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The dynamics of a two-level system coupled to a spin bath is investigated via the numerically ex-
act multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory. Consistent with the
previous work on linear response approximation [N. Makri, J. Phys. Chem. B 103, 2823 (1999)],
it is demonstrated numerically that this spin-spin-bath model can be mapped onto the well-known
spin-boson model if the system-bath coupling strength obeys an appropriate scaling behavior. This
linear response mapping, however, may require many bath spin degrees of freedom to represent the
practical continuum limit. To clarify the discrepancies resulted from different approximate treat-
ments of this model, the population dynamics of the central two-level system has been investigated
near the transition boundary between the coherent and incoherent motions via the ML-MCTDH
method. It is found that increasing temperature favors quantum coherence in the nonadiabatic limit
of this model, which corroborates the prediction in the previous work [J. Shao and P. Hanggi, Phys.
Rev. Lett. 81, 5710 (1998)] based on the non-interacting blip approximation (NIBA). However, the
coherent-incoherent boundary obtained by the exact ML-MCTDH simulation is slightly different
from the approximate NIBA results. Quantum dynamics in other physical regimes are also discussed.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4732808]

I. INTRODUCTION

Understanding quantum dynamics in condensed phases
is an important and challenging topic in modern theoretical
chemistry and physics. Although in general the environment
is dissipative, quantum coherence may survive to a relatively
long time as suggested by recent time-resolved optical exper-
iments. The detailed description of the dissipative dynamics
has been based on the system-plus-bath model from which
the reduced density operator fully characterizes the dynamics
of the dissipative system. Usually the size of the total system
à la system-plus-bath is very large, which makes it difficult if
not impossible to construct reliable many-body potential en-
ergy surfaces from first-principles calculations. Instead, sim-
pler models are proposed to capture the essential physics of
the problem, for example, force fields in molecular dynam-
ics simulations, models based on linear response approxima-
tion, and so on. Among these the most popular approach is
the Caldeira-Leggett model1, 2 in which the bath consists of an
ensemble of harmonic oscillators with linear couplings to the
system. This model has been widely used in condensed phase
physics and chemistry to represent a variety of different dis-
sipative processes. An interesting example is the spin-boson
Hamiltonian3, 4 where a system of two states is linearly cou-
pled to a bath of harmonic oscillators. In mass-weighted co-
ordinates, the Hamiltonian has the form (in this paper atomic
units are used where ¯ = 1)

H = εσz + �σx + 1

2

∑
i

(
p2

i + ω2
i q

2
i

) + σz

∑
i

ciqi, (1.1)

where ε is the energy bias for the two-level subsystem, � is
the nonadiabatic coupling, and σ x and σ z are Pauli matrices

σx = |φ1〉〈φ2| + |φ2〉〈φ1|, (1.2a)

σz = |φ1〉〈φ1| − |φ2〉〈φ2|, (1.2b)

with |φ1〉 and |φ2〉 representing two localized states. Within
the linear response framework the properties of the bath that
influence the dynamics of the two-state subsystem are com-
pletely specified by the spectral density function3, 4

JB(ω) = π

2

∑
j

c2
j

ωj

δ(ω − ωj ). (1.3)

Despite its simple form, the spin-boson model is not analyt-
ically solvable and in fact quite challenging in some strong
coupling regimes. It is the subject of various approximate3–19

and numerically exact20–31 treatment and has been used
to model a variety of different processes such as elec-
tron transfer,32 hydrogen tunneling,33 macroscopic quantum
coherence,34 and many others.4

The harmonic boson bath is often considered to be a
model for collective variables near equilibrium. If one con-
siders another type of media, e.g., a spin glass or an array of
nuclear spins in electronic or magnetic materials, a spin bath
model35, 36 seems to be a logical choice. The resulting spin-
spin-bath model can be written in a similar form to Eq. (1.1)

H = εσz + �σx + 1

2

∑
i

ωis
i
z + σz

∑
i

ci√
2ωi

si
x, (1.4)
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where si
z and si

x are Pauli matrices for the ith mode of the
spin bath. Put differently, the spin bath can be regarded as a
truncated bosonic bath in Eq. (1.1) in which each harmonic
oscillator is confined to only two eigenstates. The fact that
only single excitation is allowed for each bath spin seems to
suggest that quite different physics may be expected between
this spin-spin-bath model and the well-known spin-boson
model. Indeed, using the resolvent operator approach, Shao
and Hänggi37 found that by increasing the temperature of the
spin bath the coherence of the central two-level subsystem is
actually enhanced rather than suppressed, which contradicts
the conventional wisdom that a heat bath usually causes
dissipative and decoherence dynamics to the subsystem it
is connected to. A subsequent study,38 employing the non-
interacting blip approximation (NIBA) (Ref. 3) gauged by the
numerical path integral simulation, support this finding that
the coherent-incoherent boundary is shifted to the stronger
coupling regime upon increasing the temperature. However,
there appears to be some disagreement on this conclusion as
well as the exact location of the phase boundary with respect
to the temperature and the coupling strength (vide infra).
This was discussed in a more recent publication39 using a
perturbation approach based on a polaron-like transformation
technique. A major finding of the paper is that the coherent-
incoherent boundary is independent of the bath temperature,
which is different from the results discussed above.

The qualitatively different conclusions drawn from each
work depend largely on the specific perturbational approach
employed, and it is difficult to check the validity of the per-
turbation theory without prior knowledge on the exact (quan-
titative) physics of the relevant problem. Therefore, we have
carried out numerically exact quantum dynamics study on the
spin-spin-bath model using the multilayer multiconfiguration
time-dependent Hartree (ML-MCTDH) theory.40 In particu-
lar, we are interested in physical regimes that are difficult to
be treated by approximate perturbation theories, e.g., stronger
couplings and/or lower temperatures. Furthermore, we are in-
terested in understanding the underlying physics between co-
herent to incoherent transitions in the spin-spin-bath model
and the different impact between the spin and the boson bath
on the reduced dynamics of the central two-level subsystem.

To facilitate such an analysis on the current model, one
of the most useful tools is the linear response mapping of the
environment to an effective harmonic bath.1, 2, 33, 41 In general,
linear response is an approximation that only takes into ac-
count the second order contribution of the interaction with
the environment. However, if the system-bath coupling is dis-
tributed uniformly over all the bath degrees of freedom, it is
shown that linear response is exact if the bath is (practically)
infinitely large.33, 41 In this case the influence functional has
a Gaussian form and the overall two-level/bath model can be
mapped onto the form of the spin-boson Hamiltonian with
an effective spectral density.33, 41 The harmonic form for the
effective bath does not imply that the microscopic potentials
of the environment are quadratic. Rather, it is a mapping in
the context of the linear response limit whose parameters are
defined in such a way that its force-force correlation func-
tion at a certain temperature agrees with that of the origi-
nal environment.33, 41, 42 The actual nuclear potential energy

function may be quite anharmonic,42 which renders a local
harmonic approximation invalid. Sometimes, the analysis of
such an effective harmonic bath model is crucial for obtain-
ing an approximate picture of the spin-spin-bath model at var-
ious temperatures, although in this work our simulation also
reveals some counter-intuitive features that are subtle for a
simple qualitative interpretation.

The remainder of the paper is as follows. In Sec. II we
outline the physical model and the quantum ML-MCTDH
method used in our study. In Sec. III, we first present nu-
merical results to investigate the linear response limit of the
spin-spin model and its practical realization. This is followed
by the study of the coherent to incoherent transition versus the
system-bath coupling strength, particularly in the low temper-
ature regimes. Section IV summarizes our findings.

II. THEORETICAL METHODOLOGY

A. Model and observable of interest

The spin-spin-bath Hamiltonian of Eq. (1.4) is employed
in our study. Similar to the previous work37–39 we consider a
symmetric two-level subsystem (ε = 0) and assume that the
spin bath and its coupling to the central two levels can be
characterized by a continuous spectral density function, here
an Ohmic form with an exponential cutoff

J (ω) = π

2
αω e−ω/ωc . (2.1)

In this expression, α is the dimensionless Kondo parameter
that characterizes the system-bath coupling strength and ωc is
the cutoff frequency/energy-splitting of the bath. The Ohmic
spectral density is often found in the study of the spin-boson
model described by Eq. (1.1). A discretization of the con-
tinuous spectral density function in the form of (1.3) can be
achieved via the relation29, 30, 40

c2
j = 2

π
ωj

J (ωj )

ρ(ωj )
, (2.2a)

where ρ(ω) is a density of frequencies satisfying∫ ωj

0
dω ρ(ω) = j, j = 1, . . . , Nb, (2.2b)

and Nb is the number of bath modes.
The functional form for ρ(ω) is arbitrary as long as it

covers the whole spectral range and ensures c2
j ∼ 1/Nb as

Nb → ∞. For practical purpose an appropriate choice of ρ(ω)
can make the simulation more effective by requiring less num-
ber of modes to converge. In this work, ρ(ω) is chosen as

ρ(ω) = Nb + 1

ωc

e−ω/ωc . (2.3)

The specific number of bath modes depends on the time scale
of interest and the system-bath coupling strength. To ensure
convergence to the condensed phase limit, we have employed
a few hundred to ten thousand spin modes for the various
cases discussed in this paper.

To improve the efficiency of the calculations, some
of the high-frequency spin modes can be removed from
the dynamical simulation using a Born-Oppenheimer type
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approximation,3 resulting in a modified electronic coupling

�eff = � exp

[
− 2

π

∫ ∞

ωq

dω
J (ω)

ω2

]
. (2.4)

Here, ωq defines the boundary frequency above which the
modes are not treated explicitly in the dynamical simulation
but are included via the effective coupling parameter �eff.
It is thus a numerical convergence parameter. It should be
stressed that the sole purpose of using Eq. (2.4) to remove
high-frequency modes is to accelerate the calculations. The
ML-MCTDH method does not rely on this trick and can han-
dle all the bath modes in the simulation (albeit at a higher
computational but tractable cost.) One advantage of perform-
ing this reduction is to investigate to what extent the high-
frequency modes is irrelevant to the reduced dynamics of the
two-level subsystem thus providing insights into the develop-
ment of approximate theories. It is found that this reduction
is only useful for low bath temperatures and/or weak system-
bath couplings.

In this paper, the observable of interest is the time-
dependent population difference of the two localized states
|φ1〉 and |φ2〉,

P (t) ≡ 〈σz(t)〉 = 1

tr[e−βHB ]
tr[e−βHB |φ1〉〈φ1| eiHtσze

−iH t ],

(2.5)

where we consider a factorized initial state specified by the
density operator |φ1〉〈φ1| for the central spin and the equilib-
rium Boltzmann operator e−βHB /tr(e−βHB ) for the bath. The
Hamiltonian of the bath, HB, is given by

HB = 1

2

∑
i

ωis
i
z. (2.6)

To evaluate the trace at a certain temperature (β = 1/kBT) we
use a direct product basis |n〉|φ1〉 such that

e−βHB =
∑

n

e−βEn |n〉〈n|, (2.7)

where the bath state {|n〉} ≡ {|n1〉|n2〉 . . . |nNb
〉} is a direct

product of the bath spin states with the occupation ni of
each mode selected via a Monte Carlo importance sampling
technique.40, 43, 44 The trace in Eq. (2.5) is then written as

P (t) = 1∑
n e−βEn

∑
n

e−βEn〈�n(t)|σz|�n(t)〉, (2.8a)

where

|�n(t)〉 = e−iH t |�n(0)〉 = e−iH t |φ1〉|n〉. (2.8b)

The time propagation of each wave function can be car-
ried out using the ML-MCTDH method.

B. Multilayer multiconfiguration time-dependent
Hartree theory

To obtain the time-dependent population difference P(t)
in Eqs. (2.8a) and (2.8b), the current approach requires the
time-dependent wave function e−iHt|�0〉. This is achieved by

employing the ML-MCTDH theory.40 This method general-
izes the original MCTDH method45–48 for applications to sig-
nificantly larger systems and has been applied extensively to
reactions in the condensed phase.40, 42, 43, 49–60

Briefly speaking, the ML-MCTDH method40 is a rigor-
ous variational approach to study quantum dynamics in sys-
tems with many degrees of freedom. Within this approach
the time-dependent wave function is expressed by a recursive,
layered expansion

|�(t)〉 =
∑
j1

∑
j2

. . .
∑
jp

Aj1j2...jp
(t)

p∏
κ=1

∣∣ϕ(κ)
jκ

(t)
〉
, (2.9a)

∣∣ϕ(κ)
jκ

(t)
〉 =

∑
i1

∑
i2

. . .
∑
iQ(κ)

B
κ,jκ

i1i2...iQ(κ)
(t)

Q(κ)∏
q=1

∣∣v(κ,q)
iq

(t)
〉
, (2.9b)

∣∣v(κ,q)
iq

(t)
〉 =

∑
α1

∑
α2

. . .
∑

αM(κ,q)

C
κ,q,iq
α1α2...αM(κ,q) (t)

M(κ,q)∏
γ=1

∣∣ξκ,q,γ
αγ

(t)
〉
,

(2.9c)

. . .

where Aj1j2...jp
(t), B

κ,jκ

i1i2...iQ(κ)
(t), C

κ,q,iq
α1α2...αM(κ,q) (t), and so on are

the expansion coefficients for the first, second, third, . . . , lay-
ers, respectively; |ϕ(κ)

jκ
(t)〉, |v(κ,q)

iq
(t)〉, |ξκ,q,γ

αγ
(t)〉, . . . , are the

single particle functions (SPFs) for the first, second, third, . . . ,
layers. The notations beyond the first layer are as follows. In
Eq. (2.9b) Q(κ) is the number of (level 2) single particle (SP)
groups for the second layer that belongs to the κth (level 1) SP
group in the first layer, i.e., there are a total of

∑p

κ=1 Q(κ) sec-
ond layer SP groups. Continuing along the multilayer hierar-
chy, M(κ , q) in Eq. (2.9c) is the number of (level 3) SP groups
for the third layer that belongs to the qth (level 2) SP group
of the second layer and the κth (level 1) SP group of the first
layer, resulting in a total of

∑p

κ=1

∑Q(κ)
q=1 M(κ, q) third layer

SP groups. Such a recursive expansion can be carried out to an
arbitrary number of layers. To terminate the multilayer hier-
archy at a particular level, the SPFs in the deepest layer are
expanded in terms of time-independent configurations. For
example, in the four-layer version of the ML-MCTDH the-
ory, the fourth layer is expanded in the time-independent ba-
sis functions/configurations, each of which may still contain
several degrees of freedom.

Applying the Dirac-Frenkel variational principle,
〈δ�(t)|i ∂

∂t
− Ĥ |�(t)〉 = 0, with the functional form in

Eqs. (2.9a)–(2.9c), the coupled equations of motion can be
obtained40, 56 for the time derivatives of expansion coeffi-
cients of all the layers. For a N-layer version, there are N
+ 1 levels of expansion coefficients because the SPFs in
the deepest layer need to be expanded in time-independent
basis functions/configurations. In this sense the conventional
wave packet propagation method is a “zero-layer” MCTDH
approach. The introduction of this recursive, dynamically
optimized layering scheme in the ML-MCTDH wavefunction
provides much more flexibility in the variational functional,
which significantly advances the capabilities of performing
wave packet propagations for large systems.40, 42, 43, 49–60 In
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this work, we employ an implementation of the ML-MCTDH
theory with up to four dynamical layers. Without specified
otherwise, only converged results are shown.

III. RESULTS AND DISCUSSION

A. The practical linear response limit

The fact that we assume a continuous spectral den-
sity function (2.1) for the spin bath already implies that the
model satisfies the linear response requirement. This can
be understood from the discretization scheme described in
Eqs. (2.2a) and (2.2b), which possesses two basic properties:
(1) the coupling parameter cj can be made arbitrarily small
once the number of bath modes Nb becomes arbitrarily large,
thus in an average sense the system-bath coupling is dis-
tributed uniformly over all the bath degrees of freedom; (2)
the coupling follows the general scaling behavior c2

j ∼ 1/Nb

in the Nb → ∞ limit. Under these conditions and based on
the work of Suarez and Silbey,33 Makri41 has shown that only
the second order term retains in the cumulant expansion of
the influence functional for Nb → ∞. That is, the linear re-
sponse mapping is exact in the infinite bath modes limit and
the spin-spin-bath model can be mapped onto the familiar
spin-boson model, for which the effective spectral density of
the harmonic bath is36

Jeff(ω, β) = tanh(βω/2)J (ω). (3.1)

In particular, Jeff(ω, β) is the same as J(ω) at zero temperature.
In this limit, the spin-spin-bath and the spin-boson model have
the same reduced dynamics for the central two-level subsys-
tem.

For realistic applications the system-bath type models
are often derived from large but finite systems according to,
e.g., molecular dynamics simulations or first-principles cal-
culations. In this situation the linear response mapping is
only approximate. It is thus useful to investigate the practi-
cal condition under which linear response holds. To map the
current spin-spin bath model onto the linear response spin-
boson model, one needs to ensure that enough number of spin
modes are included so that the system-bath coupling is diluted
over many of them. For higher temperatures only a moderate
number of bath spin modes (less than a few hundred) are re-
quired to achieve numerical convergence.41 This will not be
the case for lower temperatures and/or stronger system-bath
couplings. Below, we present results for the most quantum
regime, the zero temperature for the bath. Since in this limit
the spin-spin-bath and the spin-boson model have the same re-
duced dynamics, converged results can be obtained from the
latter model using the same ML-MCTDH approach described
previously.55, 58

Figure 1 shows results for a regime that the system and
bath have similar time scales, ωc/� = 1. For a weaker cou-
pling strength in Fig. 1(a), α = 0.5, pronounced coherence
is found in P(t) defined in Eq. (2.5). It is seen that 100 bath
spins already provide a reasonable description of the dynam-
ics within the time scale shown in the plot, although there are
small recurrences at longer times. In this case, the linear re-
sponse limit is numerically achieved (within the time scale

(a)

0 10 20 30 40
tΔ

-0.5

0.0

0.5

1.0

P
(t

)

Converged
100 spin modes
200 spin modes
300 spin modes

(b)

0 2 4 6
tΔ

0.5

0.6

0.7

0.8

0.9

1.0

P
(t

)

Converged
50 spin modes
100 spin modes
250 spin modes

FIG. 1. Time-dependent population difference, Eq. (2.8), for a spin bath with
a characteristic frequency ωc/� = 1 and zero temperature. The Kondo param-
eters are: (a) α = 0.5, (b) α = 10.

depicted in the graph) with 200–300 bath spin modes. Similar
findings are obtained for a stronger coupling in Fig. 1(b) with
a Kondo parameter α = 10, where localization in the cen-
tral two-level’s population is found after a transient coherent
period. This is typical when the time scale of the bath is sim-
ilar to or longer than that of the subsystem.58 Compared with
Fig. 1(a), the time scale for P(t) to reach its stationary value
is shorter. To study relevant dynamics of the model, one is
usually only interested in such a time scale. For this purpose
a few hundred spin modes are satisfactory. For comparison,
the converged results are obtained for the corresponding spin-
boson model with less than 300 bath modes.

Thus, for a relatively narrow spectral density such as the
Ohmic form with an exponential cutoff, only a moderate num-
ber of bath modes are required to fulfill the linear response
requirement if there is a match between the time scales of
the bath and the system. This is because within the limited
spectral range all the discrete bath modes are coupled to the
subsystem at roughly the same scale, which effectively dilutes
the system-bath coupling strength. This is not true if the spec-
tral density covers a broader range of frequencies such as in a
glassy environment. Even for the current spectral density, in
the adiabatic or the nonadiabatic regime there is a mismatch
of the time scale between the bath and the system, which
renders less effective coupling of each individual mode. At
zero temperature the reduced dynamics for the former is usu-
ally characterized by a coherent motion in the weak coupling
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(a)

0 10 20 30
tΔ
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200 spin modes

(b)
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(c)
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P
(t

)

Converged
400 spin modes
1600 spin modes
6400 spin modes

FIG. 2. Time-dependent population difference for a spin bath with a charac-
teristic frequency ωc/� = 10 and zero temperature. The Kondo parameters
are: (a) α = 0.2, (b) α = 0.5, (c) α = 0.75.

regime and localization in the strong coupling limit, whereas
for the latter it shows a coherent to incoherent transition which
is more relevant to the topic discussed in this paper and will
be presented below.

Figure 2 shows P(t) in a nonadiabatic regime, ωc/�
= 10, for different values of the system-bath coupling
strength. The characteristics of the population dynamics
change from weakly damped coherent oscillation to incoher-
ent decay when the Kondo parameter α increases from 0.2
to 0.75. For a weaker coupling strength in Fig. 2(a) the dy-
namics is converged with 200 bath spin modes. At a moderate
coupling strength, α = 0.5, there is a small negative lobe in
P(t) obtained with the 300 spin modes that is absent from the
converged result. Thus, at least 600 spin modes are needed in

0 10 20 30 40
tΔ

0.0

0.2

0.4

0.6

0.8

1.0

P(
t)

Converged
800 spin modes
1600 spin modes
3200 spin modes
6400 spin modes

FIG. 3. Time-dependent population difference for a spin bath with a charac-
teristic frequency ωc/� = 40 and zero temperature. The Kondo parameter is
α = 0.5.

terms of the convergence criteria in a typical ML-MCTDH
simulation. This accuracy is particularly important since
α = 0.5 defines the approximate coherent-incoherent tran-
sition boundary in the scaling limit ωc/� → ∞. Lastly,
when the Kondo parameter is increased to α = 0.75, as
many as 6400 bath spin modes are required to converge the
result within the time scale shown in Fig. 2(c). The cor-
responding spin-boson model, on the other hand, only re-
quires 500 modes to achieve the same accuracy. This sug-
gests that in the strong coupling regime of the nonadiabatic
limit, many more bath spin modes are required to dilute
the coupling strength in order to achieve convergence in the
dynamics and to the linear response limit. The situation is
worse when the time scale of the bath further increases, as
shown in Fig. 3 with ωc/� = 40. Here, even for α = 0.5,
a bath of 6400 spin modes are not sufficient and the accu-
rate result is obtained with 9600 bath spin modes. Under
these circumstances it is easier to carry out the ML-MCTDH
study on the mapped spin-boson model, for which less than
a thousand discrete modes provide converged dynamical
results.

The above numerical tests show that although the spin-
spin-bath model can be mapped onto the familiar spin-boson
model in the linear response limit, many degrees of freedom
are required to fulfill the practical requirement. Thus, caution
needs to be taken in the actual modeling procedure to verify
whether linear response is a good approximation. It should
also be mentioned that the model discussed here satisfies, by
construction, the requirement of linear response because of
the continuous spectral density function employed. This is not
the case if the spectral density contains some discrete terms,
i.e., some intrinsically nonlinear degrees of freedom just as
the intramolecular modes in electron transfer process. Such
models can be found in realistic applications and will be the
subject of future work.

B. The role of temperature in the coherent-incoherent
transition

It is generally believed that for an open system the role of
a heat bath is to provide a dissipative environment. At higher
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FIG. 4. Time-dependent population difference for a spin bath with a charac-
teristic frequency ωc/� = 1 and Kondo parameter α = 10.

temperatures there are more bath states participating in the
overall dynamics, which provides more effective quenching
to quantum effects such as the coherence an isolated system
exhibits. However, some previous studies show that for the
spin-spin-bath model increasing the temperature may slightly
enhance the coherence of the central two-level subsystem
in the nonadiabatic regime,37, 38 a result somewhat counter-
intuitive. Another study,39 on the other hand, concludes that
the coherent-incoherent boundary is independent of the tem-
perature. Here, we use the numerically exact ML-MCTDH
method to address this discrepancy.

Since a coherent to incoherent transition depends on the
physical regime, we first show a result where there is no clear
time scale separation between the bath and the subsystem,
ωc/� = 1. Figure 4 illustrates the effect of temperature for
α = 10 [i.e., the parameters used in Fig. 1(b)]. At zero tem-
perature, P(t) first displays a transient coherent motion, and
then reaches its stationary value. For a large coupling strength
in an adiabatic (or intermediate between adiabatic and nona-
diabatic) regime, the barrier along the adiabatic double-well
potential can be high enough to induce localization of the pop-
ulation, such as observed here. As the temperature of the spin
bath is raised, more energy may be available to assist the sub-
system get out of the trap. Furthermore, as shown in Eq. (3.1),
the linear response mapped effective spectral density becomes
smaller in magnitude at higher temperatures, thus lowering
the double-well’s barrier height. Both effects will promote
the system moving from its localized state, and this is indeed
what we have found in the simulation. As depicted in Fig. 4,
increasing the temperature induces a faster decay to the delo-
calized population distribution for the central spin. The result-
ing time-dependent dynamics of P(t) becomes less coherent.

The above result is informative but beyond many approx-
imate theories that require a well-defined time scale separa-
tion between the subsystem and the bath. Let us now turn to
the nonadiabatic regime, which is the subject of the previous
approximate theoretical treatment and which raises some dis-
agreement in conclusions. Figure 5 is an example of the nona-
diabatic regime (ωc/� = 6) that has been studied by the path
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FIG. 5. Time-dependent population difference for a spin bath with a
characteristic frequency ωc/� = 6 and Kondo parameters: (a) α = 0.5,
(b) α = 0.1.

integral method.38 Figure 5(a) shows P(t) for several temper-
atures with the Kondo parameter α = 0.5. At zero temper-
ature, P(t) exhibits a clear incoherent decay to its final sta-
tionary value of P = 0. However, even with a little increase
in the bath temperature, kBT/� = 0.1, P(t) becomes slightly
negative in its transient dynamics and slowly recovers to its
stationary value in the long time limit. A further increase in
temperature induces stronger coherent motion with a shorter
period. Therefore, temperature plays a positive role here of in-
ducing the coherence. As a comparison, for a weaker system-
bath coupling strength, α = 0.1, the population dynamics
is already coherent at zero temperature. Figure 5(b) shows
that increasing the bath temperature within a similar range
does not have significant impact on P(t). Finally, it is noted
that Fig. 5 agrees with the previous path integral results for
kBT/� = 0.5.

Thus, our simulation suggests that increasing the bath
temperature promote coherent dynamics of the central two-
level subsystem, a result in agreement with the previous work
of Shao and Hänggi37 and Forsythe and Makri.38 To further
illustrate this point, Fig. 6 shows P(t) versus bath tempera-
ture for ωc/� = 10 and three Kondo parameters: α = 0.5,
α = 0.6, and α = 0.75. From NIBA analysis in the scaling
limit (ωc → ∞), α = 0.5 is the approximate boundary for
the coherent-incoherent transition at zero temperature, i.e., for
α > 0.5 the dynamics of P(t) at zero temperature is charac-
terized by an incoherent relaxation. This is confirmed by the
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FIG. 6. Time-dependent population difference for a spin bath with a char-
acteristic frequency ωc/� = 10 and Kondo parameters: (a) α = 0.5,
(b) α = 0.6, (c) α = 0.75.

results shown in Fig. 6. However, a striking feature that exists
in P(t) for all the three Kondo parameters is that even with
a low bath temperature, kBT/� = 0.1, P(t) becomes slightly
negative (and thus coherent) in its transient dynamics and then
slowly comes back to its stationary value of P = 0. This is
true even for a relatively large Kondo parameter, α = 0.75 in
Fig. 6(c). Another feature shown in Fig. 6 is that the transient
coherent period becomes longer as the Kondo parameter in-
creases. Calculations for other Kondo parameters in this range
suggest similar behavior.

In general, increasing temperature of the bath means that
more excitations are available and thus fluctuations becomes

stronger, which is detrimental to quantum coherence the sys-
tem can display. For the spin-spin-bath model considered in
this paper, however, the argument is not an accurate descrip-
tion of the true physical situation because the number of the
states for each bath spin is limited to two. Nevertheless, an
increase in temperature (from zero K) in the nonadiabatic
regime brings about two competing effects. On one hand, the
heat bath has more energy/excitations and may quench
the coherent dynamics more effectively. On the other hand,
the effective spectral density for the mapped spin-boson
model, Eq. (3.1), has a smaller magnitude when the temper-
ature is higher. This renders weaker coupling to the central
spin and results in more coherent dynamics of the subsys-
tem. For lower temperatures our simulation indicates that the
second effect dominates. This is surprising if one plots the
effective spectral density of Eq. (3.1), for it is nearly iden-
tical to, or with an exponentially small difference from the
spectral density at zero K. However, upon closer examina-
tion, it is found that the low frequency end of the spectral
density is most affected in the effective spectral density. In
the nonadiabatic regime it is this part that couples more ef-
fectively to the two-level subsystem. Therefore, reducing this
part when increasing the bath temperature will reduce the ef-
fective system-coupling strength and thus induce more coher-
ence in the dynamics of P(t).

C. The coherent-incoherent boundary
at low temperatures

The above results suggest that upon increasing the bath
temperature the coherent-incoherent boundary is shifted to
the larger coupling strength. The simulation results shown
in Fig. 6 is consistent with the previous NIBA calculation38

that even at a very low temperatures the coherent-incoherent
boundary is located approximately at α = 0.75 or even larger.
However, at zero temperature the spin-spin-bath model has
identical reduced dynamics as the spin-boson model. Since
for the latter the coherent-incoherent transition is at α = 0.5 in
the scaling limit, Ref. 39 raises some doubts on the phase di-
agram obtained from the NIBA calculation.38 To answer this
question we perform the ML-MCTDH simulation at zero tem-
perature to locate the coherent-incoherent boundary.

Certain ambiguity exists in defining the coherent to in-
coherent transition. For an unbiased spin subsystem, we use
the definition of Ref. 38 that if P(t) has a small negative tran-
sient lobe, it is called coherent. The converged ML-MCTDH
calculations can have a resolution of P(t) = −0.005 or better.
As shown in Fig. 7, this transition occurs at approximately α

= 0.46 [i.e., at and above which there is no negative value
in transient P(t)] for all three characteristic frequencies of the
bath, though the time scales for the transient dynamics of P(t)
are different. Of course, one may argue that in the scaling
limit only α = 0.5 has a single exponential decay in P(t).
For a slightly smaller α depicted in Fig. 7, P(t) may be fit-
ted to a damped oscillation although it does not become neg-
ative. This, however, will only change the transition bound-
ary slightly. Furthermore, when α becomes larger than 0.5 the
dynamics of P(t) involves multiple time scales and cannot be
described by a single exponential decay either.55 In this sense
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FIG. 7. Time-dependent population difference for a spin bath at zero tem-
perature. The characteristic frequencies are: (a) ωc/� = 10, (b) ωc/� = 20,
(c) ωc/� = 40.

a single exponential decay may also be an inappropriate sepa-
ration between the coherent and incoherent dynamics. There-
fore, we conclude that according to our ML-MCTDH simula-
tion the coherent-incoherent boundary at zero temperature is
located at α slightly less than 0.5.

With respect to the accuracy of the NIBA approach for
predicting the coherent-incoherent boundary, Fig. 8 shows
the comparison between the ML-MCTDH simulation and the
NIBA calculation at zero temperature and a Kondo param-
eter α = 0.5. It is seen that for a (relatively) smaller char-
acteristic frequency ω/� = 10, there are some small differ-
ences between the NIBA and the exact result. In particular,
P(t) obtained from NIBA exhibits a quenched coherent mo-

(a)

0 10 20 30 40
tΔ

0.0

0.2

0.4

0.6

0.8

1.0

P
(t

)

ML-MCTDH
NIBA

(b)

0 10 20 30 40
tΔ

0.0

0.2

0.4

0.6

0.8

1.0

P
(t

)

ML-MCTDH
NIBA

(c)

0 10 20 30 40
tΔ

0.0

0.2

0.4

0.6

0.8

1.0

P
(t

)

ML-MCTDH
NIBA

FIG. 8. Comparison of the time-dependent population between the ML-
MCTDH and NIBA results. The bath temperature is zero and the Kondo
parameter is α = 0.5. The characteristic frequencies are: (a) ωc/� = 10,
(b) ωc/� = 20, (c) ωc/� = 40.

tion whereas the ML-MCTDH result does not. Thus, NIBA
or similar perturbation theory would predict the coherent-
incoherent boundary to be located at α > 0.5 at zero tempera-
ture. On the other hand, exact results show that this bound-
ary resides at α < 0.5. As the characteristic frequency in-
creases, NIBA becomes more accurate and eventually exact
in the scaling limit, in which the coherent-incoherent bound-
ary agrees with the exact result.

Figure 9 further illustrates the performance of NIBA
at zero temperature for a bath characteristic frequency of
ω/� = 10. It demonstrates that NIBA calculations deviate
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FIG. 9. Comparison of the time-dependent population between the ML-
MCTDH and NIBA results. The bath temperature is zero and the charac-
teristic frequency is ωc/� = 10. The Kondo parameters are: (a) α = 0.4,
(b) α = 0.6, (c) α = 0.75.

from the exact results, especially in the stronger coupling
regime. However, combining Figs. 8 and 9, NIBA captures
the coherent-incoherent transition at a qualitative level even
though its predicted P(t) is not accurate. At higher tempera-
tures, NIBA is expected have a better performance.

IV. CONCLUDING REMARKS

Thus, our ML-MCTDH simulation reveals that for the
spin-spin-bath model increasing the bath temperature will en-
hance the coherence of P(t) in the nonadiabatic regime, a re-

sult consistent with the previous approximate theories.37, 38

The exact coherent-incoherent boundary is slightly less than
α = 0.5 at zero temperature. The boundary is shifted to the
stronger coupling regime at α = 0.7–0.8 even for a very low
(but nonzero) temperature, e.g., kBT/� = 0.1. Although in-
creasing the temperature may either enhance the bath exci-
tation and thus favors decoherence, or reduce the coupling
between the bath and the two-level subsystem as demon-
strated in its effective spectral density in the mapped spin-
boson model, our simulation suggests the latter dominates in
the low temperature regime.

Our simulation also shows that a different behavior may
be observed if the model is in the adiabatic regime or the inter-
mediate regime between the adiabatic and nonadiabatic limit,
e.g., Fig. 4. In such a situation increasing the temperature may
break the localization at zero temperature and also quench the
transient coherence. This finding shows the complex interplay
between the coherent-incoherent transition and the physical
regime the system belongs to. It also suggests that caution
must be taken when using an approximate perturbation the-
ory to quantify such properties.

In this work, we have assumed a continuous spectral den-
sity for the spin-spin-bath model as used in the previous stud-
ies. This implies that the model obeys the linear response re-
quirement in the infinite bath modes limit, and thus can be
mapped to the more familiar spin-boson model. This may not
be the case for realistic physical problems, e.g., a spin glass.
Thereby, some intrinsically anharmonic contributions may be
important. The ML-MCTDH methodology is well suited for
studying such problems and will be applied in such future
studies.
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