, a∗k} = i. (III.12)

To avoid dealing with the imaginary Poisson brackets it is convenient to introduce new coherent

state Poisson brackets

{A,B}c =
∑
k

∂A

∂ak

∂B

∂a∗k
− ∂B

∂ak

∂A

∂a∗k
= AΛcB, (III.13)

where

Λc =
∑
k

←−
∂

∂ak

∂

∂a∗k
−
←−
∂

∂a∗k

∂

∂ak
. (III.14)

As for the coordinate momentum case, the coherent symplectic operator Λc is preserved under the

canonical transformations. From this definition it is immediately clear that

{ak, a∗q}c = δkq. (III.15)

Comparing this relation with Eq. (III.12) we see that standard and coherent Poisson brackets differ

by the factor of i:

{. . . } = i{. . . }c. (III.16)

Let us write the Hamiltonian equations of motion for the new coherent variables. Using that

dA

dt
=
∂A

∂t
− {A,H} = ∂A

∂t
− i{A,H}c (III.17)

and using that our variables do not explicitly depend on time (such dependence would amount to

going to a moving frame, which we will not consider here) we find

i
dak
dt

= {ak,H}c =
∂H

∂a∗k
, i
da∗k
dt

= {a∗k,H}c = −
∂H

∂ak
(III.18)

These equations are also known as Gross-Pitaevskii equations. Note that these equations are

arbitrary for arbitrary Hamiltonians and not restricted to Harmonic systems.

And finally let us write down the Liouville equations of motion for the probability distribution

ρ(q, p, t) or ρ(a, a∗, t). The latter just express incompressibility of the probability fllow, which

directly follows conservation of the phase space volume dΓ = dqdp or dΓ = dada∗ for arbitrary



22

canonical transformations including time evolution and from the conservation of the total proba-

bility ρdΓ:

0 =
dρ

dt
=
∂ρ

∂t
− {ρ,H} = ∂ρ

∂t
− i{ρ,H}c, (III.19)

or equivalently

∂ρ

∂t
= {ρ,H}, i∂ρ

∂t
= −{ρ,H}c (III.20)

1. Exercises

1. Show that the generator of translations q⃗(X) = q⃗0−X⃗ is the momentum operator: A⃗X⃗(q⃗, p⃗) =

p⃗. You need to treat X⃗ as a three component parameter λ⃗. Note that the number of particles

(and thus phase space dimension) can be much higher than three.

2. Show that the generator of the rotations around z-axis:

qx(θ) = cos(θ)qx0 − sin(θ)qy0, qy(θ) = cos(θ)qy0 + sin(θ)qx0,

px(θ) = cos(θ)px0 − sin(θ)py0, py(θ) = cos(θ)py0 + sin(θ)px0,

is the angular momentum operator: Aθ = pxqy − pyqx.

3. Find the gauge potential Aλ corresponding to the orthogonal transformation (III.3).

4. Check that any unitary transformation ãk = Uk,k′a
′
k, where U is a unitary matrix, pre-

serves the coherent state Poisson bracket, i.e. {ãk, ã∗q}c = δk,q. Verify that the Bogoliubov

transformation

γk = cosh(θk)ak + sinh(θk)a
∗
−k, γ

∗
k = cosh(θk)a

∗
k + sinh(θk)a−k, (III.21)

with θk = θ−k also preserves the coherent state Poisson bracket, i.e.

{γk, γ−k}c = {γk, γ∗−k}c = 0, {γk, γ∗k}c = {γ−k, γ
∗
−k}c = 1. (III.22)

B. Quantum systems in first and second quantized forms. Coherent states.

Now we move to quantum systems. As for the classical systems let us first define the language.

We will use two different representations of the operators using either coordinate-momentum (first
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quantized picture) or creation-annihilation operators (second quantized picture). In the second

quantized form we will be only considering bosons because finding semiclassical limit for fermions

is still an open question. These phase space variables satisfy canonical commutation relations:

[q̂i, p̂j ] = iℏδij , [âi, â†j ] = δij (III.23)

Throughout these notes we introduce “hat”-notations for the operators to avoid confusion with

the phase space variables. From this relations it is clear that in the classical limit the commutator

should reduce to the coherent state Poisson bracket. As in the classical systems any Unitary

transformation of the canonical variables preserves their commutation relations.

Since we will be always keeping in mind the classical limit we will be predominantly working

in the Heisenberg representation where the operators are time dependent and satisfy canonical

equations of motion

iℏ
dq̂i
dt

= [q̂i, Ĥ], iℏ
dp̂i
dt

= [p̂i, Ĥ], (III.24)

iℏ
dâi
dt

= [âi, Ĥ], iℏ
dâ†i
dt

= [â†i , Ĥ]. (III.25)

As in the classical case these equations can be thought of as continuous canonical transformations

parametrized by time. Next let us define representation of these operators. For canonical coordinate

and momentum the natural representation, which is most often used in literature is coordinate,

where

q̂j → xj , p̂j = −iℏ
∂

∂xj
(III.26)

This representation is realized using coordinate eigenstates |x⃗⟩ = |x1, x2, . . . , xM ⟩ such that any

state |ψ⟩ is written as

|ψ⟩ =
∫
Dx⃗ψ(x⃗)|x⃗⟩. (III.27)

Here M denotes the total number of independent coordinate components, e.g. in the three-

dimensional space M is equal to three times the number of particles.

In a similar fashion the natural representation for creation and annihilation operators is given

by coherent states:

âj → αj , â
†
j → −

∂

∂αj
(III.28)

Clearly in this form the creation and annihilation operators satisfy canonical commutation rela-

tions (III.23). Coherent states can be created from the vacuum state by exponentiating the creation
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operator:

|α1, α2, . . . αM ⟩ =
M∏
j=1

e−|αj |2/2eαja
†
j |0⟩, (III.29)

where |0⟩ is the global particle vacuum annihilated by all operators âj
1. One can check that these

coherent states are properly normalized:∫
DαDα∗⟨α1, α2, . . . αM |α1, α2, . . . αM ⟩ = 1, (III.30)

where we use the integration measure dαdα∗ = dℜ(α)dℑ(α)/π. Unlike the coordinate states they

are not orthogonal, which means that the coherent state basis is over-complete.

C. Wigner-Weyl quantization

1. Coordinate-Momentum representation

We are now ready to formulate phase space representation of quantum operators and the density

matrix. To simplify notations we suppress component index in phase space variables except when

extensions to multiple components is not straightforward. For any Hermitian operator Ω̂(q̂, p̂) we

define the Weyl symbol, which depends on the corresponding phase space variables q, p:

ΩW (q, p) =

∫
dξ

⟨
q − ξ

2

∣∣∣∣ Ω̂(q̂, p̂) ∣∣∣∣q + ξ

2

⟩
eipξ/ℏ. (III.31)

The Weyl symbol is clearly uniquely defined for any operator with off-diagonal elements in the

coordinate space decaying to zero. We will consider only such operators. In the classical limit

the exponential term exp[ipξ/ℏ] very rapidly oscillates unless ξ is very close to zero. Thus we see

that the Weyl symbol becomes equal to the classical function Ω(q, p). Before proceeding let us

point that there is some ambiguity in defining quantum classical correspondence in this way. In

particular, instead of Eq. (III.31), one could define a continuous range of functions characterized

by some real number ϵ:

Ωϵ(q, p) =

∫
dξ ⟨q − ϵξ| Ω̂(q̂, p̂) |q + (1− ϵ)ξ⟩ eipξ/ℏ. (III.32)

This transform is always well defined and one can show that it is possible to build complete and

unique phase-space representation of any quantum-mechanical operator for any ϵ. For coherent

1 Note that there is a sign mismatch between â†|α⟩ = ∂α|α⟩ and the representation (III.28). This is because the
derivative operator acting on the basis vector is opposite in sign to the derivative operator acting on the wave
function |ψ⟩ =

∫
dαψ(α)|α⟩.



25

states such freedom is well understood leading to P and Q (Husimi) representations (for more

details see the text books: C.W. Gardiner and P. Zoller. Quantum Noise. Springer-Verlag, Berlin

Heidelberg, third edition, 2004; D.F. Walls and G.J. Milburn. Quantum Optics. Springer-Verlag,

Berlin, 1994). Clearly the Weyl symbol corresponds to the symmetric choice ϵ = 1/2. In these

lectures we will stick only to the Weyl quantization.

Let us now compute the Weyl symbol for some simple operators. First let Ω(q̂, p̂) = V (q̂)

depends only on the coordinate. Then obviously

VW (q) =

∫
dξV (q)δ(ξ)eipξ/ℏ = V (q), (III.33)

i.e. the Weyl symbol amounts to the substitution the operator q̂ by the number q. One can check

that the same is true for any operator depending only on momentum

ΩW (p) = Ω(p) (III.34)

The easiest way to see this is to note that the definition of the Weyl symbol is symmetric with

respect to q ↔ p.

Now let us consider a slightly more complicated operator Ω̂(q̂, p̂) = q̂p̂. Then

(q̂p̂)W =

∫
dξ(q−ξ/2)⟨q−ξ/2|p̂|q+ξ/2⟩eipξ/ℏ =

∫
dξ

∫
dk

2πℏ
(q−ξ/2)kei(p−k)ξ/ℏ = pq+

iℏ
2

(III.35)

To get the last result we inserted the resolution of identity

I =

∫
dk

2πℏ
|k⟩⟨k|

inside the matrix element appearing in the integral. In the same way we can find that

(p̂q̂)W = pq − iℏ
2
. (III.36)

For a general “normal” ordered operator Ω̂(q̂, p̂) such that the coordinate operators appear on

the left of momentum operators the Weyl symbol (III.31) can be written as

ΩW (q, p) =

∫
dξdη

4πℏ
Ω

(
q − ξ

2
, p+

η

2

)
e−iξη/2ℏ. (III.37)

The equivalence of Eqs. (III.37) and (III.31) can be established by the same trick of inserting the

identity (III.C.1) into Eq. (III.31).

While the integral expressions for finding the Weyl symbol are very general, it is very useful to

introduce the representation of the canonical coordinate and momentum operator, which gives the

Weyl symbol right away. This is known as the Bopp representation:

q̂ = q +
iℏ
2

∂

∂p
, p̂ = p− iℏ

2

∂

∂q
. (III.38)
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This representation clearly respects the canonical commutation relations (III.23) and is symmetric

with respect to coordinate and momentum. Then the Weyl symbol of the arbitrary operator Ω̂(q̂, p̂)

is given by

ΩW (q, p) = Ω̂(q + iℏ/2 ∂p, p− iℏ/2 ∂q)1, (III.39)

We wrote unity on the right of this expression showing that derivatives acting on unity give zero.

For example

(q̂p̂)W =

(
q +

iℏ
2
∂p

)(
p− iℏ

2
∂q

)
1 =

(
q +

iℏ
2
∂p

)
p = pq +

iℏ
2
, (III.40)

which is the correct result. Similarly

(q̂2p̂2)W =

(
q +

iℏ
2
∂p

)2

p2 = q2p2 + 2q
iℏ
2
∂p p

2 − ℏ2

4
∂2p p

2 = p2q2 + 2iℏqp− ℏ2

2
. (III.41)

One can check that this is also the correct result by e.g. explicitly performing integration in

Eq. (III.37).

Let us prove Eq. (III.39). First note that if we prove this statement for a normal ordered

operator Ω̂mnq̂
mp̂n then we will automatically prove this statement for any operator, which is

analytic in q̂ and p̂. Indeed obviously any analytic function can be represented as a sum of normal

ordered polynomials of q̂ and p̂. Thus if we prove the statement for Ω̂mn we prove it for any

operator. Since the latter is normal ordered we can use Eq. (III.37)

(q̂mp̂n)W =

∫ ∫
dξdη

4πℏ

(
q − ξ

2

)m (
p+

η

2

)n
e−iξη/(2ℏ) =

∫ ∫
dξdη

4πℏ

(
p+

η

2

)n
(q − iℏ∂η)m e−iξη/(2ℏ)

=

∫
dη
(
p+

η

2

)n
(q − iℏ∂η)m δ(η) = (q + iℏ∂η)m

(
p+

η

2

)n ∣∣
η=0

=

(
q +

iℏ
2
∂p

)m

pn (III.42)

Thus we proved that the representation of q̂ is indeed given by the Bopp operator. Bopp represen-

tation of p̂ e.g. immediately follows from the commutation relation. Alternatively it follows from

the symmetry of the representation of the Weyl symbol with respect to the change p↔ q, ξ ↔ −η.

Let us note that there is an alternative Bopp representation expressed through the left deriva-

tives:

q̂ = q − iℏ
2

←−
∂

∂p
, p̂ = p+

iℏ
2

←−
∂

∂q
, (III.43)

where the left derivative now acts on the operator on the left. While for now left and right repre-

sentations are equivalent as we will see later causality uniquely defines the correct representation

when we consider non-equal time correlation functions.
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As a next ingredient of the Weyl quantization we will establish rules for addition and multipli-

cation of operators. The former are trivial

(Ω̂1 + Ω̂2)W = Ω1W +Ω2W , (III.44)

The Weyl symbol of the product of two operators is much less trivial; it is given by the Moyal

product:

(Ω1Ω2)W (q, p) = Ω1,W (q, p) exp

[
− iℏ

2
Λ

]
Ω2,W (q, p), (III.45)

where Λ is the symplectic operator introduced earlier (III.A). As earlier, before proving this relation

let us first check that it agrees with simple results

(q̂p̂)W = q exp

[
− iℏ

2
Λ

]
p = qp− q iℏ

2

[←−
∂

∂p

∂

∂q
−
←−
∂

∂q

∂

∂p

]
p+ 0 = pq +

iℏ
2
, (III.46)

where we used that all higher order terms in the expansion of the exponent give zero because

they contain higher order derivatives with respect to q and p. Clearly we got the correct result.

Similarly

(q̂2p̂2)W = q2 exp

[
− iℏ

2
Λ

]
p2 = qp− q2 iℏ

2

[←−
∂

∂p

∂

∂q
−
←−
∂

∂q

∂

∂p

]
p2 − q2ℏ

2

8

[←−
∂

∂p

∂

∂q
−
←−
∂

∂q

∂

∂p

]
p2

= p2q2 + 2iℏpq − ℏ2

2
, (III.47)

which is again the correct result (cf. Eq. (III.41)). The proof of the Moyal product relation

is straightforward, but somewhat lengthy. It can be found e.g. in Ref. (M. A. Hillery, R. F.

OConnell, M. O. Scully, and E. P. Wigner. Phys. Rep., 106: 121, 1984). Another way to prove

this relation is to consider the Bopp representation and check manually that

(q̂np̂m)W exp

[
− iℏ

2
Λ

]
Ω2,W (q, p) =

(
q +

iℏ
2
∂p

)n(
p− iℏ

2
∂q

)m

Ω2(q̂, p̂). (III.48)

The Moyal product obviously satisfies the following relation

Ω1,W exp

[
− iℏ

2
Λ

]
Ω2,W = Ω2,W exp

[
+
iℏ
2
Λ

]
Ω1,W . (III.49)

From this relation we immediately derive the Weyl symbol of the commutator

[Ω̂1, Ω̂2]W = −2iΩ1,W sin

(
ℏ
2
Λ

)
Ω2W = −iℏ {Ω1,W ,Ω2,W }MB , (III.50)

where “MB” stands for the Moyal bracket:

{A,B}MB =
2

ℏ
A sin

(
ℏ
2
Λ

)
B.
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Obviously in the classical limit ℏ → 0 the Moyal bracket reduces to the Poisson bracket (cf.

Eq. (III.2)).

Weyl symbol of the density matrix ρ̂ is known as the Wigner function:

W (q, p) =

∫
dξ⟨q − ξ/2|ρ̂|q + ξ/2⟩eipξ/ℏ =

∫
dξρ(q − ξ/2, q + ξ/2)eipξ/ℏ. (III.51)

In particular, if the density matrix represents a pure state: ρ̂ = |ψ⟩⟨ψ| then

W (q, p) =

∫
dξψ∗(q + ξ/2)ψ(q − ξ/2)eipξ/ℏ. (III.52)

The Wigner function is normalized and in this sense it is similar to the classical probability distri-

bution ∫
dqdp

2πℏ
W (q, p) =

∫
dqdξρ(q − ξ/2, q + ξ/2)δ(ξ) = Tr[ρ̂] = 1. (III.53)

Unlike probability distribution, the Wigner function is not necessarily positive (as we see later

considering explicit examples). Therefore it is often referred to as the quasi-probability distribution.

Now let us prove that the expectation value of any operator is given by the average of the

corresponding Weyl symbol over the Wigner function:

⟨Ω̂(q̂, p̂)⟩ ≡ Tr[ρ̂Ω̂(q̂, p̂)] =

∫
dqdp

2πℏ
W (q, p)ΩW (q, p) (III.54)

This statement proves that the Wigner-Weyl quantization, i.e. representation of quantum systems

through the Weyl symbols and the Wigner function, is complete. The proof of this statement is

straightforward:∫
dqdp

2πℏ
W (q, p)ΩW (q, p) =

∫
dqdp

2πℏ

∫
dξ

∫
dξ′⟨q−ξ/2|ρ̂|q+ξ/2⟩⟨q−ξ′/2|Ω̂|q+ξ′/2⟩ exp[ip(ξ+ξ′)/ℏ]

=

∫
dq

∫
dξ⟨q − ξ/2|ρ̂|q + ξ/2⟩⟨q + ξ/2|Ω̂|q − ξ/2⟩ =

∫
dq⟨q|ρ̂Ω̂|q⟩ = Tr[ρ̂Ω̂]. (III.55)

Let us consider an example of a harmonic oscillator

Ĥ =
p̂2

2m
+
mω2

2
q̂2. (III.56)

First consider the zero temperature density matrix corresponding to the ground state wave function

|ψ0⟩ =
1

(2πa20)
1/4

e−q2/(4a20), a0 =

√
ℏ

2mω
. (III.57)

Then the Wigner function

W (q, p) =

∫
dξ

1√
2πa20

exp

[
−(q + ξ/2)2

4a20
− (q − ξ/2)2

4a20

]
eipξ/ℏ = 2 exp

[
− q2

2a20
− p2

2p20

]
, p0 =

ℏ
2a0

.

(III.58)
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Thus the Wigner function is positive Gaussian function for the Harmonic oscillators in the ground

state. It is easy to realize that this is true for any harmonic system in the ground state since the

latter can be always represented as a product of the ground state for each normal mode. This

simple Gaussian structure persists to finite temperature states. In particular for a thermal density

matrix

ρ̂ =
1

Z

∑
n

e−βℏω(n+1/2)|n⟩⟨n| (III.59)

the Wigner function reads:

W (q, p) = 2 tanh(ℏω/2T ) exp
[
− q2

2a20 coth(ℏω/2T )
− p2

2p20 coth(ℏω/2T )

]
(III.60)

This result clearly reduces to Eq. (III.58) in the zero temperature limit. In the high temperature

regime ℏω ≪ T we can approximate coth(ℏω/2T ) by 2T/ℏω and thus

W (q, p) ≈ ℏω
T

exp

[
−p

2/2m+mω2q2/2

T

]
, (III.61)

which is exactly the classical Boltzmann’s distribution of the Harmonic oscillator up to the factor

of ℏ, which is due to the integration measure dqdp/(2πℏ).

D. Coherent state representation.

All results in the momentum representation immediately translate to the coherent state rep-

resentation. Since the proofs are almost identical we will simply list the main results and show

several examples.

First let us define the Weyl symbol of an arbitrary operator written in the second quantized

form Ω̂(â, â†). As earlier we suppress the single-particle state index in the operators â and â† to

simplify notations.

ΩW (a, a∗) =

∫ ∫
dη∗dη

⟨
a− η

2

∣∣∣ Ω̂(â, â†) ∣∣∣a+ η

2

⟩
e

1
2
(η∗a−ηa∗). (III.62)

Here |α⟩ denote coherent states. As in the coordinate momentum representation the Weyl symbol

of a symmetrically ordered operator can be obtained by simple substitution â→ a and â† → a∗.

For normally ordered operators, where all â† terms appear on the left of â terms, Eq. (III.62)

implies

ΩW (a, a∗) =

∫ ∫
dηdη∗Ω (a∗ − η∗/2, a+ η/2) e−|η|2/2. (III.63)
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As in the coordinate representation Weyl quantization is naturally associated with the coherent

state Bopp representation

â† = a∗ − 1

2

∂

∂a
= a⋆ +

1

2

←−
∂

∂a
, (III.64)

â = a+
1

2

∂

∂a∗
= a− 1

2

←−
∂

∂a∗
. (III.65)

The complex derivatives here are understood in the standard way through the derivatives with

respect to real and imaginary parts of a:

∂

∂a
=

1

2

∂

∂ℜa
− i

2

∂

∂ℑa
,

∂

∂a∗
=

1

2

∂

∂ℜa
+
i

2

∂

∂ℑa
. (III.66)

The choice of the representation with the conventional (right) derivatives and the one with left

derivatives is arbitrary. However, as we discuss below, for time dependent problems it is dictated

by causality. This representation of creation and annihilation operators is clearly symmetric and

preserves the correct commutation relations. It also automatically reproduces the Weyl symbol of

any operator. Let us illustrate this representation with a couple of simple examples. First consider

the number operator n̂ = â†â and its normal ordered square: : n2 := a†a†aa. First we evaluate the

Weyl symbol using Eq. (III.73):

nW =

∫
dηdη∗(a∗ − η∗/2)(a+ η/2) exp[−|η|2/2] = a∗a− 1

2
,

(: n̂2 :)W =

∫
dηdη∗(a∗ − η∗/2)2(a+ η/2)2 exp[−|η|2/2] = |a|4 − 2|a|2 + 1

2
. (III.67)

Next we do the same calculation using the Bopp representation

nw =

(
a∗ − 1

2
∂a

)
a = a∗a− 1

2
,

(: n̂2 :)W =

(
a∗ − 1

2
∂a

)2

a2 = |a|4 − a∗∂aa2 +
1

4
∂2aa

2 = |a|4 − 2|a|2 + 1

2
. (III.68)

For simple polynomial operators Bopp representation gives the simplest way to evaluate the Weyl

symbols of the operators.

Again by a close analogy to the coordinate-momentum representation it is straightforward to

show that the Weyl symbol of the product of two operators is given by the Moyal product (cf.

Eq. (III.45)):

(Ω̂1Ω̂2)W = Ω1,W exp

[
Λc

2

]
Ω2,W , (III.69)

where the symplectic coherent state operator Λc is defined in Eq. (III.14). From this result we

immediately derive that the Weyl symbol of the commutator of the two operators is

[Ω̂1, Ω̂2] = 2Ω1,W sinh

[
Λc

2

]
Ω2,W , (III.70)
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which can be termed as the coherent state Moyal bracket.

Let us check that in this way we can reproduce the Weyl symbol of the operators considered

before

(â†â)W = a∗ exp[Λc/2]a = a∗a+
1

2
a∗Λca+ 0 = a∗a− 1

2
,

(â†â†ââ)W = (a∗)2[1 + Λc/2 + Λ2
c/8 + 0]a2 = |a|4 − 2|a|2 + 1

2
, (III.71)

which are identical to Eq. (III.68).

The Wigner function is again defined as the Weyl symbol of the density matrix:

W (a, a∗) =

∫ ∫
dη∗dη

⟨
a− η

2

∣∣∣ ρ̂ ∣∣∣a+ η

2

⟩
e

1
2
(η∗a−ηa∗). (III.72)

The expectation value of any operator is given by averaging the corresponding Weyl symbol

weighted with the Wigner function:

⟨Ω̂(â, â†)⟩ =
∫ ∫

dada∗W (a, a∗)ΩWa, a
∗). (III.73)

So the Wigner function again plays the role of the quasi-probability distribution of the complex

amplitudes.

Let us consider few simple examples of Wigner functions. We start from the vacuum state:

ρ̂ = |0⟩⟨0|. Note that the overlap of the ground state and the coherent state is

⟨0|a⟩ = exp[−|a|2/2]. (III.74)

Thus

W0(a
∗, a) =

∫ ∫
dη∗dη exp[−|a|2 − |η|2/4]e

1
2
(η∗a−ηa∗) = 2 exp[−2|a|2] (III.75)

Similarly the Wigner function of any coherent state is a shifted Gaussian. If ρ̂ = |α⟩⟨α| then

Wα(a
∗, a) = 2 exp[−2|a− α|2] (III.76)

The proof of this result is essentially the same using that:

⟨α|a⟩ = exp[−|a|2/2− |α|2/2 + α∗a]. (III.77)

Another important example is the Wigner function of the Fock state

|N⟩ = (a†)N√
N !
|0⟩ (III.78)
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The overlap of the Fock state and coherent state is obviously

⟨N |a⟩ = aN exp[−|a|2/2]√
N !

(III.79)

Therefore

WN (a∗, a) =
1

N !

∫ ∫
dηdη∗

(
a∗ − η∗

2

)N (
a+

η

2

)N
e−|a|2−|η|2/4e

1
2
(η∗a−ηa∗)

=
4

N !

∫ ∫
dη̃dη̃∗(2a∗ − η̃∗)N (2a+ η̃)Ne−2|a|2−|η̃|2 = 4e−2|a|2

N∑
m=0

(−1)N−m|2a|2m N !

(m!)2((N −m)!)2∫ ∫
dη̃dη̃∗|η̃|2(N−m)e−|η̃|2 = 4(−1)Ne−2|a|2

N∑
m=0

(−1)m|2a|2m N !

(m!)2(N −m)!
= 2e−2|a|2LN (4|a|2),

(III.80)

where LN (x) is the Laguerre polynomial:

LN (x) = (−1)N
N∑

m=0

(−1)m N !

(m!)2(N −m)!
xm.

Unlike previous examples involving coherent states, the Wigner function for the Fock state is

very non-local, especially at large N . It highly oscillates at |a|2 < N and then rapidly decays at

|a|2 > N . Due to these oscillations it is e.g. very hard to use this Wigner function for Monte-Carlo

sampling so one can try to find approximate Wigner functions which correctly reproduce the lowest

moments of the true distribution. The simplest example of an approximate Wigner function would

be a Gaussian Wg(n), where n = a∗a:

Wg(n) =
1√
2πσ2

e−
(n−n0)

2

2σ2 . (III.81)

Because we will be interested in large N we can extend the range of n to the full real axis.

Unphysical negative values of n will occur with vanishingly small probability. We will require that

this function correctly reproduces the first two moments of the number operator:

N = ⟨n̂⟩ =
∫ ∞

−∞
dnnwWg(n) = n− 1

2
= n0 −

1

2
(III.82)

and

N2 = ⟨n̂2⟩ = ⟨: n̂2 : +n̂⟩ = n2 − 2n+ 1/2 + n− 1/2 = n20 + σ2 − n0, (III.83)

where the over-line implies averaging with respect to the approximate Wigner function Wg(n).

The first equation implies n0 = N + 1/2 and the second gives

N2 = N2 +N +
1

4
−N − 1

2
+ σ2 ⇒ σ =

1

2
. (III.84)
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Thus the best Gaussian approximation to the Wigner function for the Fock state is

Wg(n) =
2√
2π

e−2(n−N− 1
2)

2

. (III.85)

E. Coordinate-momentum versus coherent state representations.

To summarize the discussion above we will contrast the two phase-space pictures in Table I. This

TABLE I Coherent state versus coordinate momentum phase space

Representation coordinate-momentum coherent

Phase space variables q,p a,a∗

Quantum operators q̂, p̂ â, â†

Standard representation
q̂→ q, p̂→ −iℏ∂q
(coordinate basis)

â→ a, â† → −∂a
(coherent state basis)

Canonical

commutation relations

[q̂α, p̂β ] = iℏδα,β
(α, β refer to different particles)

[âi, â
†
j ] = δij

(i, j refer to single-particle states)

Quantum-classical

correspondence

q̂→ q, p̂→ p, [Â, B̂]→ −iℏ{A,B}

{A,B} =
∑

α
∂A
∂pα

∂B
∂qα
− ∂A

∂qα
∂B
∂pα

â→ a, â† → a∗, [Â, B̂]→ {A,B}c
{A,B}c =

∑
j

∂A
∂aj

∂B
∂a∗

j
− ∂A

∂a∗
j

∂B
∂aj

Wigner function W (q,p) =
∫
dξ
⟨
q− ξ

2

∣∣∣ ρ̂ ∣∣∣q+ ξ
2

⟩
eipξ/ℏ

W (a,a∗) =
∫ ∫

dη⋆dη
⟨
a− η

2

∣∣ ρ̂ ∣∣a+ η
2

⟩
× e 1

2 (η
∗a−ηa∗)

Weyl symbol ΩW (q,p) =
∫
dξ
⟨
q− ξ

2

∣∣∣ Ω̂ ∣∣∣q+ ξ
2

⟩
eipξ/ℏ

ΩW (a,a∗)=
∫ ∫

dη⋆dη
⟨
a− η

2

∣∣ Ω̂ ∣∣a+ η
2

⟩
× e

1
2 (η

∗a−ηa∗)

Moyal product
(Ω1Ω2)W = Ω1,W exp

[
− iℏ

2 Λ
]
Ω2,W ,

Λ =
∑

α

←−
∂

∂pα

−→
∂

∂qα
−
←−
∂

∂qα

−→
∂

∂pα

(Ω1Ω2)W = Ω1,W exp
[
Λc

2

]
Ω2,W ,

Λc =
∑

j

←−
∂

∂aj

−→
∂

∂a∗
j
−
←−
∂

∂a∗
j

−→
∂

∂aj

Moyal bracket {Ω1,Ω2}MB = 2
ℏΩ1 sin

[ℏ
2Λ
]
Ω2 {Ω1,Ω2}MBC = 2Ω1 sinh

[
1
2Λc

]
Ω2

Bopp operators
q̂ = q+ iℏ

2
∂
∂p = q− iℏ

2

←−
∂
∂p ,

p̂ = p− iℏ
2

∂
∂q = p+ iℏ

2

←−
∂
∂q

â† = a∗ − 1
2

∂
∂a = a∗ + 1

2

←−
∂
∂a ,

â = a+ 1
2

∂
∂a∗ ,= a− 1

2

←−
∂

∂a∗

table highlights close analogy between particle and wave pictures. While the two representations are

formally equivalent one can build different approximation schemes using these representations as

starting points, e.g. expanding around different classical limits one representing classical particles

evolving according to the Newton’s laws and another classical waves evolvong according to Gross-

Pitaevskii (or Ginzburg-Landau) equations.
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F. Spin systems.

The machinery developed above allows one to extend the Weyl quantization to spin systems.

The spin operators satisfy the canonical commutation relations:

[ŝa, ŝb] = iϵabcŝc, (III.86)

where ϵabc is the fully antisymmetric tensor. The classical limit corresponds to the spin quantum

number S ≫ 1 so we expect that quantum-classical correspondence will be exact in the large S-

limit. Formally spin systems can be mapped to boson systems using the Schwinger representation:

ŝz =
α̂†α̂− β̂†β̂

2
, ŝ+ = α̂†β̂, ŝ− = β̂†α̂. (III.87)

This representation allows us to apply results from the previous section directly to the spin systems

without need to introduce spin-coherent states. The bosonic fields α and β in Eq. (III.87) should

satisfy an additional constraint n̂ = α̂†α̂+β̂†β̂ = 2S. Note that any spin-spin interactions commute

with this constraint for each spin, therefore if the constraint is satisfied by the initial state, spin

dynamics is equivalent to the dynamics of bosons.

Using Eqs. (III.64) and (III.65) we can find an analogue of the Bopp operators for the spin

systems:

ŝz =
α⋆α− β⋆β

2
− 1

8

(
∂2

∂α⋆∂α
− ∂2

∂β⋆∂β

)
− 1

4

(
α⋆ ∂

∂α⋆
− α ∂

∂α
− β⋆ ∂

∂β⋆
+ β

∂

∂β

)
,(III.88)

ŝ+ = α⋆β +
1

2

(
α⋆ ∂

∂β⋆
− β ∂

∂α

)
− 1

4

∂2

∂α∂β⋆
, (III.89)

ŝ− = αβ⋆ +
1

2

(
α
∂

∂β
− β⋆ ∂

∂α⋆

)
− 1

4

∂2

∂α⋆∂β
. (III.90)

These equations can be also written using compact notations:

ŝ = s− i

2

[
s× ∇⃗

]
− 1

8

[
∇⃗+ (s · ∇⃗)∇⃗ − 1

2
s∇2

]
, (III.91)

or equivalently

ŝz = sz−
i

2

(
sx

∂

∂sy
− sy

∂

∂sx

)
− 1

8

∂

∂sz
− sz
16

(
∂2

∂s2z
− ∂2

∂s2x
− ∂2

∂s2y

)
− sx

8

∂2

∂sx∂sz
− sy

8

∂2

∂sy∂sz
. (III.92)

and similarly for other components. Here ∇⃗ = ∂/∂s and

sz =
α∗α− β∗β

2
, sx =

α∗β + β∗α

2
, sy =

α∗β − β∗α
2i

(III.93)

are the Schwinger representation of the classical spins. One can check that these momentum

variables satisfy standard angular momentum relations:

{sα, sβ} = ϵα,β,γsγ . (III.94)
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These expressions can be used in constructing Weyl symbols for various spin operators. Let us

give a few specific examples:

(ŝz)W = sz, (ŝ
2
z)W = s2z −

1

8
, (ŝz ŝx)W = szsx +

i

2
sy. (III.95)

In principle, the mapping (III.87) is sufficient to express the Wigner function of any initial state

in terms of the bosonic fields α and β. General expressions can be quite cumbersome, however, one

can use a simple trick to find a Wigner transform of any pure single spin state and the generalize

it to any given density matrix. Assume that a spin is pointing along the z-axis. This can always

be achieved by a proper choice of a coordinate system. Then in terms of bosons α̂ and β̂ the initial

state is just |2S, 0⟩. In other words the wave function is a product of two Fock states one having

2S particles and one 0 particles. The corresponding Wigner function is then (see Eq. (III.80):

W (α, α⋆, β, β⋆) = 4e−2|α|2−2|β|2L2S(4|α|2). (III.96)

At large S the Laguerre polynomial is a rapidly oscillating function and very inconvenient to deal

with. So instead of the exact expression to a very good accuracy (up to 1/S2) we can use a Gaussian

approximation (cf. Eq. (III.85) one can use

W (α, β) ≈ 2
√
2e−2|β|2e−2(|α|2−2S−1/2)2 . (III.97)

Then the best Gaussian approximation for the Wigner function reads

W (sz, s⃗⊥) ≈
2

π
√
πS

e−s2⊥/Se−4(sz−S)2 . (III.98)

The Wigner function is properly normalized using the integration measure dsxdsydsz =

2πs⊥ds⊥dsz. This Wigner function has a transparent interpretation. If the quantum spin points

along the z direction, because of the uncertainty principle, the transverse spin components still

fluctuate due to zero-point motion so that

⟨s2x⟩ = ⟨s2y⟩ =
S

2
. (III.99)

This is indeed the correct quantum-mechanical result. It also correctly reproduces the second

moment of sz:

⟨s2z⟩ = s2z − 1/8 = S2 +
1

8
− 1

8
= S2, (III.100)

where we used Eq. (III.95) for the Weyl symbol for s2z. Clearly from Eq. (III.96) one can derive

the Wigner function for a spin with an arbitrary orientation by the appropriate rotation of the

coordinate axes.
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1. Exercises

1. Write down an explicit expression for the Weyl symbol of a general operator (III.31) as an

integral in the momentum space.

2. Complete the proof of Eq. (III.36).

3. Consider a fully symmetrized polynomial of p̂ and q̂ of degree n, which can be represented

either as

Ω̂n(p̂, q̂) = p̂Ωn−1(p̂, q̂) + Ω̂n−1(p̂, q̂)p̂

or as

Ω̂n(p̂, q̂) = q̂Ωn−1(p̂, q̂) + Ω̂n−1(p̂, q̂)q̂,

where Ω̂n−1(p̂, q̂) is the symmetrized polynomial of degree n−1. Prove that the Weyl symbol

of the fully symmetrized polynomial is simply obtained by substituting p̂ → p and q̂ → q.

For example

(p̂q̂ + q̂p̂)W = 2pq, (p̂2q̂ + 2p̂q̂p̂+ q̂p̂2)W = 4p2q. (III.101)

4. Considering polynomial functions or otherwise prove the equivalence of two Bopp represen-

tations (III.38) and (III.43).

5. Prove the relation (III.48) starting from m = 0 and arbitrary n and then generalizing the

proof to arbitrary m.

6. Prove Eq. (III.60). Hint. One possibility is to expand both the Wigner function and the final

result in powers of exp[−βℏω]. Another possibility is to use coherent state representation of

the Wigner function discussed below, where all calculations are much simpler since they do

not require using Hermite polynomials.

7. Using definition of the Weyl symbol (III.62) prove that (â†â+ ââ†)W = 2aa∗.

8. Prove the result (III.75) by completing the square.

9. Complete calculations to prove Eq. (III.80). Visualize this distribution for various N .
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10. Prove that for finite temperature density matrix of the non-interacting system H = ℏωa†a

the Wigner function is a Gaussian:

WT (a
∗, a) = 2 coth

(
ℏω
2T

)
exp

[
−2|a2| tanh

(
ℏω
2T

)]
. (III.102)

11. Verify Eqs. (III.95).

G. Quantum dynamics in phase space. Truncated Wigner approximation (Liouvillian dynamics)

Next we move to time-dependent systems. In this section we will focus on coherent state phase

space since it found more applications to interacting systems. All results immediately translate

to the coordinate-momentum picture using Table I. We will explicitly quote only final expressions

where necessary. Time evolution of the density matrix for an arbitrary Hamiltonian system is given

by the von Neumann equation:

iℏ ˙̂ρ = [Ĥ, ρ̂]. (III.103)

Taking the Weyl transform of both sides of the equation and using Eq. (III.70) for the coherent

state Moyal bracket we find:

iℏẆ = 2HW sin

[
1

2
Λc

]
W.. (III.104)

This equation in the coordinate-momentum representation reads

Ẇ =
2

ℏ
W sin

(
ℏ
2
Λ

)
HW (III.105)

If we expand the Moyal bracket in the powers of the symplectic operator Λc (or Λ) and stop at

the leading order then the Moyal bracket reduces to the Poisson bracket and the von Neumann’s

equation (III.105) reduces to the classical Liouville equations (III.20) with the Wigner function

replacing the classical probability distribution. It is interesting that in the coordinate-momentum

picture the classical limit is formally recovered as ℏ → 0 as expected. In the coherent state

picture the classical limit is found when the occupation number of relevant modes becomes large

N = a∗a→∞. The Planck’s constant merely sets the time units and can be completely rescaled.

Of course the mode occupation number in e.g. harmonic equilibrium systems is given by the ratio

T and ℏω and diverges as ℏ→ 0 so there is no inconsistency.

This leading order approximation where the Wigner function satisfies the classical Liouville

equations is known in literature as the truncated Wigner approximation (TWA). Formally it is
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obtained by truncating the expansion of the von Neumann’s equation

iẆ = 2HW sin

[
1

2
Λc

]
W = HWΛcW +

1

4
HWΛ3

cW + · · · ≈ HWΛcW (III.106)

at the leading order in 1/N (ℏ). Let us make a few comments about TWA. First we observe that it is

exact for non-interacting systems which involve particles in a harmonic potential, non-interacting

particles in arbitrary time-dependent potential, arbitrary non-interacting spin systems in time-

dependent magnetic fields and others. This observation immediately follows from noticing that for

such systems all terms involving third and higher order derivatives of the Hamiltonian identically

vanish. Second we observe that the Liouville equation can be solved by characteristics, i.e. the

probability distribution is conserved along the classical trajectories. Thus classical trajectories

have the same interpretation within TWA: they conserve the Wigner function. This implies that

within TWA the expectation value of an arbitrary observable can be written as

⟨Ô(t)⟩ =
∫
dada∗W0(a0, a

∗
0)OW (a(t), a∗(t), t), (III.107)

where W0(a0, a
∗
0) is the initial Wigner function and a(t) and a∗(t) are solutions of the classical

Gross-Pitaevski (Netwon’s in the corpuscular case) equations satisfying the initial conditions a(t) =

a0, a
∗(t) = a∗0. Finally let us point that TWA is asymptotically exact at short times. We will

present the formal proof in the next section when we discuss the structure of quantum corrections.

But heuristically this statement relies on noting that formally ℏ, divided by an energy scale, sets

the time unit and thus the classical limit ℏ→ 0 is equivalent to looking into very short times.

In many-particle systems one rarely considers interactions higher than two body, i.e. involving

more than four creation and annihilation operators. This means that the expansion of the Moyal

bracket always stops at the third order and the exact evolution equation for the Wigner function

is

iẆ =
∑
j

∂HW

∂aj

∂W

∂a∗j
− ∂HW

∂a∗j

∂W

∂aj
+
1

8

∑
i,j,k

∂3HW

∂ai∂a∗j∂a
∗
k

∂3W

∂a∗i ∂aj∂ak
− ∂3HW

∂a∗i ∂aj∂ak

∂3W

∂ai∂a∗j∂a
∗
k

, (III.108)

where for completeness we inserted all single-particle indices. This third order Fokker-Planck

equation is relatively simple looking. However, there are no available methods to solve it for

complex systems. In particular, it can not be solved by the methods of characteristics, i.e. there

is no well defined notion of trajectories. In the next section we will show how one can solve this

equation perturbatively using the notion of quantum jumps.

Quantum jumps also appear in the context of finding non-equal time correlation functions.

Intuitively such jumps are expected from basic uncertainty principle. E.g. measuring the position
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of a particle at time t necessarily induces uncertainty in its momentum and affects the outcome of

the second measurement at a later time. It turns out that the Bopp representation is most suitable

to analyze the non-equal time correlation function. We simply understand derivatives appearing

in Eqs. (III.38), (III.43), (III.64), (III.65) as a response to an infinitesimal jumps in phase space

variable, which can be calculated either instantaneously for equal time-correlation functions or at

a later time for non-equal time correlation functions. E.g. for t1 < t2

⟨â†(t1)â(t2)⟩ =
∫ ∫

da0da
∗
0W (a0, a

∗
0)

(
a∗(t1)a(t2)−

1

2

∂a(t2)

∂a(t1)

)
(III.109)

The last term is understood as a linear response of the function a(t2) to infinitesimal jump in a at

the moment t1: a(t1)→ a(t1)+ δa. This representation is valid even if t1 > t2 but then it becomes

not casual because the response of a(t2) is evaluated to the jump, which will occur in the future.

Here it is much more convenient to restore causality by using the left Bopp representation (III.43).

Then e.g. again assuming that t1 < t2

⟨â(t2)a†(t1)⟩ =
∫ ∫

da0da
∗
0W (a0, a

∗
0)

(
a(t2)a

∗(t1) +
1

2

∂a(t2)

∂a(t1)

)
(III.110)

In the classical limit the two expressions clearly coincide but in general the two responses are

different. In particular, the non-equal time commutator, which is up to a factor is the retarder

Green’s function appearing in standard Kubo linear response theory, is given purely by the response

to the jump:

⟨[â†(t1), â(t2)]⟩ = −
∫ ∫

da0da
∗
0W (a0, a

∗
0)
∂a(t2)

∂a(t1)
(III.111)

Clearly as t2 → t1 + 0 we recover standard bosonic commutation relations. Conversely the sym-

metric correlation function, which appears e.g. in dissipative response of the systems, does not

contain quantum jumps:

⟨[â†(t1), â(t2)]+⟩ = 2

∫ ∫
da0da

∗
0W (a0, a

∗
0)a

∗(t1)a(t2). (III.112)

While this representation of the non-equal time correlation functions is completely general, it is

most useful within TWA, where response at a later time can be easily computed as a difference

between two classical trajectories: the original one and the one infinitesimally shifted at time t1.

TWA is a very powerful tool for analyzing quantum dynamics in the semiclassical limit, where

quantum fluctuations are responsible for initial seed triggering the dynamics but the consequent

evolution is nearly classical. There are many applications to quantum optics, physics of ultracold

gases, simulation of kinetics of chemical reactions, evolution of early universe and others. In
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these notes we will only consider simple applications to simple systems. Further more complicated

examples can be found e.g. in Refs. (P. B. Blakie, A. S. Bradley, M. J. Davis, R. J. Ballagh, and

C. W. Gardiner, 2008, Advances in Physics 57, 363, A. Polkovnikov, Phase space representation of

quantum dynamics, Annals of Phys. 325, 1790 (2010)).

1. Single particle in a harmonic potential.

As a first illustration of the phase space methods for studying quantum dynamics let us consider

a particle moving in a harmonic potential. Here all the calculations can be done analytically without

any approximations. The Hamiltonian of a single harmonic oscillator is

Ĥ0 =
p̂2

2m
+
mω2

2
q̂2 = ℏω(â†â+ 1/2), (III.113)

where the coordinate and momentum operators q̂ and p̂ are related to creation and annihilation

operators â and â† in a standard way:

â =

√
mω

2ℏ

(
q̂ +

i

mω
p̂

)
, â† =

√
mω

2ℏ

(
q̂ − i

mω
p̂

)
. (III.114)

Now suppose that the particle is prepared in the ground state and we are suddenly applying a

linear potential V (q) = −λq. So that the Hamiltonian becomes

Ĥ = Ĥ0 − λq̂ (III.115)

Next we compute various observables as a function of time.

Coordinate-momentum representation. First we will solve this problem using the coordinate-

momentum representation. The corresponding Wigner function is a Gaussian computed earlier

(III.58). Next we need to solve the classical equations of motion:

dp

dt
= −mω2q + λ,

dq

dt
=

p

m
(III.116)

satisfying the initial conditions q(0) = q0, p(0) = p0. Clearly the solution is

q(t) = qcl(t) + q0 cos(ωt) +
p0
mω

sin(ωt), (III.117)

where qcl(t) = λ/mω2(1 − cos(ωt)) is the classical trajectory describing the motion of the par-

ticle, which is initially set to rest. Then we need to substitute this solution to the observable

corresponding to the quantum operator of interest and find the average over the initial conditions.
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For the expectation value of the position we trivially find ⟨q̂(t)⟩ = qcl(t), which is just a particular

case of the Ehrenfest’s principle. Similarly we find

⟨q̂2⟩ = q2(t) = q2cl(t) + a20. (III.118)

This is of course also the correct result, which can be easily obtained from the solution of the

Schrödinger equation.

Next let us show how to compute a non-equal time correlation function. In particular, ⟨q̂(t)q̂(t′)⟩

with t < t′. For this we will use the time-dependent Bopp representation (III.38)

q̂(t) = q(t) +
iℏ
2

∂

∂p(t)
(III.119)

and interpret this derivative as a response to the infinitesimal jump in momentum at time t. Then

⟨q̂(t)q̂(t′)⟩ =
(
qcl(t) + q0 cos(ωt) +

p0
mω

sin(ωt) +
iℏ
2

∂

∂δp

)
×
(
qcl(t′) + q0 cos(ωt′) +

p0
mω

sin(ωt′) +
δp

mω
sin(ω(t′ − t)

)
= qcl(t)qcl(t

′) + a20 cos(ω(t− t′)) + ia20 sin(ω(t
′ − t)). (III.120)

Note that this correlation function is complex because it does not correspond to the expectation

value of a Hermitian operator. Similarly for the correlation function with the opposite ordering of

t and t′ we find

⟨q̂(t′)q̂(t)⟩ = qcl(t)qcl(t
′) + a20 cos(ω(t− t′))− ia20 sin(ω(t′ − t)) (III.121)

Therefore the symmetric part of the correlation function is simply given by⟨
q̂(t′)q̂(t) + q̂(t)q̂(t′)

2

⟩
= qcl(t)qcl(t

′) + a20 cos(ω(t− t′)) (III.122)

and the expectation value for the commutator is

⟨q̂(t)q̂(t′)− q̂(t′)q̂(t)⟩ = 2ia20 sin(ω(t
′ − t)). (III.123)

This commutator vanishes at t→ t′ and rapidly oscillates if ω(t′ − t)≫ 1.

Coherent state representation. For illustration purposes we repeat this calculation in the coher-

ent state representation. In the second quantized form the Hamiltonian of the system reads

Ĥ = ℏω(â†â+ 1/2)− λa0(â+ â†). (III.124)
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The classical (Gross-Pitaevski) equation for the oscillator reads:

iℏ
∂α

∂t
= ℏωα− λa0. (III.125)

We use α(t) and α∗(t) do denote phase space variables to avoid confusion with the notation a0 for

the oscillator length. This equation has the following solution

α(t) =
λa0
ℏω

(
1− e−iωt

)
+ α0e

−iωt. (III.126)

Using the explicit form of the Wigner function of the vacuum state (III.75) we immediately find

⟨q̂(t)⟩ = a0(α(t) + α∗(t)) =
2a20λ

ℏω
(1− cos(ωt)) = qcl(t). (III.127)

Similarly

⟨q̂2(t)⟩ = a20(α
2(t) + (α⋆(t))2 + 2α(t)α⋆(t)) = q2cl(t) + a20. (III.128)

We obviously got the same answers as before. Similarly one can verify the result for the non-equal

time correlation function. Of course it is not surprising that both methods give identical exact

results for harmonic systems. However, it is important to realize that once we deal with more

complicated interacting models the correct choice of the phase space can significantly simplify the

problem. Moreover the expansions around the two possible classical limits are very different. Thus

for a system of noninteracting particles moving in some external potential TWA in the coordinate-

momentum representation is only approximate unless the potential is harmonic. At the same time

TWA in the coherent state representation is exact.

2. Collapse (and revival) of a coherent state

Next consider a slightly more complicated case of an initial single-mode coherent state evolving

according to the quartic interacting Hamiltonian

Ĥ =
U

2
â†â(â†â− 1). (III.129)

Clearly the eigenstates of this Hamiltonian are the Fock states |n⟨ with eigen energies

ϵn =
U

2
n(n− 1).

This problem is closely related the collapse-revival experiment by M. Greiner et. al. (M. Greiner,

O. Mandel, T. W. Ha nsch, and I. Bloch, Nature 419, 51, 2002). Because the problem does
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not have kinetic term it can be easily solved analytically. In particular, the expectation value of

the annihilation operator can be found by expanding the coherent state in the Fock basis and

propagating it in time

|ψ(t)⟩ = e−|α|2/2
∑
n

αn

√
n!
|n⟩e−iϵnt. (III.130)

Then we find

⟨ψ(t)|â|ψ(t)⟩ = e−|α|2
∑
n,m

(α∗)n(αm)√
n!m!

ei(ϵn−ϵm)t⟨n|a|m⟩ = e−|α|2
∑
n

(α∗)nαn+1√
n!(n+ 1)!

√
n+ 1 ei(ϵn−ϵn+1)t

= αe−|α|2
∑
n

|α2|n

n!
e−iUn = α exp

[
|α|2

(
e−iUt − 1

)]
. (III.131)

Qualitatively at larger N = |α|2 this solution gives first rapid decay of the coherence, where ⟨â(t)⟩

decays to an exponentially small number at a characteristic time τ = UN and then at a much later

time t0 = 2π/U there is a complete revival of the state. The classical limit here corresponds to

N →∞, U → 0 and UN = λ fixed. Clearly in the classical limit there is still collapse of the state

by no revival since t0 ∼ 2πN/λ→∞.

Next we solve the problem using TWA. For doing this we first compute the Weyl symbol of the

Hamiltonian (III.129):

HW (a∗, a) =
U

2
|a|2(|a|2 − 2) +

U

4
. (III.132)

Note that there is an extra −1 in the first term Hamiltonian as compared to the naive substitution

â→ a due to the Weyl ordering. Using this Hamiltonian we find classical Gross-Pitaveski equations

of motion for the complex amplitudes:

i
∂a(t)

∂t
= U(|a|2 − 1)a(t). (III.133)

This equation can be trivially solved using that |a(t)|2 = |a0|2 is the integral of motion:

a(t) = a0e
−iU |(a0|2−1)t (III.134)

The solution should be supplemented by random initial conditions distributed according to the

Wigner function:

W (a0, a
∗
0) = 2 exp[−2|a0 − α|2]. (III.135)

Using the explicit analytic solution of Eq. (III.133) and the Wigner function above we can calculate

the expectation value of the coherence ⟨â(t)⟩ within TWA by Gaussian integration

a(t) ≈ α exp

[
− iU |α|2t
1 + iUt/2

]
exp[iUt]

1

(1 + iUt/2)2
, (III.136)
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This expression is more complicated than the simple exact quantum results. Let us discuss its

qualitative features. First of all we an see that at a characteristic time τ = 1/(UN) there is a

collapse of the coherence as in the quantum case. One can check that for times much shorter than

the revival time the TWA solution very closely matches the exact solution. However the TWA

result completely misses revivals, which are thus intrinsically quantum related to discreteness of

the Fock basis.

This example highlights important potential issue with TWA: it can miss long time behavior.

One can imagine that if there is some small dephasing in the system e.g. due to decoherence such

that revivals are destroyed then TWA solution will be accurate at all times.

Let us make a remark concerning Weyl ordering in simulations of bosonic systems using TWA.

Most commonly one deals with two-body density-density interactions so typical Hamiltonian is

H(âj , â
†
j) =

∑
ij

[
Vij â

†
i âj + Uij â

†
i ,̂a

†
j âj âi

]
. (III.137)

where Vij includes both kinetic part and the single particle potential and i and j can be either

descrete or continuous indexes. Using the Bopp representation we find that the Weyl symbol for

the Hamiltonian is

HW (a∗j , aj) =
∑
ij

[
Vijα

∗
iαj + Uij |αi|2|αj |2

]
− 1

2

∑
i

Vii −
∑
ij

|αi|2Uij −
∑
i

|αi|2Uii +
1

2

∑
i

Uii

(III.138)

The constant terms are clearly non-important since they only give an energy shift. The only two

important terms, which distinguish between Weyl symbol and naive classical Hamiltonian are

−
∑
ij

|αi|2(Uij + δijUii).

In general these terms can be very important for accurate description of dynamics using TWA. But

in the most common case of translationally invariant interactions Uij = U|i−j| it is clear that this

contribution is simply proportional to the number of particles and thus has no effect on dynamics

in isolated systems since the latter is conserved. If we aer dealing with e.g. two different species of

bosons like a two-component system then this correction can become very important.

3. Spin dynamics in a linearly changing magnetic field: multi-level Landau-Zener problem.

As a final simple illustrative example we consider another situation where TWA is exact. In

particular, we will analyze dynamics of an arbitrary spin S in a linearly changing magnetic field:

Ĥ = 2hz(t)ŝ
z + 2gŝx, (III.139)
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where hz(t) = δt. We assume that the system is initially prepared in some way at t = −t0 and

will be interested in finding expectation values of various observables at t = t0, where t0 is large

so that hz(t0)≫ g.

As we discussed in Sec. III.F one can map the time evolution of noninteracting spins to the

evolution of noninteracting bosons using the Schwinger representation. Therefore TWA is exact in

this case. Using Eqs. (III.87) the Hamiltonian (III.139) becomes:

Ĥ = hz(t)(α̂
†α̂− β̂†β̂) + g(α̂†β̂ + β̂†α̂). (III.140)

TheWeyl symbol of this Hamiltonian is obtained by simply replacing quantum operators α̂, β̂, α̂†, β̂†

by complex amplitudes α, β, α∗, β∗. Then the corresponding equations of motion are

i
dα

dt
= δtα+ gβ, (III.141)

i
dβ

dt
= gα− δtβ. (III.142)

These equations should be supplemented by the initial conditions distributed according to the

Wigner transform of the initial density matrix.

Note that Eqs. (III.141) and (III.142) map exactly to the equations describing the conventional

Landau-Zener problem. Then the evolution can be described by a unitary 2× 2 matrix:

α∞ = Tα0 +Reiϕβ0, β∞ = −Re−iϕα0 + Tβ0, (III.143)

where (see e.g. J. Keeling and V. Gurarie, Phys. Rev. Lett. 101, 033001 (2008))

T = e−πγ , R =
√

1− T 2, ϕ = γ [ln(γ)− 1]− 2γ ln(
√
2δT ), (III.144)

and γ = g2/(2δ) is the Landau-Zener parameter.

Using this result we can re-express different spin components at t → ∞ through the initial

values:

sz∞ = (T 2 −R2)
α⋆
0α0 − β⋆0β0

2
+ α⋆

0β0RT e
iϕ + α0β

⋆
0RT e

−iϕ

= (T 2 −R2)sz0 + 2RT cos(ϕ)sx0 − 2RT sin(ϕ)sy0, (III.145)

sx∞ = −2RT cos(ϕ)sz0 + (T 2 −R2 cos(2ϕ))sx0 +R2 sin(2ϕ)sy0,

sy∞ = 2RT sin(ϕ)sz0 +R2 sin(2ϕ)sx0 + (T 2 +R2 cos(2ϕ))sy0.

Now using these expressions and the Weyl symbols of spin operators and their bilinears derived

in Sec. III.F we can compute expectation values of various operators. This can be done for any
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initial state but for concreteness we choose initial stationary state polarized along the z-direction.

In the language of Schwinger bosons this is a Fock state |S − n, n⟩, where a particular value of n

corresponds to the initial polarization sz0 = S − n.

⟨ŝz∞⟩ = (T 2 −R2)sz0

⟨(ŝz∞)2⟩ =
[
T 4 +R4 − 4T 2R2

]
(sz0)

2 + 2T 2R2s(s+ 1),

⟨ŝz∞ŝx∞ + ŝz∞ŝ
x
∞⟩ = 2RT (T 2 −R2) cos(ϕ)

[
s(s+ 1)− 3⟨(ŝz0)2⟩

]
. (III.146)

Note that for the conventional Landau-Zener problem corresponding to the spin s = 1/2 the last

two equations become trivial: ⟨(ŝz∞)2⟩ = 1 and ⟨ŝz∞ŝx∞ + ŝz∞ŝ
x
∞⟩ = 0. But for larger values of spin

these correlation functions are nontrivial with e.g. ⟨ŝz∞ŝx∞ + ŝx∞ŝ
z
∞⟩ being an oscillating function

of the rate δ and the Landau-Zener parameter γ.

4. Exercises

1. For the example 2: collapse and revivale of the coherent state, using Mathematica or other

software, plot the dependence ⟨â(t)⟩ both using the exact result and TWA approximation.

ChooseN of the order of 10 and fix U at one (this can be always done by choosing appropriate

time units). Check that TWA very accurately reproduces collapse already for N ∼ 4, 5.

Check that if you use naive classical Hamiltonian as opposed to the Weyl symbol H =

U
2 |a|

2(|a|2 − 1) the agreement even at short times will be much worse.

H. Path integral derivation.

In the final section of these notes we will see how all the concepts introduced earlier: Wigner

function, Weyl symbol, Bopp operators etc. naturally emerge from the Feynmann’s path integral

representation of the evolution operator. Using this approach it is also possible to understand

structure of the quantum corrections beyond TWA and understand potential extension of this

formalism to other setups: open systems, quantum tunneling problems (as possible non-classical

saddle points). The derivation itself is very similar to the formalism used in the Keldysh approach

to dynamics of quantum systems (see e.g. A. Kamenev and A. Levchenko, Advances in Physics

58, 197 (2009)). The main difference is that we will be focusing on expansion of dynamics in the

effective Planck’s constant, while in the Keldysh technique the expansion parameter is usually the

interaction strength. So the two approaches are rather complimentary to each other despite many
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similarities. As in the previous section we will concentrate on the coherent state representation

and only quote final results in the coordinate-momentum space.

Our starting point will be expectation value pf some operator Ω̂(â, â†, t). We assume that this

operator is written in the normal ordered form. To shorten notations we will skip the single-particle

indices in the bosonic fields and reinsert them only when needed.

Ω(t) ≡ ⟨Ω̂(â, â†, t)⟩ = Tr
[
ρ Tτ e

i
∫ t
0 Ĥ(τ)dτ Ω̂(â, â†, t)e−i

∫ t
0 Ĥ(τ)dτ

]
, (III.147)

Because in the coherent state picture the Planck’s constant plays the mere role of conversion

between time and energy units we set ℏ = 1 throughout this section to simplify notations. Here

time ordering symbol Tτ implies that in both exponents later times appear closer to the middle, i.e.

closer to the Ω̂. Next we split the exponent of the time ordered integral over time into a product:

Tτe
i
∫ t
0 Ĥ(τ)dτ =

M∏
j=1

ei∆τĤ(τj) ≈
M∏
j=1

(1 + i∆τĤ(τj)), Tτe
−i

∫ t
0 Ĥ(τ)dτ =

1∏
j=M

e−i∆τĤ(τj),

where τj = j∆τ is the discretized time (we assume that initial time is zero), ∆τ = t/M and M is a

large number. We will eventually take the limit M →∞. Next we insert the resolution of identity

I =

∫
dαjdα

∗
j |αj⟩⟨αj |

between each of the terms in the product. Because we have two exponents on the left and on the

right of the operator Ω̂ we need to distinguish two different α fields. The one, which corresponds

to the positive exponent we term forward field αfK and the one which corresponds to the negative

exponent backward field αb j . This notation is conventional in Keldysh technique and comes from

the ordering in the Schwinger-Keldysh contour. Loosely speaking as we move from left to right we

first increase time from 0 to t and then decrease it backward to zero. Then we find

Ω(t) =

∫
. . .

∫
DαfDα

∗
fDαbDα

∗
b ⟨αb 0|ρ̂|αf 0⟩ e−α∗

f0αf0/2+α∗
f 0αf 1+iH(αf 0,α

∗
f 1)∆τ . . .

e−α∗
f Maf MΩ(α∗

f M , αbM , t)e
α∗
f MabM e−α∗

bMabM+a∗bMabM−1−iH(abM ,a∗bM−1)∆τ . . . e−α∗
b 0αb 0/2. (III.148)

Next let us change the variables:

αj =
αf j + αb j

2
, ηj = αf j − αb j , ⇔ αf j = αj +

ηj
2
, αb j = αj −

ηj
2
.

As we will see below this choice of variables automatically leads to the Weyl quantization. Other

choices e.g. αb = α, αf = α + η will naturally lead to other representations. Physically the

symmetric field α corresponds to the classical field and η is a quantum field. It is intuitively clear
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that in the classical limit there is a unique classical trajectory satisfying fixed initial conditions

and thus the forward and backward fields should be essentially the same. Performing this change

of variables and taking the continuum M →∞ limit we find

Ω(t) =

∫
DηDη∗DαDα∗

⟨
α0 −

η0
2

∣∣ρ̂∣∣α0 +
η0
2

⟩
Ω

[
α∗(t) +

η∗(t)

2
, α(t)− η(t)

2

]
e−

1
2
|η(t)|2e

1
2
(η∗0α0−η0α∗

0)

exp

{∫ t

0
dτ

[
η∗(τ)

∂α(τ)

∂τ
− η(τ)∂α

∗(τ)

∂τ

+ iHW

(
α(τ) +

η(τ)

2
, α∗(τ) +

η∗(τ)

2
, τ

)
− iHW

(
α(τ)− η(τ)

2
, α∗(τ)− η∗(τ)

2
, τ

)]}
, (III.149)

One can recognize that the integrals over boundary quantum fields η0 and ηt automatically give

the Wigner function and the Weyl symbol of the operator Ω̂ so that the expression above becomes

Ω(t) =

∫
DηDη∗DαDα∗W (α0, α

∗
0) exp

{∫ t

0
dτ

[
η∗(τ)

∂α(τ)

∂τ
− η(τ)∂α

∗(τ)

∂τ

+iHW

(
α(τ) +

η(τ)

2
, α∗(τ) +

η∗(τ)

2
, τ

)
−iHW

(
α(τ)− η(τ)

2
, α∗(τ)− η∗(τ)

2
, τ

)]}
ΩW (α(t), α∗(t), t),

(III.150)

Before deriving TWA from this expression let us give a few comments on details of the derivation

of Eq. (III.149), which is quite subtle.

First we analyze all the terms appearing in the path integral, which do not involve Hamiltonian:

S1 = α∗
f0αf0/2 + α∗

b0αb0/2 +

M−1∑
i=1

[
α∗
fi(αf i+1 − αfi)− α∗

bi(αbi − ab i−1)
]

+ α∗
f0(αf1 − αf0)− α∗

bM (αbM − αbM−1)− α∗
b0αb0 + α∗

fM (αbM − αfM ). (III.151)

The first sum in the continuum limit becomes an integral:

M−1∑
i=1

α∗
fi(αf i+1 − αfi)− α∗

biαbi − αb i−1)→
∫ t

0
dτ

(
α∗
f (τ)

∂αf (τ)

∂τ
− α∗

b(τ)
∂αb(τ)

∂τ

)
, (III.152)

which under the substitutions αf → α+η/2, αb → α−η/2 and after integrating by parts becomes:∫ t

0
dτ

(
η∗(τ)

∂α(τ)

∂τ
− η(τ)∂α

∗(τ)

∂τ

)
+ α∗(t)η(t)− α∗

0η0. (III.153)

In the continuum limit the first and the second terms after the sum in (III.151) clearly go to zero

and the last two read:

α∗
fM (αbM −αfM )−α∗

b 0αb 0 = −|α0|2− |η0|2/4+
1

2
(α∗

0η0 + η∗0α0)−α∗(t)η(t)− |η(t)|2/2. (III.154)
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Combining Eqs. (III.151) - (III.154) we derive:

S1 =

∫ t

0
dτ

(
η∗(τ)

∂ψ(τ)

∂τ
− η(τ)∂ψ

∗(τ)

∂τ

)
− |η(t)|

2

2
+

1

2
(η∗0α0 − α∗

0η0). (III.155)

This immediately leads to the correct Hamiltonian independent part in Eq. (III.149). The part

involving the Hamiltonian in that equation is very straightforward, essentially this is just the

difference of Hamiltonians evaluated on forward and backward trajectory. A more subtle result

is the emergence of the Weyl ordering. Formally it appears because the fields α and α∗ appear

at slightly different times. As we will see below quantum field η plays the role of the derivative

with respect to the classical field α. Thus the normal ordered Hamiltonian is actually evaluated

at Bopp operators giving the Weyl symbol HW .

In the leading order in quantum fluctuations we expand the integrand in Eq. (III.163) up to the

linear terms in η. Then the functional integral over η(t) enforces the δ-function Gross-Pitaevskii

constraint on the classical field α(t):

i∂tα =
∂HW (α(t), α∗(t), t)

∂α∗(t)
≡ {α(t),HW (α(t), α⋆(t), t)}c (III.156)

and we recover TWA (III.107).

Next let us move to discussion of non-equal time correlation functions. The simplest one will

be

⟨â†(t1)â(t2)⟩. (III.157)

First we assume t1 < t2. We proceed in the same way as in the equal-time case by writing this

expression in the path integral form inserting forward and backward coherent states. The only new

ingredient is an extra term we encounter on the forward path

a∗f (t) = a∗(t) +
η∗(t)

2
(III.158)

Note that in the path integral η∗ couples to dα = α(t+∆t)− α(t). This implies that

η∗(t1)

2
= − i

2

∂

∂δα
ei[α(t1+∆t)+δα−α(t1)]η∗ = − i

2

∂

∂δα
ei[α(t1+∆t)+δα−α(t1)]η∗ ,

where we understand the partial derivative as infinitesimal response to the jump in α at the moment

t1. Thus we recover that in order to measure the non-equal time correlation functions we simply

need to make the substitution

â†(t) = α∗(t)− iℏ
2

∂

∂α(t)
(III.159)
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In the same way we can see that

â(t) = α(t) +
iℏ
2

∂

∂α∗(t)
(III.160)

This is nothing but the Bopp representation of the creation and annihilation operators. As we al-

ready know for equal time correlation functions they automatically generate the Weyl symbol of the

observable. But for non-equal time correlation function the Bopp operators give very nice interpre-

tation of the response which occurs at a later time. It is remarkable that like the Wigner function

and the Weyl symbol the Bopp operators automatically appear in the path integral formalism.

For the opposite ordering t1 > t2 we hit earlier time on the backward contour so the same

analysis as above holds except that we change af → ab. But this results in change in sign in η and

thus in change in sign in derivatives. So we immediately recover the left Bopp representation with

the same interpretation for non-equal time correlation functions

â†(t) = α∗(t) +
iℏ
2

←−
∂

∂α(t)
â(t) = α(t)− iℏ

2

←−
∂

∂α∗(t)
(III.161)

While as we discussed earlier for equal time correlation functions both representations are equivalent

and give the Weyl symbol, for non-equal time correlation functions there is an important difference.

Namely the correct representation is dictated by causality so that we always evaluate the response

to a jump, which occurred at an earlier time.

Interpretation of Bopp operators as a response to quantum jumps is particularly simple within

TWA. Then the time evolution is essentially classical before and after the jump. Thus the response

of a Weyl symbol Ω2(t2) to say a jump in α at moment t1 is literary a difference of Ω2 evaluated

on two trajectories with and without jump divided over this jump:

∂Ω2(α(t2), α
∗(t2), t2)

∂a(t1)
=

Ω(α′(t2), α
′∗(t2), t2)− Ω(α(t2), α

∗(t2), t2)

δα
,

where α′(t2) is the classical trajectory corresponding to an infinitesimal jump in α(t1): α(t1) =

α(t1) + δα and α(t2) is the same trajectory without this jump. From the Bopp representation it is

clear that for fully symmetric operators (equal or non-equal time) the quantum jump contributions

drop and we can evaluate them by substituting operators â by phase space variables α. Conversely

for commutators the only surviving contribution is the one containing at least one quantum jump.

While we focused our discussion on two-point correlation functions, derivation of the Bopp

representation was completely general and extends to arbitrary number of creation and annihilation

operators e.g. to three-point functions like

⟨â†(t1)â(t2)â(t3)⟩ (III.162)
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Note, however, there is an important subtlety when we have three or more times involved. Namely

not all correlation functions have causal representation. In particular, if t2 < t1, t3 there is no

casual representation of the three-point function above. This implies that these functions are not

physical and can not appear in any response. In functions, which have casual representation later

times should always occur closer to the middle.

Another advantage in the path formulation of the evolution is that it allows us to go beyond

the TWA and represent quantum corrections to dynamics as stochastic quantum jumps. We will

be quite sketchy here, further details of derivation can be found in (A. Polkovnikov, Phase space

representation of quantum dynamics, Annals of Phys. 325, 1790 (2010)). In our previous discussion

leading to TWA we neglected third order terms in quantum fluctuations coming from the difference

iHW

(
α(τ) +

η(τ)

2
, α∗(τ) +

η∗(τ)

2
, τ

)
− iHW

(
α(τ)− η(τ)

2
, α∗(τ)− η∗(τ)

2
, τ

)
in Eq. (III.163). To stay more focused consider the Hubbard model where (up to unimportant

quadratic in α and α∗ terms

HW (α, α∗) =
∑
j

U

2
|αj |4.

Thus the difference above becomes

i
∑
j

(
η∗j (τ)

∂Hw(τ)

∂α∗
j (τ)

+ ηj(τ)
∂Hw(τ)

αj(τ)

)
+
i

4
U
∑
j

|ηj(τ)|2[ηj(τ)α∗
j (τ) + η∗j (τ)αj(τ)].

So the exact path integral representation of the evolution gevine by Eq. III.163 becomes

Ω(t) =

∫
DηDη∗DαDα∗W (α0, α

∗
0) exp

{∫ t

0
dτ
∑
j

[
η∗j (τ)

(
∂αj(τ)

∂τ
+ i

∂Hw(τ)

∂α∗
j (τ)

)

− ηj(τ)
(
∂α∗

j (τ)

∂τ
− i∂Hw(τ)

αj(τ)

)]
+ i

U

4
|ηj(τ)|2(η∗j (τ)αj(τ) + ηj(τ)α

∗
j (τ))

}
ΩW (αj(t), α

∗
j (t), t),

(III.163)

Before we were ignoring these cubic in η terms so that functional integration over the quantum field

η(τ) becomes trivial essentially enforcing the constraint of the classical Gross-Pitaevski equations

of motion for the classical field α. This was the TWA. With the cubic term we can no longer

evaluate this path integral. Let us treat this cubic term perturbatively by expanding the exponent:

ei
∑

j

∫ t
0 dτ U

4
|ηj(τ)|2[ηj(τ)α∗

j (τ)+η∗j (τ)αj(τ)] = 1 + i
U

4

∑
j

∫ t

0
dτ
U

4
|ηj(τ)|2[ηj(τ)α∗

j (τ) + η∗j (τ)αj(τ)]

−U
2

16

∫ ∫
0<τ1<τ2<t

|ηj(τ1)|2[ηj(τ1)α∗
j (τ1)+η

∗
j (τ1)αj(τ1)]|ηj(τ2)|2[ηj(τ2)α∗

j (τ2)+η
∗
j (τ2)αj(τ2)]+ . . .

(III.164)
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Now let us recall that when we discussed non-equal time correlation functions we realized that

η∗j (τ) = −i
∂

∂αj(τ)
, η∗j (τ) = i

∂

∂α∗
j (τ)

with the interpretation of derivatives as a response. Thus the expression for the expectation value

including the first quantum correction reads:

⟨Ω̂(α̂, α̂†, t)⟩ ≈
∫ ∫

dα0dα
∗
0W0(α0, α

∗
0)(

1− iU
4

∫ t

0
dτ
∑
j

[
α∗
j (τ)

∂3

∂αj(τ)∂α⋆
j (τ)∂α

⋆
j (τ)

− c.c.
])

ΩW (α(t), α∗(t), t). (III.165)

The interpretation of this expression is very straightforward. The first quantum correction to TWA

represents a third order response of our observable to an infinitesimal jump in the classical field

during the evolution α(τ) → α(τ) + δα, α∗(τ) → α∗(τ) + δα∗. This jump can occur at any time

during the evolution and at any space location and we need to sum over these jumps. Further

corrections appear as multiple quantum jumps. It is clear that each quantum correction carries

extra factor of 1/N2 (ℏ2 in the coordinate momentum representation) thus we have a well defined

expansion parameter.

It is interesting to note that this nonlinear response can be expressed through stochastic quan-

tum jumps with non-positive probability distribution:

⟨Ω̂(â, â†, t)⟩ ≈
∫ ∫

dα0dα
∗
0W0(a0, a

⋆
0)[

1−iU
4

∑
n

∑
j

∫
dξjdξ

∗
j

(
α∗
j (τn)F (ξj , ξ

∗
j )−αj(τn)F

⋆(ξj , ξ
∗
j )

)∣∣∣∣
δαj(τn)=ξj

3√∆τ

ΩW (α′(t), α′⋆(t), t)

]
,

(III.166)

Here we discretized time and introduced stochastic variable ξj . At time τn we randomly choose ξj

according to the (quasi)probability distribution F (ξ, ξast) and shift the classical fields αj : and α
∗
j by

the amounts δαj = ξj
3
√
∆τ and δα∗

j = ξ∗j
3
√
∆τ (e.g. α′

j = αj + δαj). This procedure is very similar

to the mapping of ordinary Fokker-Planck equation describing diffusion to the Langevin dynamics

with two important differences: (i) In the Langevin dynamics the jumps are proportional to
√
∆τ

while here to 3
√

∆(τ). (ii) In Langevin dynamics the function F can be chosen as a Gaussian with

the second moment given by the diffusion constant. Here the (quasi)probability distribution can

not be chosen as a positive function. Indeed in order for Eq. (III.166) to be equivalent to (III.165)

we need to ensure that the first two moments of ξj and ξ∗j vanish and the third moment gives

non-vanishing contribution ∫ ∫
dξjdξ

∗
j ξ

2
j ξ

∗
jF (ξj , ξ

∗
j ) = 2 (III.167)
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One can see this equivalence by expanding ΩW in terms of δα (for simplicity we suppress spatial

indexes):

ΩW (α′(t), α∗(t), t) = ΩW (α(t), α∗(t), t) +
∂ΩW

∂δα
δα+

∂ΩW

∂δα∗ δα
∗

+
1

2

(
∂2ΩW

∂δα∂δα
δα2 +

∂2ΩW

∂δα∗∂δα∗ (δα
∗)2 + 2

∂2ΩW

∂δα∂δα∗ δαδα
∗
)

+
1

8

(
∂3ΩW

∂(δα)3
δα3 + 4

∂3ΩW

∂δα∗(δα)2
δα∗(δα)2 + 4

∂3ΩW

∂(δα∗)2δα
(δα∗)2δα+

∂3ΩW

∂(δα∗)3
(δα∗)3

)
+ . . .

(III.168)

Now if we use that δα = ξ 3
√
∆τ and integrate over ξ we see that the first two terms in the expansion

vanish because F is chosen such that ξ has vanishing first and second moments and the requirement

(III.167) gives non-zero third order response, which is precisely equivalent to Eq. (III.165). All

higher order derivative terms clearly vanish in the limit ∆τ → 0. Let us give an example of such

a function, which all the requirements:

F (ξj , ξ
∗
j ) = ξ∗j

(
|ξj |2 − 2

)
e−|ξj |2 . (III.169)

Thus we get equivalent representation of the quantum corrections either in the form of the nonlinear

response or in the form of stochastic quantum jumps. Note that because these jumps have non-

positive probability distribution full simulation of stochastic dynamics results in a severe sign

problem. However, if one is interested in leading order quantum corrections one needs to take into

account only a few jumps and the sign problem is not very severe. But at the moment there are

no known optimization schemes to simulate the dynamics even with few jumps.

1. Exercises

1. Repeat derivation of Eq. (III.149). Complete missing calculations.

I. Ergodicity in the semiclassical limit. Berry’s conjecture

The phase space formalism allows us to immediately draw conclusions about the ergodicity in

quantum systems as they approach classical limit. Let us take e.g. the exact von Neumann’s

equation in the coherent state picture (Eq. (III.108)). For systems with two-body interactions the

classical limit is formally taken by rescaling aj →
√
Naj , the interaction coupling U → U/N and

taking the limit N →∞. Under this transformation the Weyl symbol of the Hamiltonian (III.138)

has a well defined classical limit (the overall prefactor N in the classical Hamiltonian precisely plays
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the role of the inverse Planck’s constant). In the coordinate-momentum representation the classical

limit is taken in a standard fashion by sending ℏ → 0 keeping all couplings in the Hamiltonian

fixed. In this limit the truncated Wigner approximation (Liouvillian dynamics) is guaranteed to

work at least for the times less than t∗(N). Where t∗(N) diverges as N → ∞. The reason for

this statement is that the difference between the Liouvillian time evolution and the exact von

Neumann’s dynamics is contained in the last term in Eq. (III.108) is suppressed by a larger factor

1/N (ℏ2 in the coordinate-momentum basis). So this term can play a significant role at most at

long times. At the moment there are no analytic estimates of the time t∗(N) or even its scaling

with N except for specific cases, where it is shown that it diverges as a power law of N . But clearly

divergence of t∗(N) is required by the very existence of the classical limit.

On the other hand if the corresponding classical system is ergodic there is a finite (N, ℏ-

independent) relaxation time τ after which the system approaches the mcirocanonical ensemble.

Thus in the regime τ ≪ t∗(N) it is essentially guaranteed that the Wigner function for any generic

initial condition will approach the microcanonical distribution, which width is dictated by initial

fluctuations of the total energy:

W (α∗, α, t)→ ρmc(α
∗, α). (III.170)

The initial conditions can be fairly arbitrary with the exception of e.g. the ground state, where in

the limit N →∞ the system is completely localized in the phase space. As soon as there are some

fluctuations present in the initial condition this statement should work.

The statement that the Wigner function should relax to the microcanonical distribution is very

similar to the Berry’s conjecture (M. Berry, 1977). This conjecture states that if we take the Wigner

function of the microcanonical ensemble, which defined as an ensemble with the microcanonical

width vanishing in the limit ℏ→ 0 but still containing exponentially many energy levels, then we

will get the usual Boltzmann’s distribution. Or equivalently

|ψ∗(x⃗− ξ⃗/2)⟩⟨ψ(x⃗+ ξ⃗/2)| = 1

Σ

∫
dp⃗e−ip⃗ξ⃗/ℏδ(E −H(x⃗, p⃗)), (III.171)

where the over line implies the averaging over the microcanonical ensemble. This conjecture does

not say anything about dynamics and approaching this ensemble, but it establishes how one can

recover classical statistical mechanical limit from the quantum microcanonical ensemble. This con-

jecture thus does not require ergodicity of the system. Because as we know the Wigner function

plays the role of the (quasi)probability distribution for any observable this conjecture immediately

implies that in the classical limit ℏ → 0 one recovers classical statistical mechanics for all observ-

ables. By showing that the Wigner function of a Harmonic oscillator in the classical limit becomes
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the Boltzmann’s distribution and using the equivalence of statistical ensemble we basically proved

this conjecture for any harmonic system, like coupled oscillators. However, there is no general

proof of this conjecture for interacting systems.

IV. QUANTUM ERGODICITY IN MANY-PARTICLE SYSTEMS.

A. Eigenstate thermalization hypothesis (ETH)

As we discussed earlier in simple single-particle systems quantum ergodicity is reflected in the

complex structure of the Hamiltonian. In particular, in the fact that the spectrum of the Hamil-

tonian is essentially described by random matrices. This should also imply that the eigenstates of

the quantum chaotic systems should look like the eigenstates of a random matrix, i.e. they should

essentially look like random vectors in the Hilbert space. Of course, because these eigenstates

correspond to well defined energy this statement has to be refined. E.g. low energy states can not

contain many high momentum plane waves. So we would rather expect that these eigenstates are

random superpositions of plane waves taken from a narrow energy shell. For non-interacting par-

ticles this statement is precisely equivalent to the Berry’s conjecture. This motivates us to suggest

that similar situation should persist in many-particle ergodic systems, i.e. we might expect that

the energy spectrum of such systems can be well represented by an appropriate random matrix

ensemble and the corresponding eigenstates are random superpositions of simple states (like plane

waves) taken from the energy shell. There is no proof for this statement but there is a lot of

numerical evidence that this is true. Let us demonstrate this point using a particular Hamiltonian

representing spin one half chain with an open boundary conditions (A. Gubin and L. Santos, Am.

J. Phys. 80, 246 (2012)) described by the Hamiltonian:

HXXZ =
JXX

2

L−1∑
i=1

(σxi σ
x
i+1 + σyi σ

y
i+1) +

JZZ

2

L−1∑
i=1

σzi σ
z
i+1, (IV.1)

where σ⃗i are the Pauli matrices describing spin one half degree of freedom on the site i. It is known

that this so called XXZ chain is integrable, i.e. it is not ergodic, though the exact structure of

eigenstates is quite complex. Following the work by A. Gubin and L. Santos let us introduce a

single impurity into the chain by adding a local magnetic field in the z-direction

Hj = ϵσzj . (IV.2)

Note that there is no summation over the sites in this term. In the case, when impurity is placed

at the age j = 1 or j = L this term effectively corresponds to changing boundary conditions



56

and does not break integrability of the system. While if the impurity is placed somewhere away

from the edge of the system it makes it non-integrable, i.e. ergodic. Note that the Hamiltonian

H = HXXZ + Hj conserves the total magnetization along the z-direction, so the Hilbert space

effectively splits into separate sectors with fixed Sz. In Fig. 12 we show the results of numerical

4

the local density of states is unity. This procedure is the
one we used.35

Given the unfolded spacings of neighboring levels, the
histogram can now be computed. To compare it with the
theoretical curves, the distribution needs to be normal-
ized, so that its total area is equal to 1.
Figure 1 shows the level spacing distribution when the

defect is placed on site 1 and on site !L/2". The first case
corresponds to an integrable model and the distribution
is a Poisson; the second case is a chaotic system, so the
distribution is Wigner-Dyson.

 

FIG. 1: (Color online) Level spacing distribution for the
Hamiltonian in Eqs. (1) with L = 15, 5 spins up, ω = 0,
εd = 0.5, Jxy = 1, and Jz = 0.5 (arbitrary units); bin size =
0.1. (a) Defect on site d = 1;(b) defect on site d = 7. The
dashed lines are the theoretical curves.

B. Number of principal components

We now investigate how the transition from a Poisson
to a Wigner-Dyson distribution affects the structure of
the eigenstates. In particular, we study how delocalized
they are in both regimes.
To determine the spreading of the eigenstates in a par-

ticular basis, we look at their components. Consider
an eigenstate |ψi〉 written in the basis vectors |ξk〉 as
|ψi〉 =

∑D
k=1 cik|ξk〉. It will be localized if it has the par-

ticipation of few basis vectors, that is, if a few |cik|2 make
significant contributions. It will be delocalized if many
|cik|2 participate with similar values. To quantify this cri-
terion, we use the sum of the square of the probabilities,
|cik|4 (the sum of the probabilities would not be a good
choice, because normalization implies

∑D
k=1 |cik|

2 = 1),
and define the number of principal components of eigen-
state i as27,28

ni ≡
1

∑D
k=1 |cik|

4
. (7)

The number of principal components gives the number
of basis vectors which contribute to each eigenstate. It
is small when the state is localized and large when the
state is delocalized.
For Gaussian orthogonal ensembles, the eigenstates are

random vectors, that is, the amplitudes cik are indepen-
dent random variables. These states are completely de-
localized. Complete delocalization does not mean, how-
ever, that the number of principal components is equal to

D. Because the weights |cik|2 fluctuate, the average over
the ensemble gives number of principal components ∼
D/3.27,28

To study the number of principal components for
Eqs. (1), we need to choose a basis. This choice depends
on the question we want to address. We consider two
bases, the site- and mean-field basis. The site-basis is
appropriate when analyzing the spatial delocalization of
the system. To separate regular from chaotic behavior,
a more appropriate basis consists of the eigenstates of
the integrable limit of the model, which is known as the
mean-field basis.27 In our case the integrable limit corre-
sponds to Eqs. (1) with Jxy &= 0, εd &= 0, and Jz = 0.
We start by writing the Hamiltonian in the site-basis.

Let us denote these basis vectors by |φj〉. In the absence
of the Ising interaction, the diagonalization of the Hamil-
tonian leads to the mean-field basis vectors. They are
given by |ξk〉 =

∑D
j=1 bkj |φj〉. The diagonalization of the

complete matrix, including the Ising interaction, gives
the eigenstates in the site-basis, |ψi〉 =

∑D
j=1 aij |φj〉. If

we use the relation between |φj〉 and |ξk〉, we may also
write the eigenstates of the total Hamiltonian in Eqs. (1)
in the mean-field basis as

|ψi〉 =
D
∑

k=1





D
∑

j=1

aijb
∗

kj



 |ξk〉 =
D
∑

k=1

cik|ξk〉. (8)

Figures 2 shows the number of principal components
for the eigenstates in the site-basis [(a), (b)] and in the
mean-field basis [(c), (d)] for the cases where the defect
is placed on site 1 [(a), (c)] and on site !L/2" [(b), (d)].
The level of delocalization increases significantly in the
chaotic regime. However, contrary to random matrices,
the largest values are restricted to the middle of the spec-
trum, the states at the edges being more localized. This
property is a consequence of the Gaussian shape of the
density of states of systems with two-body interactions.
The highest concentration of states appears in the middle
of the spectrum, where the strong mixing of states can
occur leading to widely distributed eigenstates.
An interesting difference between the integrable and

chaotic regimes is the fluctuations of the number of prin-
cipal components. For the regular system the number of
principal components shows large fluctuations. In con-
trast, in the chaotic regime the number of principal com-
ponents approaches a smooth function of energy. Chaotic
eigenstates close in energy have similar structures and
consequently similar values of the number of principal
components.

IV. SYMMETRIES

The presence of a defect breaks symmetries of the sys-
tem. In this section we remove the defect and have a
closer look at the symmetries.
We refer to the system in the absence of a defect

(εd = 0) as defect-free. Contrary to the case where

FIG. 12 Distribution of the levels spacings for the spin chain Hamiltonian H = HXXZ +Hj (see text for

details). The total magnetization is fixed at Sz = 1/2
∑

j σ
z
j = 5 and the couplings are JXX = 1, JZZ = 0.5,

and ϵ = 0.5. Left panel describes the integrable case with the impurity on site j = 1 and the right panel

corresponds to the non-integrable case with the impurity in the middle. Red and black lines are the Wigner-

Dyson and the Poisson distributions respectively. The figure is taken from A. Gubin and L. Santos, Am. J.

Phys. 80, 246 (2012)

simulations of the level spacing statistics for the two situations where the impurity is at the edge

(left panel) and in the middle of the chain (right panel). The first (integrable) situation is perfectly

described by the Poisson distribution in agreement with the Berry-Tabor conjecture. The second

non-integrable case is conversely in the perfect agreement withe the Wigner-Dyson statistics for

the orthogonal ensemble. It is interesting that a single impurity seems to be sufficient to make the

whole system completely chaotic.

While there is no general proof that many-body ergodic systems are always described by the

random matrix ensembles there are no known counterexamples. Therefore we will use the conjec-

ture that the eigenstates of an ergodic Hamiltonian are essentially random vectors in the Hibert

space subject to the macroscopic constraints (like fixed energy, momentum, magnetization or any

other conserved quantity) as a starting point for our discussion and see how far we can go. Let

us first check how this assumption works for a gas of weakly interacting particles. Namely, let us
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assume that the eigenfunctions of the gas are given by random superpositions of the plane waves:

|ψn⟩ =
∑

p1,p2,...pN

αp1,p2,...pN |p1, p2, . . . pN ⟩ (IV.3)

where the coefficients αp1,...pN are properly normalized random amplitudes (real or complex de-

pending on whether the Hamiltonian respects time reversal symmetry):

|αp1,p2,...pN |2 ∼
1

N
, (IV.4)

where N is the (exponentially big) Hibert space size; {pj} are the set of single-particle momenta

satifying the energy constraint: ∑
j

p2j
2m

= En. (IV.5)

It is easy to check that in the limit of large number of particles this wavefunction yields the

Gibbs distribution. Indeed the probability of say particle number one to have momentum p1 is

P (p1) =
∑

p2,p3,...pn

|αp1,p2,...pN |
2δ

(
p21
2m

+
p22
2m

+ . . .
p2N
2m
− En

)
(IV.6)

Averaging this ditribution over random apmlitudes α{pj} we find that

P (p1) = C
∑

p2,...pN

δ

(
p21
2m

+
p22
2m

+ . . .
p2N
2m
− En

)
, (IV.7)

where C is the normalization constant and δ(x) stands for the discrete delta-function of x. This

expression is nothing as the averaging over the microcanonical ensemble. From the basic statistical

ensemble we know that the microcanonical distribution in the limit N ≫ 1 results in the Maxwell-

Boltzmann distribution of the individual particles. So we have proven that on average the random

eigenstates on average correctly reproduce equilibrium density matrix.

Next let us ask the question how representative the average is. In order to do this we compute

that statistical fluctuations of the momentum distribution for different random states. I.e. we

compute

P 2(p1)−
(
P (p1)

)2
=

∑
p2,...pN

∑
q2,...qN

|α2
p1,p2,...pN

||αp1,q2,...qN |2

× δ
(
p21
2m

+
p22
2m

+ . . .
p2N
2m
− En

)
δ

(
p21
2m

+
q22
2m

+ . . .
q2N
2m
− En

)
− (P (p1))

2 (IV.8)

Because the amplitudes are uncorrelated by the assumption of randomness the expression above

reduces to the single sum

P 2(p1) −
(
P (p1)

)2
=

∑
p2,...pN

(
|α{pj}|4 − |α{pj}|2

2
)
δ

(
p21
2m

+
p22
2m

+ . . .
p2N
2m
− En

)
∝ 1

N
. (IV.9)
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Here we used the assumption that the variance of each random coefficient is of the order of the

mean. This will be the case e.g. if we take a random unit vector in the N dimensional hyper-space

and project it to orthogonal axes. From this simple example (another example is considered in

Exercises) we see that the assumption about the random nature of eigenstates leads to the Gibbs

distribution of individual degrees of freedom with exponential accuracy (note that N ∼ exp[DN ],

where D is roughly the available Hilbert space size per degree of freedom). The physical reason

for this result is that the Hilbert space size N is immensely big. Therefore for any random

distribution of coefficients in this space any observable, which can be represented over the sum

over these coefficients, will be essentially non-fluctuating. This property of the random states is

called typicality and it was first noted by von Neumann in 1929.

These arguments can be generalized to arbitrary interacting systems under the statement of

the Eigenstate Thermalization Hypothesis or simply ETH (J. Deutsch, 1991; M. Srednicki, 1994).

This hypothesis postulated that the energy eigenstates of many-particle quantum ergodic systems

are practically indistinguishable from each other within a narrow energy window and that from the

point of view of physical observables each eigenstate is equivalent to the microcanonical ensemble:

⟨n|O|⟩n ≈ Tr[ρmicroO], (IV.10)

where ρmicro is the microcanonical density matrix centered around the energy En. The qualitative

justification of this statement is essentially the same as in the simple example considered above:

Eigenstates are complex random superpositions of many simple states like plane waves or Fock

states. This hypothesis is consistent with the ideas we discussed before that ergodic quantum

Hamiltonians essentially look like random matrices. As we will be discussing later the ETH is a very

powerful conjecture from which many results of equilibrium and non-equilibrium thermodynamics

can be obtained.

1. ETH and ergodicity. Fluctuation-dissipation relations from ETH.

First let us demonstrate that ETH leads to ergodicity in large systems. Let us consider the

situation where an isolated system was prepared in some non-equilibrium initial state |ψ0⟩, e.g.

by changing parameters of the Hamiltonian in time. We will assumed that the system is isolated

and its time evolution is described by some many-body Hamiltonian H with the eigenstates |n⟩,

n = 1, 2, . . .N and the corresponding eigen energies En. Then the time evolved wave function will
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be

|ψ(t)⟩ =
∑
n

αn(t)|n⟩ =
∑
n

αn(0)e
−iEnt|n⟩. (IV.11)

Now let us compute an expectation value of some observable O in the long time limit:

⟨ψ(t)|O|ψ(t)⟩ =
∑
n,m

α∗
nαmei(En−Em)t⟨n|O|m⟩ →t→∞

∑
n

|αn|2Onn, (IV.12)

where Onn = ⟨n|O|n⟩ and we used that in the long time limit the oscillating terms in the sum

above average to zero. More accurately we proved that

lim
T→∞

1

T

∫ T

0
⟨ψ(t)|O|ψ(t)⟩ =

∑
n

|αn|2Onn. (IV.13)

If the assumption of ETH work, i.e. if the matrix elements Onn are identical between eigenstates

taken from the energy window then owing to
∑

n |αn|2 = 1 the sum above reduces to statistical

average of O taken from the microcanonical ensemble centered around mean energy of the system,

i.e.

∑
n

|αn|2Onn ≈ ⟨O⟩micro (IV.14)

Note that these considerations do not rely on the assumption of system being described by a

pure state. Indeed we can think about an ensemble of pure states described by some initial density

matrix

ρmn(t = 0) = α∗
n(0)αm(0). (IV.15)

Then clearly instead of Eq. (IV.12) we get

⟨O(t)⟩ =
∑
mn

ρmn(0)Onmei(En−Em)t →t→∞
∑
n

ρnnOnn (IV.16)

As long as the energy of the system is not too spread (which is always the case due to its additivity

and the central limit theorem) the ETH (Onn ≈ const(n)) immediately implies equivalence of this

long time average and the micro-canonical ensemble centered around the mean energy. Note that

since probabilities to occupy energy eigenstates ρnn are time independent there is no need to specify

at which time they are computed.

We see that the picture of the thermalization in the quantum language seems to be quite

different than the corresponding classical picture. Time evolution in the basis of the (many-particle)

eigenstates is trivial, it is just dephasing. The chaos, ergodicity and thermalization are hidden in
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the nature of these eigenstates and time evolution slowly projects the initial non-equilibrium state

of the system into the statistical mixture of these states. Later we will see that the same process

of thermalization we can still view as a delocalization in the Hilbert space.

Let us now make an important remark distinguishing statements of typicality of random eigen-

states and the ETH. Typicality arguments tell us that if we take a wave function, which is a random

superposition of some basis states satisfying some macroscopic constraints like energy conservation

then from the point of view of local few body observables this wave function will be identical

to a microcanonical ensemble. Essentially typicality is a law of large numbers telling us that all

fluctuations between different wave functions drawn from such a distribution of observables are

suppressed in the size of the Hilbert space. In the top panel of Fig. 13 we illustrate a typical state

FIG. 13 Typical state of the noninteracting Ising model at fixed magnetization (top panel). The same state

after the local quench where spins in the middle region are flipped by an external pulse (bottom panel).

of the Ising model with a fixed magnetization (in fact the typical state will be a random super-

position of such states). For such state local magnetization will be well described by the Gibbs

distribution. Note that this statement does not rely in any way on the ergodicity of the underlying

Hamiltonian. Let us emphasize, however, that if we apply some external perturbation like flipping

spins in a localized region of space, we will create a very atypical state, where the magnetization

in the flipped region will have very different properties than the magnetization in the rest of the

system. If the system is non-ergodic, e.g. it represents non-interacting spins in an external field,

then this state can remain atypical for essentially infinitely long times. In other words if we project

the atypical state after pulse to the eigenstates of the integrable Hamiltonian we will select very

special states, which need not be thermal. On the other hand ETH states that in ergodic systems

all eigenstates of the Hamiltonian are typical. Therefore projecting this non-equilibrium state to

the eigenstates and dephasing restores typicality. In a way all states we create in a lab by apply-

ing various local perturbations to the system are atypical. This is precisely the reason why these

states are non-equilibrium. It is the dephasing or projecting such non-equilibrium states to the
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equlibrium eigenstates of the new Hamiltonian which restores typicality and leads to ergodicity.

ETH is, however, more than the simple statement about the equivalence of the diagonal matrix

elements of local operators to the micro-canonical averages. ETH puts strong restrictions on off-

diagonal matrix elements. Let us consider the expectation value of the variance of the local operator

in some eigenstate |n⟩

δO2
n = ⟨n|O2|n⟩ − ⟨n|O|n⟩2 =

∑
m̸=n

|Omn|2 (IV.17)

If ETH works for arbitrary local observables it should apply to their fluctuations too, which are also

local observables. This means that δO2
n should be equivalent to the fluctuations of O computed

withing the microcanonical ensemble. For the simple setup of the weakly interacting gas we saw

that the whole distribution function of the momentum of each particle was given by the Maxwell-

Bolztmann form. Thus indeed all the moments of the kinetic energy of finite number of particles

will be identical to the statistical averages. But the sum above contains exponentially many terms,

which implies that the off-diagonal elements |Omn|, m ̸= n are exponentially small. One possibility

is that most of the off-diagonal elements are equal to zero and very few are non-zero. But this will

be clearly inconsistent with the assumptions that the eigenstates are random superpositions of the

simple states. So the more natural ansatz is to assume that (M. Srednicki, 1996) the all the matrix

elements are exponentially small and that the following ansatz holds

Onm = ⟨n|O|m⟩ = e−S(Ē)/2fO(Ē, ω)σnm, (IV.18)

where Ē = (En + Em)/2, ω = En − Em, S(E) is the equilibrium entropy of the system, fO(Ē, ω)

is some observable-dependent function, which slowly depends on the average energy Ē but can

change quite fast with the energy separation ω and σnm is some random variable with zero mean

and unit variance. Because for any Hermitean operator Onm = O∗
mn it is clear that the function

f(Ē, ω) satisfies the following relation

fO(Ē, ω) = f∗O(Ē,−ω). (IV.19)

Such an assumption about the off-diagonal matrix elements are dictated by requirements of finite

fluctuations of the observable. Substituting the expression for the off-diagonal matrix elements

into the expression for fluctuations (IV.17) and averaging over σ2nm we find that

δO2
n =

∫ ∞

−∞
dωΩ(En + ω)e−S(En+ω/2)|fO(En + ω/2, ω)|2

=

∫ ∞

−∞
dω eβω/2|fO(En+ω/2, ω)|2 ≈

∫ ∞

−∞
dω eβω/2|fO(En, ω)|2 = 2

∫ ∞

0
cosh(βω/2)|fO(En, ω)|2,

(IV.20)
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where we used the assumption that the function fO(E,ω) slowly depends on the mean energy E

and that we can expand the entropy to the linear order in ω: S(E +ω) ≈ S(E) + βω. We see that

in order for fluctuations being finite the function fO should decay sufficiently fast with ω. We can

extend the calculation above and in similar way compute non-equal time correlation functions

⟨n|O(t)O(0)|n⟩c ≡ ⟨n|O(t)O(0)|n⟩ − ⟨n|O|n⟩2

=

∫ ∞

−∞
dω eβω/2−iωt|fO(E + ω/2, ω)|2 ≈

∫ ∞

−∞
dω e−iω(t−iβ/2)|fO(E,ω)|2. (IV.21)

We thus see that |fO(E,ω)|2 is related to the spectral function:

|fO(E,ω)|2 = e−βω/2

∫ ∞

−∞

dt

2π
eiωt⟨n|O(t)O(0)|n⟩c. (IV.22)

This function, for example, appears in the Kubo response relations. Suppose that the operator Oλ

is conjugate to some parameter λ, i.e. Oλ = −∂λH. For example, if λ is the magnetic field then

Oλ is the magnetization, if λ is a component of the vector potential then Oλ is the current and

so on. Then the Kubo relation states that (see e.g. G. D. Mahan, Many-particle physics, third

edition, 2000) the linear response to a time periodic modulation of λ at frequency ω is described

by the susceptibility χλ(ω):

χλ(ω) = i

∫ ∞

0
dteiωt⟨[Oλ(t), Oλ(0)]⟩

= 2πi|fλ(Ē, ω)|2 sinh(βω/2) +−
∞∫

−∞

dω1
2ω1

ω2
1 − ω2

|fλ(|Ē, ω1)|2 sinh(βω1/2), (IV.23)

where the dashed integral stands for the principal value and we used the notation fλ as a short

hand for the fOλ
. To derive the result above we used the ansatz for the off-diagonal matrix elements

(IV.18) and the identity: ∫ ∞

0
dteiνt = πδ(ν) + iP

1

ν
.

So we see that the absolute value of function f can be expressed through the imaginary part of

the susceptibility

|f2λ(Ē, ω)|2 ≈
χ′′
λ(Ē, ω)

2π sinh(βω/2)
. (IV.24)

Substituting this into the expression for the fluctuations of Oλ (IV.20) we find

δO2
n =

1

π

∫ ∞

0
dωχ′′

λ(E,ω) coth
βω

2
. (IV.25)
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This relation is nothing but the fluctuation-dissipation theorem, which as we see directly follows

from the ETH.

We saw that the ETH following from the random matrix assumptions about the structure of

the ergodic Hamiltonians essentially amount to the indistinguishability between expectation values

of observables evaluated at different eigenstates with similar energies. The same assumptions lead

to the relaxation of expectation values of physical observables to the appropriate microcanonical

ensemble. We understood this relaxation in the sense that the time average of the expectation

value of an arbitrary observable approaches the so called diagonal ensemble (Eq. (IV.16)), which

in turn is equivalent to the microcanonical assumptions by the ETH. Next we want to understand

how representative this average is, i.e. whether this relaxation is not just the statement about

the average. In order to answer this question let us consider the average distance between the

instantaneous expectation value of the observable and its time average:

σ2 =
(
⟨O(t)⟩ − ⟨O⟩

)2
, (IV.26)

where as before the over-line denotes the time average. By substituting the expression (IV.16) for

the expectation value of O(t) and its time average we find

σ2 =
∑

n,m,p,q

ρ0mnρ
0
qpOnmOpqei(En−Em+Ep−Eq)t −

∑
n,p

ρnnOnnρppOpp (IV.27)

Because the levels repel each other and there are no degeneracies the time average in the first term

above is non-zero essentially only if either n = m and p = q or n = q and m = p. In principle,

there are can be accidental degeneracies where En + Ep = Em + Eq with all four indexes being

different, but we will assume that they do not play a role. It is clear that the terms with n = m

and p = q will be exactly canceled by the second term in the expression above so the terms, which

will be left are those where n = q ̸= m = p and thus

σ2 =
∑
n̸=p

ρpnρnp|Onp|2 ≲ Ce−S
∑
n ̸=p

|ρnp|2 ≤ Ce−STr(ρ2) ≤ Ce−S , (IV.28)

where we used the expression for the off-diagonal matrix elements of O (IV.18) and C stand for the

upper bound for the function |fO|2, which is at most extensive in the system size. We thus see that

if our ETH assumptions are correct then the observable O relaxes to the statistical average given by

the diagonal ensemble not only in the sense of time average but that it actually stays exponentially

close to this average at almost all times. We emphasize that this statement does not imply that the

observable O does not fluctuate. For example by O we can understand energy or particle number

fluctuations. We proved that ETH implies that from the point of view of any local observable the
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quantum system behaves ergodically, i.e. differences between taking into statistical properties of

local observables with respect to the true time-dependent density matrix and its time average are

exponentially small. Therefore like in classical ergodic systems we can say that quantum ergodicity

implies relaxation of the isolated system to the microcanonical ensemble.

To demonstrate how ETH works numerically let us show results of the simulations from the

work by M. Rigol et. al. (M. Rigol, V. Dunjko and M. Olshanii, Nature 452, 854 (2008)). They

considered so called hard core-bosons in a two-dimensional lattice with the Hamiltonian

H = −J
∑
⟨ij⟩

(a†iaj + a†jai), (IV.29)

where ⟨ij⟩ are the links connecting different sites of the lattice (see the top panel Fig. (14), a†i , ai

are creation and annihilation operators for bosonic particles, which satisfy additional constraint

on each site a†iai + aia
†
i = 1. This constraint implies that on each site there can be either one

or zero bosons. Physically this constraint can be realized by assuming that particles have very

strong repulsive two-body interactions. It is interesting to point that the hard core constraint

generates anti-commutation relations for bosons belonging the same site. This suggests that these

bosons acquire some fermionic properties. And indeed in one-dimension this is the case. By

performing the Jordan-Wigner transformation one can map exactly the hard core bosons to free

fermions. However, in higher dimensions this is not the case and the bosons are always different

from fermions. In particular, hard core bosons in 2D form non-integrable (ergodic) system. Let us

also point that hard core bosons are exactly equivalent to spin one half particles. By performing

the mapping

σzi = 1− 2a†iai, σ
+
i = a†i , σ

−
i = ai (IV.30)

it is easy to check that the operators σ⃗i are the Pauli matrices in the Fock space with the state with

zero bosons corresponding to a spin pointing along the z-direction (spin up) and the one-boson

state maps to the spin down. Then the hopping term maps to the in-plane spin spin interaction

α†
iaj + a†jai → 2(σxi σ

x
j + σyi σ

y
j ).

The middle panel of this figure shows results of numerical simulation of the zero momentum

component of the density of hard core bosons along the x-direction as a function of time. For the

initial condition Rigol et. al. used the state where all the bosons (there were five particles overall)

were placed in the blue sector of the lattice, which was initially disconnected from the white sector.

Then at time t = 0 they turned on the tunneling and observed the dynamics. This middle panel

shows the actual numerical data compared to three ensembles: canonical (in which the temperature
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FIG. 14 Top panel: Geometry describing a two-dimensional lattice gas of hard core bosons. The links

describe the bonds with non-zero tunnel coupling. Initially five bosons were placed in the blue region of

the lattice, disconnected from the white region. Then at time t = 0 the tunnel coupling connecting blue

and white regions was turned on and thermalization dynamics was studied numerically. (Image taken from

M. Rigol, V. Dunjko and M. Olshanii, Nature 452, 854 (2008)). The middle panel shows time evolution of

the zero component of the momentum distribution of the density of hard core bosons along the x-direction

after quenching the link connecting blue and white regions and comparison with diagonal ensemble and

two statistical ensembles (see text for more details). The bottom panel illustrates the whole momentum

distribution for the initial state, diagonal ensemble and two statistical ensembles.
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was chosen to match the mean energy), diagonal or time averaged and microcanonical (consisting

of a single eigenstate of the final Hamiltonian with the energy closest to the mean). As we see

from the figure the diagonal and micro-canonical ensembles give basically identical results and after

initial transient dynamics the true time-dependent expectation value of the observable stays very

closely to these two values. The canonical ensemble is slightly offset, which is not surprising for

small systems. From the ensemble equivalence it is expected that in the thermodynamic limit all

three ensembles will be identical. The bottom panel shows the whole momentum distribution for

the initial time as well as for the diagonal, microcanonical and canonical ensembles. Again we see

that the diagonal ensemble perfectly agrees with the microcanonical ensemble consisting of a single

eigenstate. Canonical ensemble is again slightly off due to the finite size effects.

2. ETH and localization in the Hilbert space.

There is another complimentary view of the ETH, which is much closer to the classical inter-

pretation of ergodicity as effectively the process of delocalization in the phase space. In quantum

systems we usually deal with the Hilbert space instead of phase space and therefore we can think

about the process of delocalization in the Hilbert space. In general in information theory and

in equilibrium statistical physics a good measure of such delocalization is Shanon or statistical

entropy

S = −
∑
n

ρn log(ρn), (IV.31)

where ρn are frequencies (probabilities) to occupy particular microstates, which are the energy

eigenstates . Because in equilibrium statistical mechanics the density matrix is diagonal in the

energy basis the statistical entropy is equal to the von Neumann’s entropy Svn = −Tr[ρ log(ρ)]. It

is clear that the entropy is measure of delocalization: if ρn = δnm, i.e. if only one state is occupied

then the entropy is zero and if ρn = 1/N , i.e. all states are occupied with the same probability the

entropy is maximum S = log(N ). Because N is typically exponential in the volume of the system

the entropy is a very convenient measure of delocalization because it is extensive. Of course we

also know that the concept of the entropy is the cornerstone of the Statistical physics.

One can expect that the entropy can also serve a measure of delocalization in the dynamical

processes. it is clear that for isolated systems the von Neumann’s entropy does not change for

any dynamical processes even in ergodic systems. Thus we see that it is not a good measure for

ergodicity. However, the entropy of the diagonal ensemble or the diagonal entropy (Eq. (IV.31)) is.
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This entropy basically measures delocalization of the system in the eigenstates of the Hamiltonian,

higher entropy implies that more states are occupied.

FIG. 15 Probability distribution of occupying the eigenstates of the Hamiltonian describing one-dimensional

fermions with second nearest neighbor interactions breaking integrability (see text for details). The left panel

corresponds to a weak interaction, which is very close to the integrable case. The right panel corresponds to

the quench to the non-integrable case. It is clear that the probability distribution near the integrable case

is very sparse with only few states occupied. While in the ergodic case essentially all eigenstates within any

narrow energy window are occupied with similar probabilities. The plot is taken from Ref. C. Neuenhahn

and F. Marquardt, Phys. Rev. E 85, 060101(R) (2012).

Before discussing the expectations for the behavior of the entropy in ergodic and non-ergodic

regimes let us look into numerical results for a specific systems obtained by C. Neuenhahn and F.

Marquardt (Phys. Rev. E, 85, 060101(R) (2012).) The system they analyzed were one dimensional

spinless fermions with second nearest neighbor interactions:

H = −t
∑
j

(c†jcj+1 + c†j+1cj) + V (ni − 1/2)(ni+2 − 1/2), (IV.32)

where ni = c†ici si the density operator. Second nearest interaction is required to break integrability

in this model, i.e. to induce ergodicity. They start from a Fock state with the mean energy

ξi = ⟨ψ0|H|ψ⟩, where the initial wave function is a Slater determinant of different momentum

states then switch on the interaction V and project the initial state to the eigenstates of the

interacting Hamiltonian. Then they analyze (the square root of) the probability to occupy these

eigenstates. The results of the numerical simulations are shown in Fig. (15). The left panel shows

the distribution for quench to a small value of V where the system is nearly integrable and the right
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panel shows the large amplitude quench. It is visually clear that in the former (nearly integrable

case) the system is strongly localized, i.e. the distribution function is highly inhomogeneous with

only few states occupied. On the contrary in the ergodic nonintegrable case corresponding to large

value of V the distribution function is much more homogeneous with the states within any narrow

energy window being occupied with roughly the same probability.

These numerical results are actually quite consistent with ETH and allow us to understand

quantum ergodicity from yet another angle. The state created by the quench of a local perturbation

does not distinguish nearby energy eigenstates because they are very similar to each other (this

is the essence of ETH). For example, if we consider a small perturbation ϵV , where ϵ is a small

number characterizing the amplitude of the perturbation, then the corrections to the eigenstates

of the Hamiltonian can be computed using the perturbation theory:

|ñ⟩ = |n⟩+ ϵ
∑
m̸=n

⟨n|V |m⟩
Em − En

|m⟩+ . . . (IV.33)

Thus the transition probability from the state |n⟩ of an old Hamiltonian to some other state |m⟩

of the new Hamiltonian is approximately given by

pnm ≈ ϵ2|⟨n|∂ϵ|m⟩|2 = ϵ2
|⟨n|V |m⟩|2

(En − Em)2
∼ ϵ2e−S |fV (Ē, ω)|2

ω2
, (IV.34)

where we used Eq. (IV.18) for the representation of the off-diagonal matrix elements and substituted

the square of the fluctuating variable σnm by its square. Since the overlap of two states is always

bounded by unity we see that the function fV (Ē, ω) should vanish at least linearly with ω. Therefore

the expression for the transition probability is free of divergences in the limit ω → 0. Then from

ETH we see that the transition probability should be a smooth function of |m⟩ possibly multiplied

by some positive random fluctuating variable encoded in σ2nm. It is easy to see that the similar

situation persists in higher order perturbation theory. Essentially because all excitations are created

by a local operator we can not distinguish nearby eigenstates and thus can not selectively occupy

them. We thus come to an interesting conclusion that while ETH tells us that a single eigenstate

is sufficient to define the microcanonical ensemble, we can never selectively excite the system in a

single eigenstate but rather we always excite (exponentially) many of them.

These considerations immediately suggest that the entropy of the system should coincide with

the thermodynamic entropy. Indeed by writing ρn = ρ̄(En)σn, where ρ̄(E) is the smooth part of

the probability distribution and σn are fluctuating component with the mean equal to unity we

find

S = −
∑
n

ρ̄(En)σn log(ρ̄(En))−
∑
n

ρn log(σn) = −
∑
n

ρ̄(En) log(ρ̄(En)) +O(1). (IV.35)
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The latter follows from the fact that
∑

n ρn = 1 and log(σn) is always of the order of unity unless we

are dealing with pathological distributions. The first term in this sum is the von Neumann’s entropy

of the smooth ensemble, which is always extensive because the probability is distributed over

exponentially many states. Conversely in integrable non-ergodic setups the probability distribution

is localized in very few states and we expect that the corresponding entropy will be significantly

less than the equilibrium thermodynamic value. This was indeed confirmed in several numerical

simulations (see e.g. L. F. Santos, A. Polkovnikov, M. Rigol, Phys. Rev. Lett. 107, 040601

(2011)). Thus we see that ETH allows one to understand quantum ergodicity as delocalization in

the Hilbert space, which is much closer to the classical picture where ergodicity is understood as

delocalization in phase space. We will return to this issue one more time when we discuss ergodicity

in disordered interacting systems in the context of many-body localization.

3. ETH and quantum information

ETH also allows us to make important conclusions for information theory. The standard measure

of information suggested by C. Shannon in 1948 is precisely given by the entropy

I = −
∑
n

pn log(pn), (IV.36)

where pn are the relative frequencies of the outcomes of different events like particular letters

appearing in words. Normally in information theory one uses log base two but we will ignore this

subtlety. In quantum systems one usually extends the Shannon’s definition to quantum information

using the von Neumann’s entropy

I = −Tr[ρ log(ρ)]. (IV.37)

In the basis where the density matrix is diagonal clearly the quantum information reduces to the

classical definition. Information theory is a very active field of research in the context of quantum

computing, quantum cryptography, information and black holes, informational thermodynamics

etc.

In these notes we will emphasize only one aspect related to the quantum ergodicity and ETH.

Let us assume that the system is in the pure state so that the quantum entropy is zero. Now suppose

we want to perform a series of measurements on the system to find out that this entropy is indeed

zero. For simplicity we assume that we deal with projective measurements. Such measurements

project the system to the measurement basis. From mathematical point of view this is equivalent
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to the quench to a measurement Hamiltonian and relaxation to the diagonal ensemble. Thus if

we want to measure the spin orientation along a particular axis, say z we apply a strong local

magnetic field hz along the z-axis, such that the Hamiltonian becomes

H → H − hzσzj , (IV.38)

where j is the location of the measured spin and hz is large compared to all other energy scales in

the problem. Then the eigen-basis of this Hamiltonian factorizes into a direct product of the spin j

pointing to the up and the rest of the system and the direct product of the spin j pointing down and

the rest of the system with the energy separation to the first approximation 2hz. Then very quickly

the spin j dephases so that the density matrix becomes diagonal with the entries proportional to

the probabilities of occupying the spin up and spin down states, which are conserved in time.

Because the measurement is done with the local operator according to ETH it projects the original

state to all the states within the energy uncertainty with roughly the same probability. For local

measurements the energy uncertainty is non-extensive because it corresponds to a quench by a

local operator. However, the number of states within non-extensive energy shell is exponential.

So we see that a single act of measurement, even if we measure orientation of a single spin in

the whole Universe, immediately induces extensive entropy into the system and thus loss of the

quantum information. Thus in ergodic systems pure states and quantum information associated

with them are extremely fragile. If one builds any kind of quantum information device, it has to

be non-ergodic.

4. ETH and the Many-Body Localization

So far we discussed that quantum ergodicity can be understood as de-localization in the energy

eigen basis. There is a strong numerical evidence that in disordered systems ergodicity is also

directly related to the localization in real space in many-particle systems, or so called many-body

localization (D. Basko, I. Aleiner, B. Altshuller, 2007). Before doing this let us briefly review single

particle localization following ideas by Edwards and Thouless (1972) formulated later as a scaling

theory of localization by the “gang of four” (E. Abrahams, P. W. Anderson, D. C. Licciardello,

and T. V. Ramakrishnan, 1979).

Let us consider a single particle in a weakly disordered system. In other words we assume that

disorder leads to isolated scattering events, which classically will correspond to a diffusive motion.

Let us now take the volume of linear size L and analyze qualitatively conductivity through this



71

system, i.e. response of a particle to an infinitesimal linear potential. To do this we will look into

two energy scales. The first is the so called Thouless energy, which counts the energy uncertainty

due to finite time of a particle traversing traversing the boundary. In diffusive, unlike ballistic

systems, this time scales quadratically with the linear size:

τD ∼
L2

D
, (IV.39)

where D is the diffusion constant. Thus the energy uncertainty of any wave-packet is

ET =
ℏ
τD

=
ℏD
L2

. (IV.40)

This energy is precisely the Thouless energy. The other energy scale is the energy spacing between

single particle states:

∆E =
1

ω(E)
L−d, (IV.41)

where ω(E) is the single-particle density of states per unit volume. Comparing these two scales we

see that in dimensions above two d > 2 the Thouless energy scales down to zero slower with the

system size implying that as L increases more and more levels appear within the single-particle

energy shell. In turn this justifies the classical analysis and thus we expect that above two dimen-

sions wave packets centered around high energy (classical) states propagate diffusively through

the system, thus they are delocalized. This argument of course does not imply that all states are

delocalized. We can always have bound localized states in the system. Conversely in dimensions

below two the Thouless energy goes to zero faster than level spacing. Thus even if at short dis-

tances the system looks like diffusive once we reach long distances energy quantization becomes

crucial. The argument by the “gang of four” elegantly formulated in terms of renormalization

group transformation essentially states that diffusive transport pessist in the system as long as the

number of levels within the Thouless energy remains greater than one. If the Thouless energy flows

to zero faster than level spacing then eventually this condition gets violated and then the system

crossovers to the localized regime, where the localization length is given by

ET (ξ) = ∆E(ξ). (IV.42)

In two dimensions the two energies scale in the same way so the argument is more subtle. Essentially

the result is that in two dimensions all states remain localized but the localization length can be

exponentially large in the dimensionless parameter ℏDω(E).

For a long time it was believed that the phenomenon of localization only applies only applies

to zero temperature non-interacting systems. The argument essentially follows from the schematic



72

Ef 

FIG. 16 A figure illustrating the hopping conductiivty at finite temperature for fermions coupled to phonons.

Even if the ground state of fermions is localized at finite temperatures there is always a nonzero probability

of finding another localized state at slightly higher energy and move the Fermion there by absorbing a

phonon.

figure 16. Assume that at zero temperature all single-particle states are localized (to be specific

we assume that we are dealing with fermions). At zero temperature all states below the Fermi

energy will be occupied and all states above Fermi energy will be empty. As soon as temperature

becomes finite there is a non-vanishing probability within the Fermi-Golden rule for a fermion to

absorb energy from the phonon bath and jump to another site. The smaller the temperature the

smaller the chance since particles have to go to longer distances to find an empty state with nearly

the same energy. But as soon as the temperature is finite we will always get finite conductivity

(which is called hopping conductivity in this case). This argument has one implicit assumtion that

the Fermi-Golden rule can be applied. In the case of phonons this is justified because there are no

coherent revivals and collapses since e.g. the emitted phonon simply disappears to the continuum.

For a long time it was assumed that this situation is generic for any type of interactions, e.g.

particle-particle interactions will also immediately allow for transport at any finite temperature.

However B. Altshuller (1997) presented arguments, later refined by D. Basko, I. Aleiner and B.

Altshuller (2005) that this is not always the case. Essentially they argued that with local interac-

tions it is not sufficient to move one particle (this will cost too much energy), one also needs to

rearrange nearby particles, which is only possible in higher order perturbation theory. But as one

goes to higher orders in interaction strength the transition probabilities are getting more and more

suppressed. Using self consistent approximations they argued that this perturbation theory has

finite radius of convergence (in interaction coupling) and thus finite threshold for delocalization.

Moreovere they argued that this threshold is extensive in volume and therefore finite temperature

is not going to lead to immediare delocalization (see Fig. 17). These ideas were tested numerically

numerically by several groups, in particular by A. Pal, V. Oganesyan, D. Huse in 2007. They

considered a familiar to us one-dimensional spin one-half chain, which can be mapped to hard core
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A#2: No way (L. Fleishman. P.W. Anderson (1980))

Q: Can e&h pairs lead to phonon&less variable range 
hopping in the same way as phonons do ?

A#1: Sure

A#3: Finite temperature Metal-Insulator Transition
(Basko, Aleiner, BA (2006))

insulator

Drude

metal
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FIG. 17 Schematic phase diagram for the many-body localization proposed by D. Basko, I. Aleiner and B.

ALtshuller (2005). The plot is taken from B. Altshuller talk at KITP, UCSB (2012).

bosons, with an extra disordered magnetic field

H =
L∑

j=1

hjs
z
j + Js⃗j s⃗j+1, (IV.43)

where hj are uniformly and independently distributed random variables in the interval [−h, h].

This model does not have any known local integrals of motion other than energy for any h > 0. A.

Pal and collaborators focused on the infinite temperature state where all spin configurations are

equally probable. What they found numerically was consistent with the scenario of many-body

localization. Fig. (18) shows numerically obtained phase diagram for this Hamiltonian, which

The model we chose to study has a finite band-width. An infinite temperature

limit of such a system is studied by considering states at high energy densities i.e.

eigenstates in the middle of the band. We weigh the observables evaluated from these

states with equal probability in order to study their thermal expectation values. A

practical benifit of working in this limit is the utilization of all the data we acquire

from the full diagonalization of the Hamiltonian which is the most computer time-

consuming part of the calculation.

There are many distinctions between the localized phase at large random field

h > hc and the delocalized phase at h < hc. We call the latter the “ergodic” phase,

although precisely how ergodic it is remains to be fully determined [53]. The dis-

tinctions between the two phases all are due to differences in the properties of the

many-body eigenstates of the Hamiltonian, which of course enter in determining the

dynamics of the isolated system.

Figure 2.1: The phase diagram as a function of relative interaction strength h/J at
T = ∞. The critical point is (h/J)c ≈ 3.5. For h < hc the system is ergodic while
for h > hc, it is many-body localized.

In the ergodic phase (h < hc), the many-body eigenstates are thermal [17, 18,

54, 55], so the isolated quantum system can relax to thermal equilibrium under the
35

FIG. 18 Numerically obtained infinite temperature phase diagram for the disordered spin chain (see

Eq. (IV.43).) As the disorder increases the system becomes localized even at infinite temperature. Fig.

taken from A. Pal’s, PhD Thesis, Princeton (2012).

shows transition from delocalized to localized phase at infinite temperature as disorder increases.

These results were obtained by exact diagonalization in small systems and therefore they do not

prove existence of the transition in the thermodynamic limit but they show very strong indications.
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The authors determined this transition by several means. The first is they looked into mean square

difference of the local magnetization between adjacent eigenstates (Fig. (19).) The results of this
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Figure 2.3: The natural logarithm of the mean difference between the local mag-
netizations in adjacent eigenstates (see text). The values of the random field h are
indicated in the legend. In the ergodic phase (small h) where the eigenstates are ther-
mal these differences vanish exponentially in L as L is increased, while they remain
large in the localized phase (large h).

In our figures we show one-standard-deviation error bars. The error bars are

evaluated after a sample-specific average is taken over the different eigenstates and

sites for a particular realization of disorder. Here and in all the data in this work

we restrict our attention to the many-body eigenstates that are in the middle one-

third of the energy-ordered list of states for their sample. Thus we look only at

high energy states and avoid states that represent low temperature. In this energy

range, the difference in energy density between adjacent states n and (n + 1) is of

order
√
L2−L and thus exponentially small in L as L is increased. If the eigenstates

are thermal then adjacent eigenstates represent temperatures that differ only by this

exponentially small amount, so the expectation value of Ŝz
i should be the same in

39

FIG. 19 Mean absolute value of the difference of the local magnetization between adjacent eigenstates as a

function of the system size in the log scale. At strong disorder the difference stays finite even if the system

size increases implying that nearby eigenstates correspond to very different spin configurations. At small

disorder this difference, on the other hand, exponentially goes to zero indicating that nearby eigenstates are

nearly identical from the point of view of local observables. This regime is fully consistent with ETH. Fig.

taken from A. Pal’s, PhD Thesis, Princeton (2012).

numerical analysis supports existence of the transition between ergodic and non-ergodic phases. At

strong disorder the magnetization difference remains finite even if the system size increases. This

means that nearby energy eigenstates come from completely different spin configurations. This

clearly violates the assumptions of quantum ergodicity and ETH. In the week disorder regime, on

the other hand, this difference goes down exponentially with the system size. This means that

nearby eigenstates from the point of view of local observables (a particular local observable) look

indistinguishable. This is in turn precisely the statement of quantum ergodicity. Note that the

transition happens at infinite temperature and that there are no obvious integrals of motion in

the system. Based on our earlier discussion we can anticipate that in the former (non-ergodic)

case the statistics of energy levels will be Poissonian and in the latter (ergodic) case it will be
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Wigner-Dyson. And this is indeed what was observed (Fig. 20). This Figure shows the measure of
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Figure 2.8: The ratio of adjacent energy gaps (defined in the text). The sample size L
is indicated in the legend. In the ergodic phase, the system has GOE level statistics,
while in the localized phase the level statistics are Poisson.

which may reverse the direction of the drift and/or reduce the size of the finite-size

effect from the irrelevant operator.

2.5 Spatial correlations

To further explore the finite-size scaling properties of the many-body localization

transition in our model, we next look at spin correlations on length scales of order

the length L of our samples. One of the simplest correlation functions within a

many-body eigenstate |n〉 of the Hamiltonian of sample α is

Czz
nα(i, j) = 〈n|Ŝz

i Ŝ
z
j |n〉α − 〈n|Ŝz

i |n〉α〈n|Ŝz
j |n〉α . (2.13)

48

Many-body level statistics 
GOE 

Poisson 

FIG. 20 Mean ratio of adjacent energy gaps r
[n]
α (see text for details). This ration shows a clear crossover

between the two values expected for the Poisson statistics 0.39 at strong disorder and the Wigner-Dyson

statistics at weak disorder 0.53. Fig. taken from A. Pal’s, PhD Thesis, Princeton (2012).

the level statistics (Poisson or Wigner-Dyson) encoded in a single number defined as

r[n]α =
min(En − En−1, En+1 −En)

max(En − En−1, En+1 − En)
. (IV.44)

and averaged over n. This number can be computed both for the Poisson statistics ⟨r[n]α ⟩ =

2 ln(2) − 1 ≈ 0.39 and the Wigner-Dyson statistics ⟨r[n]α ⟩ = 0.53. From the figure it is clear

that as the system goes from ergodic to non-ergodic phase this number changes from the value

consistent with the random matrix statistics to the Poisson statistics. So we see that even at

infinite temperature and despite lack of existence of any obvious integrals of motion other than the

energy disordered systems can undergo phase transitions between ergodic and non-ergodic phases

in perfect agreement with general definitions of quantum ergodicity based on the random matrix

theory and ETH.

It is interesting that in this case the transition from ergodic to non-ergodic phase, which as

we discussed can be described as the localization transition in the energy space also coincided

with localization in real space (or equivalently phase space). Fig. (21) illustrates memory of the

magnetization about the initial state in the long time limit. Specifically the authors start from the



76

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[f α (n
) ]

h
 

 

8
10
12
14
16

Figure 2.6: The fraction of the initial spin polarization that is dynamic (see text).
The sample size L is indicated in the legend. In the ergodic phase (small h) the
polarization decays substantially under the dynamics, while in the localized phase
(large h) the decay is small, and this distinction gets sharper as L increases.

〈M̂1〉∞ =
ε

Z

∑

n

〈n|M̂ †
1 |n〉〈n|M̂1|n〉 . (2.10)

Thus for each many-body eigenstate in each sample we can quantify how much it

contributes to the initial and to the long-time averaged polarization. We then define

the fraction of the contribution to the initial polarization that is dynamic and thus

decays away (on average) at long time, as

f (n)
α = 1−

〈n|M̂ †
1 |n〉〈n|M̂1|n〉

〈n|M̂ †
1M̂1|n〉

. (2.11)

In the ergodic phase, the system does thermalize, so the initial polarization does

relax away and f (n)
α → 1 for L → ∞. In the localized phase, on the other hand, there
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FIG. 21 Fraction of initial magnetization in the long time limit for the state prepared with initial long wave

modulation of the magnetization along the z axis. In the ergodic phase the memory rapidly disappears with

the system size, while in the non-ergodic phase the memory remains finite. Fig. taken from A. Pal’s, PhD

Thesis, Princeton (2012).

initial density matrix

ρ0 =
1

Z
exp[ϵM1] ≈

1 + ϵM1

Z
,

where

M1 =
∑
j

szje
2πij/L

and ϵ is a small number. I.e. they start with a density matrix corresponding to a weak long-

wavelength modulation of the magnetization along the z-axis. Then initially the mean magnetiza-

tion is

⟨M1(t = 0)⟩ = Tr[ρ0M1] =
ϵ

Z

∑
n

⟨n|M2
1 |n⟩. (IV.45)

In the infinite time limit the system relaxes to the diagonal ensemble (this statement is unrelated

to the ergodicity) so the magnetization relaxes to

⟨M1(t)⟩ =
ϵ

Z

∑
m,n

|⟨n|M1|m⟩|2ei(En−Em)t →t→∞
ϵ

Z

∑
n

|⟨n|M1|n⟩|2. (IV.46)
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Thus a good measure of the memory plotted in Fig. 21 is the following function

f (n) = 1− |⟨n|M1|n⟩|2

⟨n|M2
1 |n⟩

. (IV.47)

In the localized regime this function is close to unity while in the delocalized regime this function

becomes exponentially small. This example highlights that at least in disordered systems quantum

ergodicity, which is understood as delocalization in energy space of the Hamiltonian, also coincides

with delocalization of the system in real space (or more generally phase space).

B. Exercises

1. Consider a gas of weakly spin one half particles in the external magnetic field with the

Hamiltonian

H =
∑
j

hσzj +Hint, (IV.48)

where Hint includes weak spin-spin interactions. Let us assume that the energy eigenstates

are random superpositions of spins pointing in arbitrary direction:

|ψn⟩ =
∑

s1,s2,...sN

αs1,s2,...sN |s1⟩|s2⟩ . . . |sN ⟩, (IV.49)

where sj =↑, ↓ and α{sj} are random amplitudes taken from a uniform distribution as long as

the spin states satisfy the constraint −h
∑

j sj = En. Show that under this assumption the

probability distribution for a single spin is exponentially in N close to the Gibbs distribution.

2. Consider a square two dimensional lattice N ×N with incommensurate hoppings along the

x and y directions such that the single particle Hamiltonian is

H = −1

2

∑
i,j

[
Jx(a

†
i,jai+1,j + a†i+1,jai,j) + Jy(a

†
i,jai,j+1 + a†i,j+1ai,j)

]
(IV.50)

Here i, j = 1, . . . N are the coordinates of the sites of the lattice along x and y directions

respectively. You can consider either open or periodic boundary conditions. You can choose

e.g. Jx = 1 and Jy =
√
2 or something like that.

• Choosing N sufficiently large analyze statistics of energy levels. You may split the

entire energy spectrum into blocks of energy ∆E, find average level spacing within

each block and normalize level spacings to this average value.
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• Now consider disordered array (still single particle), where on each link Jx and Jy are

drawn from some distribution, e.g. drawn with a uniform probability in the interval

[J − δJ, J + δJ ] where δJ ≤ J . Instead of this disorder you can consider all J to be

the same but some random bonds missing. If too many bonds are removed the system

should be split into isolated clusters. Now analyze statistics again. Is it Wigner Dyason

or Poissonian? Can you explain your answer.

• Now assume that you have two particles in the system with or without disorder. You

can consider hard-core bosons. Find the energy spectrum in this system and analyze

the statistics of the energy levels. If you consider periodic boundary conditions without

disorder it is important to work in the sector of fixed (e.g. zero) center of mass lattice

momentum since this is an additional conserved quantity.

V. QUANTUM ERGODICITY AND EMERGENT THERMODYNAMIC RELATIONS

We now turn our attention to deriving macroscopic thermodynamic relations from microscopic

dynamics. We will be using essentially only two assumptions: (i) systems relax to the diagonal

ensemble and (ii) all many-body eigenstates with close energies are identical from the point of view

of local observables. The first assumption agrees with our discussion that in ergodic systems the

density matrix approaches the diagonal form in a sense that for all local observables the difference

between diagonal ensemble expectation value and true expectation value becomes exponentially

small at long times (see Eq. (IV.28)). The second assumption is the essence of the ETH. As we will

see next using just these two assumptions alone is sufficient to recover most of the thermodynamic

relations. Very often instead of these two assumptions it will be enough to start from the Gibbs

distribution. Recall that the latter automatically follows from (i) and (ii) if we are dealing with

subsystems of a larger, ergodic system. Indeed in this case from equivalence of a single eigenstate

of the whole system to a microcanonical ensemble we immediately conclude that small subsystems

must be described by the Gibbs distribution.

A. Entropy and the fundamental thermodynamic relation

Let us start our discussion from the fundamental thermodynamic relation:

dE = TdS −Fλdλ, (V.1)
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where λ is a macroscopic parameter like volume, magnetic or electric field and Fλ is the conjugate

generalized force like pressure magnetization or polarization. We first assume that the initial

density matrix is described by the Gibbs distribution

ρnm(λ) =
1

Z(λ)
e−βEn(λ)δnm. (V.2)

Next we assume that there is some dynamical process resulting in infinitesimal energy change in

the system and possibly infinitesimal change in the parameter λ. The system can be either open or

closed during this process. After this process we let the system to relax to the diagonal ensemble,

i.e. reach new equilibrium state. Then the infinitesimal energy change is given by

dE = d

(∑
n

ρnnEn(λ)

)
=
∑
n

[
En(λ)dρnn + ρnn

dEn

dλ
dλ

]
=
∑
n

Endρnn +
∂E

∂λ

∣∣∣∣
S

dλ =
∑
n

Endρnn − Fλdλ. (V.3)

Here we used the fact that energy levels are only sensitive to the external parameter λ and do not

depend on the details of the process (e.g. slow vs. fast, isolated vs. open etc.). Thus the last term

in the first line can be written as the full derivative at a constant entropy, which is by definition

is the (minus) generalized force: Fλ = −∂λE|S . Next let us compute the entropy change in the

system, i.e. entropy difference between the final and the initial equilibrium states:

dS = −d

[∑
n

ρnn log(ρnn)

]
= −

∑
n

dρnn log(ρ
0
nn)−

∑
n

dρnn (V.4)

Note that the last term drops due to the conservation of probability. In the first term we use the

explicit form of the Gibbs distribution (V.2) and get

dS = β
∑
n

En(λ)dρnn (V.5)

Comparing the two expressions for the energy and the entropy change (V.3), (V.5) we immediately

recover the fundamental thermodynamic relation (V.1). Note that this derivation did not rely

explicitly on ETH and thus are valid whether the system is ergodic or not. As we discussed

above this is because the Gibbs ensemble implies equilibrium state whether we are dealing with

a system of non-interacting spins or the complex many-particle systems. But what if the system

is not described by the Gibbs ensemble? In this case ergodicity is crucial. Instead of repeating

the derivation above for an arbitrary ensemble let us look carefully into the entropy of the relaxed

system following some dynamical process

S(E) = −
∑
n

ρnn log(ρnn) (V.6)
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Let us define some continuous function of energy ρ(E) such that ρ(En) = ρnn. This function can

be e.g. simple interpolating function. Then the sum above can be formally written as the integral

over energy

S(E) = −
∫
dEρ(E)Ω(E) log(ρ(E)), (V.7)

where

Ω(E) =
∑
n

δ(E − En)

is the many-particle density of states (we can also assume that it is continuous between energy levels

by taking an appropriate interpolation procedure). Now let us note that the product ρ(E)Ω(E) =

W (E) is the probability distribution function for the energy. Indeed expectation value of any

function of energy is

⟨f(E)⟩ =
∑
n

ρnnf(En) =

∫
dEΩ(E)ρ(E)f(E) =

∫
dEW (E)f(E). (V.8)

It is also obvious from the definition that∫
dEW (E) =

∑
n

ρnn = 1,

i.e. this probability distribution is properly normalized. Representing ρ(E) as W (E)/Ω(E) in

Eq. (V.7) for the entropy we find that

S(E) =

∫
dEW (E)Sm(E)−

∫
dEW (E) log(W (E)) (V.9)

The first term is simply the average of the microcanonical entropy Sm(E) = log(Ω(E)) over the

true energy distribution. As long as the latter is peaked around the mean value, i.e. as long as the

fluctuations of the energy are subextensive, this term simply reduces to the standard thermody-

namic entropy, which is extensive in the system size. The second term is more subtle. To analyze

it let us split the energy distribution into the product of the smooth and the fluctuating parts:

W (E) = W̄ (E)σ(E),

where W̄ (E) is e.g. an averaged distribution over a non-extensive energy window containing

exponentially many energy levels and σ(E) is the fluctuating variable with unit mean. Then the

expression for the entropy can be further rewritten as

S(E) =

∫
dEW (E)σ(E)Sm(E)−

∫
dEW̄ (E)σ(E) log(W̄ (E))−

∫
dEW̄ (E)σ(E) log(σ(E))

≈
∫
dEW̄ (E)Sm(E)−

∫
dEW̄ (E) log(W̄ (E))−

∫
dEW̄ (E)σ(E) log(σ(E)) (V.10)
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We used the fact that if the integrand is σ(E) times arbitrary smooth function than σ(E) can be

substituted by mean, which is unity. Here the first two terms define the smooth contribution to

the entropy:

Ssm =

∫
dEW̄ (E)[Sm(E)− log(W̄ (E))] (V.11)

and the last term is the fluctuating contribution

Sfluct = −
∫
dEW̄ (E)σ(E) log(σ(E)). (V.12)

Unless the smooth part of the energy distribution in energy exponentially wide, which is impossible

unless the mean energy is also exponentially large, the second term in the expression for Ssm is

non-extensive, so the smooth entropy in the thermodynamic limit approaches the average micro-

canonical entropy. To be more specific let us recall that according to the central limit theorem

total energy, which is always approximately equal to sum of energies of subsystems, should have the

Gaussian distribution. This is true whether we are talking about ergodic or non-ergodic systems

as long as we deal with local interactions. Thus writing

W̄ (E) =
1√

2πδE
exp

[
−(E − Ē)2

2 δE2

]
,

and expanding the microcanonical entropy Sm(E) near the mean energy Ē

Sm(E) = Sm(Ē) + β(E − Ē) +
1

2

∂β

∂E
(E − Ē)2 + · · · = Sm(Ē) + β(E − Ē)− (E − Ē)2

δE2
c

,+ . . .

where δE2
c = −∂βE are the energy fluctuations in the canonical ensemble, we find

Ssm ≈ Sm(Ē)− 1

2

δE2

δE2
c

+ log(
√
2πδE) +

1

2
= Sc(Ē)− 1

2

(
δE2

δE2
c

− 1

)
+ log

(
δE

δEc

)
, (V.13)

where

Sc(E) = log
(√

2πδEcΩ(Ē)
)

(V.14)

is the entropy of the canonical ensemble (up to corrections, which vanish in the thermodynamic

limit). The remaining correction to the entropy is usually non-extensive. It is easy to see that it

is always non-positive. This correction is zero precisely when the width of the energy distribution

coincides with the width of the canonical ensemble δE = δEc. This is expected since at given mean

energy canonical distribution maximizes the entropy of the system.

Now let us look into the fluctuating part of the entropy

Sfluct = −
∫
dEW (E) log(σ(E)). (V.15)
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If the distribution of σ(E) is bounded and independent of the system size then clearly the integral

above converges to a non-extensive number. This simply follows from the normalization of the

probability distribution W (E). This is precisely the situation arising in ergodic systems. Indeed

as we argued in the previous section ETH implies that all eigenstates with nearby energies are

similar to each other so in any dynamical process mediated by local interactions the states are

occupied with similar probabilities. The precise distribution of σ(E) is not known at the moment,

most likely it is a Gaussian centered around unity. In any case independent of the details of σ(E)

we recover that the entropy of the system is always given by the smooth part of the entropy up

to non-extensive corrections. The situation changes dramatically for non-ergodic systems. As we

discussed if the system is excited by some dynamical process the energy occupation is very sparse

such that only exponentially small subset of eigenstates is occupied. We will discuss this point in

more detail later, when we analyze integrable (non-ergodic) systems. This means that the function

σ(E) consists essentially of exponentially (in the system size) sparse and exponentially large peaks.

Then the fluctuating entropy can become extensive giving negative extensive correction to the total

entropy. In this case clearly the total entropy is not described by any thermodynamic ensemble.

The fact that for ergodic systems S(E) ≈ Ssm(E) ≈ Sc(E) immediately implies that the

fundamental relation applies for any dynamical process even if the assumptions about the Gibbs

distribution are not valid. One can also check this explicitly. In fact we have proven a more general

statement that in ergodic systems the von Neumann’s entropy of the relaxed density matrix (we

can term it as the diagonal entropy since this is the entropy of the diagonal density matrix) is

equivalent (up to non-extensive corrections) to the canonical entropy.

B. Doubly stochastic evolution in closed systems. Fluctuation relations.

We now proceed with a more detailed analysis of consequences of ETH to dynamics in closed

systems. I.e. in this section we will assume that the system is initially prepared in some initial

stationary state, i.e. on a diagonal ensemble with respect to the initial Hamiltonian. Then this

system is taken off equilibrium by some dynamical process, like an external pulse, which can be

either fast or slow. Then the system is allowed to relax to the new diagonal ensemble in the sense

we discussed before. This whole process can be described by some unitary evolution of the density

matrix

ρ(t) = U †ρ0U, (V.16)
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where ρ0 is the initial density matrix and

U = Tt exp

[
−i
∫ t

0
dt′H(t′)

]
=
∏
ti

e−iH(ti)∆t (V.17)

is the evolution operator. The time ordering symbol implies that earlier times appear on the right.

In our analysis the precise form of the evolution operator will not be important. As we discussed

after dynamical process the system relaxes to the diagonal ensemble so that expectation values

of all observables are determined in the diagonal basis of the new Hamiltonian H(λ1), i.e. the

Hamiltonian after the evolution. We denote the eigenstates of this Hamiltonian as |n1⟩. The initial

density matrix by the assumption is diagonal in the eigenbasis of the old Hamiltonian H(λ0): |m0⟩.

Then from Eq. (V.16) we find

ρnn(t) =
∑
m

⟨n1|U †|m0⟩ρ0mm⟨m0|U |n1⟩ =
∑
m

|Umn|2ρ0mm, (V.18)

where we used that for unitary matrices U †
nm = ⟨n|U †|m⟩ = ⟨m|U |n⟩∗ = U∗

mn. Note that indexes n

and m correspond to eigenstates of different Hamiltonians: initial (m) and final (n). Physically the

squares of the matrix elements |Umn|2 are the transition rates, i.e. probabilities of the transition

from the eigenstate |m⟩ of the initial Hamiltonian to the eigenstate |n⟩ of the final Hamiltonian as

a result of the dynamical process. Thus we can introduce the new notation

pm→n = |Umn|2 (V.19)

We use the terminology transition rate to reserve transition probability for the product of the

transition rate and the probability to occupy the state |m⟩. Using these notations we can rewrite

Eq. (V.18) in the form of the many-body master equation

ρnn(t) =
∑
m

pm→n ρ
0
mm. (V.20)

The transition rates are very familiar to us since we are routinely computing them e.g. within the

Fermi-Golden rule calculations. Here we are not making any assumptions about the validity of the

perturbation theory. Thus these rates pm→n are some complicated functions, which depend on the

details of the system and the dynamical process. These rates, however, satisfy two very important

property. The first one is the conservation of probability∑
n

pm→n =
∑
n

⟨n|U †|m⟩⟨m|U |n⟩ = ⟨m|UU †|m⟩ = 1. (V.21)

Indeed from this equation we see that∑
n

ρnn(t) =
∑
m

ρ0mm

∑
n

pm→n =
∑
m

ρ0mm = 1. (V.22)
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It is clear that conservation of probability is fundamental property of any evolution whether it is

unitary or not, so the property (V.21) must be always satisfied. The second important property of

the transition rates is

∑
m

pm→n =
∑
m

⟨n|U †|m⟩⟨m|U |n⟩ = ⟨n|U †U |n⟩ = 1 (V.23)

This property of the transition rates is much less intuitive. It tells that for the unitary evolution

the sum of the transition rates to any state is the same. Clearly this property is violated for

spontaneous emission, which is not a unitary process. Indeed for a two-level system the rate to go

from the higher energy state to the lower energy state is generally nonzero if spontaneous emission

is allowed, while the opposite rate is zero. On the other hand for stimulated processes, which can

be described by unitary dynamics of a two-level system in an external electro-magnetic field the

emission and absorption probabilities are the same. In mathematics the matrices satisfying the

condition

∑
m

Tmn =
∑
n

Tnm = 1 (V.24)

are called doubly stochastic. Thus for unitary process the transition rate matrix is doubly stochas-

tic. Note that product of two doubly stochastic matrices T and R is again doubly stochastic,

e.g.

∑
n

(TR)mn =
∑
n,q

TnqRqn =
∑
q

Tnq = 1. (V.25)

This immediately implies that unitary dynamics is sufficient but not necessary condition for double-

stochasticity of the transition rates. E.g. we can add arbitrary projection operators (perform

projective measurements) to the dynamics, which break unitarity. The transition rate matrix will

remain doubly-stochastic. The simplest non-unitary process can be described by some unitary

dynamical process then waiting for a random time (which is equivalent to the time averaging of

the density matrix) and then another dynamical process.

We can rewrite the master equation (V.20) in a more convenient form

ρnn(t) = ρ0nn +
∑
m

(pm→nρ
0
mm − pn→mρ

0
nn) = ρ0nn +

∑
m

pm→n(ρ
0
mm − ρ0nn) (V.26)

The first equality simply follows from the conservation of probability and has a standard form for

any type of master or kinetic equations that the change in the probability of occupying state n

increases due to transitions from other states m to n and decreases due to transitions from the
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state n to other states m. The second equality is less intuitive and it relies on the doubly-stochastic

nature of the transition rates.

The master equation describes evolution of the density matrix between two stationary states as

a result of some dynamical process (pulse). A natural question to ask is what will happen if we

repeatedly drive the system allowing it relax between the pulses. This will be an analogue of the

quasi-static process with the important difference that we do not need to assume that the system

is coupled to some external heat reservoir. The first question to understand is existence of the

stationary distribution under this evolution, i.e. the distribution which does not change under the

doubly stochastic evolution, i.e.

ρnn = ρnn +
∑
m

pm→n(ρnn − ρmm) (V.27)

Looking carefully into this equation we see that there is indeed an attractor, which is constant

probability distribution ρnn = const, which is simply the infinite temperature state. This result

means, for example, that if we start from a 3-level isolated system with 1/3 occupation probability

for each level then this distribution can not be changed by applying an arbitrary external pulse

or sequence of pulses. Let us also note that the infinite temperature state is also the maximum

entropy state. Next let us show that this uniform distribution is an attractor (and generically the

only attractor) for the doubly-stochastic dynamics. In order to prove this let us introduce the

distance between the uniform distribution ρ∞nn = 1/N , where N is the Hilbert space size, and the

current distribution ρnn and show that this distance can not increase. It is convenient to define

the distance between the two distributions using the language of the information theory, known as

the Kullback - Leibler (KL) divergence (also known as the relative entropy):

D(p||q) =
∑
n

pn log

(
pn
qn

)
. (V.28)

The KL divergence is non-negative (D(p||q) ≥ 0) and it is equal to zero only if qn = pn. This

statement is know as the Gibbs inequality. To prove this statement we can extremize the function

D(p||q) + λ
∑
n

(qn − 1) (V.29)

with respect to qn, where we introduced the Lagrange multiplier λ to enforce the probability

conservation. Then we find

− pn
qn

+ λ = 0, (V.30)

which immediately implies that qn = pn. The fact that this is the minimum, not the maximum,

trivially follows from e.g. observing the second derivatives of Eq. (V.29) are non-negative.
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Let us now prove that the KL divergence between the distribution ρn
2. Note that for the

infinite temperature distribution this KL divergence or the relative entropy is also the entropy

difference between that of the infinite temperature state and of the distribution ρn. Indeed

D(ρ||ρ∞) =
∑
n

ρn log(ρnN ) = log(N )− S(ρ) (V.31)

So the statement that the distance between ρ and ρ∞ decreases is simply equivalent to the second

law of thermodynamics for an isolated system stating that as a result of arbitrary dynamical

processes its entropy should either increase or stay constant. To proof of the entropy increase relies

on the Jensen’s inequality that for any convex function ϕ(x) such that

d2ϕ(x)

dx2
≥ 0 (V.32)

we have

ϕ

(∑
n

pnxn

)
≤
∑
n

pnϕ(xn), (V.33)

where pj are arbitrary non-negative numbers satisfying
∑

n pn = 1. Basically the Jensen’s in-

equality states that for arbitrary probability distribution the function of the mean is less than the

mean of the function. Let us sketch the proof of the Jensen’s inequality. First assume that the

probability distribution p{n} has only two entries p1 and p2 = 1 − p1. Then Jensen’s inequality

can be trivially seen from plottong the convex function and observing that it is always below the

straight line connecting the points x1 and x2. For higher number of entries we can easily extend

this proof

ϕ

p1x1 + (1− p1)
∑
n≥2

pn
1− p1

xn

 ≤ p1ϕ(x1) + (1− p1)ϕ

∑
n≥2

pn
1− p1

xn


≤ p1ϕ(x1) + (1− p1)

p2
1− p1

ϕ(x2) + (1− p1 − p2)ϕ

∑
n≥3

pn
1− p1 − p2

xn

 ≤ . . . (V.34)

Now let us apply this inequality to the function ϕ(x) = x log(x), which is clearly convex, using

xm = ρ0m and pm = pm→n for fixed n. Note we need double-stochasticity to satisfy
∑

m pm = 1.

Then from the Jensen’s inequality we find

ρn log(ρn) =
∑
m

pm→nρ
0
m log

(∑
l

pl→nρ
0
l

)
≤
∑
m

pm→nρ
0
m log(ρ0m) (V.35)

2 To shorten notations we denote ρn ≡ ρnn
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Summing this relation over n we find that

− S(ρ) =
∑
n

ρn log(ρn) ≤
∑
m

ρ0m log(ρ0m) = −S(ρ0) ⇒ S(ρ) ≥ S(ρ0), (V.36)

which is exactly the statement that under the doubly-stochastic evolution the entropy can not

decrease. This means that the stationary flat distribution corresponding to the maximum entropy

is the attractor of such evolution. Moreover it is the only attractor unless transition rates pm→n

to certain states are identically equal to zero due to e.g. symmetry reasons. Note that in this

proof we never relied on ergodicity or ETH, the entropy increase is a general property of any

double-stochastic evolution.

From this result we immediately recover the famous Boltzmann’s H-theorem for weakly inter-

acting particles. Indeed assume that between collisions the particles are allowed to relax to the

diagonal ensemble of the noninteracting Hamiltonian:

Hkin =
∑
j

p2j
2m

(V.37)

In this ensemble the eigenstates factorize |ψ(n) >=
∏

j |ψ
(n)
j ⟩ and hence the entropy is the sum

of entropies of individual particles (this is true whether particles are fermions, bosons or distin-

guishable classical particles). Then if we turn on interactions for a period of time and then let the

particles to relax again in the non-interacting basis as we just proved the entropy increases. But

these assumptions about relaxation (loss of phase memory) are precisely the assumptions of the

kinetic theory within which H-theorem is proven. So we proved the H-theorem even without need

to write down explicit kinetic equations. I.e. we proved it for any type of interactions as long as

collisions between particles are uncorrelated.

Now let us exploit another property of the unitary evolution: the existence of the time reversal

transformation. Recall that for time independent Hamiltonians from the Schrödinger equation

iℏ∂t|ψ⟩ = H|ψ⟩ (V.38)

it follows that t → −t is equivalent to |ψ⟩ → |ψ∗⟩ and H → H∗. We are considering in general a

time dependent process, where H(t) changes according to some protocol in the interval t ∈ [0, t0].

Then by the time reversal Hamiltonian we will understand HT (t) = H∗(t0 − t). It is then clear

that the complex conjugate of the wave function evolves under the time reversal Hamiltonian H̃.

In particular, this implies that

⟨n(t0)|U |m(0)⟩∗ = ⟨m(0)|Ũ |n(t0)⟩, (V.39)
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where Ũ is the evolution operator with the time-reversal Hamiltonian H̃. The arguments t and 0

in the basis vectors imply that they are taken with respect to the initial and final Hamiltonians.

Note that if in each moment of time the Hamiltonian H(t) respects time-reversal symmetry then

one can formally change the time propagation direction t → −t without changing the transition

probability (this amount to the reverse process to occur in the interval [−t0, 0] with the forward

moving time. Also in this case time reversal of the Hamiltonian is simply time reversal of the

quench protocol H̃(t) = H(t0 − t). From the equation above we find a very important property of

the transition probabilities

pm→n = p̃n→m, (V.40)

where tilde implies the transition probability for the time-reversal process (as before we imply

that indexes m and n correspond to the initial and final Hamiltonians). In particular, for systems

with the time reversal symmetry and the time symmetric protocols: H(t) = H(t0 − t) we have

pm→n = pn→m. This equality also holds for the transition probabilities computed within the

first order of the time-dependent perturbation theory (e.g. within the Fermi-Golden rule) even if

the protocol is not symmetric. Mathematically the result (V.40) states that the transpose of the

doubly stochastic matrix is also a doubly stochastic matrix. Thus the transpose of the transition

rate matrix can be viewed as the rate matrix of some other process, which for unitary evolution is

the time reversal process.

1. Jarzynski and Crooks relations.

The microscopic detailed balance (V.40) leads to very powerful fluctuation theorems. As earlier

we first consider initial Gibbs distribution and then show how one can generalize the results to

arbitrary initial states using the assumptions of ETH. The fluctuation theorems deal with the

probability of doing work during some dynamical process during which the system can be considered

isolated. By definition in this case the work is equal to the total energy change during this process

so the probability of doing work W is

P (W ) =
∑
n,m

1

Z(λi)
e−βEm(λi)pm→nδ(En(λf )− Em(λi)−W )

=
Z(λf )

Z(λi)

∑
n,m

1

Z(λf )
e−βEn(λf )+βW p̃n→mδ(Em(λi)− En(λf ) +W ) =

Z(λf )

Z(λi)
eβW P̃ (−W ). (V.41)
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Using that by definition Z(λ) = exp[−βF (λ), where F (λ) is the Free energy of the system we

rewrite the result above in the form known as the Crooks relation (G. Crooks, 1998):

P (W )e−βW = P̃ (−W )e−β∆F , (V.42)

where ∆F ≡ F (λf ) − F (λi) is the equilibrium free energy difference between the final and initial

Hamiltonians. Clearly for the cyclic processes λf = λi we have ∆F = 0 and the Crooks relation

has a particularly simple form. In words, the Crooks relations states that the probability of doing

a work W during some dynamical process is related to the probability of doing the negative of the

same work (starting from the Gibbs distribution with the same temperature) in the time reversal

process times the factor exp[βW − β∆F ]. Integrating the Crooks relation we find the Jarzynski

relation or the Jarzynski equality (C. Jarzynski, 1997):

⟨exp[−βW ]⟩ = exp[−β∆F ]. (V.43)

This simple relation is one of few known non-equilibrium relations. It states that the expectation

value of exponent of the product of the negative work multiplied and the inverse temperature

gives essentially an exponential of the free energy difference. I.e. the Jarzynski relation connects

the dynamical quantity, work, which depends on the details of the protocol and the equilibrium

quantity, which is the free energy. In particular, this relation can be used to measure free energy

differences in small systems by measuring the work. In large systems the Jarzynski relation is

typically not very useful because the function exp[−βW ] will be dominated by very rare events

where the work is small.

Now let us derive similar relations without making assumptions about the Gibbs distribution.

Specifically we analyze the work rate, R(w), which is defined as the probability of doing the work

W starting from a given energy eigenstate |m⟩. By definition the latter is given by

R(Em,W ) =
∑
n̸=m

pm→nδ(En−Em−W ) =

∫
dEnΩλf

(En)pm→nδ(En−Em−W ) = p̄m→nΩλf
(Em+W ),

(V.44)

where p̄m→n is the mean transition rate between the energy levels. According to ETH in ergodic

systems the transition rates between nearby levels are very similar to each other and thus p̄m→n is

a typical microscopic transition rate. Now let us analyze the work rate for the time reversal process

where we start at energy Em +W and do the negative work −W . Using similar considerations we

find

R̃(Em +W,−W ) = p̃n→mΩ(Em) = p̄m→nΩ(Em) (V.45)
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Comparing these two relations we find that

R(Em,W )Ωλi
(Em) = R̃(Em +W,−W )Ωλf

(Em +W )

⇒ R(Em,W )eS(λi,Em)−S(λf ,Em+W ) = R̃(Em +W,−W ). (V.46)

If we apply this relation to an infinitesimal process where W is small and λf − λi = ∆λ is also

small then we can expand the entropy difference in the expression above and find

R(Em,W ) exp[−βFλ∆λ− βW ] = R̃(Em +W,−W ) (V.47)

Integrating both parts with respect to W and using that R(E,W ) only weakly depends on E we

find

⟨exp[−βW ]⟩ ≈ exp[−β∆F ], (V.48)

where we used that

∆F = −S∆T −Fλ∆λ (V.49)

so that at constant temperature ∆F = −Fλ∆λ. Essentially we got the Jarzynski relation dropping

the assumption about the Gibbs distribution. Instead we had to rely on the ETH assumptions that

the transition rates to all the levels within a narrow energy shell are very close to each other. Also

now this relation only holds approximately for processes where work and changes in the coupling

constant are small. Nevertheless, as we will see in the next section, this relation is very powerful

allowing us to find fundamental drift diffusion relations (Einstein relations) for driven isolated

systems.

C. Energy drift and diffusion in driven systems. Fokker-Planck equation and Einstein relations.

Fluctuation theorems outlined in the previous section can be used to understand energy flow in

a system subject to an external noise, i.e. to external uncorrelated (in time) external drive. This

setup is very analogous to the heating in a microwave oven. The heating there occurs not due

to the coupling to external heat reservoir (like in conventional oven) but rather due to applying

time-dependent electro-magnetic field. Even though this field is periodic in time, typical relaxation

time in the systems is much faster than the pulse frequency so our assumption about uncorrelated

perturbations is valid there. We will assume that this process is quasi-static, i.e. the system relaxes

to the diagonal ensemble between the pulses and that the energy change (i.e. work on the system)
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within each pulse is small (see Fig. 22). Thus we are effectively consider a quasi-static process,

where at each moment of time the system is described by a local equilibrium (diagonal ensemble),

which does not have to be canonical. We can anticipate that the heating of the system should be

described by the drift-diffusion equation, where the drift corresponds to the average energy flow

and the diffusion to the energy spread. In general drift and diffusion are uncorrelated, but as we

will see the fluctuation theorems put strong constraints between the two.

t 
FIG. 22 Schematic representation of a continuous process as a series of jumps following relaxation. This

approximation can be rigorously justified within the (adiabatic) time-dependent perturbation theory if the

relaxation time (to the diagonal ensemble) in the system is short compared to the characteristic time scale

associated with change in λ

1. Derivation of the Fokker-Planck equation.

Now let us use the the fluctuation theorems to derive the evolution of the energy distribution

in a closed system, which undergoes the quasi-static process. To simplify the derivation we will

assume that the process is cyclic. For the non-cyclic process one simply needs to split the energy

change into the adiabatic deterministic part, which reflects the possible shift of energy levels with

λ and the heating, which will be described by the same equation as in the cyclic process. For this

purpose we rewrite the master equation

ρn(t+ δt) =
∑
m

pm→nρm(t) (V.50)
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as an equation for the energy distribution. For small enough δt the transition rates pm→n should

scale as δt. We will implicitly use the fact that the probabilities to occupy energy states ρn

are the smooth functions of n. Multiplying both sides of the equation by Ω(E) and using that

ρn(E)Ω(E) = P (E) we find

P (E, t+ δt) =

∫
dWR(E −W,W )P (E −W, t) (V.51)

where W = En−Em is the work and R(E−W,W ) = pm→nΩ(En) is the transition rate introduced

earlier. Because by the assumptions of the quasi-static process the work at each step is small

W ∝ δt we can utilize the fact that P (E) and R(E,W ) are very slow functions of W and perform

the Taylor expansion:

P (E−W, t) ≈ P (E)−W∂EP (E)+
W 2

2
∂2EEP (E)+ . . . , R(E−W,W ) ≈ R(E)−W∂ER(E,W )+ . . .

Then we find

∂tP (E, t) = −⟨δW ⟩∂EP (E)− P (E)∂E⟨δW ⟩

+
1

2
⟨δW 2⟩∂2EEP (E) + ∂EP (E)∂E⟨δW 2⟩+ 1

2
P (E)∂EE⟨δW 2⟩+ . . . , (V.52)

where we use ⟨δW ⟩ instead of ⟨W ⟩ to emphasize that the average work is small, proportional to

δt. And finally let us note that

⟨δW 2⟩ = ⟨δW 2⟩c + ⟨δW ⟩2

Because ⟨δW ⟩ ∝ δt the last term is of the order of δt2 and can be skipped. Introducing the standard

notations

A(E) =
⟨δW ⟩
δt

, B(E) =
⟨δW 2⟩c
δt

, (V.53)

which play the role of the energy drift and diffusion we rewrite the equation for P in the following

form

∂tP (E) = −∂E [A(E)P (E)] +
1

2
∂2EE [B(E)P (E)] . (V.54)

This equation is precisely the Fokker-Planck equation for the energy distribution. In general

the drift and diffusion coefficients are independent functions of energy, but as we will see next,

fluctuation relations put strong constraints on these coefficients.
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2. Einstein relations between drift and diffusion.

Let us first present a very simple derivation of the drift-diffusion relations, which is very similar

to the standard derivation of the Einstein’s relations for diffusion in space. The Fokker-Planck

equation (V.54) should give the same stationary solution as the original master equation. In the

previous section we showed that the attractor of the master equation for the unitary dynamics is

the uniform distribution. This means that the locally-uniform distribution should be also a fixed

point of the Fokker-Planck equation. But ρn = const implies P (E) = CΩ(E). Substituting this

distribution into Eq. (V.54) we find

0 = −∂E [A(E)Ω(E)] +
1

2
∂2EE [B(E)Ω(E)] ⇒ A(E)Ω(E) +

1

2
∂E [B(E)Ω(E)] = const. (V.55)

It is clear that the constant term must be zero because if we go to the energies where there are

no states Ω(E) → 0, e.g. approach the ground state energy, we do not expect A(E) and B(E) to

exponentially blow up. Therefore we see that the following relation should hold

A(E) =
β

2
B(E) +

1

2
∂EB(E) (V.56)

In large systems, where the energy is extensive the second term is clearly suppressed and therefore

we get

A(E) ≈ β

2
B(E) (V.57)

This result actually states that the unitarity of the evolution and ergodicity put very strong con-

straint on energy drift and diffusion and that for any quasi-static process energy drift (heating

rate) is uniquely related to the energy diffusion. This result also represents the differential form of

the second law of thermodynamics in the Thompson form. Because B is non-negative by definition

it guarantees that the average work for a small cyclic process is non-negative provided that the

temperature is positive. In the derivation of this relation we made some implicit assumptions.

In particular, we assumed that even if ρnn is constant locally in energy then the corresponding

Fokker-Planck equation should be stationary. This is only the case if the work has a narrow dis-

tribution, i.e. we do not allow rare processes which significantly change the energy of the system.

Next we will give a more formal derivation of this relation using the fluctuation theorems and see

more rigorous conditions for the validity of Eq. (V.56).

Now let us give a more formal microscopic derivation of this result using Eq. (V.46). Again for

simplicity we assume that we are dealing with the cyclic process so that ∆F = 0. Also to simplify
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the derivation we will assume that the process is symmetric in time so that R(E,W ) = R̃(E,W ).

This assumption can be relaxed. Expanding slow functions of work up to the second order in W

we find

R(Em,W ) exp

[
−βW − 1

2

∂β

∂E
W 2

]
≈ R(Em,−W ) +W∂ER(Em,−W ) +

W 2

2
∂EER(Em,−W )

(V.58)

Integrating both parts of this equation over the work W and again using that ⟨W ⟩ ∝ δt we find⟨
exp

[
−βW − 1

2

∂β

∂E
W 2

]⟩
≈ 1− ∂E⟨W ⟩+

1

2
∂EE⟨W 2⟩c (V.59)

Now let us take the logarithm of this equation neglecting all the terms proportional to δt2 like

⟨W ⟩2 and (∂E⟨W ⟩)2 and denoting as before A(E) = ⟨W ⟩ and B(E) = ⟨W 2⟩c. Then we find

− βA+
β2

2
B − 1

2

∂β

∂E
B ≈ −∂EA+

1

2
∂EEB (V.60)

It is easy to check that we recover the relation V.56. But now we know the requirements for this

relation to hold. The first requirement that the work is indeed small in a sense that expansion of

the entropy into the Taylor series is justified∣∣∣∣ ∂β∂E ⟨W ⟩2
∣∣∣∣≪ ⟨W ⟩ ⇔ Aτ ≪ TCV , (V.61)

where τ is the relaxation time in the system, which defines the minimum value of δt in our quasi-

static approach. In other words the energy added to the system during the relaxation time should

be small compared to TCV . For continuous processes where A ∝ dt this requirement is always

satisfied. But we can also consider discrete processes and still be OK. Note that the specific heat

CV = T 2∂TE is extensive so the “small” work condition can be satisfied for global processes where

the energy change is extensive. The second more subtle condition is that the third cumulant in

the expansion of the LHS of Eq. (V.59) must be small, which brings are to the requirement that

β2⟨W 3⟩c ≪ β⟨W ⟩ ⇔ ⟨W 3⟩c ≪ T 2⟨W ⟩. (V.62)

This requirement physically means that not only we have a small average work, but also this work

is done by small increments. For example for a spin one half particle flipping one spin with a

small probability guarantees a small work, but the third cumulant of work is not small unless the

temperature is large compared to the level splitting. So typically the last requirement implies that

we work in a suitable high-temperature limit.



95

3. Application: heating of a particle in a fluctuating chaotic 2D cavity

Let us apply the formalism above to a very simple problem of a classical particle moving

in a chaotic cavity with fluctuating boundaries (C. Jarzynski, 1993). The setup is presented

in Fig. V.C.3 The assumption that the cavity is chaotic implies that there are no correlations

between consequent collisions. Alternatively we can assume that we move the boundary inducing

an energy change then wait until the system relaxes to the stationary (diagonal) distribution and

then continue. We also assume for simplicity that we preserve the volume (area) of the cavity so

that the density of states does not change in time and we should not worry about adiabatic terms.

First we compute the energy drift and diffusion rates microscopically. Denote the velocity

of the particle as v⃗ and velocity of the wall as V⃗ /2. Because we deal with volume preserving

perturbations V⃗ /2 averaged either over time or over the area of the cavity is zero. Then as we

know from elementary mechanics as a result of the collision with the wall the component of the

velocity of the particle changes according to

v⃗ → v⃗ − V⃗ (V.63)

This means that the energy change of the particle per collision is

m
(v⃗ − V⃗ )2

2
−mv2

2
= mv⃗ V⃗ +

mV⃗ 2

2
= ±mv⊥V +

mV 2

2
, (V.64)

where v⊥ is the velocity component orthogonal to the wall and parallel to V⃗ with the convention

that the plus sign implies the wall and the particle move towards each other and the minus sign

implies that the particle and the wall move in the same direction. The probability of collision (per

unit area) is proportional to the relative velocity of the particle towards the wall. For the collisions

where the velocity of the particle increases the latter is

p> =
c

2
(v⊥ + V/2)δt, (V.65)
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where c is the proportionality constant (for many particles it is proportional to the particle’s

density) and we inserted a factor of one half for convenience. On the other hand for collisions,

where the velocity of particles decreases the probability of collision is

p< =
c

2
(v⊥ − V/2)δt. (V.66)

We will be interested in slow velocity regime of the wall V ≪ ⟨v⃗⟩, where the process can be thought

of as diffusive, so we will ignore rare situations where v⊥ < V . The average heating rate (energy

drift) is thus

A =
mV 2

2
(p> + p<) +mV (v⊥p> − v⊥p<), (V.67)

where the overline implies averaging over v⊥. Using explicit expressions for p> and p< we find that

both terms give identical contributions and thus

A(E) = mV 2⟨v⊥⟩ = mV 2 1

2π

∫ π

0
dϕ sin(ϕ)

√
2E

m
cδt =

1

π

√
2mEV 2c δt. (V.68)

To compute the fluctuations of energy change we note that

δE2 =

(
m
(v⃗ + V⃗ )2

2
−mv2

2

)2

= m2v2⊥V
2 ±mV 3v⊥ +

m2V 4

4
(V.69)

Since by assumption v⊥ ≫ V we can ignore the last two terms in the equation and find that

B(E) ≈ m2V 2v2⊥(p> + p<) = m2V 2

(
2E

m

)3/2 1

2π
cδt

∫ π

0
dϕ sin3(ϕ) =

1

π

√
2E3mc δt

4

3
(V.70)

So we found the following expressions between the drift and the diffusion coefficients:

A(E) = C
√
E, B(E) =

4

3
CE3/2 (V.71)

Now let us check if these satisfy the Einstein relation (V.56). Recall that β entering this relation is

simply derivative of the logarithm of the density of states. Since we are dealing with a single particle,

this will be a single particle density of states, which is constant in two dimensions Ω(E) = const.

Therefore by definition β(E) = ∂E log(Ω(E)) = 0. Thus the Einstein relation reads

2A(E) = ∂EB(E) (V.72)

It is obvious that the coefficients A(E) and B(E) satisfy these relations. So in fact there was no

need of doing these relatively elaborate calculations, it was sufficient to note that A(E) must be

proportional to
√
E, which is obvious because the average number of collisions is proportional to

the magnitude of v⊥. Then the Einstein relation immediately fixes the energy dependence of B(E).
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With the relation V.71 in hand we can rewrite the Fokker-Planck equation describing the heating

process as

∂tP (E, t) = −C∂E(
√
EP (E, t)) +

2

3
C∂EE(E

3/2P (E, t)) (V.73)

Upon careful look we see that if we scale t as
√
E then the equation above becomes dimensionless.

We can always fix the constant C at arbitrary number by redefining the time units. It is convenient

to choose C = 6.

P (E, t) =
1

2
√
Et
f(
√
E/t) ≡ 1

2
√
Et
f(ξ) (V.74)

This form of P is dictated by the normalization condition

1 =

∫ ∞

0
P (E, t)dE =

∫ ∞

0
d(
√
E/t) f(

√
E/t) =

∫ ∞

0
dξf(ξ). (V.75)

Substituting this ansatz into the Fokker-Planck equation above we find

− 1

2
√
Et2

f − 1

2t3
f ′ = − 3

2
√
Et2

f ′ +
2√
Et2

f ′ − 1

2
√
Et2

f ′ +
1

2t3
f ′′ (V.76)

or equivalently

ξf ′′ + ξf ′ + f = 0 (V.77)

It is easy to check that this equation is solved by

f(ξ) = ξ exp[−ξ]. (V.78)

So we see that the energy distribution asymptotically acquires the universal form

P (E, t) =
1

2t2
exp

[
−
√
E

t

]
. (V.79)

This is clearly not the Gibbs distribution, but it shares some of its properties. In particular, it

decays with energy faster than any power law so that all the energy moments are well defined.

This distribution is definitely wider than the Gibbs distribution so it can be interesting to compare

the widths of the two. Computing the first and second moments of the energy we find

⟨E⟩ =
∫ ∞

0
dE EP (E, t) = t2

∫ ∞

0
dξ ξ3 exp[−ξ] = 6t2, ⟨E2⟩ = t4

∫ ∞

0
dξ ξ5 exp[−ξ] = 120t4.

(V.80)

Therefore

δE =
√
⟨E2⟩ − ⟨E⟩2 =

√
84t2 =

√
7

3
⟨E⟩ ≈ 1.53

√
E (V.81)
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On the other hand for the Gibbs ensemble we have

δE = ⟨E⟩, (V.82)

which follows from δE = T 2CV , CV = 1 and T = ⟨E⟩. So we see that the distribution we are

getting is approximately a factor 1.5 wider than the Gibbs distribution. If we now assume that

we are dealing with a non-interacting gas of many-particles (such that time scales for heating are

faster than time scales for re-equilibration of the gas) then the total energy distribution will become

Gaussian due to the central limit theorem but the width will remain a factor of 1.5 bigger than

the equilibrium Gibbs width. Since we generated a non-equilibrium distribution, it should also

have lower entropy than the equivalent Gibbs one. For one particle in two-dimensions (with the

constant density of states)

S(t) = −
∫ ∞

0
dEP (E) log(P (E)) = log(2t2) +

∫ ∞

0
dξξ2 exp[−ξ] = log(2e2t2)

= log

(
2e2

6
⟨E⟩
)
≈ 1 + log[0.906⟨E⟩]. (V.83)

While for the exponential Gibbs distribution the entropy is

Seq = −
∫ ∞

0
dE

E

⟨E⟩
e−E/⟨E⟩ log

(
1

⟨E⟩
e−E/⟨E⟩

)
= 1 + log[⟨E⟩] (V.84)

So we see that the non-equilibrium heating results in the entropy smaller by − log[0.906] ≈ 0.1

than in the equilibrium case. For many particles this gives an extensive entropy gain equal to

0.1N . This entropy gain can be used, e.g. to build more efficient heat engines and even to beat

the fundamental Carnot bound in some cases. Indeed this fundamental bounds are related to to

the requirement that the entropy increase in the work body of the engine results in minimal losses

of energy to the bath, which is T∆S. Smaller entropy increase results in lower bound for energy

losses and thus can be used, at least in principle, to construct more efficient non-ergodic engines.

It is interesting that the same setup describes the energy distribution in a Lorentz gas (L.

D’Alessio and P. Krapivsky, 2011). This gas is defined as a system of noninteracting light particles

colliding with a dense gas of heavy particles moving with some average velocity V . If the ratio

of the masses is very large than there is no effect of the collision on heavy particles so the latter

serve precisely the role of moving boundaries. So the resulting kinetic equation for light particles

is exactly equivalent to the Fokker-Planck equation we discussed above. Let us point that the

ensemble of heavy particles can be viewed as an infinite temperature heat bath. Indeed the average

energy of heavy particles M⟨V 2⟩/2, which defines temperature, diverges in the limit M → ∞ at
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fixed ⟨V 2⟩. Thus we see from this simple example that external quasi-static driving of an isolated

system is equivalent to the coupling to the infinite temperature bath. In the next section we will

see that this statement is actually very general.

4. Exercises

1. Consider a setup of Sec. V.C.3 but in d-dimensions. Repeat the microscopic derivation of the

drift and diffusion coefficients A(E) and B(E) in the slow limit for the wall and make sure

that they satisfy the Einstein equation with the appropriate density of states. Show that in

the large d limit (d≫ 1) the term ∂EB/2 in the Einstein relation becomes negligible. Using

a similar scaling ansatz solve the Fokker-Planck equation and show that at large dimensions

d ≫ 1 it looks Gaussian but still with non-equilibrium width. Dimensionality here plays

the role of the phase space dimensions so large dimensionality is similar to having many

particles. Find the entropy of the resulting distribution (remember to take into account the

correct density of states) and compare it with the equilibrium entropy at the same mean

energy.

D. Doubly stochastic evolution in open systems. Drift-diffusion and Onsager relations.

So far we focused our attention to isolated systems subject to time-dependent external per-

turbations. Next we move to open systems. To describe those we do not need to develop a new

framework. We will represent an open system as a system A coupled to another system B (see

Fig. V.D). If the system B is much bigger than the system A then it is usually thought of as a heat

FIG. 23 Schematic representation of an open system as a system A weakly coupled to another system B.

bath. For our purposes this assumption is too restrictive, e.g. systems A and B can be comparable.

But we will assume that the system B is ergodic in a sense that it satisfies the assumptions of ETH.

One can extend our considerations to the situations where the system A is coupled to more than
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one system, e.g. two heat reservoirs at different temperatures or the system A is externally driven

in addition to the coupling to B. The analysis of such situations will be very similar but will be

beyond the scope of these notes. The Hamiltonian describing the total system can be schematically

written as

H = HA +HB +HAB, (V.85)

where HA is the Hamiltonian, which includes only degrees of freedom of the system A, likewise

HB includes only the degrees if freedom of the system B, and HAB describes the coupling between

then two systems. Initially systems A and B are not in equilibrium with each other. We will

assume that the process of equilibration is quasi-static in the same way as depicted in Fig. 22,

where the coupling HAB is turned on for a short time then turned off. In between the systems

A and B equilibrate within themselves, i.e. relax to the diagonal ensemble, and then the process

is repeated. Of course in reality this turning on and turning off is not needed and one can use

instead a continuous derivation. The only requirement we need is that the relaxation time within

the systems A and B is much faster than the characteristic time scale of relaxation between the

systems A and B. As we discussed the relaxation to the diagonal ensemble is a simple dephasing

and thus it does not rely on ergodicity. So the system A can be very simple like a single degree of

freedom.

1. Microscopic detailed balance for open systems.

Dynamics as a whole is unitary thus we can use the machinery developed in the previous section.

Quasi-static assumption means that at each moment of time the density matrix is approximately

diagonal in the basis of decoupled Hamiltonian HA +HB. We will also assume for simplicity that

the Hamiltonian obeys the time-reversal symmetry. From these assumptions we can conclude that

the microscopic transition rates

pm→n,m′→n′ = pn→m,n′→m′ , (V.86)

where m and n denote the eigenstates of HA and m′ and n′ denote the eigenstates of HB. There is

no tilde in this relation because of the time-reversal symmetry. Because the system is not externally

driven the total energy in the system is conserved implying that the rates pm→n,m′→n′ are non zero

only if EA
n − EA

m = EB
m′ − EB

n′ = W . Because we are interested in properties of the system A we

need to define the transition rates within the system A, i.e. sum over all final states in the system
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B. Then we find

pAm→n =
∑
n′

pm→n,m′→n′δ(EB
n′ − EB

m′ +W ) = p̄m→n,m′→n′ΩB(EB −W ), (V.87)

where p̄m→n,m′→n′ is the typical transition matrix element and we used ETH assumptions about

the system B stating that all eigenstates of B are very similar to each other; EB ≡ EB
m′ . Similarly

we find that

pAn→m = p̄m→n,m′→n′ΩB(EB) (V.88)

From the expressions above we see that the probabilities of the transition within the system A are

no longer symmetric. Instead they satisfy the new detailed balance relations

pAm→n

pAn→m

=
ΩB(EB −W )

ΩB(EB)
, W = En −Em (V.89)

If the energy difference W is small compared to TCB
V , which is always the case if the system B is

big then we can expand the density of states in the expression above and find the standard, usually

assumed, detailed balance relation

pAm→n

pAn→m

= exp[−βBW ]. (V.90)

It is interesting that in this derivation we did not use any other assumptions than that the process

is quasi-static and that the system B is ergodic i.e. that it satisfies the ETH.

This detailed balance relation for open systems clearly breaks double-stochasticity of the tran-

sition rates. Indeed while

∑
n

pAm→n =
∑
n,n′

pm→n,m′→n′ = 1 (V.91)

by the probability conservation

∑
m

pAm→n =
∑
m,n′

pm→n,m′→n′ ̸= 1. (V.92)

Another interesting point we can make is that in the limit βB → ∞ we recover doubly stochastic

relations for the transition rates in the system A obtained before for the unitary evolution. So

we come to an important conclusion that for quasi-static processes driving with an external field

is similar (and in many cases is equivalent) to the coupling to the infinite temperature reservoir.

In other words coupling to an infinite temperature system effectively leads to a unitary dynamics,

which can be described by some (possibly random) external force actings on the system. It is easy
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to check that the detailed balance V.90 leads to the Gibbs distribution to be an attractor of the

dynamics. Indeed writing the master equation

ρn(t+ δt) =
∑
m

pm→nρm(t) =
∑
m

pn→me−βB(EA
n −EA

m)ρm(t) (V.93)

and requiring that ρn(t+ δt) = ρm(t) leads to the stationary solution:

ρn =
1

Z
e−βEA

n . (V.94)

Using the Jensen’s inequality and using the relative entropy between the current and the Gibbs

distribution as a distance between the two distributions (like in the previous section) one can show

that this stationary distribution is indeed an attractor for the dynamics (see exercises).

2. Fluctuation theorems and Einstein relations for open systems. Onsager relations.

We will now repeat the same program as we did for isolated systems using new detailed balance

relations (V.90). Now we assume that the system A is also ergodic, i.e. also satisfies the ETH.

Then microscopic transition rates are not accessible. Instead as before we consider rates for energy

change. In this case energy formally changes not due to work but due to heat but as we know

already there is no difference, because from the point of view of thermodynamics work is equivalent

to the heat coming from the infinite temperature heat bath. So to avoid switching notations we

will still use the letter W to denote the energy change in the system A. Because of the assumed

ergodicity of the system A the ratio of rates for energy change W and the reverse energy change

are related by the ratio of the initial density of states in the system A so we have

RE(W )e−(βA−βB)W ≈ RE+W (−W ). (V.95)

Here we linearized the entropy of the system A assuming thatW is small. Integrating this equation

over W and ignoring sub-extensive terms proportional to derivatives with respect to the energy we

find an analogue of the Jarzynski relation for open systems

⟨e−(βA−βB)W ⟩ = 1 (V.96)

In principle interaction between systems A and B can also result in changing some macroscopic

parameter affecting A, e.g. as the system A heats up its magnetization also changes. Then instead

of one in the RHS of this relation one should use exp[−βA∆F ], where ∆F is the free energy
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difference and βA is the initial temperature in the system A. Expanding Eq. (V.95) in powers of

W we find Einstein relations for drift and diffusion coefficients:

2A(EA) ≈ (βA − βB)B(EA) + ∂EA
B(EA) ≡ ∆βB(EA) + ∂EA

B(EA). (V.97)

If the temperatures βA and βB are close to each other and the systems A and B are separated in

space by distance ∆x so that

βA − βB ≈ ∇β∆x

then the relation above reduces to the standard Einstein relation between energy drift and diffusion

with A/(∇β∆x) playing the role of heat (thermal) conductivity.

Let us now consider a slightly more complicated setup where we have two (or in general more)

conserved quantities. For example the energy and the magnetization or the energy and the number

of particles. The setup will be the same as before: we have two coupled systems A and B, which

weakly interact and can exchange energy and the second conserved quantity (for concreteness we

assume this is the particle number) N . We will assume that the energies EA and EB as well as

number of particles NA and NB are extensive and that we can ignore sub-extensive corrections like

∂EA
B. The microstates of the systems A and B are now characterized by the values EA, NA and

EB, NB. Using the same arguments as before we find that the ratio of the transition rates where

the energy W and the number of particles N flows from B to A is equal to the ratio of the final

densities of states:

R(W,N) ≡ R(EA, NA, EB, NB → EA +W,NA +N,EB −W,NB −N)

= R(−W,−N)
ΩA(EA +W,NA +N)ΩB(EB −W,NB −N)

ΩA(EA, NA)ΩB(EB, NB)
≈ R(−W,−N) exp[∆βW +∆λN ],

(V.98)

where ∆β = βA − βB, ∆λ = λA − λB and λA = ∂SA/∂NA = −βAµA, where µA is the chemi-

cal potential (which is defined as the generalized force with respect to the number of particles).

Integrating this relation over W and N we find that

⟨exp[−∆βW −∆λN ]⟩ = 1. (V.99)

There is another independent relation which can be obtained by integrating

R(W,N) exp[−∆βW ] = R(−W,−N) exp[−∆λN ], (V.100)
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which is

⟨exp[−∆βW ]⟩ = ⟨exp[−∆λN ]⟩ (V.101)

Expanding both relations to the second order in cumulants we find

−∆β⟨W ⟩ −∆λ⟨N⟩+ ∆β2

2
⟨W 2⟩c +

∆λ2

2
⟨N2⟩c +∆β∆λ⟨WN⟩c = 0 (V.102)

−∆β⟨W ⟩+∆λ⟨N⟩+ ∆β2

2
⟨W 2⟩c −

∆λ2

2
⟨N2⟩c = 0 (V.103)

Adding and subtracting these relations from each other we can rewrite them in the following matrix

form (P. Gaspard and D. Andrieux, 2011). ⟨W ⟩
⟨N⟩

 =
1

2

 ⟨W 2⟩c ⟨WN⟩c

⟨WN⟩c ⟨N2⟩c

 ∆β

∆λ

 (V.104)

These equations are nothing but the celebrated Onsager relations. The left hand side represents

the energy and particle relaxation rates (recall that W and N as well as all the cumulants are

proportional to δt. The right hand side represents the symmetric fluctuation matrix multiplied by

the differences in conjugates to the energy and the number of particles (β and λ). Note that these

relations are non-perturbative in these differences the only real requirements are that the third

cumulants of W and N are small. In many situations this requirement though is equivalent to the

small differences ∆β and ∆λ. These Onsager relations predict the symmetry of kinetic coefficients

strongly constraining the relaxation process. They also allow one to constrain fluctuations and

cross-correlations in the two currents.

3. Exercises

1. Using the Jensen’s inequality and the Kullback-Libler divergence as a distance between the

two distributions prove that the Gibbs distribution is an attractor of the dynamics of the

master equation with the transition rates satisfying the detailed balance V.90.

2. Consider two coupled black-bodies at different temperatures separated by a two-dimensional

membrane in the xy-plane transparent to the radiation. The Hamiltonian of the system can

be written as

H = HA +HB +HAB, (V.105)
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where

HA =
∑
k⃗,α

ℏc|⃗k|a†
k⃗,α
a
k⃗,α
, HB =

∑
k⃗,α

ℏc|⃗k|b†
k⃗,α
b
k⃗,α
, (V.106)

are the Hamiltonians representing photons in the two systems A and B. Here α = 1, 2 is

the polarization index, k⃗ is the three-dimensional wave vector and a†, a and b†, b are the

photon creation and annihilation operators in the cavities A and B respectively. Consider

free boundary conditions (meaning that there are no reflected photons from the membrane).

The interaction between systems A and B can be described by the following conversion

operator:

HAB = ℏc
∑
α

∫ ∫
dx dy(a†α(x, y, 0)bα(x, y, 0) + h.c.) (V.107)

This operator simply relabels A photons to the B photon once it crosses the membrane.

Using the Fermi Golden rule (or otherwise) calculate the transition rate for the process of

transferring photons from the system A to B and back, i.e. the rate per unit time at which

photons with momentum k cross the membrane in both directions. Show that the transition

rate from A to B is given by

p(n
(a)
k , n

(b)
k′ → n

(a)
k − 1, n

(b)
k′ + 1) =

2π

ℏ
ℏ2c2

L2
n
(a)
k (1 + n

(b)
k′ )δ(ℏck − ℏck′), (V.108)

where L2 is the area of the membrane. Using that each such transition results in energy

transfer ℏck from A to B and −ℏck for the opposite transition p(n
(a)
k , n

(b)
k′ → n

(a)
k +1, n

(b)
k′ −1)

find the average energy transfer rate per unit time and its fluctuations A and B. You might

express your results as integrals. Check whether the relation

2A = ∆βB (V.109)

holds for this system and in which regime. Explain your results.

VI. RELAXATION IN INTEGRABLE AND NEARLY INTEGRABLE SYSTEMS.

PRETHERMALIZATION. KINETIC EQUATIONS.

Until now we focused our main attention to ergodic systems satisfying ETH. But we might

wonder what happens if the systems are not-ergodic, for example if the systems are integrable.

Truly integrable systems are very rare in nature so this question might sound like an academic.

However, the reality is much more subtle. Very often we deal with systems, which are nearly
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integrable. For example, phonons or photons in a media to the first approximation behave as

non-interacting particles and interactions between them or between them and other degrees of

freedom are typically very small, especially in the long wave length limit. The same is true about

any other situations where we can define particles of quasi-particles: ideal gases, Fermi liquids,

superconductors, spin wave excitations and others. In these situations systems are integrable to

the first approximation. These systems are quite simple in a sense that they can be described by

a gas of weakly interacting bosonic or fermionic excitations. There are more subtle examples of

non-linear nearly integrable systems (quantum or classical) with solitonic-like excitations, which

are stable complex non-linear objects. And finally there is another class of non-ergodic systems,

typically disordered, where particles is localized in space and the relaxational dynamics is glassy,

i.e. exponentially slow. We discussed an example of such non-ergodic system, when we considered

many-body localization. A natural question to ask how these systems relax (if they relax at al)

and what happens with dynamics in these systems if we weakly break integrability. Both topics

are currently a subject of an active research, but a few things are already understood.

A. Relaxation in integrable systems. The Generalized Gibbs Ensemble (GGE).

Let us recall first what happens in equilibrium systems, where we have more than one conserved

quantity. It is in fact very common when we deal with two conserved quantities: the energy and

the number of particles. It is also quite common that we deal with systems with conserved mag-

netization, center of mass momentum, angular momentum, volume and a few more. Such systems

are generically still ergodic because the number of conservation laws is still small compared to

the total number of degrees of freedom but the additional conserved quantities provide additional

constraints. It is very important that we always deal with additive conserved quantities. This

follows from the basic assumption of the statistical mechanics about the statistical independence

of subsystems. The statistical independence implies that the density matrix in equilibrium ap-

proximately factorizes into the density matrix of the subsystems. This implies that the logarithm

of density matrix can be only a function of the additive conserved quantities. Precisely for this

reason it is the energy, not the energy squared, which enters the Gibbs distribution. In 1957 Jaynes

formulated a general maximal entropy principle for systems with arbitrary number of conserved

quantities. His motivation was coming from the information theory. Namely he postulated that the

equilibrium statistical ensemble should maximize the von Neumann’s (Shannon) entropy subject
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to all constraints (integrals of motion), i.e.

ρGGE
nm =

1

Z
exp

[
−
∑
α

λαI
(n)
α

]
δnm, (VI.1)

where I
(n)
α are the eigenvalues of the conserved integrals of motion (because they all commute with

the Hamiltonian and each other they can be diagonalized simultaneously). It is very important

that these integrals of motion are either local in space or can be represented as sums of operators,

which are local in space. Indeed only then the exponential form of the density matrix can be

justified and the different parts of the system are statistically independent.

While this general Generalized Gibbs Ensemble (GGE) form was proposed more than fifty years

ago, there were practically no implications of this conjecture to statistical physics for a very long

time. The main reason for this was that integrable systems are usually fine tuned and give only

approximate description to real systems. Any infinitesimal generic interaction or the coupling to an

environment immediately breaks the integrability and destroys all the integrals of motion except

the energy and perhaps few more like the magnetization, or the number of particles. However,

recently there have been several experimental advances, which forced us to revisit these issues.

First there were realized isolated quantum, mostly one-dimensional, systems, which like the FPU

problem do not thermalize on experimental time scales. These systems include cold atoms and

ions (T. Kinoshita et. al. 2006), driven exciton-polariton systems (J. Kasprzak et. al. 2006),

nuclear spins in various insulators and semiconductors (L. Childress et. al. 2006). In parallel

advances in ultra-fast optics allowed experimentalists to access dynamics in ordinary materials at

ultra-short time scales. During so short times weakly interacting systems behave approximately

as non-interacting and first relax to a non-thermal state, which then slowly relaxes to the true

equilibrium. Such two stage relaxation process was termed as prethermalization (J. Berges et. al.

2004).

Let us start from a very simple example of a classical particle in a regular cavity (see Fig. 24)

From the figure it is clear that unless we fine tune the trajectory so that it precisely hits the corner

the particle will eventually uniformly fill the coordinate space so if we let the particle bounce many

times we will loose any information about its position. At the same time the absolute value of the

momenta or kinetic energies along the x and y directions will be conserved. So in the long time

limit the probability distribution for this particle will relax to

P (x, y, px, py, t)→t→∞ δ(|px| − |p0x|)δ(|py| − |p0y|) ∼ δ(p2x/2m− E0
x)δ(p

2
y/2m−E0

y), (VI.2)

where p0x and p0y are the initial values of the momenta along the x and y directions (E0
x,y =
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px 

py 

FIG. 24 Example of a motion of a classical particle in an integrable, rectangular, cavity

(p0x,y)
2/2m) and the long time limit is understood as before. This example illustrates the main idea

of the relaxation in integrable systems to the constraint equilibrium. Because we are dealing with

a single particle even in a chaotic regime instead of the relaxation to the Gibbs ensemble we expect

the relaxation to the microcanonical ensemble. Similarly in the integrable case the distribution

(VI.2) can be viewed as the Generalized Microcanonical Ensemble. The expression (VI.2) is valid

if we start from a particle with fixed momenta. However, if we start from an ensemble of particles

the relaxation becomes more subtle. In particular, the correlations ⟨|px||py|⟩ are also preserved in

time. Thus if the system is prepared in a correlated state, say p0x = p0y these correlations will be

also preserved in time. Thus for the relaxation into a generalized Gibbs (or other) ensemble it is

necessary to make sure that the integrals of motion are uncorrelated. Typically this issue becomes

unimportant if we are dealing with local integrals of motion or their sums. Then the correlations

between these integrals decay in space and thus they become effectively statistically independent.

These ideas were extended to multi-particle systems (M. Rigol et. al. 2007) who postulated

that any generic integrable system will relax to the GGE ensemble suggested by Jaynes (VI.1),

where the Lagrange multipliers are determined by the initial conditions

Tr[ρ0Iα] = ⟨Iα⟩GGE ≡ Tr[ρGGEIα] (VI.3)

There is no general proof of this conjecture, but there are rigorous proofs for specific models. These

proofs are quite involved so instead we will discuss a relatively simple but yet nontrivial example

of a system of one dimensional hard core bosons (equivalent to the one dimensional XY chain in

a transverse field) and show the comparison of the anticipated results with numerical simulations.



109

Our discussion will closely follow the work by M. Rigol at. al. (Phys. Rev. Lett. 98, 050405

(2007)).

1. One-dimensional hard-core bosons and the Jordan-Wigner transformation.

Most known integrable systems in dimensions higher than one are non-interacting. E.g. free

quasi-particles in metals or free phonons in solids or liquids. In one dimension there are many non-

trivial integrable models with nontrivial properties. We will consider one of the simplest integrable

interacting models representing a one dimensional gas of hard core bosons. They can be described

by the following lattice Hamiltonian

H = −J
∑
j

(b†jbj+1 + h.c.)− µ
∑
j

b†jbj , (VI.4)

where b†j and bj are the creation and annihilation operators of Hard-core bosons, J is the hopping

and µ is the chemical potential, which in equilibrium sets the number of bosons. They commute

as long as the sites i and j are different from each other:

[bi, bj ] = [b†i , bj ] = [b†i , b
†
j ] = 0 if i ̸= j (VI.5)

and they anti-commute on the same site

b†ibi + bib
†
i = 1, b2i = 0, (b†i )

2 = 0 (VI.6)

It is easy to check that these anticommutation relations are equivalent to the constraint that no

more than one particle can be on a given site. As we discussed earlier in two and more dimensions

this hard-core constraint is equivalent to the interactions between the particles leading to the

ergodic Hamiltonian. However, in one dimension this is not the case and one can map this problem

to the free fermions. Because of this mapping the hard core Boson gas is a relatively simple

integrable system, but still its dynamics is very nontrivial. Before proceeding to the mapping to

free fermions let us show that hard-core bosons (in any dimension) are equivalent to spin one half

degrees of freedom. To see this we use the following identification

bi = σ−i , b
†
i = σ+i , b

†
ibi =

σzi + 1

2
, bib

†
i =

1− σzi
2

(VI.7)

or equivalently

σxi = bi + b†i , σ
y
i = i(bi − b†i ), σ

i
z = 2b†ibi − 1 (VI.8)
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It is clear that by construction different Pauli matrices commute on different sites as the should

and that they satisfy conventional commutation relations on the same site. E.g.

σxi σ
y
i = i(b†ibi − bib

†
i ) = i(2b†ibi − 1) = iσzi . (VI.9)

Substituting this representation of the Bosons into the Hamiltonian (VI.4) we find (up to unim-

portant additive constants)

H = −J
∑
j

[
(σxj + iσyj )(σ

x
j+1 − iσ

y
j+1) + h.c.

]
− µ

2

∑
j

σzj

= −2J
∑
j

(σxj σ
x
j+1 + σyj σ

y
j+1)−

µ

2

∑
j

σzj . (VI.10)

This Hamiltonian is known as an isotropic XY model. There is a simple generalization of this

Hamiltonian to the anisotropic XY-model, which preserves the integrability

HXY = −J 1 + γ

2

∑
j

σxj σ
x
j+1 − J

1− γ
2

∑
j

σyj σ
y
j+1 − h

∑
j

σzj (VI.11)

It is easy to check that the anisotropic term leads to the superconducting type terms b†jb
†
j+1 + h.c.

in the language of the original hard-core bosons. For the anisotropy γ = 1 this model is known in

literature as the quantum Ising model in the transverse field. It was first introduced and extensively

discussed by Schultz and Mattis and Lieb in 1964 (Rev. Mod. Phys. 36, 856 (1964)).

Now let us discuss the mapping of this model to free fermions using the Jordan-Wigner trans-

formation. This mapping will allow us to understand the structure of the spectrum, eigenstates

and the integrals of motion in this system. In parallel the Jordan-Wigner transformation is very

instructive because it shows how one can represent anti-commuting fermionic operators through

ordinary numbers and 2×2 Pauli matrices. The anti-commutation relation of the hard-core bosons

on the same site suggest that the fermionic representation should be very similar to bosonic, i.e.

on each site we should have

fi ∼ σ−i , f
†
i ∼ σ

+
i . (VI.12)

However, this representation satisfies bosonic, not fermionic commutation relations on each site.

So we need to correct this representation. The way to convert the commutation to the anticom-

mutation relations is to effectively introduce the π phase shift on each site whenever we add or

remove the boson from the site on the left of site j. Indeed when we compute the commutator of

e,g, b†i and bj with say i < j the term b†ibj creates an extra particle on the left of the site j. If

we simultaneously change the sign of bi then the bosonic commutation relations will automatically
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become fermionic. Technically this is achieved via inserting the string of σz operators so the correct

fermionic representation is

fi =
∏
j<i

σjzσ
−
i , f

†
i =

∏
j<i

σjzσ
+
i . (VI.13)

Let us check that this representation indeed leads to the correct anticommutation relations between

fermions. We will do this only for the neighboring sites (see the homework for a more general proof).

First let us compute using that (σiz)
2 = 1

fifi+1 + fi+1fi = σ−i σ
z
i σ

z
i+1 + σzi σ

−
i σ

−
i+1 = 0, (VI.14)

where we used that σ−σz + σzσ− = 0. Similarly f †i f
†
i+1 + f †i+1f

†
i = 0. And finally

f †i fi+1 + fi+1f
†
i = σ+i σ

z
i σ

z
i+1 + σzi σ

+
i σ

−
i+1 = 0. (VI.15)

The inverse transformation reads

σxi =
∏
j<i

(2f †j fj − 1)(fi + f †i ), σ
y
i = i

∏
j<i

(2f †j fj − 1)(fi − f †i ), σ
z
i = 2f †i fi − 1. (VI.16)

Using this fermionic representation the Hamiltonian (VI.11) becomes

HXY = −J 1 + γ

2

∑
j

(fj + f †j )(2f
†
j fj − 1)(fj+1 + f †j+1)

+ J
1− γ
2

∑
j

(fj − f †j )(2f
†
j fj − 1)(fj+1 + f †j+1)− 2h

∑
j

f †j fj

= −J
∑
j

(fjf
†
j+1 + f †j+1fj)− Jγ

∑
j

(fjfj+1 + f †j+1f
†
j )− 2h

∑
j

f †j fj . (VI.17)

Thus the XY - spin chain is equivalent to a one-dimensional BCS superconductor of spinless

fermions (so called p-wave superconductor). For the isotropic model γ = 0 corresponding to the

original hard-core bosons the anomalous term vanishes and the model becomes equivalent to the

one-dimensional free electron gas. This Hamiltonian can be always diagonalized via the Bogoliubov

transformation (see exercises) so that one can find its energy spectrum and eigenstates as a function

of the external parameters J, γ, h

It is clear that the Hamiltonian (VI.17) has as many local conserved quantities as the number

of degrees of freedom. In particular, occupation numbers of Bogoliubov quasiparticles for each

momentum mode are conserved. For the isotropic model γ = 0, which we consider hereafter,

the Bogoliubov quasi-particles are simply f - fermions. There is one subtlety with locality of

momentum states because in principle they are defined as the Fourier transform over the whole
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system. However, this is not a real issue because we can always construct a localized in space wave

packet using the linear combination of the momentum modes. Also the occupation operators can

be written in the following form

nk = f †kfk =
1

L

∑
ij

f †i fi+je
−2πijk, (VI.18)

where k is quantized in units of 2π/L. Because the correlation functions between f †i and fi+j

always decay in space the momentum occupation number effectively represents the sum of local

operators and in this sense it is local. From this fermionic operators one can construct local bosonic

integrals of motion. The first integral would be simply the total number of particles:

I1 =
∑
k

f †kfk =
∑
j

f †j fj =
∑
j

b†jbj . (VI.19)

The next integral will contain the energy

I2 = 2
∑
k

(1− cos(k))f †kfk =
∑
j

(2f †j fj − f
†
j fj+1 − f †j+1fj)

=
∑
j

[
2b†jbj − b

†
j(2b

†
jbj − 1)bj+1 − (2b†jbj − 1)bjb

†
j+1

]
=
∑
j

(2b†jbj + b†jbj+1 + b†j+1bj), (VI.20)

which is clearly a linear combination of the energy and number of particles. The first nontrivial

integral of motion will be

I3 = 2
∑
k

(1− cos(k))2f †kfk =
∑
k

(3− 4 cos(k) + cos(2k))f †kfk = −I1 + 2I2 +
∑
j

f †j fj+2 + f †j+2fj

= −I1 + 2I2 +
∑
j

[
b†j(2b

†
jbj − 1)(2b†j+1bj+1 − 1)bj+2 + (2b†jbj − 1)(2b†j+1bj+1 − 1)b†j+2bj

]
= −I1 + 2I2 −

∑
j

[
b†j(2b

†
j+1bj+1 − 1)bj+2 + b†j+2(2b

†
j+1bj+1 − 1)bj

]
. (VI.21)

Using explicit calculation (see exercises) one can check that I3 commutes with the Hamiltonian.

In a similar fashion one can construct other integrals of motion, which will be less and less local,

i.e. will have larger and larger support in terms of the bosonic operators bi and b
†
i .

Having established the structure of the integrals of motion we can now conjecture that if the

system is prepared in some non-equilibrium state it will relax to the generalized Gibbs ensemble

ρGGE =
1

Z
exp

[
−
∑
n

λnIn

]
=

1

Z
exp

[
−
∑
k

λ̃knk

]
. (VI.22)

It is clear that if the sum is restricted to the finite number of integrals of motion then the density

matrix approximately factorizes into a product of density matrices of different subsystems. Indeed
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up to the boundary terms, which involve integrals of motion inter-collating between the subsystems

it is just a product of local density matrices. As we mentioned earlier the Lagrange multipliers

can be found from the initial conditions fixing the integrals of motion. In Fig. VI.A.1 we show the

results of numerical simulations (M. Rigol et. al. (2007)) of the expansion of the hard core Bose

gas from a smaller to a larger box (see the caption for details). The two plots show the relaxation

to study lattices in which the final size L! N, i.e., the
average interparticle distance is much larger than the lat-
tice spacing, so that our results are also of relevance to
continuous systems [5]. The numerical technique has been
described elsewhere [38].

In the first series we prepare our gas in the ground state
of a hard-wall box, then let the gas expand to a larger
box. For all sizes of the initial box, we find that the
(quasi-)momentum distribution indeed converges to an al-
most time independent distribution (see Fig. 1). Next, we
compare the result after relaxation with the predictions of
standard statistical mechanics and of the fully constrained
ensemble (1) and (8). We find that the fully constrained
thermodynamics stands in an exceptional agreement with
the results of the dynamical propagation. (See [39] for
further details of the thermal algorithm.) The accuracy of
the above predictions has been successfully verified for the
whole range of available values of the size of the initial
box, from Lin: " N " 30 through Lin: " L " 600.

In the second series (Fig. 2) we study the effects of the
memory of the initial conditions that is stored in the fully
constrained ensemble (1) and (8). Our setting is very
similar to an actual experiment on relaxation of an en-
semble of hard-core bosons in a harmonic potential [34].
There the momentum distribution was initially split into
two peaks. After many periods of oscillation, no appre-
ciable relaxation to a single-bell distribution was observed.
In our case the system is initially in the ground state of a
superlattice (spatially periodic background potential, see
[40] for details) with period 4,

 V̂ ext " A
X
i

cos
2!i
T
b̂yi b̂i; T " 4; (9)

and is subsequently released to a flat-bottom hard-wall box
V̂ext " 0. Our results show that even after a very long
propagation time, the four characteristic peaks in the
(quasi-)momentum distribution remain well resolved,
although their shape is modified in the course of the
propagation. Our interpretation of both experimental and
numerical results is as follows: if the initial (quasi-
)momentum distribution consists of several well-separated
peaks, the memory of the initial distribution that is stored
in the ensemble (1) prevents the peaks from overlapping,
no matter how long the propagation time. Note also that the
residual broadening of the peaks seen in Fig. 2 is beyond
the experimental accuracy in [34].

Summary.—We have demonstrated that an integrable
many-body quantum system—one-dimensional hard-core
bosons on a lattice—can undergo relaxation to an equilib-
rium state. The properties of this state are governed by the
usual laws of statistical physics, properly updated to ac-
commodate all the integrals of motion. We further show
that our generalized equilibrium state carries more memory
of the initial conditions than the usual thermodynamic one.
It is in the light of that observation that we interpret the
results of the recent experiment on the nonequilibrium

dynamics of one-dimensional hard-core bosons performed
at Penn State University [34], where an initial two-peaked
(quasi-)momentum distribution failed to relax to a single-
bell distribution.

We are grateful to David Weiss, Boris Svistunov, Hubert
Saleur, Tommaso Roscilde, Rajiv R. P. Singh, and Marvin
Girardeau for enlightening discussions on the subject. This
work was supported by a grant from Office of Naval
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FIG. 1 (color online). Momentum distribution of N " 30 hard-
core bosons undergoing a free expansion from an initial zero-
temperature hard-wall box of size Lin: " 150 to the final hard-
wall box of size L " 600. The initial box is situated in the
middle of the final one. (a) Approach to equilibrium.
(b) Equilibrium (quasi-)momentum distribution after relaxation
in comparison with the predictions of the grand-canonical and of
the fully constrained (8) thermodynamical ensembles. The pre-
diction of the fully constrained ensemble is virtually indistinct
from the results of the dynamical simulation; see the inset for a
measure of the accuracy. (An animation of the time evolution is
posted online [41].)
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050405-3

FIG. 25 Results of numerical simulations of the expansion of the hard core Bose gas of N = 30 particles

from a box of the width L = 150 to a larger box of the size L = 600. The top panel shows the time

evolution of the zero momentum boson occupation number. The bottom plot shows the whole momentum

distribution after the relaxation. The results show that the relaxed system is practically indistinguishable

from the GGE. The plots are taken from Ref. M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys.

Rev. Lett. 98, 050405 (2007).

of the zero momentum component of the Bose gas (top) and the full momentum distribution

after the relaxation (bottom). The relaxed system is practically indistinguishable from the GGE,
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however there are significant deviations from the predictions of the equilibrium grand canonical

Gibbs ensemble.

The issue of importance of locality of the integrals of motion was recently analyzed by M. Fagotti

and F. Essler for a quench in the transverse field Ising model, described by the Hamiltonian (VI.17)

with γ = 1 and J = 1. The integrals in this model have a very similar structure to those in the

hard-core bosons. Namely one can always organize them in such a way that In is a sum of products

involving up to n adjacent spin operators. What they rigorously showed is that after a quench the

reduced density matrix of a subsystem, which is defined as

ρA =
∑
n∈B
⟨n|ρ|n⟩, (VI.23)

where A is the subsystem of size L′, B is the rest of the system of size L−L′ and |n⟩ is a complete

basis of the system B, approaches the GGE reduced density matrix in the limit L → ∞ and

arbitrary fixed L′. In other words they showed that the subsystem exactly relaxes to the GGE

and all observables, both equal time and non-equal time, are exactly described by the GGE in the

long time limit. Moreover they showed that only the integrals of motion with n < L′, i.e. the

integrals which can fit into the subsystem, are important. Fig. 26 demonstrates how the norm-

distance between the time averaged and GGE density matrix changes with the number of integrals

of motion included into GGE. It is clear that once n becomes bigger than the subsystem size the

distance rapidly goes to zero implying that the integrals of motion with n > L′ are not important.

The Generalized Gibbs Ensemble provides a nice theoretical framework for understanding the

relaxation in integrable systems. However it is still quite ambiguous from the experimental point

of view. The main reason for this ambiguity is the large (extensive) number of the conserved

quantities, which one needs to fix in order to specify the relaxed state. This number grows linearly

with the system size, which is much less than the exponentially growing size of the Hilbert space.

Yet this situation is not satisfactory from the point of view of experiments. Most of these integrals

are complicated correlation functions, which are hard to measure. One also can not use them

as fitting parameters because of their extensive number. So much more work is still needed to

understand whether there is a general structure of achievable GGEs and whether they can be

described by a non-extensive number of fitting parameters.
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13

and the bar denotes the average (8.24). Using that

R(O) ≤
√
[R(O)]2 = D(ρGGE,ℓ, ρℓ(t)), (10.5)

and then substituting the asymptotic behaviour (10.1),
(10.2) into the right hand side, we obtain

R(O) ! ℓ2t−3/2 . (10.6)

Bounding the right hand side by a (small) constant, we
obtain a time scale t∗rms associated with the relaxation of
the average relative error with respect to the distribution
(8.24)

t∗rms ∼ ℓ4/3 . (10.7)

It is not simple to identify the observables that give signif-
icant contribution to the average, since it depends both
on their “multiplicity” in the subsystem (produced by
translational invariance and other symmetries) and on
the expectation values. We note that the relaxation time
t∗rms is very different from the time scales identified in
Ref. [32] in the time evolution of the two point functions
of spin operators for quenches within the paramagnetic
phase.

B. Distance from Truncated Generalized Gibbs
Ensembles

Having established that the distance between quench
and GGE reduced density matrices tends to zero as a
universal power law at late times, a natural question is,
how close the quench RDM is to the truncated GGEs
(5.1), which retain only finite numbers of conservation
laws. A representative example for a quench within the
paramagnetic phase is shown in Fig. 6. We see that at
sufficiently late times, the distances converge to constant
values. However, increasing the range (and number) of
conservation laws, the values of these plateaux decrease,
signalling that retaining more conservation laws gives
better descriptions. In an intermediate time window, the
extent of which grows with y, the distance decays in a
universal t−3/2 power-law fashion. In Fig. 7 we consider
the distance

D(y)
∞ = lim

t→∞
D(ρℓ(t), ρ

(y)
tGGE,ℓ) = D(ρGGE,ℓ, ρ

(y)
tGGE,ℓ),

(10.8)
between the RDMs of the truncated and full generalized
Gibbs ensembles as a function of the parameter y. For a
given subsystem size ℓ, this corresponds to plotting the
values of the plateaux seen in Fig. 6 against the corre-
sponding values of y. The distance is seen to start de-
caying exponentially as a function of y as soon as y " ℓ.
There are two main conclusions of the above analysis:

1. Including more local conservation laws improves
the description of the stationary state.

1 10 100
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0.1

1

GGE
16
8
4
2
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h0=1.2 h=3ℓ=10 t

D
(y)

FIG. 6: Distance D(y) = D(ρℓ(t), ρ
(y)
tGGE,ℓ) at fixed length

ℓ = 10 between quench and truncated GGE reduced density
matrices for y = 1, 2, 4, 8, 16 and a quench within the param-
agnetic phase. Here y is the maximal range of the densities
of local conservation laws included in the definition of the
ensemble. As the number of conservation laws is increased,
the time window, in which the distance decays as t−3/2, in-
creases. At very late times all distances with finite y saturate
to nonzero values.
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FIG. 7: Distance D(y)
∞ = D(ρGGE,ℓ, ρ

(y)
tGGE,ℓ) between the

GGE and the truncated GGEs obtained by imposing local
conservation laws with densities involving at most y + 1 con-
secutive sites. The quench is from h0 = 1.2 to h = 3 and
the subsystem size ranges from ℓ = 5 to ℓ = 50. Colors
and sizes change gradually as a function of the size ℓ. For
y > ℓ, the distance starts decaying exponentially in y, with
an ℓ-independent decay constant.

2. The description of the stationary state improves
rapidly, once the range y + 1 of all conservation
laws not included in the truncated GGE exceeds
the subsystem size ℓ.

FIG. 26 Norm-distance between the long time limit of the reduced density matrix of a subsystem of size L′

of an infinite transverse field Ising chain after a quench and the reduced density matrix of the GGE ensemble

as a function of the number of integrals included into GGE. Different curves correspond to different systems

sizes. It is clear that only the integrals with n ≲ L′ strongly affect this distance. The integrals with n > L′,

i.e. the integrals, which “do not fit” into the subsystem are not important. The plot is taken from Ref. M.

Fagotti and F. Essler, Phys. Rev. B, 87, 245107 (2013)

.

2. Exercises.

1. Prove that the Jordan-Wigner transformation leads to the correct fermionic anti-

commutation relations.

2. Rewrite the Hamiltonian (VI.17 )in the momentum space. Diagonalize it using the Bogoli-

ubov transformation: fk = ukαk + vkα
†
−k. Choose coefficients uk and vk such that the

Hamiltonian reads HXY =
∑

k ϵkα
†
kαk. What is the spectrum of this Hamiltonian?

3. Check that the integral of motion (VI.21) indeed commutes with the Hamiltonian.

B. Relaxation in weakly nonintegrable systems. Prethermalization. Quantum kinetic equations.

Let us now assume that the system is nearly integrable, i.e. its Hamiltonian can be written as

H = H0 +Hint, (VI.24)
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where H0 is an integrable Hamiltonian and Hint breaks the integrability. This setup is very familiar

to us when we consider e.g. weakly interacting quasi-particles, where H0 is a noninteracting (in-

tegrable) Hamiltonian, which can be written as H0 =
∑

k ϵkc
†
kck and Hint represents interactions

between these quasi-particles. In dimensions higher than two this is a standard setup since all

integrable theories are non-interacting. In one dimension the structure of H0 can be more com-

plicated as we discussed above. Note that splitting of the Hamiltonian between H0 and Hint is

not unique in general. In equilibrium there is a well defined procedure of finding H0 using the

renormalization group formalism, which tells us about the structure of low energy excitations. For

example, in metals the low energy Hamiltonian can represent a Fermi liquid with dressed quasi-

particles, a super-conductor, where elementary excitations are the Bogoliubov quasi-particles or

gas of polarons, where fermions are dressed by lattice vibrations. There is no known procedure

how to find the best general H0 away from equilibrium it amounts into optimal splitting of the

interaction terms into the integrable part (which can be absorbed into H0) and the remaining part

. But if the perturbation Hint is very small then this issue is not really important. Let us point

that the same setup can be used to describe a system of weakly coupled grains of some kind. The

GGE ensemble will correspond to each grain having its own temperature (the Lagrange multiplier

to an approximately conserved local energy). The interaction Hint in this case will represent weak

coupling between grains. If the relaxation time with each grain is fast then the setup is precisely

the same as we consider here.

If Hint is small then at short times after say a sudden quench the system “does not know” that

it is non-integrable and the effect of Hint on dynamics is small. So one can anticipate that the

system relaxes to the corresponding GGE ensemble. At longer times Hint can lead to significant

effects (small perturbation acting for a long time can lead to a large effect), for example it can force

the system to relax to the true thermal equilibrium. This relaxation can be thought of as a slowly

evolving GGE, thus the dynamics can be written in terms of the slow evolution of the approximately

conserved quantities. Such two stage relaxation scenario was termed as prethermalization in the

context of Cosmology (Berges, 2004). This scenario suggests that weakly non-integrable systems

have a two stage relaxation process, where first they reach some non-thermal distribution where

they spend a significant amount of time and then they ultimately relax to the true thermal state.

The two stage relaxation process was found in a series of recent analytical and numerical works

(see e.g. M. Moeckel, S. Kehrein, Phys. Rev. Lett. 100, 175702 (2008); M. Eckstein, M. Kollar,

P. Werner, Phys. Rev. B 81, 115131 (2010)).

Separation of time scales of relaxation to the GGE (governed by H0) and to the true equilibrium
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governed by Hint can serve as the basis of deriving the kinetic equations (M. Stark and M. Kollar,

2013). Namely, let us try to solve the von Neumann’s equation for the density matrix perturbatively

i∂tρ = −[ρ,H] = −[ρ,H0]− [ρ,Hint] (VI.25)

with the initial condition that at t = 0 the density matrix is described by some GGE. It is convenient

to go to the interaction picture:

ρI(t) = e−iH0tρeiH0t, Hint(t) = eiH0tHinte
−iH0t.

Clearly this transformation does not affect the initial density matrix ρI(0) = ρ(0) because all the

integrals of motion appearing in the GGE commute with H0. Then the equation of motion for the

density matrix becomes

i∂tρI = −[ρI , Hint(t)]. (VI.26)

Next we will solve this equation using the time dependent perturbation theory and use it for finding

the kinetic equations for the conserved quantities Ik. Because in the interaction picture Ik(t) are

time independent

Ik(t) = eiH0tIke
−iH0t = Ik (VI.27)

the equations of motion for their expectation value are

dt⟨Ik⟩ = dt(Tr[IkρI(t)]) = Tr[IkdtρI(t)]. (VI.28)

In the leading order of the perturbation theory

dtρ
(1)
I ≈ i[ρ0,Hint(t)]. (VI.29)

Substituting this into the equation above we find

dt⟨Ik⟩ ≈ iTr[Ik(ρ0Hint(t)−Hint(t)ρ0)] = i⟨[Hint(t), Ik]⟩0 = 0, (VI.30)

where we used the fact that for any operator O the expectation value of its commutator with Ik

with respect to any GGE ensemble is zero:

⟨[O, Ik]⟩0 =
∑
n

ρ
(n)
0

(
⟨n|O|n⟩I(n)k − I(n)k ⟨n|O|n⟩

)
= 0.

Thus we need to go to the next order in perturbation theory

dt⟨Ik⟩ ≈ iTr
(
Ik[ρ

(1)
I (t),Hint(t)]

)
, (VI.31)
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where

ρ
(1)
I (t) = i

∫ t

0
dt′[ρ0,Hint(t

′)] = i

∫ t

0
dτ [ρ0,Hint(t− τ)] (VI.32)

Combining these two expressions we find

dt⟨Ik⟩ ≈ −
∫ t

0
dt′⟨[[Ik,Hint(t− t′)],Hint(t)]⟩0 (VI.33)

Now we can use that within the GGE ensemble (which is translationally invariant in time) cor-

relation functions depend only on time differences and use the time scale separation to send the

integration limit to infinity. The latter is indeed justified if the correlation functions of Hint com-

puted within the GGE ensemble decay much faster than the time scales required for changing the

expectation values of the integrals of motion, which in turn define the GGE. This time scale sepa-

ration is indeed justified if Hint is small. So finally we get our desired quantum kinetic equations

for the integrals of motion

dt⟨Ik⟩ ≈ −
∫ ∞

0
dt⟨[[Ik,Hint(0)],Hint(t)]⟩0. (VI.34)

These are the nonlinear differential equations because the expectation value of the commutator

appearing in the RHS can be a complicated function of the integrals of motions. Nevertheless this

equation is much simpler than the original von Neumann’s equation because it deals with a system

of N nonlinear differential equations rather than with the exponentially large differential equation

for the density matrix.

It is instructive to rewrite the kinetic equations using the Lehman’s representation using the

basis of H0. We will use that∫ ∞

0
dtei(ϵn−ϵm)t = πδ(ϵn − ϵm) + P

i

ϵn − ϵm
, (VI.35)

where P stands for the principal value. Assuming for simplicity that the system does not break

time reversal symmetry we see that the principal value term vanishes from the kinetic equations

because it is iamginary. Therefore we find

dt⟨Ik⟩ = 2π
∑
nm

(ρGGE
nn − ρGGE

mm )⟨n|Ik|n⟩|⟨n|Hint|m⟩|2δ(ϵ0n − ϵ0m). (VI.36)

In this form it becomes clear that a thermal distribution where ρnn is only a function of energy is a

stationary solution of these kinetic equations, i.e. dt⟨Ik⟩ = 0 for any Ik. Also if we use the energy

H0 as a conserved quantity it is clear that dt⟨H0⟩ = 0 for any GGE distribution. Both properties

are of course expected from general the kinetic theory.
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C. Applications of kinetic equations to weakly interacting particles.

Let us now apply the kinetic equation VI.33 to a common setup dealing with a gas of weakly

interacting particles, bosons or fermions (M. Stark, M. Kollar, 2013). For simplicity we assume

they are spinless. Also to shorten notations we will use the scalar notation for the momentum,

keeping in mind that this is a vector index. Then the Hamiltonian reads

H0 =
∑
k

ϵkc
†
kck (VI.37)

For the integrability breaking term we will take usual (normal ordered) density-density interactions

Hint =
∑
ij

V (i, j)c†ic
†
jcjci =

∑
k1,k2,k3,k4

c†k1c
†
k2
Vk1,k2,k3,k4ck3ck4 (VI.38)

For translationally invariant interactions Vk1,k2,k3,k4 is nonzero only when k1 + k2 = k3 + k4 and

it depends only on the transferred momentum q = k1 − k3. But since our formalism applies even

if the translational invariance is broken we will keep the interaction matrix element in the most

general form. The obvious integrals of motion are the momentum occupation numbers n̂k = c†kck.

Let us first compute the commutator

[n̂k′ ,Hint] = 2
∑

k2,k3,k4

[c†k′c
†
k2
Vk′,k2,k3,k4ck3ck4 − c

†
k2
c†k3Vk2,k3,k′,k4ck′c′4 ], (VI.39)

where we used the invariance of the interaction matrix element with respect to permutation of k1

with k2 and k3 with k4. Next we use that in the interaction representation

Hint(t) =
∑

q1,q2,q3,q4

eiEq1,q2,q3,q4 tc†q1c
†
q2Vq1,q2,q3,q4cq3cq4 , (VI.40)

where Eq1,q2,q3,q4 = ϵq1 + ϵq2− ϵq3− ϵq4 . We can now evaluate the time integral entering Eq. (VI.34)

using ∫ ∞

0
eiEq1,q2,q3,q4 t = πδ(Eq1,q2,q3,q4) + iP

1

Eq1,q2,q3,q4

, (VI.41)

where P stands for the principal value. And finally let us note that any expectation value of

within the generalized Gibbs ensemble of non-interacting particles can be evaluated using the Wick

theorem. One can check that only contractions between k and q indices give nonzero contribution

to the commutator. Because dtnk is real and all contractions are real the principal value part drops

from the integral and we find

ṅk′ ≈ 16π
∑

k2,k3,k4

(ñk′ ñk2nk3nk4 − nk′nk2 ñk3 ñk4)|Vk′,k2,k3,k4 |2δ(Ek′,k1,k2,k3), (VI.42)
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where ñk = 1± nk with the plus sign referring to bosons and the minus sign referring to fermions.

The factor of 16 comes from the factor of two in the commutator (VI.39) another factor of two

from two equivalent contributions coming from Eq. (VI.39) and another factor of four coming from

Wick’s contractions between k and q indexes. Classical kinetic equations are obtained by taking

the limit nk ≪ 1 and effectively replacing ñk by unity. Solving these kinetic equations can be

tedious but certainly feasible at least numerically for very large systems. Let us check that the

thermal distribution is a fixed point of these kinetic equations. E.g. for fermions the equilibrium

distribution reads

nk =
1

1 + exp[β(ϵk − µ)]
(VI.43)

then

(ñk′ ñk2nk3nk4 − nk′nk2 ñk3 ñk4) = (1− nk′ − nk2)nk3nk4 − nk′nk2(1− nk3 − nk4)

= [exp[β(ϵk′ + ϵk2 − 2µ)]− exp[β(ϵk3 + ϵk4 − 2µ)]]nk′nk2nk3nk4 = 0, (VI.44)

where the last equality relies on the total energy conservation. With more efforts one can show

that the equilibrium fixed distribution is the attractor of the kinetic equations.

VII. PERIODICALLY DRIVEN SYSTEMS.

A. Floquet theory and the Magnus expansion.

Our previous analysis of dynamical processes in various systems was relying on quasi-static ap-

proximation, i.e. the system relaxes or partially relaxes to a steady state (or an approximate steady

state) and then slowly evolves in time. Very often, however, we are dealing with an opposite limit

when the system is driven at scales fast or comparable to internal relaxation time. In these situa-

tions clearly the quasi-static assumptions do not hold. In general behavior of driven systems is not

understood. There is, however, an important exception where both experimental and theoretical

progress was made, namely periodically driven systems. We already discussed examples of periodic

motion using the Kicked rotor, the Fermi Ulam problem and the Kapitza pendulum as primary

examples. What we observed that there are both chaotic regions and the islands of stability. If the

driving frequency becomes very high the chaotic regions shrink. There is an intuitive reason for

this. At high frequencies the system effectively feels the time average potential. In the quantum

language the real transition with energy absorption are suppressed because typically the matrix
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elements connecting low and high energy states are very small. So effectively one can have only

virtual transitions, which lead to the renromalization of the Hamiltonian.

A powerful tool for understanding periodically driven systems is the Floquet theory, which is

analogue of the Bloch theory for particles in periodic potential like a crystal lattice. As before we

will use the language of quantum mechanics to define the Floquet theory and then we will discuss

the classical limit. Consider a Schrödinger equation with some time dependent Hamiltonian.

iℏ∂t|ψ⟩ = H(t)|ψ⟩, (VII.1)

where H(t+ T ) = H(t). Its solution can be written as a time ordered exponent

|ψ(t)⟩ = Tt exp

[
− i
ℏ

∫ t

0
dt′H(t′)

]
|ψ0⟩, (VII.2)

where time ordering simply means that the later times appear on the left, i.e.

U(t, 0) ≡ Tt exp
[
− i
ℏ

∫ t

0
dt′H(t′)

]
= lim

N→∞
exp

[
− i
ℏ
H(tN )∆t

]
exp

[
− i
ℏ
H(tN−1)∆t

]
. . . exp

[
− i
ℏ
H(t1)∆t

]
exp

[
− i
ℏ
H(0)∆t

]
|ψ0⟩,

(VII.3)

where tj = t j/N and ∆t = t/N . Note if we are interested in times, which are multiples of the

period T then the evolution operator repeats itself, i.e. U(n, T ) = U(T )n. The evolution operator

U(T ) is a unitary matrix and thus it can be always diagonalized. Because of the unitarity its

eigenvalues µj must satisfy µ∗j = µ−1
j , i.e. µj = exp[iλj ] with some real λj . Thus in the diagonal

form the evolution operator over one period reads.

U(T, 0) ≡ U(T ) = diag
[
eiλ1 , eiλ2 , . . . eiλM

]
, (VII.4)

where M is the Hilbert space size. Formally the numbers λj are defined modulo 2π. In this sense

λj play a role similar to the Bloch momenta. But as we know very often it is convenient to work

in the extended Brillouin zone and define λj in the whole real axis. Next let us formally define the

FLoquet Hamiltonian in this diagonal basis as

HF = diag

[
λ1ℏ
T
,
λ2ℏ
T
, . . .

λMℏ
T

]
. (VII.5)

By construction the eigenvalues of the Floquet Hamiltonian (Floquet energies) have the right

units of energy:

ϵFj =
λjℏ
T
. (VII.6)
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Then clearly

U(T ) = exp

[
− i
ℏ
HFT

]
. (VII.7)

Clearly this relation is independent of the choice of basis. The full evolution operator at arbitrary

point of time can be always decomposed as an evolution to the closest nearest multiple of the

period and the remainder, i.e. if t = nT + δt, where 0 ≤ δt ≤ T then

U(t, 0) = U(δt, 0)U(T )n. (VII.8)

Thus an arbitrary solution of the Shcrödinger equation reads

|ψ(t)⟩U(δt, 0)U(T )n|ψ0⟩ (VII.9)

This solution can be always expanded in the basis of U(T ) (or equivalently in the basis of the

Floquet Hamiltonian) |uj⟩: |ψ0⟩ =
∑

j αj |uj⟩

ψ(t)⟩ =
∑
j

U(δt, 0) exp

[
i

ℏ
δtϵ

F
j

]
exp

[
− i
ℏ
ϵFj t

]
αj |uj⟩ =

∑
j

exp

[
− i
ℏ
ϵFj t

]
αj |uj(δt)⟩, (VII.10)

where

|uj(δt)⟩ = exp

[
− i
ℏ
ϵFj t

]
U(δt, 0)|uj⟩. (VII.11)

By construction |uj(δt)⟩ is a periodic function of δt, i.e. |uj(T )⟩ = |uj(0)⟩. Eq. (VII.10) is the basis

of the Floquet theorem stating that any solution of the evolution operator for a periodically driven

system can be written as a superposition of the periodic in time function multiplied by the phase

factors exp
[
− i

ℏϵ
F
j t
]
. This statement is very similar to the Bloch theorem discussing the structure

of eigenstates of the Hamiltonian in a periodic potential.

If we are not interested in fine structure of the wave function, i.e. its precise behavior between

the periods, then the Floquet Hamiltonian gives the complete description of the time evolution of

the system. In this sense the dynamics of the system is described by the quench process, where

the Hamiltonian jumps to the Floquet Hamiltonian. In the same way we expect that in the long

time limit the system will relax the stationary ensemble with respect to HF. Thus if the FLoquet

Hamiltonian is ergodic we can expect that the system will relax to the Floquet thermal state. Then

we can extend the whole machinery of statistical mechanics and thermodynamics to the Floquet

systems. However, in this reasoning we are hiding an important question under the rug. Namely

we have to establish first that the Floquet Hamiltonian is a physical Hamiltonian, i.e. that it is

local and non-singular. As we will see below this is not always the case.
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Finding the Floquet Hamiltonian is formally equivalent to finding the logarithm of the evolution

operator over the period

HF =
iℏ
T

log

[
Tt exp

(
− i
ℏ

∫ T

0
H(t)dt

)]
. (VII.12)

In general there is no solution for this problem if the Hamiltonian is interacting. Indeed this

problem is clearly similar to finding the Free energy as the logarithm of the partition function:

F = −T log [Tr exp(−βH)] . (VII.13)

As we know well this problem can not be solved. Instead one has to rely on various approximation

schemes, in particular, on the perturbative high-temperature expansion. We will try to follow

the same route for finding the Floquet Hamiltonian from Eq. (VII.12) using the short period

expansion instead of the high temperature expansion (in mathematics this is known to be the

Magnus expansion). Expanding an exponential under the logarithm in Eq. (VII.12) we find

HF =
iℏ
T

log

[
1− i

ℏ

∫ T

0
H(t)dt− 1

ℏ2

∫ T

0
dt1

∫ t1

0
dt2H(t1)H(t2)

+
i

ℏ3

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3H(t1)H(t2)H(t3) + . . .

]
(VII.14)

The expansion of the exponent inside the logarithm is clearly time ordered. Next let us expand

the logarithm in powers of the period. In the leading order we clearly find

H
(1)
F =

1

T

∫ T

0
H(t)dt (VII.15)

Thus we find a very intuitive result that in the high frequency limit the Floquet Hamiltonian is

just the time averaged Hamiltonian. In the next order we find

H
(2)
F = − i

ℏT

∫ T

0
dt1

∫ t1

0
dt2H(t1)H(t2)−

iℏ
2T

i2

ℏ2

∫ T

0
dt1

∫ T

0
dt2H(t1)H(t2)

= − 1

2ℏT

∫ T

0
dt1

∫ t1

0
dt2[H(t1),H(t2)] (VII.16)

Let us now also show explicitly the third order term without derivation

H
(3)
F = − 1

6Tℏ2

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 ([H(t1), [H(t2), H(t3)]] + [H(t3), [H(t2),H(t1)]]) . (VII.17)

From these expressions we can see the structure of the terms appearing in the Magnus expansion.

First we observe this is a short period expansion as expected. Each term carries an extra power of

the period (the inverse frequency). Next we observe that for the local Hamiltonians each term in the
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Magnus expansion is also local. This follows from the fact that parts of the Hamiltonian separated

in space commute with each other and do not contribute to the commutator. This situation is

again very similar to the high temperature expansion in thermodynamics, where the expression

for the free energy is written in terms of the cumulants of the interaction, which are local. From

this observation we see that the convergence of the Magnus expansion is determined by the single

particle energy scales. Indeed one can define the Floquet Hamiltonian density HF/V , which is

volume independent in each order of the Magnus expansion. Therefore only non-extensive energy

scale define the convergence. In particular, we can expect convergence of the Magnus expansion

if we deal with bounded Hamiltonians like spin chains or Hubbard type models. In systems with

unbounded Hamiltonians this expansion can be asymptotic. Let us also point that with each order

of Magnus expansion the Hamiltonian becomes less and less local. The easiest way to see this is

to consider a spin chain with nearest neighbor interactions. Then generically the commutator of

the two such terms will produce a term with three nearest neighbor interactions, e.g.

[σ1xσ2x , σ2yσ3y] = 2iσ1xσ2zσ3y.

If we consider a double commutator of such terms we will generate four spin interactions and so

on. If the series does not converge we generically end up with a highly nonlocal (infinite range)

Hamiltonian. This will happen if the driving period is not small. On the other hand for low

frequency drive we anticipate that the periodicity is not important and the process is effectively

quasi-static. So from our previous analysis we expect an infinite heating of the system. Thus we

can anticipate that infinite heating is equivalent to the divergent Magnus expansion. The Magnus

expansion is well defined classically. Indeed in the limit ℏ → 0 we have [. . . ] → −iℏ{. . . } and

the expression for the Floquet Hamiltonian becomes ℏ-independent in each order of the expansion.

E.g. for the first order term we find

H
(3)
F, cl =

1

6T

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 ({H(t1), {H(t2),H(t3)}}+ {H(t3), {H(t2), H(t1)}}) .

(VII.18)

Like in statistical mechanics quantum language allows for a very simple derivation of this classical

result. Other derivations available in literature are much more elaborate. And finally let us note

that generically the Floquet Ham

Let us look closer into the setup where the time-dependent Hamiltonian can be written in the

form

H(t) = H0 + λ(t)V, (VII.19)
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where λ(t) is some periodic function. Then the second term in the Magnus expansion reads

H
(2)
F =

1

2ℏT
[H0, V ]

∫ T

0
dt1

∫ t1

0
dt2(λ(t1)− λ(t2)) = .

1

2ℏT
[H0, V ]

∫ T

0
dt [tλ(t)− (T − t)λ(T − t)] .

(VII.20)

For symmetric functions λ(t) = λ(T − t), e.g. λ(t) = λ0 cos(2πt/T ), this integral is clearly zero so

there is no second order contribution. For asymmetric functions this integral can be always made

zero by an appropriate choice of period, i.e. by an appropriate choice of the interval [t0, t0 + T ]

defining the Floquet Hamiltonian. This choice is clearly equivalent to the gauge choice since initial

evolution of the wave function to t0 can be thought of as the gauge transformation. The third

order of the Magnus expansion has two different contributions:

H
(3)
F = − 1

6Tℏ2
[H, [H,V ]]

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3(λ(t3) + λ(t1)− 2λ(t2))

− 1

6Tℏ2
[V, [H,V ]]

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3(2λ(t3)λ(t1)− λ(t1)λ(t2)− λ(t3)λ(t2)). (VII.21)

The integrals in this expression can be evaluated for any periodic function λ(t). To be specific let

us choose λ(t) = cos(2πt/T ). Then the first integral is equal to 12πT 3/(2π)3 and the second one

is −3πT 3/(2π)3 so we find

H
(3)
F =

T 2

16π2ℏ2
[V, [H,V ]]− T 2

4π2ℏ2
[H, [H,V ]]. (VII.22)

In the short period limit the H
(3)
F is a small correction to the time average Hamiltonian. So one

can naively think that in the regime of convergence (or asymptotic convergence) of the Magnus

expansion higher order terms are only small perturbation to the time average Hamiltonian. Thus

their effects are generally small (but can be still interesting if e.g. time averaged Hamiltonian is

non-ergodic and the first subleading correction breaks integrability). However, the situation is much

more interesting. One can get nontrivial high-frequency limit if one scales the amplitude of the

perturbation with frequency, V ∼ 1/T . Then clearly the first term in Eq. () has a well defined high

frequency limit, while the second term vanishes. If V is noninteracting, e.g. it represents coupling

to an external field, then multiple commutators containing only one H , which can be complicated

and interacting, and arbitrarily many V terms remain local. Thus the Floquet Hamiltonian also

remains local. Another possibility to get a nontrivial Floquet Hamiltonian in the limit T → 0 and

V ∼ 1/T is to have the Magnus expansion truncated. This happens e.g. if H =
∑

j

p2j
2m+U(xj) and

V = V (xj), i.e. if the Hamiltonian is a sum of the quadratic in the momentum kinetic energy and

arbitrary momentum independent potential and the driving term is a function of the coordinates

only. Then the commutator [V, [H,V ]] becomes a function of the coordinates only and all higher
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order commutators of the type [V, [V, [H,V ]] vanish. Both situations were realized in experiments

and we will discuss them in the next section.

1. Exercises

1. Prove Eq. (VII.17)

B. Applications to the Kapitza pendulum and a lattice system in an oscillating potential.

Let us illustrate two applications of the Magnus expansion. The first one will be the Kapitsa

pendulum, which we discussed earlier in the context of chaos. The other will be a system of

interacting particles (bosons or fermions) in a tight-binding potential (Hubbard model) with applied

high frequency field. Both problems found practical implications and both illustrate how one can

get non-trivial Hamiltonians and associated phases using time-dependent potentials. First let us

start from the Kapitza pendulum (see Fig. 4) for the setup. Let us first find the Lagrangian of this

system

L = T − U =
mẋ2

2
+
mẏ2

2
−mgy (VII.23)

using that x = l sin(θ), y = a cos(ωt)− l cos(θ). Then up to unimportant constants

L =
ml2

2
θ̇2 −mlaω sin(ωt) sin(θ)θ̇ +mgl cos(θ). (VII.24)

The equations of motion for this system read

0 =
d

dt

∂L

∂θ̇
− ∂L

∂θ
= ml2θ̇θ̈ −mlaω2 cos(ωt) sin(θ)−mlaω sin(ωt) cos(θ)θ̇

+mlaω sin(ωt) cos(θ)θ̇ +mgl sin(θ) = ml2θ̇θ̈ −mlaω2 cos(ωt) sin(θ) +mgl sin(θ) (VII.25)

These equations represent a pendulum in a time-dependent external potential

V (t) = −mlg cos(θ)
(
1− aω2

g
cos(ωt)

)
. (VII.26)

The Hamiltonian then can be written as

H + V =
p2θ

2ml2
−mgl cos(θ) +malω2 cos(ωt) cos(θ) (VII.27)

The periodic potential has the amplitude scaling as a frequency in the limit ω →∞ if we keep the

product aω cosntant. Thus asymptotically at the high frequency limit we can use only the first

term in Eq. (VII.A):

H
(3)
F ≈ 1

4ω2ℏ2
m2a2l2ω4 1

2ml2
[cos(θ), [p2, cos(θ)]] =

ma2ω2

4
sin2(θ) (VII.28)
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So in the limit ω ≫ ω0 =
√
g/l the Kapitza pendulum can be approximately described by the

stationary effective Hamiltonian

HF ≈
p2

2ml2
−mgl cos(θ) + ma2ω2

4
sin2(θ). (VII.29)

This Hamiltonian explains emergence of the second metastable equilibrium at θ = π when

aω

lω0
>
√
2

and explains why the equilibrium at θ = 0 is further stabilized by the driving. As we dicsussed

earlier because the kinetic energy is quadratic in the momentum, there are no other corrections to

the Floquet Hamiltonian in the high frequency limit (if we keep the product aω constant).

The second example we consider deals with a lattice system of particles described by the

Hubbard model in a time-dependent periodic field. For simplicity we will assume this is a one-

dimensional system, but this is not important in the analysis. Then

H + V = −J
∑
j

(a†jaj+1 + a†j+1aj) +
∑
ij

uijninj +∆j cos(ωt)nj (VII.30)

Here nj = a†jaj is the particle density, J represents the hopping matrix element and ∆ is the

amplitude of the external field (e.g. electric field), which periodically oscillates in time. This

Hamiltonian realizes another situation, where we expect to see a nontrivial high-frequency limit

if we send ω → ∞ simultaneously scaling the electric field ∆ with ω. This problem can also be

solved using the Magnus expansion. But it turns out there is a simpler route, where one first can

make a guage transformation in the Hamiltonian, and then apply the Magnus expansion. Recall

that the Heisenberg equations of motion for the creation and annihilation operators are

iȧj = [aj ,H] = −J(aj+1 + aj−1) + 2
∑
i

uijniaj +∆j cos(ωt)aj (VII.31)

Let us do the following transformation

aj = ãje
−ij(∆/ω) sin(ωt) (VII.32)

Then the new equations of motion for ãj read:

i ˙̃aj = −J
(
ãj+1e

−i∆/ω sin(ωt) + ãj+1e
i∆/ω sin(ωt)

)
+ 2

∑
i

niãj . (VII.33)

I.e. we effectively moved the time dependence from the effective potential to the hopping (such

trick was first suggested by Pierls). So in terms of new fields the Hamiltonian reads

H = −J
∑
j

(
ã†j ãj+1e

−i∆/ω cos(ωt) + ã†j+1ãje
i∆/ω cos(ωt)

)
+
∑
ij

uijninj (VII.34)
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This is a time dependent Hamiltonian, however, it can not be represented in the form H+V (t) but

rather H +V (t)+V †(t). This introduces additional terms in the Magnus expansion, in particular,

non-vanishing H
(2)
F . But the general structure of the expansion remains the same. Note that in

principle all observables should be also re-expressed through ãj and ã†j . But at times, which are

multiple of the driving period clearly ãj = aj so we do not need to worry about this subtlety if

we are interested in the stroboscopic description of the system and thus can drop the tilde sign.

Because the amplitude in the hopping term is bounded at any value of ∆ and ω we can take an

infinite frequency limit and obtain an effective Floquet Hamiltonian

HF ≈ −JJ0(∆/ω)
∑
j

(a†jaj+1 + a†j+1aj) +
∑
ij

uijninj , (VII.35)

where J0 is the Bessel function. This simple time-average is in fact an infinite resummation of the

original Magnus expansion (see exercises). Note that if we take the limit ω →∞ at fixed ∆ we will

reproduce the time-average of the original Hamiltonian (VII.30) as expected. But if we keep the

ratio ∆/ω fixed we can get a highly nontrivial Hamiltonian with e.g. vanishing or negative hopping

strength. We can thus create Hamiltonians with interesting properties, which are impossible to

achieve in equilibrium

1. Exercises

1. Show that in the high frequency limit the leading terms in the Magnus expansion for the

Hamiltonian (VII.30) one can reproduce Eq. (VII.35). One can match the Taylor series of

the Bessel function with the Magnus expansion term by term.
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