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Spin—spin model for two-level system/bath problems: A numerical study
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We study a new model for treating quantum dissipative systems, in which the bath is modeled as a
collection of spins coupled to the system of interest. We develop a quasiclassical method to study
this model, approximating the quantum Heisenberg equations by the classical ones, supplemented
with stochastic initial conditions carefully chosen so that the results obtained from the classical
equations are as close as possible to the quantum results. Using this method we compare the
dynamics of such a spin—spin system with that of a spin—boson system, in which the bath is
modeled as a collection of harmonic oscillators. We verify numerically that when the system-bath
coupling is spread over many bath spittse Brownian motion limix, the spin—spin model can be
mapped on the spin—boson modalthough with a temperature dependent spectral densifg

also demonstrate that the two dissipative models are qualitatively very different in a non-Brownian
motion regime. ©1999 American Institute of Physids$S0021-960609)51446-3

I. INTRODUCTION mapped into each other. This observation was recently made
by Makri*® as well.
Dynamical simulation of quantum dissipative systems is  In this paper we consider the dynamics of the simplest
a challenging problem in condensed matter physics andissipative system, a two-level system interacting with a
chemistry* Such systems consist of a few relevant degreedath. For a harmonic bath there are a number of methods
of freedom coupled to the environment, or bath, whose numavailable: semiclassical approximatitit® tensor multipli-
ber of degrees of freedom tends to infinity. Usually it is thecation algorithmt®1”a memory equation approadhand the
properties of the open dissipative system that are of interestelebrated noninteracting blip approximatiofNIBA).>
Quantum dissipative systems serve as models for condens&tethods for a spin bath are not so well developed. In this
phase dynamical processes such as charge-transfpaper we develop a quasiclassical method to treat the dynam-
reactions’ vibrational relaxatiorf;* macroscopic tunnelingy, ics of the spin—spin system. Using this method, we show
etc. explicitly—by comparing with the reference data for a spin—
The most commonly used microscopic model of a dissi-boson model—that the correspondence between spin—spin
pative system is that of a twaer a few) level system lin- and spin—boson models holds in the Brownian motion limit.
early coupled to an infinite set of harmonic oscillators. TheOn the other hand, we show that outside the Brownian mo-
problem is naturally called the spin—boson problem. Thistion regime the two dissipative models are qualitatively very
model is convenient to use because the harmonic bath can bigferent.
integrated out analyticall}, leading to a path integral The rest of the paper is organized in the following way.
expressiohwhich is the basis of the quantum Monte Carlo In Sec. I, spin—spin and spin—boson models are discussed.
(QMC) method, the only feasible exact method available sd-or these models we derive a quasiclassical method in Sec.
far. I1l. Numerical results are presented in Sec. IV, followed by a
Recently, a new model for treating quantum dissipativediscussion in Sec. V, and Sec. VI contains concluding re-
systems has been developed In it, instead of consisting marks and sketches future directions.
of harmonic oscillators, the bath is modeled as a collection of
spins coup_Ied to the syste_m of _mterest. Thus, we can _na_tth-_ SPIN—BOSON AND SPIN—SPIN MODELS
rally call this model the spin—spin model for quantum dissi-
pation. A spin bath naturally arises in the problems of In its simplest form, the spin—boson model represents a
magnetic resonance and quantum tunneling of magnetizawo-level system{TLS) linearly coupled to an infinite set of
tion. It has been showhthat the spin—boson model can be harmonic oscillators which mimic the environmefitath
viewed as a particular case of the spin—spin model. In thevithin the regime of validity of linear response theory. This
limit of infinite number of bath degrees of freedom weakly model has been used extensively to describe chemical reac-
coupled to the systertthe Brownian motion limit the two  tions at low temperature when tunneling from reactants to
models lead to identical equations of motion, and therefor@roducts is the major contributor to the reaction rate. The
to identical results. Thus, in that limit, the two models can beHamiltonian for this model, for a bath consisting of total of
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whereo, ando, are Pauli matrices of the TLS,is a biasK

is a tunneling element between two sitgsis the position of oy=—2Ko,+ ; NSjxoxt 2€0y,

the jth bath mode with conjugate momentup) and fre-

quencyw;, andg; is the coupling strength of thigh bath irz=2Koy,

mode to the TLS. The constarit is assumed to be unity _ 6)

throughout the paper. All information about the bath that is Six=—;S;
essential for the dynamics of the system can be captured in

y Ll

the compact form of the spectral density function Sj =—\jS0,t0; Sk, j=1,... M,
2 .
ar i . =\:S.
J(w)=§2 %5((»—(»]). ) Sjz= NS0z
i

We will average the spin operators,(t), oy (t), and
The Hamiltonian for the simplest spin—spin problem, a TLSo,(t) of the system according t¢o,(t))=Tr o,(t)p(0),
coupled to a heat bath &l two-level systemsgspin 1/2, is etc., wherep(0) is the system-bath density matrix at the
initial moment. For a factorized initial density matrix we

M M
A. W
H=€0'Z+K0'X+2 ?JS]'XO'Z"‘E ?JSJ-Z, 3 have
] ] e~ BHpath
whereS;, ands;, are the Pauli matrices for ttjéh bath spin, p(0)=ps(0)® ——, (7)

with Larmor frequencyw; and coupling strengtiz;. This _ o . _
form of the Hamiltonian naturally arises as a linear couplingWhich corresponds to switching on interactions between the
simplification of the Hamiltonian presented in the fundamen-system and a bath which is in equilibrium at the initial time
tal articlest®1? (here Hpap is the bath Hamiltonian and is its partition

In the limit of a small\; and a large number of bath function. The most commonly used initial preparation for
spins (the so-called Brownian motion limitthe spin—spin the system is complete occupation of the “spin up” site, so
system can be mapped onto the spin—boson sy&téfthe  that
correspondence between two models for the above Hamil- (0,0))=1 and (ay,(0))=0. ®)

tonians is given by the followind®
In the classical Heisenberg equations, operators are replaced

2
N2= 9 (4) by numbers which can be thought of as the average values of
I o | Bw;’ the operators with respect to the initial reduced density ma-

7tan 2 trix. Thus, in the case of the spin—boson problem the quasi-

classical approximation amounts to using the initial condi-
tions (oy,0y,0,)=(0,0,1) and sampling the initial
coordinates and momenta of the bath oscillators from a
I1l. QUASICLASSICAL METHOD Wigner distribution (in the spirit of Stock®) obtaining

o,(t)) as an average over classical trajectories. This ap-

In this section we describe the method we have used iéﬁroach is valid in the adiabatic regime, when the bath dy-

order to obtain results for the dynamics of the quantum disy,4mics is very slow compared to that of the system and the

sipative TLS. We will use the Heisenberg equations for themperature is high enough that the bath is almost claséical.
system and bath operators, and we will approximate the \yq may try to make an analogous approximation for the
guantum Heisenberg equations by the classical ones, S“pplgpin—spin problem, so that the averages over trajectories
mented with carefully chosen stochastic initial conditions () yais (0y())yai, and(o(t))ya are as close as pos-
such that the results obtained from the classical equations agg|e ‘to ihe c)(larresplonding quanturj‘n-mechanical values. To

as close as possible to the quantum ones. see how to proceed, consider the example of the unbiased
The Heisenberg equations for the spin—boson model arg,,_state systeme=0) coupled to a bath that consists of
. only one spin with frequency and coupling strength. For
o= _22 gjqjoy—2€0y, the initial conditiong7) and(8) we can express the averages

. (ox(1)), (oy(1)), and(o,(t)) as a Taylor series expansion in

t,

where the{w;} are the same for both models.

&yz —2Ko,+ 2; gjQjoxt2€0y,

= T
. ))y=> ——, a=Xxy,z (9)
0,=2Kaoy, (5) (ol =0 j'’ 7
q=p;, i=1,...M, The coefficientso!) involve the averagego,(0)) («
. ) =X,Y,2).
Pj=~ 8= 0oz, Let us consider the coefficients” up to the sixth order.
and the same equations for the spin—spin model are From the quantum-mechanical calculations we obfailh

odd coefficients are zero due to initial conditioi@3]
O'XI—EI_: \Sixoy—2€0y, EO):]_,
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wherex =2K. The reader might be surprised that the expan- =04 ., , =~ . . . . . . . . 1
sion coefficients for, do not explicitly depend on tempera- 08 ]
ture, except through the temperature dependence of the p: ¢¢ | o=51 |~ sb ]
rametei\. (The temperature dependence would appearintheg o, L \ | 7777 s ]
expansion coefficients fag, . It would enter there through SN 02 | \ — TensMult |

(S,(0)).) It can be shown through direct diagonalization that ~ | \\ e .

the coefficients forr, do not depend on temperature only for NS

-0.2 e
the case of a single bath spin. T e o ‘

Consider the classical expression for the expansion co- o8 - .
efficients. In it weleave outall terms containing odd powers 06 - 0=.64 i
of oy, oy, S;, andS,. We do so because these terms will

cancel out under the initial conditions that we specify later. o4 \
The fact that we keep only terms containing even powers of 021 N 1
oy, oy, S, andS, is represented by replacing the=" or \“"»*--7-:.:~f-"“' T
sign with “—" 00 05 10 15 20 25 30 35 40 45 50 55 60
T
P . _ ,
z z FIG. 1. The transition from the coherent to the incoherent regim& at

=0.625,w,=2.5,K=1 (parameters from Ref. 23Quasiclassical calcula-

tions for spin—bosor(sb) and spin—spin(s§ models are compared with

tensor multiplication resultéTensMul). The time step for the quasiclassical
(11) calculations was 0.05.

—2) 2
o,/ = — K04,

oV k(K2 + NSy,
WO — k(K4 2K\ NS+ 9w\ 2SS IV. NUMERICAL DETAILS
—8w27\25y2)0'2 In this section we calculate the dynamics of a spin—spin
system by the method described in the preceding section and
whereS, and g, denoteS,(0) ando,(0), respectively. compare it with results for the spin—boson system. First we

Comparing Eqs(10) and(11), we see that if we choose consider the Brownian motion limit, where the spin—spin and
the initial conditions forS,, S, to take random values 1 spin—boson models are equivalent. We show that our results
with the proper initial averageéS,)=(S,)=0, and if we are in excellent agreement with the ones obtained by émc
take 0,(0)=1, the quantum and the classical expansions fopr by the tensor multiplication algorithm of Makarov and
(a,(t)) agree through seventh order; the first difference apMakri.*®” Then we demonstrate that the two dissipative
pears in eighth ordefIndeed, ifw=0 it can be shown that models are qualitatively very different in a non-Brownian
this approach igxactto all orders) In order to get the other motion regime.
components of the spin polarization we apply the same strat- We have applied the quasiclassical method to the spin—
egy t0S,: S,=*1 with (S,)=(S,)eq. As for the system spin model in the Brownian motion limit with ohmic spectral
spin o, it turns out that “randomization” of the X,y) density
components-e, ,= +1 with (o, ,) =0—does not improve .
the results and takes four times as long as a “standard” J(w)= 7 aw exp — o/ w,), (12
quasiclassical calculatioms, ,=0, so our calculations were 2
done with this standard assignment for the system spin. Genvherea is a Kondo parameter angl. is a cutoff frequency.
eralization of this approach to the case of many bath particle$his form of J(w) has been used frequently in the literature
is straightforward. because a compact analytical solution given by NIBA can be

Note that our classical description of the bath spin isobtained, and in addition, the spin—boson system with this
different from the conventional one. Our bath spin obeysspectral density exhibits interesting behavisych as a tran-
classical equations of motion but its length\/8, not one.  sition from coherent to incoherent dynamics with increasing
This is due to the initial conditions for the trajectories: a, symmetry breaking at zero temperature, etc.
Sqy.A0)==1. We have calculated the population dynamiéxt)

It is interesting to note that if we make an expansion=(o,(t)), which is of the most interest for the study of the
analogous tq10) and(11) for the harmonic bath case, using chemical reaction dynamics. The results have been compared
the trick of the Wigner distribution fog; andp; leads to an  with QMC" and tensor multiplicatiofi*’ calculations. We
expression for the classicdlo,(t)) that agrees with the have tested our method for several sets of parameters span-
guantum result also through seventh order. ning the transition from coherent to incoherent dynamics at
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FIG. 2. The transition from the coherent to the incoherent regim& at
=2.5,0,=2.5,K=1 (parameters from Ref. 23Quasiclassical calculations
for spin—boson(sb) and spin—spins§ models are compared with tensor
multiplication results(TensMul). The time step for the quasiclassical cal-
culations was 0.05.

FIG. 3. Simulations for strong system-bath coupling 2, T/ w.=4.0. Qua-
siclassical calculations for spin—bos¢b) and spin—spins§ models are
compared with the ones obtained by QNfébm Ref. 19. The time step for
the quasiclassical calculations was 0.01.

both low and high temperaturésigs. 1 and 2and including ] ) ]
strong system-bath couplinge& 2) (Fig. 3. agreement with exact calculations, even though for a spin-

The harmonic bath was discretized wikh=400 har- 00son model our quasiclassical method is equivalent to his

monic modes with frequencies uniformly distributed be-Self-consistent-field approach. This discrepancy is défedo
tween 0 and 10 and couplinggy; obtained from integra- choice qf _|_n|t|al co_n_dltlons in Ref. 14 different from the
tion of both sides of Eq(2) by the trapezoidal rule and product initial condition 7; th«_at is, we suspect that Stock’s
assignment ofj; to the term containing(w;). After that the ~ results are better than he claimed.

frequencies for the spin bath were taken to be the same as the !N @ non-Brownian motion regime, the nature of the bath
ones for the harmonic one and the couplingsor the spin— ~ &€comes very important. In order to see that, consider the
spin model were obtained from relatiéd). In addition, in adiabatic limit where the qyaS|ad|abat|c method' is expec_ted
the study of the non-Brownian motion reginieee beloy;,  1© work best. By decreasing the numbgr of dlscretlzatlon
the number of discretization modes was varied. The classicdN0des, we can see that the difference in dynamics of the
Heisenberg equations with appropriate initial conditigsese ~ SyStem spin due to the difference in the nature of betpis
preceding sectionwere solved by the third-order Runge— OF harmonic oscillatossbecomes more and more apparent
Kutta method. We ran 2500 trajectories in order to obtain(Fig- 4, especially for a single-particle batfirig. 5. For
converged results, which took about 2—10 minutes of CPUEXample(Fig. 5, while polarization of the spin coupled to a
time on PowerP@604e/200 MHz under AIX 4.1. The pa- harmonic bath reaches quasiequilibrithe term “quasi”

rameters for the calculation by the tensor multiplicationWill be explained below the dynamics of the spin coupled
scheme are given elsewhéfe. to a spin bath does not exhibit decay at all. Instead, we ob-

serve a so-called “spin-locking,” when the dynamics of the
main spin is “slaved” by the dynamics of the bath spin. In
the case of very strong coupling, this “slavery” results in the
From the figures we see that, overall, the results of théocalization of the spin polarization in the vicinity of its
spin—spin model are excellent. In most cases they practicallgriginal value. This property could perhaps be useful for the
coincide with the exact QMC or tensor-multiplication construction of storage devices.
scheme. This is both a confirmation that the relatidhis Let us analyze the adiabatic limit more closely for a spin
valid and a demonstration that the quasiclassical methodoupled to a bath consisting of one parti¢lpin or har-
works quite well. The latter is probably due to the random-monic oscillatoy. Consider the strict adiabatic limit, with
ization of nuclear phases, as was studied in detail by Stbck. w—0, so that the classical solvation enefySy
(In fact, Fig. 3 presents calculations for the same parameter (1/7) [dw[(J(w)/w] =const. In that limit, the corre-
regimes as in Fig. 3 of Stock.Our results are in much better spondence relatiotd) becomes\?=8S,4/3. If the popula-

V. DISCUSSION
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FIG. 5. The population dynamics of spin—spig and spin—bosorish)
models in the near-adiabatic limiT&0.2,K=1, »,=0.01) compared for
various values of the coupling strengih The time step for the gquasiclas-
sical calculations was 0.05.

FIG. 4. The population dynamics of spin—spisg and spin—bosorish)
models @=20,T=0.2,K=1, w,=0.1) compared for various bath particle
numbersM. The time step for the quasiclassical calculations was 0.05.

tion dynamics of a bare two-level systetd € Koy +€0,) IS vI. CONCLUSIONS
given by P(t;e), ) .
In this paper we have studied a new model for quantum

K2 cog2VK?+ €t) + €2 dissipative systems, in which the bath is by spins instead of
P(t;e)= K2+ 2 ' (13 harmonic oscillators. This bath model naturally arises in

problems of magnetic resonance, quantum tunneling of mag-
then it can be easily showfby direct diagonalizationthatin ~ netization, quantum computing, etc.
the strict adiabatic limit the population dynamics of the spin ~ We have studied the case of a single spin coupled to a
coupled to a bath spin with the coupling strengttwill be  spin bath, and we have developed a quasiclassical method
given by for calculating the reduced dynamics of the spin—spin sys-
tem. Using this method we have compared the dynamics of a

Ps{t) =P(t;A/2). (14) spin—spin system with that of a spin—boson system.
The analogous expression for a spin—boson mod&fis We have confirmed numerically that when the system-
bath coupling is spread over many bath sgihe Brownian
1 (= 2 [ASe motion limit), the spin—spin model can be mapped on the
Pst)= \/—;f_wdx e’ Pt B X (15 spin—boson modelalthough with atemperature dependent

spectral density Also, the comparison in the Brownian mo-

From Eqgs.(13) and (14) we see that the reduced dynamicstion limit shows that the quasiclassical method works quite
for the spin—spin model is just restricted oscillations aroundvell for the cases studied here.
some value. As the system-bath coupling increases, the os- We have also considered a non-Brownian motion regime
cillations get more and more suppressed, so that in the limiivhere the difference between the two bath models is ex-
of infinite coupling the system spin becomes localized in itspected to matter. For example, when the system-bath cou-
initial state. pling is no longer diluted among many bath spins, the dy-

From the analogous expressi¢h5) for a spin—boson namics of a spin coupled to a few spins does not exhibit
model we see that, due to averaging over a Gaussian distrilephasing, in contrast with that of a spin coupled to a few
bution, the amplitude of oscillations decay over time, so thaharmonic modes. Instead, the reduced dynamics of a spin—
the system reachesuasequilibrium. This is a pure dephas- spin system with very few bath spins exhibits ‘“spin—
ing decay, since there is no energy loss in this case anlbcking:” the dynamics of the system spin is “slaved” by
therefore not true dissipation. Hence the system reaches ntite dynamics of the bath spins. In the case of strong system-
the equilibrium in thermodynamical sense, but ratheasi-  bath coupling the system becomes more and more localized
equilibrium. Distributing the system-bath coupling amongin its initial state. This could be of practical importance in
many bath spins leads to a dephasing as Wég. 4). the construction of storage devices.
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