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he Bak-Tang-W iesenfeld sandpile model around the upper critical dimension

S. Liibeck® and K. D. Usadelt
Theoretische Ticftemperaturphysik, Gerhard-Mercator-Universiliit Duishury,
Lotharstr. 1, 47048 Duisbury, Germany

(Received 19 June 1997)

We consider the Bak-Tang-Wiesenfeld sandpile model on square lattices in different dimensions
(D < 6G). A finite size scaling analysis of the avalanche probability distributions yields the values of
the distribution exponents, the dynamical exponent, and the dimension of the avalanches. Above
the upper critical dimension D, = 4 the exponents equal the known mean field values. An analysis
of the area probability distributions indicates that the avalanches are fractal above the critical

dimension.
PACS number: 05.40.+j

I. INTRODUCTION

Bak, Tang and Wiesenfeld (1] introduced the concept
of sclf-organized criticality (SOC) and realized it with
the so-called “sandpile model’ (BTW model). The steady
state dynamics of the system is characterized by the prob-
ability distributions for the occurrence of relaxation clus-
ters of a certain size, arca, duration, ete. In the crit-
ical steady state these probability distributions exhibit
power-law behavior, Much work has been done in the
two dimensional case. Dhar introduced the concept of
*Abelian sandpile models™ which allows to calculate the
static properties of the model exactly [2], e.g. the height
probabilitics, height correlations, number of steady state
configurations, ctc [2-5]. Recently, the exponents of the
prohability distribution which describes the dynamical
properties of the system were determined numerically
[6]. On the other hand both mean field solutions (sce
[7] and references therein) and the solution on the Bethe
lattice [8] are well established and both yield identical
alues of the exponents, The mean field approaches are
basced on the assumption that above the upper critical
dimension D, the avalanches do not form loops and the
avalanches propagation can be described as a branching
process [9]. Despite various theoretical and mumerical ef-
[orts the value of D, is still controversial. In an carly
work, Obukhov predicted D, = 4 using an ¢-expansion
renortalization group scheme [10]. Later Diaz-Guilera
performed a momentum space analysis of the correspond-
ing Langevin equations which confirmed D, = 1 [11].
Grassherger and Manna coneluded from numerical in-
vestigations of the BTW model in D < 5 the same result
[12]. In contrast, comparable simulations and the simi-
larity to percolation led several authors to the conjecture
that Dy, = 6 [13] comparable to the related forest fire
model of Drossel and Schwabl (see [14] for an overview).

In the present work we consider the BTW model in
various dimensions (D < G) on lattice sizes which are
signilicant larger than those considered in previous works
[12.13.l5]. A [inite size scaling analysis allows us to deter-
mine the avalanche exponents, the dynamical exponent
and to analyse whether the avalanche clusters are fractal.
Our analysis reveals that the upper critical dimension is
Dy =1 and that the avalanches display a fractal behav-
for above D,. We discuss the dimensional dependence

of the exponents and derive scaling relations, Finally
we briefly report results of similar investigations of the
D-state model which is a possible generalization of the
two-state model introduced by Manna in two-dimensions
(16]. It is known that the BTW model and Manna's
model belong to different universality classes in D = 2
[15.6).

II. MOQCEL ANLC SIM ULATIONS

We consider the D-dimensional BTW model on a
square lattice of linear size L in which integer variables
he > 0 represent local heights. One perturbes the system
by adding particles at a randomly chosen site h, accord-
ing to

he — W+ 1, with random r. (1)

A site is called unstable if the corresponding height A,
exceeds a critical value he., i.c., if hy > h,. where h. is
given by h. = 2D. An unstable site relaxes. its valie is
decreased by h, and the 2D next neighboring sites are
increased by one unit, i.e.,

hy — h, = h, (2)

hnn.r B hnn.r + L (3)

In this way the neighboring sites may be activated and an
avalanche of relaxation cvents may take place. The sites
are updated in parallel until all sites are stable. Then
the next particle is added [Eq. (1)]. We assume open
boundary conditions with heights at the boundary fixed
to zero.

System sizes L < 256 for D = 3, L < 80 for D = 4,
L <36for D=5, and L < 18 for D = 6 are inves-
tigated. Starting with a lattice of randomly distributed
heights h € {0,1,2, ..., h. — 1) the system is perturbed ac-
cording to Eq. (1) and Dhar's "burning algorithm’ is ap-
plied in order to check if the system has reached the crit-
ical steady state [2]. Then we start the actual measure
ments which are averaged over at least 2 x 108 non-zero
avalanches, We studied four different properties charac-
terizing an avalanche: the number of relaxation events s,
the munber of distinet toppled lattice site sy (area), the
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Molecular Dynamics

) 1. Assign velocities to all atoms

2. Calculate forces on all atoms

3.Use Newton's second law to
calculate acceleration on each atom

, F =ma

. 4. Calculate velocities for the

J next timestep

~"5.Use change of velocities to get
coordinates for next timestep

6. Go to step 2.
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A. The model

How can the kicked rotor be used to study Anderson localization in more than one dimension? The first idea
is to use a higher-dimensional rotor with a classically chaotic dynamics and to kick it periodically. It turns out
that this is not casily realized experimentally, as it requires to build a specially crafted spatial dependence[l]. Yet,
remember that time and space have switched roles, and so a simpler idea is to use additional temporal dimensions
rather than spatial dimensions. Instead of kicking the system periodically with kicks of constant strength, one may
usc a temporally quasi-periodic excitation. Various schemes have been used (2], but the one allowing to map on a
multi-dimensional Anderson model uses a quasi-periodic modulation of the kick strength, the kicks being applied at
fixed time interval [3].

We will be interested in a 3d Anderson model, obtained by adding two quasi-periods to the system:(27]

>< . X + nf}i,", = f; + K(t) cosmz a(t-n), (1)
n+l ~/\n "
with n @d’{-

K(t) = I [1 + € cos (wat + w2) cos (wat + )] . (2)

‘. oM _ xi P? Xe P
1‘( o= 1 l
\ /‘2 3 G4
(Xl o)




2
It is easy to write the classical evolution from kick n to kick n + 1, exactly as we did for the periodically kicked rotor.

One obtains:
Pn41 =pn + K(n)sinz, 3
Puti = 3)
ntl = Tn + Payr

that is the same result than for the periodically kicked rotor, except that X now depends quasi-periodically on time.
Now where is the three dimensional aspect in this problem? The answer lies in a mapping of this quasi-periodic
kicked rotor on a 3d kicked “pseudo”-rotor with the special initial condition of a “plane source”, as follows.

B. The periodically kicked pseudo-rotor

Let us consider a 3d periodically kicked pseudo-rotor, whose Hamiltonian is:

2
H= % + wapz +wapa + K coszy [1 4+ ecosz, cos 73] Zd(t -n), (4)

n

This is not a true rotor, because of the unusual form of the kinetic energy in directions 2 and 3, where it is a linear
- instead of quadratic — function of the momentum, hence the name pseudo-rotor. Being a periodic system, we can
again write the map over one period:

Pi.y =P1, + Ksinzy, (1 + ecosz,, cosz3,) ,
P2,4, = P2, + Kecoszy, sinzy coszj, ,
P3n41 = P3, + Kecosxy, coszy, sinzy, | (5)

xln#»l = Iln +plu+l '
2, = T2, tw2,
T34y =1, +wy .

The last two equations are trivially integrated: T2, = T2, + nwz and similarly for 23. If we now start with the
initial condition z3, = @3, x5, = 3, it is straightforward to realized that the mapping for p; and ny is ezaclly the
same than the mapping (3) of the quasi-periodically kicked rotor. In other words, the classical dynamics of the kicked
pseudo-rotor along the direction 1 is strictly identical to the one of the quasi-periodically kicked rotor.

The same mapping exists for the quantum cvolution. Consider the evolution of a wavefunction ¥ with the initial

condition
V(z1, 22,23, t = 0) = Y(z1,t = 0)d(z2 — 2)8(23 — 3). (6)

This initial state, perfectly localized in z; and z3 and therefore entirely delocalized in the conjugate momenta p,
and p3, is a “plane source” in momentum space [1]. A simple calculation shows that the stroboscopic evolution of
¥ under (4) coincides exactly with the evolution of the initial state y(r = z;,t = 0) under the Hamiltonian (1)
of the quasi-periodically kicked rotor (for details, sce [5]). An experiment with the quasi-periodic kicked rotor can
thus be seen as a localization experiment in a 3d disordered system, where localization is actually observed in the
direction perpendicular to the plane source. In other words, the situation is comparable to a transmission experiment
where the sample is illuminated by a plane wave and the exponential localization is only measured ‘along the wave
vector direction. Therefore, the behavior of the quasi-periodic kicked rotor (1) matches all dynamic properties of the
quantum 3d kicked pseudo-rotor.

For sufficiently large X and not too small ¢, the classical dynamics of the pseudo-rotor is a chaotic diffusion in
momentum space. Indeed, coupling to the strongly chaotic direction 1 is sufficient to make the dyanamics along
dircctions 2 and 3 also diffusive [6]. However, the diffusion tensor is not isotropic. It can be computed like for
the periodically kicked rotor, that is assuming no position-momentum correlation and complete delocalization in
configuration space. One obtains for the anisotropic diffusion tensor (for € smaller than unity):

Dy =~ (K2/4)(1 +€%/4) , (7
Dy =~ K%2/16 , (8)
D33 ~ 1(262/16 f (9)

D,-#zo. (10)



