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Abstract
Exact diagonalization (ED) techniques are a powerful method for studying many-body problems.
Here, we apply this method to systems of few bosons in an optical lattice, and use it to
demonstrate the emergence of interesting quantum phenomena such as fragmentation and
coherence. Starting with a standard Bose–Hubbard Hamiltonian, we first revise the
characterisation of the superfluid to Mott insulator (MI) transitions. We then consider an
inhomogeneous lattice, where one potential minimum is made much deeper than the others.
The MI phase due to repulsive on-site interactions then competes with the trapping of all atoms
in the deep potential. Finally, we turn our attention to attractively interacting systems, and
discuss the appearance of strongly correlated phases and the onset of localisation for a slightly
biased lattice. The article is intended to serve as a tutorial for ED of Bose–Hubbard models.

Keywords: many-body problems, cold bosons, optical lattices

(Some figures may appear in colour only in the online journal)

1. Introduction

The Bose–Hubbard model (BHM), originally introduced in
order to describe different phenomena in condensed matter
physics [1], has gained new impact in the field of quantum gases
[2], following the experimental realisation of the model in a
setup with cold atoms in optical lattices [3]. In particular, the
prediction of a phase transition from a superfluid (SF) to a Mott
insulator (MI) has been confirmed. The origin of this transition is
genuinely quantum, that is, it is driven by quantum fluctuations,
which are controlled by the Hamiltonian parameters, interaction

and hopping strength, and which are present also at zero
temperature.

The advantages offered by cold atoms for studying
quantum phase transitions are clear. First, in these systems,
high isolation from the surrounding environment is achiev-
able. There have been recent advances in producing different
sort of lattice configurations, determining the Hamiltonian
parameters. Second, atom–atom interactions are tunable via
Feshbach resonances. These properties allow one to use
ultracold atomic systems as quantum simulators of theoretical
models that are not tractable with classical computers.
Although different techniques are able to capture ground state
properties of the Bose–Hubbard Hamiltonian, the solution of
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the full model, that is complete spectrum and eigenstates,
appears to be intractable with classical techniques. Exact
diagonalization (ED) techniques, which in principle allow one
to solve the full problem with high accuracy, suffer from the
clear shortcoming of being restricted to fairly small many-
body quantum systems [4].

Several approaches have been used to study the BHM:
Bogoliubov techniques at small interactions [5], perturbative
ones at large interactions [6, 7], Gutzwiller mean-field
approaches [8, 9], field-theoretic studies [10–12], etc. Ground
state properties can be studied by means of DMRG methods
[13, 14] and quantum Monte-Carlo techniques [15].

While the phase boundary between the Mott insulating
phase and the SF phase is well-defined in the thermodynamic
limit, where symmetry-breaking gives rise to a non-zero order
parameter, the situation is less unique for finite systems. In
particular, as reviewed in [16] and also pointed out in [14],
there is still uncertainty on the precise value of the transition
from Mott to SF in 1D systems. In particular quantum Monte-
Carlo studies have produced slightly disagreeing results on
the critical value of the parameters [17–19]. In view of this,
further study of the Mott transition is needed, using different
techniques and applying different definitions. Here, exact
methods allow to extract quantities not reachable by means of
other methods, such as eigenstates, eigenenergies and the
Entanglement spectrum.

In this work we consider small lattices which we study
using ED. We apply and compare different signatures of the
MI-SF transition: given the full ground state of the system, a
simple figure of merit is the overlap between the numerical
solution and analytical trial states for the Mott and the SF
phase. To capture the phase boundary more accurately, we
extract the single-particle insulating gap from the energy
spectra at different numbers of atoms. Performing a finite size
scaling, we determine the parameters for which the gap would
close in the thermodynamic limit, indicating the transition to
the SF phase.

Interesting new phenomena are brought into the problem
by a simple modification of the model, assuming a lattice with
one highly biased site attracting the atoms. This gives rise to a
series of quantum phase transitions upon changing the lattice
depth: For certain values, number fluctuations in the system
become strong while the average number of particles on the
biased site is decreased by one.

Finally, we consider the case of attractive interactions.
Similarly to the two-site case discussed in [20, 21], strong
fragmentation is found in the ground state of the system for a
small attractive interaction. Direct diagonalization allows us
to quantitatively discuss the appearance of many-body cor-
relations in the ground state. Considering a slightly biased
lattice, we study the onset of localisation in the system as the
attraction is increased.

The present manuscript is also intended to provide a
detailed, tutorial like, description of the methods employed to
perform the ED of the model. Our work complements other
tutorial like ones, like [22], as we also incorporate a state-of-
the-art discussion of the definition of the transition between
the MI and SF phases.

This work is organised as follows: the BHM is intro-
duced in section 2. In section 2.1, we introduce different
quantities used to characterise the system behaviour, such as
eigenvalues of the one body density matrix, and the popula-
tions of the Fock states. They allow us to discern if the system
is condensed and to measure its spatial correlations. We also
define different entropies in order to capture important
properties about the system with a single scalar value. In
section 2.2, we present the phases exhibited by the BHM. In
section 3 we explain the ED techniques used together with a
detailed description of how to perform them. In section 4 we
present the U/t value at which the MI-SF phase transition
takes place for the BHM at filling 1, applying several finite
size studies to our ED results. In section 5, we go beyond the
standard BHM: In section 5.1, we study an inhomogeneous
lattice, and observe several transitions as the hopping and/or
interaction strengths are varied, and in section 5.2, we turn to
attractive interactions, focusing on the appearance of corre-
lated states. In section 5.3, the reader is briefly introduced to
the treatment of quantum Hall effects with ED. Conclusions
are given in section 6.

2. The BHM and its characterisation

We start considering the standard BHM which contains two
terms: the hopping term, which allows the exchange of par-
ticles between the sites, related to the kinetic energy, and the
on-site interaction term, which can be repulsive or attractive.
The Hamiltonian of the model reads,
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where ˆ†aj (âj) creates (annihilates) one particle in the jth site

and =ˆ ˆ ˆ†n a ai i i is the number of particles operator in the ith
site, being M the number of sites. A convenient finite basis,
with a fixed number of particles N, is given by the states of
the Fock space restricted to N particles,
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where bni is the number of bosons at the ith site in the state
bñ∣ , and β is the labelling of the Fock states. Since the number
of bosons N in the system is fixed, bni satisfies å =bn Ni

M
i

for any state bñ∣ . Arbitrary states can be written in this
orthogonal basis,
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with Îbc . For total number of bosons N and sites M there
are  N

M Fock states in the basis. This number is the number of
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ways of placing N particles in M sites, see table 1,

 =
+ -

=
+ -

-
⎜ ⎟⎛
⎝

⎞
⎠

( )!
!( )!

( )N M

N

N M

N M

1 1

1
. 4N

M

If the particles were fermions instead of bosons, the number
of basis states is,
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2.1. Useful quantities

Let us introduce some quantities that we will use in this work
to discuss the characterisation of the BHM.

2.1.1. Fragmentation in the ultracold gas. The generalisation
of the concept of Bose–Einstein condensation to interacting
systems was introduced by Penrose and Onsager [23, 24].
They established a condensation criterion in terms of the one-
body density matrix (OBDM),

r y y¢ = á ¢ ñ( ) ( ) ( ) ( )( ) †r r r r, , 61

where the field operator y† creates a boson at position r and
á ñ is the thermal average at temperature T. Since r( )1 is a
Hermitian matrix, it can be diagonalized. The eigenvectors are
termed natural orbitals, and the eigenvalues are their
corresponding populations.

The way to find out if a given state is condensed involves
the computation of the OBDM and its diagonalization in order
to study the size of the populations of its eigenstates. In second
quantisation, the definition of the OBDM rk l, of a state Fñ∣ is,

r = áF Fñ∣ ˆ ˆ ∣ ( )†a a . 7k l l k,

But writing the state Fñ∣ as in equation (3), we explicitly get,

*


år a b= á ñ
a b

a b ∣ ˆ ˆ ∣ ( )†c c a a . 8k l l k,
,

N
M

From the diagonalization of the OBDM in an arbitrary basis,
one obtains,

r d= ( )n , 9i j i i j,
OBDM

,

where ni
OBDM is the ith largest eigenvalue of the OBDM.

In order to simplify the information given by the
eigenvalues of the OBDM of a given state, we introduce an
entropy based on the von Neumann one, S1, which will be
used in the following. It is defined as,

å= - ( )S p pln , 10
i

M

i i1

with =p n Ni i
OBDM the normalised eigenvalues of the

OBDM. So, å =p 1i i . The minimum of S1 is 0 and
corresponds to d=pi i,1. The entropy S1 has a maximum
which equals Mln when = "p M i1 ,i . So, its maximum
value corresponds to a uniform probability distribution
(fragmented condensate [25]), whereas the minimum corre-
sponds to a Kronecker-δ distribution, full condensation. In all
computations, the entropy has been divided by its maximum
value, Mln , in order get a non-extensive quantity, bounded by
0 and 1.

The entropy S1 measures condensation, as defined by the
Penrose-Onsager criterion. When the value is 0, the system is
condensed. When it is Mln , it is completely fragmented.
When the value is the logarithm of a certain integer r, the state
is fragmented in r states.

2.1.2. Spatial correlations from Fock-space coefficients. In
order to quantify the correlations between the particles on
different sites, we take advantage from the fact that our Fock
basis builds on spatially localised single particle states. We
define a second entropy SD, which measures the clustering of
particles in the Fock space,



å= -
b
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Table 1. Size of the Hilbert space for N bosons in M sites,  N
M for = ¼N M, 1, , 13.

M

N 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 2 3 4 5 6 7 8 9 10 11 12 13
2 1 3 6 10 15 21 28 36 45 55 66 78 91
3 1 4 10 20 35 56 84 120 165 220 286 364 455
4 1 5 15 35 70 126 210 330 495 715 1001 1365 1820
5 1 6 21 56 126 252 462 792 1287 2002 3003 4368 6188
6 1 7 28 84 210 462 924 1716 3003 5005 8008 12376 18564
7 1 8 36 120 330 792 1716 3432 6435 11440 19448 31824 50388
8 1 9 45 165 495 1287 3003 6435 12870 24310 43758 75582 125970
9 1 10 55 220 715 2002 5005 11440 24310 48620 92378 167960 293930
10 1 11 66 286 1001 3003 8008 19448 43758 92378 184756 352716 646646
11 1 12 78 364 1365 4368 12376 31824 75582 167960 352716 705432 1352078
12 1 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078 2704156
13 1 14 105 560 2380 8568 27132 77520 203490 497420 1144066 2496144 5200300
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where bc are the coefficients of the decomposition of a given
state into the Fock basis bñ∣ , equation (3). In the same way as
the entropy S1 allowed us to distinguish between condensed
and fragmented states, the entropy SD distinguishes between
many-body states which are represented by a single Fock state
(SD = 0), and superpositions of many Fock states ( >S 0D ).
Apparently, if only few Fock states contribute to a many-body
state, there is a high amount of spatial correlations in the
system, which thus can be captured by the value of SD. The
entropy SD is the von Neumann entropy of the diagonal
ensemble after tracing off one site. This means that it provides
the von Neumann entropy after a long-term time evolution in
a local Hamiltonian  = åˆ n̂i i i , with i local energies. Note
that in the case of solely two-sites, the entropy SD coincides
with the left–right bipartite entropy [21].

2.2. Phases of the BH model

The homogeneous case of the Hamiltonian (1), with =t tk j, ,
becomes exactly solvable in two limiting cases: =t U 0 and

 ¥t U . We take ground states in these two cases as
analytical trial states for the two quantum phases exhibited by
the model: the non-interacting limit provides a trial state for
the SF phase, while the system without hopping yields a trial
state for the MI phase.

2.2.1. MI regime. When t U 0 with >U 0, the system is
dominated by the repulsive interactions, and it minimises
energy by reducing the number of pairs in each site. So, the
GS of the system is a state with ºq N M particles on each
site, where q is a positive integer, i.e., a MI state. This
corresponds to one many-body state of the Fock basis and it
reads,

F ñ = ñ = ñ
=

∣ ( )
( ˆ )

!
∣ ∣ ( )

†
q

a

q
q q0 . 12

i

M
i

q

MI
1

The first excited state looks like a MI state where a
particle has been annihilated in one site and created in a
different site, i.e., it is a quasiparticle–quasihole excitation of
the MI state. When the particle is created in the ith site and the
hole is localised in the jth one, the first excited state reads,

F ñ = F ñ∣ ( ) ˆ ˆ ∣ ( ) ( )( ) †q
q

a a q
1

. 13i jMI
1

MI

The MI is an insulator in the sense that the ‘transport’ of
one particle from one site to another costs a finite amount of
energy (the energy gapDE). In the MI state, when q particles
are in one site, the value of the interaction term in that site is

-( ) ( )U q q2 1 . When in the MI state, a particle hops from
one site to another, the value on the interaction term is

- -( )( )( )U q q2 1 2 in the site where the particle comes
from and +( )( )U q q2 1 in the site where the particle goes.
This situation coincides with the first excitation of the MI
state. So, the energy difference of the MI state and its

excitation is,

D = - - + + - - =[( )( ) ( ) ( )]

( )

E
U

q q q q q q U
2

1 2 1 2 1 .

14

Thus, the MI phase has a characteristic energy gap D =E U
in the energy spectrum which separates the ground state from
the excitations.

We consider systems at filling one, that is, = =q N M 1.
In the MI phase, there is one particle in each site and

=S Mlog1 . Due to the fact that in this phase the GS coincides
with a single Fock state, SD is zero. Since the number of
particles q in each site is a well-defined integer, there are no
fluctuations on the on-site number of particles in the Mott
phase. The MI phase also has a finite correlation length ξ,
defined in á ñ - á ñá ñ µ x- -∣ ∣a a a a ei j i j

r ri j as a measure of the
spatial range of pair correlations.

2.2.2. SF regime. When U t 0, the hopping rules the
system and each particle becomes completely delocalised
over all sites of the lattice. So, we can write the single particle
state as,

åf ñ = ñ
=

∣ ˆ ∣ ( )†

M
a

1
0 . 15

i

M

isp
1

Since there are no interactions, the state of the whole system
is a properly symmetrized product of the single particle state
up to the number of particles. So,

åF ñ = ñ
=

⎡
⎣⎢

⎤
⎦⎥∣

!
ˆ ∣ ( )†

N M
a

1 1
0 . 16

i

M

i

N

SF
1

Then, the squared coefficients of the decomposition of the SF
state into the Fock basis follow a poissonian distribution in
the sense that its variance b(∣ ∣ )cVar 2 coincides with its mean
á ñb∣ ∣c 2 [3].

The SF state is characterised by a vanishing gap (since
there is no interaction, the only contribution to the gap comes
from the hopping term), large fluctuations in the on-site
number of particles and a divergent correlation function. In
the SF phase, all particles are delocalised, that is, each one of
them has the same probability of presence in all sites of
the lattice, without interacting with each other. Since all the
particles in the system have the same single particle
wavefunction, the system is condensed and so, =S 01 . The
SF state involves many Fock states with a non-uniform
distribution. The entropy SD, defined in equation (11), is
larger than in the Mott phase, but it will never equal 1 because
the distribution is not uniform. Increasing the number of
particles in the system, the value of the entropy SD in the SF
phase decreases. In contrast to S1, the entropy SD does not
exhibit an extremal value. In section 5, we will encounter
cases where the distribution of coefficients is closer to a
uniform distribution, giving rise to even larger values of SD.
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3. Exact diagonalization

Let us depiece how we have performed the ED of the
Hamiltonian, equation (1). The same procedure may be
applied to many models involving particles with bosonic and/
or fermionic statistics.

ED is the straightforward way to obtain the eigenvalues
and eigenvectors of a Hamiltonian. Naively, we first need the
Hamiltonian written in matrix form in a particular basis of
states. The apparent drawback is the fast growth of the
dimension of this matrix, defined by the size of the basis, see
table 1. In general, obtaining the full spectrum of the
Hamiltonian, eigenvectors and eigenvalues, requires a num-
ber of operations which scales as ( )N

M 3. This makes the
problem already intractable for fairly small quantum systems,
and strictly impossible for larger ones.

Once the Hamiltonian matrix (or its action on arbitrary
state vectors) is known, there are two classes of algorithms,
direct and iterative methods, which can be used to completely
or partially diagonalize a matrix, that is to find (at least) some
of its eigenvalues and eigenvectors:

• Direct methods perform similarity transformations to the
Hermitian (non-Hermitian) matrix of interest until it is
written in a reduced form. Hermitian (general non-
Hermitian) matrices are reduced to symmetric tridiagonal
(upper Hessenberg) matrices. Once the matrix of interest
is in the reduced form, it can be eigendecomposed in an
efficient way with LU (QR) decomposition for Hermitian
(non-Hermitian) matrices.

• In the iterative projection methods, the matrix operator is
applied to a set of trial vectors, approximations to the
eigenvalues are obtained from subspaces of lower
dimension, and the iteration is continued until conv-
ergence is reached. Notice that they are able to
approximate a number of eigenvalues and eigenvectors
without any need to solve the entire system. Despite some
of them are able to solve the entire system, it is not
practical in most applications, due to a much larger
number of operations than required by direct methods.

The direct methods are the only ones that are able to truly
diagonalize a matrix, up to rounding machine errors, while the
second ones obtain approximate partial solutions of increas-
ing precision in an iterative way. On the other hand, direct
methods require enough memory to store the full Hamiltonian
and the similarity matrix, while iterative methods only need
storage for a few state vectors. Matrix elements needed to
compute the action of the matrix onto a state vector can either
be determined on the fly, or stored in a less costly sparse-
matrix format.

In our case, we have used an iteration projection method for
sparse, Hermitian problems: the Lanczos algorithm. In order to
implement it, a number of libraries are publicly available. Most
of them only require a function which computes the action of the
Hamiltonian on any given input vector, as explained below. It is
important to know that there exist some preconditioners that
transform the Hamiltonian, making it cheaper to evaluate or
increasing the convergence for certain diagonalization methods,

such as the Jacobi–Davidson. An extensive and very pedago-
gical review about not only Hermitian problems, but numerical
solving of algebraic eigenvalue problems can be found in [26].

3.1. Basis states and their ordering

In order to identify all the states of the basis, every state needs
to have an associated label. The basis states should have a
known and unique ordering, in order to be able to run loops
over the vectors of the basis. Computing the action of the
Hamiltonian on the vectors of the basis has to be as efficient
as possible. In this work we have used the Ponomarev
ordering [27]. It provides an efficient way to have all vectors
of the basis labelled with a single integer ranging from 1 to
the exact dimension of the Hilbert space,  N

M . In the proce-
dure devised by Ponomarev, the mapping between a Fock
state and its integer label can be carried out in both directions
using a few, simple computational steps. It builds on a
recursive relation for the dimensions of Hilbert spaces of
different number of particles,

 å= >
=

-
- ( )N M Owith , , 0, 17N

M

n

O

N n
M

0

1

where O is the maximum occupancy per site, which some-
times is taken smaller than N to speed up the computations.
Equation (17) allows one to devise a counting algorithm
covering all numbers from 1 to  N

M . To perform the mapping,
one first needs to evaluate all  n

m occurring in equation (17).
Once this information has been obtained, the algorithm

first re-writes the Fock state, determining the occupations of
the M orbitals, into an N-component array ¼( )m m m, , , N1 2 ,
where mi denotes the orbital in which the ith atom is. This
becomes a simple one-to-one map by demanding m mi j

for <i j. The integer label of the Fock state, nβ, is then
obtained as

å= +b
=

- ( )n 1 . 18
j

N

j
M m

1

j

With this, we can straightforwardly map a Fock state
onto an integer label running from 1 to  N

M . The opposite
map is slightly more complicated, as it involves an iterative
procedure: given nβ, we find mN by determining the largest
 < bnN

m . We then identify =m mN , and continue to
determine -mN 1 by finding the largest  < -b- nN

m
N
m

1
N ,

and so on.
Let us see some examples. Consider for instance =N

= =M O 6, with the  n
m given in table 2, and the Fock vector

bñ = ñ∣ ∣103020 . This tells us that the first site is occupied by
one atom, the third site is occupied by three atoms, and the fifth
site is occupied by two atoms. Accordingly, we re-write this
information in agreement to the rule m mi j for <i j as

=( ) ( )m m m m m m, , , , , 5, 5, 3, 3, 3, 11 2 3 4 5 6 . Plugging this
into equation (18), the integer label is then found as:

     = + + + + + + =b

( )
n 1 258.

19
1
1

2
1

3
3

4
3

5
3

6
5
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In table 2 we illustrate this mapping graphically for a sec-
ond example, and explain how to operate in the inverse direc-
tion, that is from the integer label to the Fock state.

The inverse procedure, to go from the index to the actual
Fock state is also fairly simple, subroutines coded in Fortran
are provided in the appendix.

In our bosonic case, we have used the Fock states of
populations of the lattice sites, see equation (2), allowing up
to N particles per site and restricting the total number of
particles in the system to N. For fermions the main difference
is that the maximum population per site is 1, due to the Pauli
exclusion principle, the labelling scheme works well simply
considering O=1 in equation (17).

3.2. Use of sparse matrices to store the Hamiltonian matrix

Since Hamiltonians are Hermitian, roughly half of the entries
in the matrix are easily derived from the other half. This fact
can be used to reduce storage memory, and to prevent us from
redundant computations. Moreover, Hamiltonians of physical
models are typically not very dense. In the case of the BHM,
different states in the Fock basis are connected through
hopping processes, but clearly this leads to non-zero matrix
elements only between Fock states differing in two entries.

The most benefits of this sparseness can be made, if the
matrix is stored in a sparse matrix format. We then only care
about the non-zero elements which are stored in three 1D
arrays of length L, with L being the number of non-zero ele-
ments. Typically,  < L 2, with  the Hilbert space
dimension. Two of these arrays carry the integer labels of the
pairs of states which are connected by the Hamiltonian (i.e.
column and row of every non-zero matrix element). The third
array stores the complex amplitude of such process, i.e. the
value of the corresponding matrix element. In the case of the
BHM, the length L is bounded from above by +( )Mz1 N

M ,

where z is the coordination number. Each Fock state can (at
most) be connected to Mz other states through hopping pro-
cesses, and to itself through the interaction.

3.3. Geometry of the lattice

In our computations we have considered a chain of atoms, but
the topology and coordination number of the lattice could
easily be changed. All information about the lattice is stored
in an M×z array of adjacencies A. Its elements dai contain,
for each site i, the labels δ of all neighbouring sites.

This can be extended to any kind of neighbourhood
(nearest neighbours, next nearest neighbours, superlattices,
anisotropic models, fully connected models,...). We then
simply define a generalised array A of dimension ´ ´M z w.
Here, w counts the different types of neighbourhoods, and z is
the largest coordination number in any neighbourhood. For
instance, assume a 2D lattice with nearest- and next-nearest-
neighbour hopping. Each site is then connected to 4 nearest
neighbours, as well as 4 next-nearest neighbours, thus z=4.
We have two different types of connections, thus w=2. Or
consider a triangular lattice. In the isotropic case, each site is
equally connected to six neighbours, e.g. z=6 and w=1. If
the model becomes anisotropic, we have three types of con-
nections, w=3, to two different sites, z=2.

The important advantage of implementing the lattice
geometry as described here is its flexibility, specially in the
implementation on inhomogeneous and anisotropic models.
The counterpart, it should be said, is that it does not make use
of lattice symmetries, like translational symmetry in the case
of periodic boundaries, or parity symmetry for finite lattices.
Since the Hamiltonian commutes with the corresponding
symmetry operator, the Hamiltonian matrix is block-diagonal
in the eigenbasis of a symmetry operator. The diagonalization
can then be performed within each block separately. A
comprehensive instruction for implementing translational
symmetry in the ED code can be found in [22]. The largest
block in the translationally invariant eigenbasis has a
dimension which is approximately by a factor M1 smaller
than the full Hilbert space of N bosons on M sites.

3.4. Diagonalizing the Hamiltonian

As mentioned earlier, diagonalization algorithms differ
greatly, but all of them need to calculate the action of the
Hamiltonian onto the basis vectors. In exact methods the
outcome of this calculation is stored in a matrix, and the
unitary transformation diagonalizing this matrix is determined
numerically. The advantage of the direct method is the fact
that they provide the full spectrum of the Hamiltonian.
However, direct methods are only feasible for matrix sizes on
the order to ´10 104 4, e.g. 7 particles in 10 sites, see table 1.

Beyond that, only iterative methods can be employed.
Even where direct methods are still possible, iterative
methods are much faster in providing only a few eigenvalues
and eigenvectors. Iterative methods repeatedly apply the
Hamiltonian on a set of state vectors, thereby filtering out an
effective subspace. This procedure can be designed such that

Table 2. Number of Fock states for a given N and M. The diagram
shows the procedure to obtain the index for the Fock vector
bñ = ñ∣ ∣211020 for N=6 and M=6. The corresponding index is

= + + + + + + =bn 1 210 126 35 10 1 1 383 out of the 462
states in the Hilbert space. The inverse procedure can also be read
out, starting with =bn 383, we look for the largest number in the
N=6 column which is already smaller than nβ, in this case, 210, we
put one particle in the first mode, then we compare the remained
with the values in the N=5 column, turns out larger than 126, and
so on. In the appendix we provide explicit Fortran codes for the
procedures.

-n M6

6 1 6 21 56 126 252 462
5 1 5 15 35 70 126 210 2
4 1 4 10 20 35 56 84 1

M 3 1 3 6 10 15 21 28 1
2 1 2 3 4 5 6 7 0
1 1 1 1 1 1 1 1 2
0 1 0 0 0 0 0 0 0

0 0 1 2 3 4 5 6
N
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the invariant subspace corresponds to the low-energy sub-
space. Since it is typically much smaller than the total Hilbert
space, direct methods can finally be used to diagonalize the
Hamiltonian within the low-energy subspace.

While the iterative methods do not require that the action
of the Hamiltonian on a basis vector is stored in memory,
nevertheless this information is frequently needed in order to
perform the iterative multiplications. Thus, in particular if
memory restrictions forbid to store this information, it is
crucial for these algorithms to quickly evaluate the action of
the Hamiltonian on a base vector ‘on the fly’. For this goal,
the labelling scheme presented above is an important
ingredient.

Let us analyse the different steps the diagonalization
algorithm has to go through. Consider an arbitrary state
represented as a state vector in the Fock basis,

 bFñ = å ñb b∣ ∣cN
M

. The Hamiltonian is applied in two loops:

• One loop runs through all elements in the Fock basis,
= ¼bi 1, , N

M . In this loop, we perform a map from the
state label iβ onto the occupation numbers.

• A second loop runs through all terms in the Hamiltonian,
= åˆ ˆH Hj j, where Ĥj is a monomial of creation and

annihilation operators, e.g. = ˆ ˆ ˆ ˆ† †H a a a aj 3 5 2 14. Clearly,
each step in this loop maps the state bñ∣ onto a new basis
state b¢ñ∣ , with an amplitude bwj :

b bñ = ¢ñbˆ ∣ ∣ ( )H w . 20j j

It is straightforward to determine both the new state b¢ñ∣
in the occupation number basis, and the amplitude bwj .
Using the mapping from occupation numbers onto state
labels, we also find b¢i .

Accumulating the amplitudes bwj in the b¢i th component of the

new state vector, both loops together produce F¢ñ = Fñ∣ ˆ ∣H . In
summary, the main computational task is the mapping between
labels and states back and forth, and application of monomials
to the states. Let us exemplify this for two of the monomials in
equation (1). As an initial state we take the Fock state 383 from
table 2, e.g. Fñ = å F ñ = ñ∣ ( )∣ ∣i i 383i , or dF =( )i i,383. First,
we translate the Fock state into the occupation-number basis:
bñ = ñ∣ ∣211020 . Then, we apply all monomials, e.g.

- ñ= ´ ñ

- ñ= = - ñ

ˆ ( ˆ )∣ ∣

ˆ ˆ ∣ ∣ ( )†

U
n n

U

t a a t
2

1 211020
2

2 1 211020

211020 2 121020 , 21

1 1

1,2 2 1 1,2

The first monomial corresponds to an interaction term. It is
diagonal in the Fock basis and thus is easily evaluated. We
accumulate on the output vector, F¢ = F¢ +( ) ( )383 383
F( )U 383 . The second monomial represents a tunnelling term,

and is not diagonal in the Fock basis, that is, it changes the state.
The new state and the amplitude can easily be found, and using
the Ponomarev mapping, we finally identify the label of the new
state, = + + + + + =n 210 56 35 10 1 1 313121020 . This
means, we accumulate the amplitude on that position the resulting
vector, F¢ = F¢ - F( ) ( ) ( )t313 313 2 3831,2 in this case.

Once we have this procedure, the iterative methods will
perform a number of calls to this procedure to obtain
approximate values for the desired part of the spectrum. In
this work we have used the ARPACK package [29], which
requires on the order of 600 calls to this procedure to obtain
the first 10 states of the Hamiltonian. With this, we are able to
obtain the ground state and first excitations of systems of up
to 5×106 states.

4. Results for the boundary between MI and SF

We are now ready to apply the ED method to the BHM. Our
goal is to find the value of t/U at which the MI is no longer
the GS of the system and it starts to be a SF in an infinite
system with N=M, which is known as the critical value of
the order parameter of the MI-SF transition at filling q=1.
Although we also show a few results for the 2D square lattice,
our focus is on a homogeneous 1D Bose–Hubbard chain with
nearest neighbour hopping. The SF to MI phase transition
exhibited by the BHM with a commensurate number of par-
ticles, ÎN M , in d dimensions belongs to the +( )d 1 D
XY model universality class. For the 1D model, the exhibited
phase transition is of the Berezinskii–Kosterlitz–Thouless
type [1] (BKT). This phase transition is known to be infinite
order—every derivative of the free energy is continuous—and
very sensitive to finite size effects. As we will see in this
section, this makes the determination the phase boundary
extremely hard.

In order to interpret our numerical results, we will follow
three different strategies: in section 4.1, we will consider the
ground state vectors and determine their overlap with the
analytic trial wave functions for the Mott phase and the SF
phase. In section 4.2, we will analyse the insulating gap
which in the thermodynamic limit closes at the transition
point. In section 4.3, the scaling behaviour of the system is
analysed. We shall stress that all three approaches come with
their own limitations, which will be discussed in each sub-
section. Accordingly, it is also not surprising that each
method produces quantitatively different results.

In all calculations, we restrict ourselves to hopping
between neighbouring sites k and j, =t tk j, . This keeps the
essential symmetries to produce the MI to SF phase transition,
see [28]. We also take U=1, as only the ratio between t and
U determines the system behaviour (for >U 0).

4.1. Overlap

Since we have the eigenstates of the system, which is a
quantity that not every method is able to obtain, we may try to
use this information to find the transition value. Then, we will
compare the obtained ground states at different values of U/t
with the analytical solution of the system in the cases

=U t 0 and = +¥U t . In particular, we compute the
overlap between GS and trial states as a function of U/t,

= áF F ñ∣ ∣ ∣ ( )OV . 22Analytic GS
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This overlap is never expected to be zero for finite systems,
since the two trial states become orthogonal only in the
thermodynamic limit. Analytically, we find

áF F ñ =∣ ( )∣ ∣ !
( ) ( !)

( )q
N

M q
. 23

N MMI SF

Therefore, this method is ill-conditioned for the BKT
transition, but we show it for illustrative purposes. Never-
theless, the overlap OV can estimate the phase boundary by
looking for the value U/t where both overlaps, for the MI and
the SF phase, cross each other, that is, the GS of the system
populates them equally, see figure 1. We denote this value by
( )U t N , as it depends on the number of particles N. Per-
forming a finite size study [30], we estimate the critical value
in the thermodynamic limit, ¥( )U t , by extrapolation. We

assume a size-dependency given by = +-
¥( ) ( )AMU

t M

b U

t
,

and perform the finite size study for the 1D systems.
This is a naive approach that is routinely used in the study

finite-size effects of FQH systems. The size-dependency is
chosen as a power with a variable exponent in place of a linear
relation in order to capture any correction depending on non-
integer powers.

The finite size study is shown in figure 2. The extra-
polated value for the phase transition in the thermodynamic
limit is = U t 4.45 0.04, or, = t U 0.224 0.002 with a
reduced c = ´ -6 102 5. It is far indeed from most values in
the literature, see [10] for an overview. The value found here
lies between the one from third-order strong-coupling
expansion [7] and the one from density-matrix renormalisa-
tion-group calculations [17].

Thus, based on our knowledge of overlaps in a small
system, we are able to predict the phase diagram in the
thermodynamic limit, although the overlap itself is certainly

not a good figure of merit for the BKT phase transition. In the
following subsection, we take the opposite (and more sys-
tematic) approach, which characterises the phase boundary
via an order parameter which, in the thermodynamic limit,
vanishes exponentially in one of the phases.

4.2. Insulating gap

By means of ED, we are able to find the ground state energy
of the system with N particles in M sites at a given value of
t/U, ( )E t U M N, ,0 , in units of U, with machine precision.

According to [1], in the phase diagram of the BMH
model, the critical value of the MI to SF phase transition is the
value of t/U at which the upper and lower boundaries of each
Mott lobe cross each other. We will try to exploit that idea
defining an order parameter as the difference in ordinates
between the two boundaries as function of t/U, following
[31]. In the infinite system, that order parameter vanishes for
the SF phase, as the boundaries cross each other at the
transition value. Meanwhile, it remains finite as long as the
GS of the system is the MI state. At first, we set a definition to
find the upper and lower boundaries of the Mott lobes.
According to [1], the upper (lower) boundary of a Mott lobe is
given by exciton energy of one particle (hole) in the system.
That is, the chemical potentials of the systems with M sites
containing +M 1 ( -M 1) particles. Then, we can find the
upper (lower) boundary of the Mott lobe at filling q of the
system of M sites, m+ ( )t UM q, (m- ( )t UM q, ), as,

m = + -+ ( ) ( ) ( )
( )

t U E t U M qM E t U M qM, , 1 , , ,

24
M q, 0 0

m = - -- ( ) ( ) ( )
( )

t U E t U M qM E t U M qM, , , , 1 .

25
M q, 0 0

Figure 1. (a) Overlap of the GS of the system with the analytical SF
(red) and MI (green) states in 1D lattices with periodic boundary of 5
(dotted line), 6 (dashed line) and 7 (solid line) sites. (b) Computations in
2D: 2×2 (dashed line) and 3×2 (solid line) lattices with periodic
boundary. The abscissa where the two overlaps have the same value
is marked to ease visualisation. Filling factor q=1 so, N=M in all
the cases.

Figure 2. Finite-size scaling: the value of U/t at which the crossing
of the overlaps happens is plotted as a function of M1 for a 1D
system with periodic boundary. The fitting to the analytical form,

= +-( )U t a M cb has been made with the non-linear least-squares
Marquardt–Levenberg algorithm. This fit is used to extrapolate to the
thermodynamic limit as explained in the text.
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In figure 3, the value of m =
+ ( )t UM q, 1 and m =

- ( )t UM q, 1 is
plotted as a function of t/U for M=4 to M=12. This figure
shows the famous Mott lobes for finite systems. Notice that
for our finite sizes and fixed number of particles, the boundary
never closes, that is, the upper and the lower boundary of the
lobe do not merge. However, it can clearly be seen how these
two boundaries approach each other upon increasing the
number of particles.

The energy gap in the MI phase, for any value of t/U,
corresponds to the particle–hole excitation, which is the dif-
ference between m+ ( )t UM q, and m- ( )t UM q, for a fixed t/U.
So, we define the single-particle excitation gap of the lobe
with filling q in a system with M sites as,

m mD = -

= + + -
-

+ -( ) ( ) ( )

( ) ( )
( ) ( )

t U t U t U

E t U M qM E t U M qM

E t U M qM

, , 1 , , 1
2 , , . 26

M q M q M q, , ,

0 0

0

In the standard quantum phase transitions the single-
particle excitation gap is particularly well suited as an order
parameter because in an infinite system it vanishes in the SF
phase, meanwhile it remains finite in the MI phase. Unfor-
tunately, the single particle gap is not well suited to locate the
transition in the iD case. In the BKT transition the gap is
exponentially weak near the criticality, hardly detectable in
finite systems. Hence, the formula above is by construction
incorrect for small gaps in the MI phase. In addition, the
studied systems exhibit finite size gaps due to the small size.
Those gaps may dominate the single-particle excitation gap in
the transition and clearly do in the SF phase, and besides, they
can have different extrapolation exponents than the single-
particle excitation gap. Obviously, a reliable extraction of the
gap is also possible from Monte-Carlo methods, and possibly
they will do a better job for this transition. The analysis of the
energy gap performed in the present case, leads indeed to the
results which do not have a clear physics meaning; never-
theless, one can estimate quite well the position of the criti-
cality from that.

For simplicity, we define the single-particle excitation
gap in the Mott lobe of filling 1 asD º D =( ) ( )t U t UM M q, 1 .
In figure 4, the value of D ( )t UM is plotted as a function of
t/U for M from M=4 to M=12. Notice that the gap does
not vanish due to the mentioned domination of the finite size
gaps in the SF phase, at large values of t/U, while the van-
ishing gap is an intrinsic property of the SF in the thermo-
dynamic limit.

In order to determine the value of t/U for which the
phase transition takes place, we have used values ofD ( )t UM

as the plotted in figure 4 for M from M=3 to M=13. We
have used here the fitting method from [31]: for every value
of t/U, we fit D ( )t UM to a fifth-degree polynomial of the
inverse of the size, M1 . This expression has six fitting
parameters. The constant term of the polynomial isD¥( )t U ,
which corresponds to the single-particle excitation gap of the
thermodynamic system (  ¥M ) as function of t/U. Then,
the phase transition takes place at the value of t/U for which
D¥( )t U just vanishes. The determination of D¥( )t U
through the regression is just a hidden extrapolation to the
infinite system. Following [31], the behaviour of the extra-
polation to  ¥M could imply a non-integer extrapolation
exponent that a polynomial expression could not properly
capture. In order to extrapolate the proper value of D¥( )t U
in the region where the finite size gaps could potentially play
a role ( t U 0.24), we have used a fitting expression as
function of aM1 instead of M1 , where α is a positive real
exponent. This adds one extra free parameter to the fitting
expression.

The obtained values of D¥( )t U as function of t/U for
three sets of sizes Î ¼{ }M 3, ,13 , Î { }M 4,..., 13 and

Î { }M 5,..., 13 are shown in figure 5, along with the corresp-
onding value of the exponent α. The log scale has been used for
an easier visualisation of the vanishing point. In figure 5, the
behaviour of D¥( )t U in units of U is roughly similar for
every set of sizes: it starts at 1 for =t U 0 and monotonically
decreases to 0 at »t U 0.285. For t U 0.285, the different
sets show different behaviours: The set with sizes

Î { }M 3,..., 13 shows negative, small values of D¥( )t U ,
while the set with sizes Î { }M 5,..., 13 shows even smaller,

Figure 3. Boundaries of the Mott insulator region with =N M 1 for
finite size systems. The sizes are =M 4, 5, 6, 7, 8, 9, 10, 11, 12.
The upper family of curves is m+M and the lower is m-

M .

Figure 4. Single-particle excitation gap in the regime q=1, for
finite size systems. The sizes are =M 4, 5, 6, 7, 8, 9, 10, 11, 12.
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positive and negative values, whose errorbars make them
mainly compatible with 0. The set with sizes Î { }M 4,..., 13
shows an intermediate behaviour. It shows positive and nega-
tive values of D¥( )t U , that are smaller in magnitude than in
the former set, but they are more biased to negative values than
in the latter set. Some of the values are incompatible with 0.
Obviously, any value D <¥( )t U 0 is clearly unphysical.
Still, the value ofD¥( )t U and its dependence on t/U suggest
that are a reasonable way to identify the criticality. The value of
D¥( )t U deep in the SF phase is not zero as we know it
should, but a negative small value. This is because we did an
extrapolation from small, finite sizes that led to an inaccurate
values of the y-intercept, D¥( )t U . As we restrict the analysis
to sets of larger sizes, the value ofD  ¥¥( )t U goes closer
to zero, becoming less negative, and even erratic around zero.
Consequently, we will treat any small negative value as what it
is: an unphysical value that has been obtained just because it is
the one that better meets the fitting relation with data from small
systems. So, the estimation of the critical value ( )t U c will be
the value of t/U for whichD¥ crosses zero for first time and its
uncertainty will be the difference between the latter value and
the value of t/U at which the errorbar has crossed zero for first
time. Then, the obtained critical value for the sets

Î { }M 3,..., 13 , Î { }M 4,..., 13 , and Î { }M 5,..., 13 using this
method is = ( )t U 0.285 0.002c , = ( )t U 0.292c

0.006, and = ( )t U 0.283 0.009c respectively. Being con-
servative, we estimate the critical value with this method as the
mean of the latter values, weighted with the relative error,
giving = ( )t U 0.286 0.017c . Notice that the set of bigger
sizes has 8 different sizes and its data is fitted with an expres-
sion with up to 7 free parameters. The fact that this system is
minimally overdetermined leads to some instability in the
values of the fitting parameters and to bigger uncertainties.

The fitting parameter α has remained within the range
[ ]0.94, 1.00 for all the values of t/U used in the analysis. Notice
that the transition value of the [31], = ( )t U 0.275 0.005c , is
compatible with ours. Interestingly enough, our values of the
fitting parameter α near the transition are also compatible with

their value a = 0.95. Also notice the strong discrepancy with
the estimation from the previous naiver method. Despite this
method is nothing more than an elaborated extrapolation to
infinite size, the final result with this method is within the range
of the most recent studies. It is also compatible with most of
values in the literature, due to its broad uncertainty margins.

4.3. Finite-size effects of the gap

We may try to focus in a more general procedure in order to try
to get rid of the finite size effects. The way to proceed in most
of phase transitions is the general finite-size scaling hypothesis.
According to it, close to the phase transition, and with the
proper finite-size power rescaling of the order and control
parameters, the curves for different sizes should collapse into a
single curve, independent of the size of the system, called
universal scaling function. In our case, order and control
parameters would be DM q, and t/U, respectively. Regrettably,
the exponential closing of the gap characteristic of the BKT
transition does not allow such development. Since the gap in

the SF phase closes as D ~ -
-

⎡
⎣⎢

⎤
⎦⎥∣ ( ) ∣

exp g

t U t Uc
—with g

being an unknown constant—the finite-size corrections
become logarithmically small, not potentially as the finite-size
scaling hypothesis assumes and therefore, the finite-size power
rescaling is not suitable. As a consequence of this behaviour,
the BKT transition is known to converge to the thermodynamic
limit very slowly when increasing the size of the system. This
is, in order to get rid of finite size effects, order parameter
curves corresponding to sizes from a wide range of orders of
magnitude are essential.

We have followed an approach similar to the one of the
authors of [14, 32]. They propose an ansatz for the scaling
relation of the single-particle excitation gap, D¢ =( )t UM q,

D +
+

⎡⎣ ⎤⎦( )
( )

M t U 1M q M C,
1

2 ln
where D¢ ( )t UM q, is the

rescaled gap, and C is an unknown constant. Those authors
found that  ¥C for the standard BHM so, the logarithmic
correction becomes negligible. We defined the rescaled reduced
control parameter as º -˜ ( )

( )
t Mt U t U

t U
ac

c
, where a is an scaling

exponent. The former takes the value =t̃ 0c at criticality. We
also propose the rescaling D¢ º D MM M

b for the order para-
meter, where b is an scaling exponent. Both, a and b are related
to the critical exponents of the universality class of the phase
transition. From it we already knew that they should be =a 1 2
and b=1, respectively. Notice that this implies a potential
relation that will deviate from the one given by [14] for large
enough systems. Although ED does not allow to compute large
enough systems to obtain finite-size effect free results, we pro-
ceed with the analysis of the obtained results for illustrative
purposes.

We use the fact that, at criticality, the order parameter
collapses in a single size-independent universal curve to find
the proper exponents and the critical value of the phase
transition through a minimisation of the squared differences
between curves of different sizes. Far from the phase trans-
ition, the subleading therms overcome the scaling relation and
then, the rescaled order parameter depends on the size of the

Figure 5. Extrapolated value D¥ as a function of t/U in a log scale
for three different sets of sizes. The inset shows the value of the
fitting parameter α as a function of t/U for each set of data. The
errorbars show the 95% confidence intervals.
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system. The problem is to determine how far from the phase
transition the system starts to exhibit resolvable finite size
effects, and so, which interval of data points has to be taken in
consideration for the minimisation. We call -t̃ ( +t̃ ) the lower
(upper) limit of that interval. That is, the curves of the
rescaled order parameter follow the same curve in the interval
- +[˜ ˜ ]t t, around the criticality. Then, we define the figure of

merit of the minimisation as,

òå= D¢ - D¢
> ¢

¢-

+

(( ) ) (˜) (˜) ˜ ( )
˜

˜
S t U a b t t t, , d , 27c

M M t

t

M M

where the integral is calculated numerically over interpolation
of the data points with cubic splines.

Since we do not know how far from the critical point the
system starts to exhibit resolvable finite size effects, we try to
collapse the curves for several system sizes M as function of
-t̃ and +t̃ with the following procedure:

• For a given value of -t̃ , we fix = -+ -˜ ˜t t e, since we
have visually realised that the lowest values of S are
achieved when ~ -+ -˜ ˜t t 2 holds.

• We minimise S changing the set of para-
meters (( ) )t U a b, ,c .

Then, we find an optimum set of parameters (( ) )t U a b, ,c as
a function of -t̃ . We may expect that when -t̃ is very small,
the number of data points is not enough to properly describe
the universal scaling function, due to the lack of resolution.
On the other side, when -t̃ is large enough, the finite size
effects play a role and the curves are no longer collapsed in
the universal scaling function. This leads to obtaining
parameters that are size-dependant and not related to the
universal scaling function.

For a range of -t̃ in between, we may expect to have a
constant, size-independent values of the parameters, showing
a plateau. This is due to the fact that the curves are collapsed
in a universal scaling function, which has the same parameters
for any choice of -t̃ and sizes M. In order to control those
possible size dependency of the parameters (( ) )t U a b, ,c , we
have computed those parameters taking in account different
sets of curves: pairs of consecutive sizes (M = 11 and 12, 9
and 10, 7 and 8,...), subsets of the larger systems (from
M = 9 to 12, from 8 to 12,...) and for all of them.

The parameters ( )t U c, a, and b for a several size sets
are shown in figure 6. According to those results, the esti-
mated values are: = ( )t U 0.3115 0.0010c , = a 0.5010
0.0010, and = b 0.9870 0.0010. The fact that the para-
meters that we have found do not have a resolvable size
dependency seems quite noticeable. It is because our set of
sizes are too clustered to resolve the differences due to the
size. Notice that we have let both exponents, a and b, to vary,
despite we know their value. This allows to explore a broader
area of the space of parameters to improve the final value of
( )t U c, and let the minimisation find the proper scaling
exponents by itself. Additionally, it gives us a proof of the
goodness of the scaling. As a matter of fact, the value of the
exponent b is several error bars below the expected value
b=1. It is due to the fact that the small sizes we studied did
not allowed to get rid of the finite-size effects. Then, the

analysis has led to a non-universal coefficient. Reminding that
the size corrections in the BKT transition are logarithmic
becomes clearer that the set of sizes shall include sizes with
larger orders of magnitude. It has to be stated that potential
scaling relations are wrong for analysing the BKT transition,
but with this treatment a good value is fortuitously obtained
because of the small sizes studied—given that the value
obtained for the exponent b does not correspond to the
expected, 1. Finally, the collapse of various system sizes with
those parameters is shown in figure 7.

4.4. Summary

Given that the most recent numerical results localise the BKT
transition at values t/U between 0.26 and 0.31, we must
clearly state that our first approach considering the overlaps
fails, as it yields = ( )t U 0.224 0.002crit . Despite the
nature of the BKT and the weakness of the gap even in the
insulating phase, the second method produces a result which
agrees with the literature, = ( )t U 0.286 0.017crit . Also
our third approach, the scaling analysis, produces a result
which is still compatible with the literature, 0.3115±0.0010,
although the underlying scaling hypothesis does not hold for
the BKT transition.

5. Beyond the standard BHM

A number of modifications to the standard BHM have been
studied. Those modifications include different topologies and
coordination numbers of the lattice, inhomogeneous potentials,
negative interactions, additional neighbouring interactions, long

Figure 6. Optimal values of ( )t U c, a and b as a function of -t̃ to
collapse several sets of system sizes M.
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range interactions, among others. ED very suitable for most of
those modifications, due to the lack of assumptions on the
parameters. We have played with a couple of modifications:
inhomogeneous lattices, and attractive on-site interactions.

5.1. Phase transitions in a deeply biased lattice

An interesting modification of the SF to MI transition is
obtained by considering a lattice with a large attractive bias.
In this case the tendency to form a SF is suppressed, as in the
limit of weak interactions the particles prefer to localise on the
biased site. Increasing repulsive interactions, the system
reaches the Mott phase, undergoing several transitions in
which the number of particles on the biased site is reduced by
one. The large inhomogeneity is produced by making the
potential energy in the kth site much lower than the others.
Theoretically, we take it into account by adding the term
 d- å n̂i

M
i i k, to the Bose–Hubbard Hamiltonian.

To evaluate the effect of the bias potential in the system,
we introduce the fluctuation of the number operator in the ith
place,

D = á ñ - á ñ( ˆ ) ( ˆ ˆ ) ˆ ˆ ( )† †n a a a a . 28i i i i i
2 2 2

It can be written explicitly with the number operators in the
Fock basis. Moreover, due to the fact that the Fock states are
eigenstates of n̂i, the only nonzero contribution occurs when
b b¢ñ = ñ∣ ∣ . So,

å åD = á ñ - á ñ
b

b b
b

b b

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ˆ ) ∣ ∣ ˆ ∣ ∣ ˆ ( )n c n c n , 29i i i

2 2 2

2

2

where ^ bn i means ^b b∣n i . The fluctuation of the on-site
number of particles may serve as a precursor of a phase
transition which involves redistribution of the particles in the
ground states. In the presence of a strong bias potential,
  t, several peaks of the number fluctuations occur upon
tuning U/t.

In figure 8, we chose  = t100 , and study a square lattice
consisting of a single plaquette, that is, four sites. Accordingly,
we observe - =N 1 3 peaks of the number fluctuations upon

tuning from =U t 0 to large values of U/t. In order to infer
which mechanisms produces the fluctuations, we have calcu-
lated the population of each site in the lattice, simply by taking
the diagonal values of the OBDM, plotted in figure 8. When
the fluctuation reaches a maximum, the population in the
biased site decreases by one. Between two consecutive fluc-
tuation peaks, the populations remain mainly constant, show-
ing plateaus with a step structure. The last peak of the
fluctuations, occurring at the largest value of U/t, indicates a
transition into the MI phase: we find that for larger values of
U/t, the population of all the sites takes the same integer value
q, and the fluctuation decrease monotonically to zero.

The values of U/t for which fluctuation maxima appear
can be parametrised by =U t i100 , for = -i N1, , 1.
These values are easily explainable for the MI with q=1,
keeping in mind the Hamiltonian in equation (1): the migra-
tion happens when the energy of keeping the particles in the
same site becomes greater than extracting one particle from
the biased site to place it in other site without particles,

 - - = - - - -( ) ( )( ) ( )

( )

U
n n n

U
n n n

2
1

2
1 2 1 ,

30

B B B B B B

where we have neglected the hopping term t, which is small
compared to ò and U. The subindex B denotes the biased site.
From this equation, we obtain the condition,


=

-
( )U

n 1
, 31

B

where nB is a positive integer which < n N1 B .
As can be seen in figure 8, in general the unbiased sites

are not equally populated. When the interaction is large
enough to expel the first particle from the biased site, the
second most populated site is the one which is not directly

Figure 7. Collapse of the curves for M=5, 6, 7, 8, 9, 10, 11, and 12
sites for the estimated parameters =( )t U 0.3115c , a = 0.501, and
b = 0.987 in a log–log scale.

Figure 8. Transition from the fully localised state to the MI phase in
a deep biased 2×2 lattice with open boundary condition. The bias
is taken to be  = t100 in the 4th site. The values of the average
population of all sites is depicted together with the fluctuation of the
number of particles in the biased site (red solid curve). The direct
hopping between the 4th site and the 1st is not allowed and hopping
between the 4th and the 2nd and 3rd are equivalent. Note the clear
peaks in the number fluctuation for fixed values of U/t corresp-
onding to the transitions described in the text.
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connected to the biased site. This might appear counter-
intuitive in the first place, but one has to bear in mind that a
particle on this site benefits from having two empty neigh-
bours, allowing to reduce energy by tunnelling processes to
these sites. On the other hand, once a second particle is
pushed out from the biased site, the situation changes, and
two nearest neighbours of the biased site become more
populated. But now, two particles occupying these two sites
still can share the empty neighbouring site for virtual
tunnelling.

5.2. Attractive interactions: localisation

As studied for the two-site case in [20, 21], systems with
attractive interactions feature large quantum superpositions
due to the several competing single-particle ground
states [25].

For = -¥U t , all the particles in the system will
aggregate in a single site, so the GS is the Fock state with N
particles in the ith site and 0 in the other sites. But this state is
M-degenerate. Due to this degeneracy, the ground state can be
a superposition of these M states. Each one of them aggre-
gates the system in one different site of the lattice. In this
state, when a particle is fixed in one site, all the rest cluster
there. So, this state is highly correlated. For the two site case,
the ground state build a so-called NOON state [20].

In any practical implementation there will be small
imperfections that will trigger small biases between the sites.
It is thus expected, that for sufficiently large attractive inter-
actions in realistic systems, the GS will be unique with all
particles clustered in one site. To account for such effects, we
consider a slightly biased case which favours one site, the kth.

The localised condensate (LC) state in the kth site of the
lattice, reads,

Y ñ = ñ∣ ( )
!

( ˆ ) ∣ ( )†k
N

a
1

0 . 32k
N

LC

In this state, as in the MI, the number of particles in each site
is well defined and the correlation length vanishes. Different
from the MI, also the energy gap vanishes, and its value is
given by the value of the bias. Since this state is a single state
of the Fock basis with all the particles localised in the same
site, the values of S1 and SD are both 0.

It is noticed that if several sites on the lattice were biased
significantly more than the rest, it could be possible to obtain
a fragmented condensate. It is also possible to engineer the
number of fragmented fractions by setting a number of biased
sites in the lattice.

To understand the system behaviour for intermediate
values of the attractive interactions, we apply ED and cal-
culate the entropy SD as function of NU/t. The results are
depicted in figure 9. The entropy has its maximum in the
attractive regime, not at =U t 0 where the entropy S1
exhibits a minimum. This observation implies that the GS of a
weakly attractive system is more uniformly distributed over
the Fock basis than the GS of the SF phase. Increasing the
attractive interaction, but keeping the bias smaller than the
gap, the system is in a cat-like state, with = ( )S MlnD . By

cat-like state we mean a superposition state of events that
mutually exclude each other from happening simultaneously,
in this case, the superposition of clustering all the particles in
every site of lattice. Finally, for even stronger attraction, the
gap becomes smaller than the bias. Then the bias term
dominates and the system localises on a single site, with a
single Fock state being the ground state.

The phenomenon is similar to the one studied in [21].
There, the system is found to go from a binomial distribution
in Fock space, to a very homogeneous one at slightly
attractive interactions. Further increasing the interactions, the
distribution does not become more homogeneous, but instead
starts to develop peaks around each of the two-sites, which
corresponds to the two superposed states of the cat-like
structure. In presence of a small bias, further increasing the
attractive interaction, the system localises.

Effects in the weakly attractive regime in higher dimen-
sions than 1D are finite-size effects, since in the thermo-
dynamic limit, a soft-core system of bosons collapses at any
finite value of attractive interactions [33]. In 1D, due to the
interplay between the kinetic energy and the attractive inter-
action energy, bright soliton solutions arise from the Gross–
Pitaevskii equation [34].

Notice that in the weakly attractive regime, the number of
populated Fock states increases when interactions are
strengthened, but the distribution becomes less uniform. This
behaviour is more pronounced in the cases with open rather
than periodic boundary conditions, as open boundary provide
a natural bias with less connected sites at the edge of the
system.

5.3. ED for other problems: quantum Hall physics

When it comes to studying BHMs with ED, the reader has
to notice that, despite its insurmountable size limitations,
one strength of the method is its applicability to a wide

Figure 9. Entropy SD of the GS in a system with attractive
interactions, for 5–7 particles in different geometries with periodic
boundaries. The plot is zoomed in order to appreciate the weakly
attractive regime. In particular, it is worth emphasising the fact that
the maximum of the entropy, maximal delocalisation in Fock space,
is not achieved for zero interaction but for slightly attractive one.
The bias is  = - t10 10 .
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range of problems. As example, just adding complex values
to the tunnelling, models with gauge potentials can be
studied.

In this section, we will briefly outline how the method
can also be applied to continuum systems. As an example, we
choose the fractional quantum Hall effect, which can be
exhibited by fermionic particles (electrons), but also by
bosons, e.g. a cold gas of bosonic atoms rotating around the z
axis in 2D [35]. In this bosonic scenario, we shall find some
analogies to the treatment of the BHM.

The first step for treating the problem by ED again is to
construct a basis for the Hilbert space. In the quantum Hall
effect, the single-particle energy levels are the Landau levels
(LLs), and it is usually enough to consider only one LL, for
bosons the lowest LL (LLL). All states in the LLL are
degenerate, and can be labelled by a quantum number l 0,
the angular momentum along the rotation axis. These angular
momentum eigenstates play a role analogous to the sites in
the BHM, and it allows to map between the basis for the
BHM onto the basis of bosons in the LLL. Since, in principle,
there are infinitely many single-particle states, though, we
have to truncate the basis at a sufficiently large =l lmax . Due
to rotational symmetry, the total angular momentum L along z
is conserved. This provides a natural value =l Lmax for
truncating the Hilbert space, but in practice the available
angular momentum will be distributed more equally between
all particles, so lmax can be chosen much smaller, at the order

~l L Nmax for N bosons.
In contrast to the BHM, due to the degeneracy of single

particle levels in the fractional quantum Hall problem, there is
no single-particle term in the Hamiltonian. Taking into account
a trapping potential only introduces a L-dependent energy shift.
The interactions, though, are much more difficult to treat than
in the BHM, as two particles at l and ¢l may scatter to arbitrary
orbitals + ¢ +( )l l x2 and + ¢ -( )l l x2 . The interactions
may lift the huge single-particle degeneracy, and may give rise
to a unique state describing a fractional quantum Hall phase. In
order to interpret the numerical results, one tries to identify the
fractional quantum Hall phases by scanning through different
values of L, searching for pronounced gaps. Similar to our
strategy presented in section 4.1, one can then compare the
numerical ground state with trial wave functions by evaluating
their overlaps.

In practical applications, the number of particles is
clearly restricted to a small numbers, N 20. The studies of
mixtures of multicomponent systems restricts the computa-
tions to even smaller numbers. For those systems, a subspace
containing every Fock–Darwin state of every species [36] is
constructed. The total Hilbert space is direct sum of the
subspaces, and hence, the total dimension of the space is the
product of dimensions of those subspaces.

6. Conclusions

We have provided a comprehensive study of BHMs com-
posed of a small number of atoms, 10 populating a small
number of sites, 10. First, we have introduced the BHM

together with a detailed description of the ED technique
employed. Then we have concentrated in the MI to SF
transition, first discussing its characterisation by means of
exact overlaps with trial wave functions and secondly by
performing finite size scaling of the gap.

We have also studied a highly biased lattice, in which
one site is considerably deeper than the others. In this case,
the system undergoes several transitions, from a fully loca-
lised state to a MI phase, going through partial SF phases, in
which more and more atoms delocalised prior to localising in
the MI. The way the MI phase grows in population has been
shown to proceed stepwise as the interaction is increased.

In the attractive interactions case, we have considered a
small biased case, to understand the competition between
attraction and localisation. For sufficiently large attractive
interactions, the system fully localises due to the bias. At
lower attractions, the system develops a cat like structure.
Prior to this, the system goes through a state in which the
number of populated Fock states is maximal.
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Appendix. Subroutines for the labelling procedure

Explicit Fortran subroutines to generate the Fock basis
labelling as explained in section 3.1. First we need to build
the Pascal triangle, depending on the total number of sites and
particles, this is done with buildpascal. Once this is gener-
ated, we can use b2in and in2b, to from the basis to the index
or vice versa, respectively.

c original from A. V. Ponomarev (2009)
subroutine buildpascal

c lc = number of sites +1
c nc = number of atoms +1

parameter (lc = 4,nc = 3)
double precision jbc
integer cnkc(lc,nc)
integer jmax
common/pascal/jmax,cnkc

c builds the rotated pascal triangle
do i=1,lc
cnkc(i,1) = 1
end do
do i=1,lc
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(Continued.)

do j=2,nc
cnkc(i,j) = 0

end do
end do
do in1=2,lc
cnkc(in1,2) = sum(cnkc(in1-1,1:2))
if (nc-1.gt.1) then
do in2=1,nc
cnkc(in1,in2) = sum(cnkc(in1-1,1:in2))
end do
end if
end do
jmax = cnkc(lc,nc)
end

c———————————————————————————————————————————
c Returns the many body state bi at position in
c———————————————————————————————————————————
c original from A. V. Ponomarev (2009)

subroutine b2in(bi,in)
implicit none
integer in,lc,nc,jmax,ind_L,ind_N,indi,k,
is,i
parameter (lc = 4,nc = 3)
integer cnkc(lc,nc),bi(lc),suma,M,in1,in2
common/pascal/jmax,cnkc

c builds the rotated pascal triangle
in = 1
do indi = 1,lc-2
do ind_N = 0,bi(indi)
if (bi(indi)-ind_N.gt.0) then
suma = 0.
do k=1,indi-1
suma = suma+bi(k)
enddo

if (lc-indi.gt.0.and.nc-ind_N-suma.
gt.0) then

is = 0
in = in+cnkc(lc-indi,nc-ind_N-suma)

endif
endif
enddo
enddo
end

c———————————————————————————————————————————
c Returns the many body state bi at position in
c———————————————————————————————————————————
c original from A. V. Ponomarev (2009)

subroutine in2b(in,bi)
implicit none
integer in,lc,nc,jmax,ind_L,ind_N,indi
parameter (lc = 4,nc = 3)
integer cnkc(lc,nc),bi(lc)
common/pascal/jmax,cnkc
indi = in-1
bi = 0
ind_L = lc-1

(Continued.)

ind_N = nc
do while(ind_N.ne.1)
if(indi.ge.cnkc(ind_L,ind_N)) then
indi = indi-cnkc(ind_L,ind_N)
bi(lc-ind_L) = bi(lc-ind_L)+1
ind_N = ind_N-1

else
ind_L = ind_L-1

end if
end do

end
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