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Spin–spin model for two-level system/bath problems: A numerical study
Andrei A. Golosov, Stefan I. Tsonchev,a) Philip Pechukas,b) and Richard A. Friesner
Department of Chemistry, Columbia University, New York, New York 10027

~Received 22 July 1999; accepted 15 September 1999!

We study a new model for treating quantum dissipative systems, in which the bath is modeled as a
collection of spins coupled to the system of interest. We develop a quasiclassical method to study
this model, approximating the quantum Heisenberg equations by the classical ones, supplemented
with stochastic initial conditions carefully chosen so that the results obtained from the classical
equations are as close as possible to the quantum results. Using this method we compare the
dynamics of such a spin–spin system with that of a spin–boson system, in which the bath is
modeled as a collection of harmonic oscillators. We verify numerically that when the system-bath
coupling is spread over many bath spins~the Brownian motion limit!, the spin–spin model can be
mapped on the spin–boson model~although with a temperature dependent spectral density!. We
also demonstrate that the two dissipative models are qualitatively very different in a non-Brownian
motion regime. ©1999 American Institute of Physics.@S0021-9606~99!51446-3#

I. INTRODUCTION

Dynamical simulation of quantum dissipative systems is
a challenging problem in condensed matter physics and
chemistry.1 Such systems consist of a few relevant degrees
of freedom coupled to the environment, or bath, whose num-
ber of degrees of freedom tends to infinity. Usually it is the
properties of the open dissipative system that are of interest.
Quantum dissipative systems serve as models for condensed
phase dynamical processes such as charge-transfer
reactions,2 vibrational relaxation,3,4 macroscopic tunneling,5

etc.
The most commonly used microscopic model of a dissi-

pative system is that of a two-~or a few-! level system lin-
early coupled to an infinite set of harmonic oscillators. The
problem is naturally called the spin–boson problem. This
model is convenient to use because the harmonic bath can be
integrated out analytically,6 leading to a path integral
expression7 which is the basis of the quantum Monte Carlo
~QMC! method, the only feasible exact method available so
far.

Recently, a new model for treating quantum dissipative
systems has been developed.8–10 In it, instead of consisting
of harmonic oscillators, the bath is modeled as a collection of
spins coupled to the system of interest. Thus, we can natu-
rally call this model the spin–spin model for quantum dissi-
pation. A spin bath naturally arises9,11 in the problems of
magnetic resonance and quantum tunneling of magnetiza-
tion. It has been shown12 that the spin–boson model can be
viewed as a particular case of the spin–spin model. In the
limit of infinite number of bath degrees of freedom weakly
coupled to the system~the Brownian motion limit! the two
models lead to identical equations of motion, and therefore
to identical results. Thus, in that limit, the two models can be

mapped into each other. This observation was recently made
by Makri13 as well.

In this paper we consider the dynamics of the simplest
dissipative system, a two-level system interacting with a
bath. For a harmonic bath there are a number of methods
available: semiclassical approximation,14,15 tensor multipli-
cation algorithm,16,17a memory equation approach,18 and the
celebrated noninteracting blip approximation~NIBA !.5

Methods for a spin bath are not so well developed. In this
paper we develop a quasiclassical method to treat the dynam-
ics of the spin–spin system. Using this method, we show
explicitly—by comparing with the reference data for a spin–
boson model—that the correspondence between spin–spin
and spin–boson models holds in the Brownian motion limit.
On the other hand, we show that outside the Brownian mo-
tion regime the two dissipative models are qualitatively very
different.

The rest of the paper is organized in the following way.
In Sec. II, spin–spin and spin–boson models are discussed.
For these models we derive a quasiclassical method in Sec.
III. Numerical results are presented in Sec. IV, followed by a
discussion in Sec. V, and Sec. VI contains concluding re-
marks and sketches future directions.

II. SPIN–BOSON AND SPIN–SPIN MODELS

In its simplest form, the spin–boson model represents a
two-level system~TLS! linearly coupled to an infinite set of
harmonic oscillators which mimic the environment~bath!
within the regime of validity of linear response theory. This
model has been used extensively to describe chemical reac-
tions at low temperature when tunneling from reactants to
products is the major contributor to the reaction rate. The
Hamiltonian for this model, for a bath consisting of total of
M modes, is5

H5esz1Ksx1
1

2 (
j

M

~pj
21v j

2qj
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j
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a!Present address: Department of Chemistry, University of Pittsburgh, Pitts-
burgh, PA 15260.

b!Electronic mail: pechukas@chem.columbia.edu

JOURNAL OF CHEMICAL PHYSICS VOLUME 111, NUMBER 22 8 DECEMBER 1999

99180021-9606/99/111(22)/9918/6/$15.00 © 1999 American Institute of Physics



wheresz andsx are Pauli matrices of the TLS,e is a bias,K
is a tunneling element between two sites,qj is the position of
the jth bath mode with conjugate momentumpj and fre-
quencyv j , and gj is the coupling strength of thejth bath
mode to the TLS. The constant\ is assumed to be unity
throughout the paper. All information about the bath that is
essential for the dynamics of the system can be captured in
the compact form of the spectral density function5

J~v!5
p

2 (
j

gj
2

v
d~v2v j !. ~2!

The Hamiltonian for the simplest spin–spin problem, a TLS
coupled to a heat bath ofM two-level systems~spin 1/2!, is

H5esz1Ksx1(
j

M
l j

2
Sjxsz1(

j

M
v j

2
Sjz , ~3!

whereSjx andSjz are the Pauli matrices for thejth bath spin,
with Larmor frequencyv j and coupling strengthl j . This
form of the Hamiltonian naturally arises as a linear coupling
simplification of the Hamiltonian presented in the fundamen-
tal articles.10,12

In the limit of a smalll j and a large number of bath
spins ~the so-called Brownian motion limit!, the spin–spin
system can be mapped onto the spin–boson system.10,12 The
correspondence between two models for the above Hamil-
tonians is given by the following:10

l j
25

gj
2

v j

2
tanh

bv j

2

, ~4!

where the$v j% are the same for both models.

III. QUASICLASSICAL METHOD

In this section we describe the method we have used in
order to obtain results for the dynamics of the quantum dis-
sipative TLS. We will use the Heisenberg equations for the
system and bath operators, and we will approximate the
quantum Heisenberg equations by the classical ones, supple-
mented with carefully chosen stochastic initial conditions
such that the results obtained from the classical equations are
as close as possible to the quantum ones.

The Heisenberg equations for the spin–boson model are

ṡx522(
j

gjqjsy22esy ,

ṡy522Ksz12(
j

gjqjsx12esx ,

ṡz52Ksy , ~5!

q̇ j5pj , j 51, . . . ,M ,

ṗ j52v j
2qj2gjsz ,

and the same equations for the spin–spin model are

ṡx52(
j

l jSjxsy22esy ,

ṡy522Ksz1(
j

l jSjxsx12esx ,

ṡz52Ksy ,
~6!

Ṡjx52v jSjy ,

Ṡjy52l jSjzsz1v jSjx , j 51, . . . ,M ,

Ṡjz5l jSjysz .

We will average the spin operatorssx(t), sy(t), and
sz(t) of the system according tôsz(t)&5Tr sz(t)r(0),
etc., wherer(0) is the system-bath density matrix at the
initial moment. For a factorized initial density matrix we
have

r~0!5rs~0! ^
e2bHbath

Z
, ~7!

which corresponds to switching on interactions between the
system and a bath which is in equilibrium at the initial time
~here Hbath is the bath Hamiltonian andZ is its partition
function!. The most commonly used initial preparation for
the system is complete occupation of the ‘‘spin up’’ site, so
that

^sz~0!&51 and ^sx,y~0!&50. ~8!

In the classical Heisenberg equations, operators are replaced
by numbers which can be thought of as the average values of
the operators with respect to the initial reduced density ma-
trix. Thus, in the case of the spin–boson problem the quasi-
classical approximation amounts to using the initial condi-
tions (sx ,sy ,sz)5(0,0,1) and sampling the initial
coordinates and momenta of the bath oscillators from a
Wigner distribution ~in the spirit of Stock14! obtaining
^sz(t)& as an average over classical trajectories. This ap-
proach is valid in the adiabatic regime, when the bath dy-
namics is very slow compared to that of the system and the
temperature is high enough that the bath is almost classical.14

We may try to make an analogous approximation for the
spin–spin problem, so that the averages over trajectories
^sx(t)& traj , ^sy(t)& traj , and ^sz(t)& traj are as close as pos-
sible to the corresponding quantum-mechanical values. To
see how to proceed, consider the example of the unbiased
two-state system (e50) coupled to a bath that consists of
only one spin with frequencyv and coupling strengthl. For
the initial conditions~7! and~8! we can express the averages
^sx(t)&, ^sy(t)&, and^sz(t)& as a Taylor series expansion in
t,

^sa~ t !&5(
j 50

` s̄a
( j )t j

j !
, a5x,y,z. ~9!

The coefficients s̄a
( j ) involve the averageŝ sa(0)& (a

5x,y,z).
Let us consider the coefficientss̄z

( j ) up to the sixth order.
From the quantum-mechanical calculations we obtain@all
odd coefficients are zero due to initial conditions~8!#

s̄z
(0)51,
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s̄z
(2)52k2,

~10!
s̄z

(4)5k2~k21l2!,

s̄z
(6)52k2~k412k2l21l41v2l2!,

wherek52K. The reader might be surprised that the expan-
sion coefficients forsz do not explicitly depend on tempera-
ture, except through the temperature dependence of the pa-
rameterl. ~The temperature dependence would appear in the
expansion coefficients forsx . It would enter there through
^Sz(0)&.) It can be shown through direct diagonalization that
the coefficients forsz do not depend on temperature only for
the case of a single bath spin.

Consider the classical expression for the expansion co-
efficients. In it weleave outall terms containing odd powers
of sx , sy , Sx , andSy . We do so because these terms will
cancel out under the initial conditions that we specify later.
The fact that we keep only terms containing even powers of
sx , sy , Sx , and Sy is represented by replacing the ‘‘5’’
sign with ‘‘→ ’’

s̄z
(0)→sz ,

s̄z
(2)→2k2sz ,

~11!
s̄z

(4)→k2~k21l2Sx
2!sz ,

s̄z
(6)→2k2~k412k2l2Sx

21l4Sx
419v2l2Sx

2

28v2l2Sy
2!sz ,

whereSa andsz denoteSa(0) andsz(0), respectively.
Comparing Eqs.~10! and~11!, we see that if we choose

the initial conditions forSx , Sy to take random values61
with the proper initial averageŝSx&5^Sy&50, and if we
takesz(0)51, the quantum and the classical expansions for
^sz(t)& agree through seventh order; the first difference ap-
pears in eighth order.~Indeed, ifv50 it can be shown that
this approach isexactto all orders.! In order to get the other
components of the spin polarization we apply the same strat-
egy to Sz : Sz561 with ^Sz&5^Sz&eq. As for the system
spin s, it turns out that ‘‘randomization’’ of the (x,y)
components—sx,y561 with ^sx,y&50—does not improve
the results and takes four times as long as a ‘‘standard’’
quasiclassical calculation,sx,y50, so our calculations were
done with this standard assignment for the system spin. Gen-
eralization of this approach to the case of many bath particles
is straightforward.

Note that our classical description of the bath spin is
different from the conventional one. Our bath spin obeys
classical equations of motion but its length isA3, not one.
This is due to the initial conditions for the trajectories:
Sx,y,z(0)561.

It is interesting to note that if we make an expansion
analogous to~10! and~11! for the harmonic bath case, using
the trick of the Wigner distribution forqj andpj leads to an
expression for the classical^sz(t)& that agrees with the
quantum result also through seventh order.

IV. NUMERICAL DETAILS

In this section we calculate the dynamics of a spin–spin
system by the method described in the preceding section and
compare it with results for the spin–boson system. First we
consider the Brownian motion limit, where the spin–spin and
spin–boson models are equivalent. We show that our results
are in excellent agreement with the ones obtained by QMC19

or by the tensor multiplication algorithm of Makarov and
Makri.16,17 Then we demonstrate that the two dissipative
models are qualitatively very different in a non-Brownian
motion regime.

We have applied the quasiclassical method to the spin–
spin model in the Brownian motion limit with ohmic spectral
density

J~v!5
p

2
av exp~2v/vc!, ~12!

wherea is a Kondo parameter andvc is a cutoff frequency.
This form of J(v) has been used frequently in the literature
because a compact analytical solution given by NIBA can be
obtained, and in addition, the spin–boson system with this
spectral density exhibits interesting behavior,5 such as a tran-
sition from coherent to incoherent dynamics with increasing
a, symmetry breaking at zero temperature, etc.

We have calculated the population dynamicsP(t)
5^sz(t)&, which is of the most interest for the study of the
chemical reaction dynamics. The results have been compared
with QMC19 and tensor multiplication16,17 calculations. We
have tested our method for several sets of parameters span-
ning the transition from coherent to incoherent dynamics at

FIG. 1. The transition from the coherent to the incoherent regime atT
50.625,vc52.5, K51 ~parameters from Ref. 23!. Quasiclassical calcula-
tions for spin–boson~sb! and spin–spin~ss! models are compared with
tensor multiplication results~TensMult!. The time step for the quasiclassical
calculations was 0.05.
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both low and high temperatures~Figs. 1 and 2! and including
strong system-bath coupling (a52) ~Fig. 3!.

The harmonic bath was discretized withM5400 har-
monic modes with frequencies uniformly distributed be-
tween 0 and 10vc and couplingsgj obtained from integra-
tion of both sides of Eq.~2! by the trapezoidal rule and
assignment ofgj to the term containingJ(v j ). After that the
frequencies for the spin bath were taken to be the same as the
ones for the harmonic one and the couplingsl j for the spin–
spin model were obtained from relation~4!. In addition, in
the study of the non-Brownian motion regime~see below!,
the number of discretization modes was varied. The classical
Heisenberg equations with appropriate initial conditions~see
preceding section! were solved by the third-order Runge–
Kutta method. We ran 2500 trajectories in order to obtain
converged results, which took about 2–10 minutes of CPU
time on PowerPC~604e/200 MHz! under AIX 4.1. The pa-
rameters for the calculation by the tensor multiplication
scheme are given elsewhere.18

V. DISCUSSION

From the figures we see that, overall, the results of the
spin–spin model are excellent. In most cases they practically
coincide with the exact QMC or tensor-multiplication
scheme. This is both a confirmation that the relation~4! is
valid and a demonstration that the quasiclassical method
works quite well. The latter is probably due to the random-
ization of nuclear phases, as was studied in detail by Stock.14

~In fact, Fig. 3 presents calculations for the same parameter
regimes as in Fig. 3 of Stock.14 Our results are in much better

agreement with exact calculations, even though for a spin–
boson model our quasiclassical method is equivalent to his
self-consistent-field approach. This discrepancy is due to20 a
choice of initial conditions in Ref. 14 different from the
product initial condition 7; that is, we suspect that Stock’s
results are better than he claimed.!

In a non-Brownian motion regime, the nature of the bath
becomes very important. In order to see that, consider the
adiabatic limit where the quasiadiabatic method is expected
to work best. By decreasing the number of discretization
modes, we can see that the difference in dynamics of the
system spin due to the difference in the nature of baths~spins
or harmonic oscillators! becomes more and more apparent
~Fig. 4!, especially for a single-particle bath~Fig. 5!. For
example~Fig. 5!, while polarization of the spin coupled to a
harmonic bath reaches quasiequilibrium~the term ‘‘quasi’’
will be explained below!, the dynamics of the spin coupled
to a spin bath does not exhibit decay at all. Instead, we ob-
serve a so-called ‘‘spin-locking,’’ when the dynamics of the
main spin is ‘‘slaved’’ by the dynamics of the bath spin. In
the case of very strong coupling, this ‘‘slavery’’ results in the
localization of the spin polarization in the vicinity of its
original value. This property could perhaps be useful for the
construction of storage devices.

Let us analyze the adiabatic limit more closely for a spin
coupled to a bath consisting of one particle~spin or har-
monic oscillator!. Consider the strict adiabatic limit, with
v→0, so that the classical solvation energy21 Seff

5(1/p) *dv @(J(v)/v# 5const. In that limit, the corre-
spondence relation~4! becomesl258Seff /b. If the popula-

FIG. 2. The transition from the coherent to the incoherent regime atT
52.5,vc52.5,K51 ~parameters from Ref. 23!. Quasiclassical calculations
for spin–boson~sb! and spin–spin~ss! models are compared with tensor
multiplication results~TensMult!. The time step for the quasiclassical cal-
culations was 0.05.

FIG. 3. Simulations for strong system-bath couplinga52, T/vc54.0. Qua-
siclassical calculations for spin–boson~sb! and spin–spin~ss! models are
compared with the ones obtained by QMC~from Ref. 19!. The time step for
the quasiclassical calculations was 0.01.
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tion dynamics of a bare two-level system (H5Ksx1esz) is
given byP(t;e),

P~ t;e!5
K2 cos~2AK21e2t !1e2

K21e2
, ~13!

then it can be easily shown~by direct diagonalization! that in
the strict adiabatic limit the population dynamics of the spin
coupled to a bath spin with the coupling strengthl will be
given by

Pss~ t !5P~ t;l/2!. ~14!

The analogous expression for a spin–boson model is21,22

Psb~ t !5
1

Ap
E

2`

`

dx e2x2
PS t;A4Seff

b
xD . ~15!

From Eqs.~13! and ~14! we see that the reduced dynamics
for the spin–spin model is just restricted oscillations around
some value. As the system-bath coupling increases, the os-
cillations get more and more suppressed, so that in the limit
of infinite coupling the system spin becomes localized in its
initial state.

From the analogous expression~15! for a spin–boson
model we see that, due to averaging over a Gaussian distri-
bution, the amplitude of oscillations decay over time, so that
the system reachesquasiequilibrium. This is a pure dephas-
ing decay, since there is no energy loss in this case and
therefore not true dissipation. Hence the system reaches not
the equilibrium in thermodynamical sense, but ratherquasi-
equilibrium. Distributing the system-bath coupling among
many bath spins leads to a dephasing as well~Fig. 4!.

VI. CONCLUSIONS

In this paper we have studied a new model for quantum
dissipative systems, in which the bath is by spins instead of
harmonic oscillators. This bath model naturally arises in
problems of magnetic resonance, quantum tunneling of mag-
netization, quantum computing, etc.

We have studied the case of a single spin coupled to a
spin bath, and we have developed a quasiclassical method
for calculating the reduced dynamics of the spin–spin sys-
tem. Using this method we have compared the dynamics of a
spin–spin system with that of a spin–boson system.

We have confirmed numerically that when the system-
bath coupling is spread over many bath spins~the Brownian
motion limit!, the spin–spin model can be mapped on the
spin–boson model~although with atemperature dependent
spectral density!. Also, the comparison in the Brownian mo-
tion limit shows that the quasiclassical method works quite
well for the cases studied here.

We have also considered a non-Brownian motion regime
where the difference between the two bath models is ex-
pected to matter. For example, when the system-bath cou-
pling is no longer diluted among many bath spins, the dy-
namics of a spin coupled to a few spins does not exhibit
dephasing, in contrast with that of a spin coupled to a few
harmonic modes. Instead, the reduced dynamics of a spin–
spin system with very few bath spins exhibits ‘‘spin–
locking:’’ the dynamics of the system spin is ‘‘slaved’’ by
the dynamics of the bath spins. In the case of strong system-
bath coupling the system becomes more and more localized
in its initial state. This could be of practical importance in
the construction of storage devices.

FIG. 5. The population dynamics of spin–spin~ss! and spin–boson~sb!
models in the near-adiabatic limit (T50.2, K51, vc50.01) compared for
various values of the coupling strengtha. The time step for the quasiclas-
sical calculations was 0.05.

FIG. 4. The population dynamics of spin–spin~ss! and spin–boson~sb!
models (a520, T50.2,K51, vc50.1) compared for various bath particle
numbersM. The time step for the quasiclassical calculations was 0.05.
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Although the model presented here uses very simple
type of coupling, it can be generalized to include hyperfine
or dipole–dipole interactions. These interactions are at the
heart of NMR and EPR and are also thought to be important9

in recent experiments on quantum tunneling of magnetiza-
tion.

Finally, we would like to emphasize that the quasiclas-
sical methodology described here—a way of obtaining
proper initial distributions for classical variables of motion in
order to reproduce a quantum-mechanical result—is not re-
stricted to only spin–spin or spin–boson models.

ACKNOWLEDGMENTS

We thank Goran Krilov for proofreading of the paper
and Chi Mak for his QMC raw data. This work was sup-
ported by DOE Grant No. DE-FG02-90ER14162 to R.A.F.
and NSF Grant No. CHE-9633796 to P.P.

1U. Weiss, Quantum Dissipative Systems~World Scientific, Singapore,
1993!.

2J. Ulstrup, Charge Transfer Processes in Condensed Media~Springer,
New York, 1979!.

3S. A. Egorov and J. L. Skinner, J. Chem. Phys.105, 7047 ~1996!, and
references therein.

4J. S. Bader and B. J. Berne, J. Chem. Phys.100, 8359~1994!.

5A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and
W. Zwerger, Rev. Mod. Phys.59, 1 ~1987!.

6R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals
~McGraw-Hill, New York, 1965!.

7R. P. Feynman and F. L. Vernon, Ann. Phys.~N.Y.! 24, 118 ~1963!.
8N. D. Mermin, Physica A177, 561 ~1991!.
9P. C. E. Stamp, inTunneling in Complex Systems~World Scientific, Sin-
gapore, 1998!, and references therein.

10S. I. Tsonchev, Ph.D. thesis, Columbia University~1997!. This thesis
introduces a novel binary-collision model for quantum Brownian motion
and shows that it is equivalent to a particle/spin bath problem.

11C. P. Slichter,Principles of Magnetic Resonance~Springer, New York,
1990!, third ed.

12S. I. Tsonchev and P. Pechukas, Phys. Rev. E~submitted!.
13N. Makri, J. Phys. Chem. B103, 2823~1999!.
14G. Stock, J. Chem. Phys.103, 1561~1995!.
15X. Sun and W. H. Miller, J. Chem. Phys.106, 916 ~1997!.
16N. Makri and D. E. Makarov, J. Chem. Phys.102, 4600~1995!.
17N. Makri and D. E. Makarov, J. Chem. Phys.102, 4611~1995!.
18A. A. Golosov, R. A. Friesner, and P. Pechukas, J. Chem. Phys.110, 138

~1999!.
19R. Egger and C. H. Mak, Phys. Rev. B50, 15210~1994!.
20G. Stock~personal communication!.
21B. Carmeli and D. Chandler, J. Chem. Phys.82, 3400~1985!.
22A. Lucke, C. H. Mak, R. Egger, J. Ankerhold, J. Stockburger, and H.

Grabert, J. Chem. Phys.107, 8397 ~1997!. In Eq. ~6! of this reference,
substitute the distribution function from Eq.~4! which corresponds to the
product initial preparation.

23C. H. Mak and D. Chandler, Phys. Rev. A44, 2352~1991!.

9923J. Chem. Phys., Vol. 111, No. 22, 8 December 1999 Spin–spin model for two-level system/bath problems


