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Abstract The Dyson Brownian Motion (DBM) describes the stochastic evolution of N
points on the line driven by an applied potential, a Coulombic repulsion and identical,
independent Brownian forcing at each point. We use an explicit tamed Euler scheme to
numerically solve the Dyson Brownian motion and sample the equilibrium measure for
non-quadratic potentials. The Coulomb repulsion is too singular for the SDE to satisfy
the hypotheses of rigorous convergence proofs for tamed Euler schemes (Hutzenthaler et
al. in Ann. Appl. Probab. 22(4):1611–1641, 2012). Nevertheless, in practice the scheme is
observed to be stable for time steps of O(1/N2) and to relax exponentially fast to the equi-
librium measure with a rate constant of O(1) independent of N . Further, this convergence
rate appears to improve with N in accordance with O(1/N) relaxation of local statistics of
the Dyson Brownian motion. This allows us to use the Dyson Brownian motion to sample
N × N Hermitian matrices from the invariant ensembles. The computational cost of gener-
ating M independent samples is O(MN4) with a naive scheme, and O(MN3 logN) when a
fast multipole method is used to evaluate the Coulomb interaction.

Keywords Random matrix theory · Invariant matrix ensembles · Dyson Brownian motion
(DBM) · Explicit tamed Euler scheme

1 Introduction

1.1 The Coulomb Gas on the Line and Dyson Brownian Motion

Our main purpose in this article is to sample the equilibrium measure of the Coulomb gas
with a given (non-quadratic) potential V . The Hamiltonian for this particle system is

HN(λ) = 1
2

N∑

k=1

V (λk) − 1
N

∑

1≤j<k≤N

log(λj − λk). (1.1)
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Here λ = (λ1, . . . ,λN) denotes the positions of N particles on the line and V (s) is a poly-
nomial in one variable with a term of highest degree α2ms2m with α2m > 0. We find it con-
venient to break permutation symmetry and work with the domain WN = {λ ∈ RN |λ1 <

λ2 < · · · < λN }. At fixed inverse temperature β > 0, we define µβ,V (λ) as the probability
measure on WN with density proportional to e−βNHN (λ). The measure µβ,V balances two
competing effects: Coulombic repulsion pushes particles apart, but the potential V confines
them globally.

The Gibbs measure µβ,V for the Coulomb gas is also the unique equilibrium measure
for the Dyson Brownian motion (DBM) with potential V [11]. Let Bk(t), k = 1, . . . ,N de-
note N independent standard Brownian motions (i.e EBk(t) = 0, E(Bk(t))

2 = t . The Dyson
Brownian motion λ(t) ∈ WN is the solution to the stochastic differential equation

dλk = −∂λk
HN(λ) dt +

√
2

βN
dBk,

=
(

1
N

∑

j :j %=k

1
λk − λj

− 1
2
V ′(λk)

)
dt +

√
2

βN
dBk, k = 1, . . . ,N. (1.2)

This SDE is weak and strong well-posed under very general assumptions [1, Theorem 4.3.2].
The time scale in (1.2) is chosen so that a typical initial distribution relaxes to the equilibrium
measure µβ,V in time of O(1). These relaxation properties underlie our simulation scheme
and allow us to rationally estimate its computational cost as follows.

We use a tamed explicit Euler scheme to numerically solve (1.2). (Note that a numerical
solution is necessary, except when V (x) is quadratic). Our scheme requires time steps of
size O(N−2). The naive computational cost of summing all Coulomb interactions at each
time step is O(N2), but this can be reduced to O(N logN) with a fast multipole method.
Moreover, since all λk are real, the domain decomposition required for the fast multipole
method is very straightforward (see for example [2, Sect. 2.1]). Thus, M samples can be
obtained with a computational effort proportional to O(MN3 logN). In the work presented
here, N is sufficiently small (≤ 300) that we did not use a fast multipole method. The
performance of our scheme (in particular, stability and speed of convergence to equilibrium)
is not adversely affected by N . As discussed below, local convergence of DBM occurs at
a rate O(1/N) and this seems to improve the performance of the scheme as N increases.
Finally, as we explain below, sampling from µβ,V allows us to sample random Hermitian
matrices from the invariant ensembles with potential V .

1.2 Invariant Hermitian Ensembles

Let Her(N) denote the space of N × N Hermitian matrices and U(N) the group of N × N

unitary matrices. A probability distribution P on Her(N) is invariant if for every fixed V ∈
U(N), and every Borel set A in Her(N), we have P(M ∈ A) = P(V MV ∗ ∈ A). We focus
on ensembles with a density pV (M) of the form

pV (M)dM = 1
ZN

e−N trV (M)dM = 1
ZN

e−N trV (M)

N∏

k=1

dMkk

∏

j<k

dMR
jkdMI

jk. (1.3)

Here V is the potential of (1.1). The constant ZN is a normalizing factor that ensures∫
Her(N)

pV (M)dM = 1, and Mjk = MR
jk +

√
−1MI

jk denote the real and imaginary parts
of the matrix entry Mjk .
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Our initial motivation for this work was to sample random matrices from the distribution
pV (M) when V is not quadratic (i.e. the ensemble is non-Gaussian). Our interest in this
problem stems from observations of universal fluctuations in the time to convergence for
Hamiltonian eigenvalue algorithms [21]. Universality was observed for a variety of Wigner
ensembles, but the algorithms were not tested on matrices drawn from non-Gaussian invari-
ant ensembles. The principal difficulty in sampling from an invariant ensemble is that the
entries Mjk , j ≤ k, of a random matrix M are not independent (except for Gaussian ensem-
bles). By contrast, the Wigner ensembles have independent entries and are easy to sample
from. While our work arose from the desire to test eigenvalue algorithms on random matri-
ces chosen from invariant ensembles, the problem of sampling from these ensembles is of
independent interest. For example, it is well known that matrix integrals serve as generat-
ing functions for random maps [3]. Thus, it is of interest to connect sampling schemes for
matrices with combinatorial algorithms for sampling random maps (e.g. [9]).

Somewhat surprisingly, despite the considerable theoretical interest in invariant ensem-
bles [4, 8, 19], there appears to have been no prior effort to numerically generate random
matrices from these ensembles. In simultaneous work, Olver et al. have also considered this
sampling problem [22]. Their approach uses numerical methods for Riemann-Hilbert prob-
lems and a constructive scheme for sampling determinantal processes, and is completely
different from the methods used here. In combination, both works suggest some interest-
ing numerical challenges arising in random matrix theory. In particular, our work reveals
the unexpected utility of Dyson Brownian motion as a test bed for numerical methods for
stochastic differential equations.

1.3 Determinantal Structure

The law of invariant ensembles is most easily described through the spectral representation
M = UxU ∗, where x = diag(x1, . . . , xN) denotes a diagonal matrix of (unordered) eigen-
values and U is a unitary matrix of eigenvectors. We then have

e−N trV (M)dM = e−N
∑N

k=1 V (xk)%2(x)dx dU. (1.4)

Here %(x) is the Vandermonde determinant
∏

1≤j<k≤N(xj − xk), dU and dx denote the
volume elements for normalized Haar measure on U(N) and Lebesgue measure on RN

respectively, and HN(x) is the Hamiltonian defined in (1.1). The squared Vandermonde
determinant %2(x) is the Jacobian of the change of variables M )→ (x,U) [7, 19]. When
included in the Hamiltonian HN as above, it has an appealing physical interpretation: the
eigenvalues of invariant ensembles repel one another according to the Coulomb law and their
equilibrium measure is the same as the Coulomb gas at inverse temperature β = 2. (A strict
comparison requires that we reorder the x’s in increasing order and include a permutation
factor of N ! in the measure. We use x to denote the unordered eigenvalues and λ the ordered
eigenvalues to avoid confusion).

The eigenvalues x1, . . . , xN constitute a determinantal point process on R described ex-
plicitly as follows. Let πk(s) = sj + · · · be the monic orthogonal polynomials with respect
to the measure e−NV (s) ds on R, and define normalizing constants ck , orthonormal functions
φk in L2(R), and an integral kernel KN as follows:

c2
k =

∫

R
π2

k (s)e−NV (s) ds, φk(s) = 1
ck

e−NV (s)/2πk(s), KN(r, s) =
N−1∑

k=0

φk(r)φk(s).

(1.5)
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Then the m-point correlation function is given by

ρm(x1, . . . , xm) = (N − m)!
N ! det

(
KN(xj , xk)1≤j,k≤m

)
. (1.6)

(the normalization conventions in mathematics and physics appear to differ in the inclusion
of the combinatorial factor of (N − m)!/N ! (contrast [7, p. 108] or [15, p. 209] with [19,
p. 80])). The particular case m = 1 yields the density of eigenvalues. Under suitable as-
sumptions on V (e.g. that V is convex), the limiting density of eigenvalues as N → ∞ is
described by a unique equilibrium density:

lim
N→∞

1
N

#
{
xk ∈ (a, b)

}
=

∫ b

a

ρ(s) ds, −∞ < a < b < ∞. (1.7)

The equilibrium measure for a quartic potential V (x) is described explicitly in (2.2) below.

1.4 Dyson Brownian Motion as a Sampling Method

Our task is to sample a random matrix M distributed according to (1.3). This is equivalent
to sampling x and U distributed according to (1.4). Now it is immediate from (1.4) that the
laws of x and U are independent. Stewart derived an efficient method for sampling random
matrices from the orthogonal group O(N) distributed according to the Haar measure [23].
In essence, he used the fact that the QR decomposition of a GOE matrix yields a matrix Q

that is uniformly distributed on O(N). Some care is needed when extending this scheme
to U(N), and Mezzadri presents an efficient sampling scheme in [20]. Thus, our task is
only to sample the eigenvalues according to the law (1.6). Since the m-point correlation
function (1.6) is identical to that of the Coulomb gas at β = 2, it is sufficient to solve Dyson
Brownian motion until the equilibrium is approached. This strategy is practical because of
certain fundamental convergence properties of Dyson Brownian motion reviewed below.

The convergence to µβ,V of an arbitrary initial law under DBM has been carefully studied
in random matrix theory. The recent emphasis has been on the use of DBM to establish
universal fluctuations when the initial law of the eigenvalues is determined by a Wigner
ensemble (see in particular [12, Sect. 2] and the references therein). However, some of the
basic techniques used to establish convergence of DBM do not use the fact that V (x) =
x2/2 in an essential way and apply to all initial laws (including invariant ensembles). These
general properties guide our numerics. Assume λ(t) solves (1.2), and denote the distribution
of λ(t) by ft (λ)µβ,V . Then ftµβ,V satifies the Fokker-Planck equation associated to (1.2),
and ft satisfies the evolution equation

∂t ft = 1
βN

N∑

k=1

∂2
λk

ft −
N∑

k=1

∂λk
H(λ)∂λk

ft . (1.8)

Let us assume that V (x) is a convex function. Then a very minor modification of the argu-
ment in [12, Sect. 2] shows that there is a constant θ > 0 depending only on β and V such
that

∫

R
|ft − 1|dµβ,V ≤ Ce−θ t , (1.9)

provided f0 has finite relative entropy (relative to 1) and defines a finite Dirichlet form.
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To summarize: under mild assumptions on the initial distribution, the law ftµβ,V con-
verges exponentially to µβ,V with a rate constant of O(1). One of the key recent develop-
ments in random matrix theory is a rigorous proof that the local statistics of λ relax to equi-
librium much faster, at a time scale O(1/N) (This is termed Dyson’s conjecture in [12]).
The O(1/N) relaxation rate underlies the universality of fluctuations in random matrix the-
ory. Our view is that the relaxation rates of DBM are not just of fundamental theoretical
importance, but that they may be exploited in a practical sampling algorithm. We have only
used the O(1) convergence in this work, but it is plausible that a more sophisticated sam-
pling scheme could be devised using the O(1/N) convergence, reducing the computational
effort to O(MN2 logN).

1.5 The Numerical Method

In order to convert DBM into an effective sampling algorithm, we need a fast numerical
method for the SDE (1.2). Sampling can then proceed by parallel runs with independently
chosen initial data. An implicit solver for the SDE (1.2) is too expensive for this process, and
it is necessary to use an explicit scheme. But here we run into an interesting complication:
the well-posedness of standard explicit Euler schemes for SDE require that the vector field
∇λH(λ) be globally Lipschitz continuous [14, 18]. Moreover, counterexamples show that
the Lipschitz assumption is necessary [16]. Now note that the vector field for DBM is not
Lipschitz because of the singular nature of the Coulomb interaction. While the counterex-
amples in [16] do not include DBM, we have found numerically that the standard explicit
Euler scheme for DBM fails to converge. This failure turns out to depend on the growth of
V ′ rather than the strong repulsion of eigenvalues and we were able to resolve it using the
following tamed explicit Euler scheme that is a modification of the scheme suggested by
Kloeden and his co-authors [17].

Let %t denote the time step, T > 0 a fixed time of O(1), and λn = (λn
1,λ

2
n, . . . ,λ

n
N) the

discretized approximation to the solution λ(t) to (1.2) at the time t = n%t . Assume also
that %Bn

k are independent standard (mean zero, variance one) normal random variables for
k = 1, . . . ,N , n = 0, . . . , T /%t . We use the following numerical scheme:

λn+1
k = λn

k +
(

1
N

∑

j %=k

1
λk

n − λn
j

− V ′(λn
k)

2 +%t |V ′(λn
k)|

)
%t +

√
2%t

βN
%Bn

k , (1.10)

λ0
k = ξk. (1.11)

The index k denotes a coordinate in WN and runs from 1 to N . The index n is the time
step and runs from 0 to T/%t . The initial data λ0

k = ξk are assumed given for the purpose of
solving the SDE. In practice, they will be chosen at random as described below.

The main points to note are: (i) this scheme is explicit; (ii) the vector field V ′(x) has been
“tamed”; and (iii) the Coulomb interaction is left unchanged. Since the scheme (1.10) can
be rewritten as

λn+1
k = λn

k +
(

1
N

∑

j %=k

1
λk

n − λn
j

− 1
2
V ′(λn

k

))
%t +

√
2%t

βN
%Bn

k + V ′(λn
k )|V ′(λn

k)|
4 + 2%t |V ′(λn

k)|
(%t)2,

(1.12)
it differs from the standard explicit Euler scheme

λn+1
k = λn

k +
(

1
N

∑

j %=k

1
λk

n − λn
j

− 1
2
V ′(λn

k

))
%t +

√
2%t

βN
%Bn

k ,
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by only a second-order correction. Since the explicit Euler scheme is consistent with the
SDE, so is the tamed scheme. Thus, stability of the scheme suffices to establish convergence.
However, as a consequence of the Coulomb interaction, it does not satisfy the assumptions
of the main theorem in [17]. It is not clear to us at present, if the techniques used to establish
well-posedness of the SDE (1.2) can also be used to establish stability of the numerical
scheme.

2 Numerical Experiments

2.1 Equilibrium Measures for Quartic Ensembles

In this section we present the result of numerical experiments with the scheme (1.10) for the
quartic potentials

V (x) = qx2

2
+ gx4

4
, q, g ≥ 0. (2.1)

The quartic ensembles are the simplest non-Gaussian invariant ensembles and provide im-
portant insights into general phenomena for invariant ensembles. For example, quartic en-
sembles were used to enumerate random quadrangulations [3], and to establish the first uni-
versality theorems for non-Gaussian ensembles [4]. Thus, we expect that they have similar
utility for a numerical study.

In all that follows, we assume β = 2 so that the samples λ correspond to the eigenvalues
of a Hermitian matrix. If g = 0 we obtain a Gaussian ensemble. For q > 0 we may always
rescale so that q = 1. When q = 1 and 0 ≤ g < ∞, the equilibrium density for the quartic
ensemble is given explicitly by [3]

ρ(s) = 1
2π

(
1 + 2ga2 + gs2)√4a2 − s21|s|≤2a, a =

√√
1 + 12g − 1

6g
. (2.2)

In the limit g = 0 this density reduces to Wigner’s semicircle law. When q = 0 the potential
V (x) is purely quartic and has equilibrium density

ρ(s) = 1
2π

(
2ga2 + gs2)√4a2 − s21|s|≤2a, a = (3g)−1/4. (2.3)

2.2 Description of Numerical Experiments

We fix a potential (i.e. the parameters g and q in (2.1)) and perform M independent trials.
Each trial takes the following form:

(1) Choose an initial vector λ0 at random independent of other trials.
(2) Solve (1.10) for λn for each n = 1, . . . , T /%t .

The initial vector λ0 is typically chosen to be the vector of eigenvalues of a Gaussian Her-
mitian matrix. This choice is not entirely necessary, since the universality results show that
the spectrum of a random matrix from a Wigner ensemble that satisfies the fourth-moment
condition E(|Mjk|4) ≤ C < ∞ will relax in time of O(1) to the equilibrium density µβ,V for
DBM [12]. However, we find that there is a distinct difference in the time to equilibration
between a vector λ0 that is obtained as the eigenvalues of a random matrix, or a vector λ0

consisting of independent entries λ0
k , k = 1, . . . ,N .
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The typical end time is taken to be T = O(1) and all simulations are observed to equi-
librate when the time step is chosen to be %t = 1/N2. Thus, each run involves N2 eval-
uations of the vector field, and each such evaluation costs O(N2), with a total computa-
tional cost of O(N4). As we have remarked above, this can be reduces to O(N3 logN)

with a fast multipole method. There is a further computational cost associated to the ini-
tialization, since we must compute the eigenvalues of the initial matrix. However, this cost
is of lower order if the initial matrix is chosen from a tridiagonal ensemble whose eigen-
values have the law e−βH̃N (x) where H̃N is the Hamiltonian corresponding to V (x) = qx2

(for example, the β-ensembles of Dumitriu and Edelman [10]). The total cost for M trials
is O(MN4).

For M parallel trials, we denote by λ
n,j
k the k-the coordinate of the solution to equation

(1.10) at time step n for the j -th trial. The empirical distribution function is defined to be

Fn,M(λ) = 1
NM

M∑

j=1

N∑

k=1

1
λ
n,j
k ≤λ

, (2.4)

and the exact distribution function and equilibrium distribution function are denoted

FN(λ) = 1
N

∫ λ

−∞
KN(s, s) ds, F∞(λ) =

∫ λ

−∞
ρ(s) ds. (2.5)

We use the Kolmogorov-Smirnov (KS) statistic

Dn,M = sup
λ

∣∣Fn,M(λ) − FN(λ)
∣∣ (2.6)

to measure the distance between the empirical measure Fn,M and the exact distribution FN .
For large enough N (in practice, N ≥ 30) we replace FN with F∞ in the formula since the
error ‖FN − F∞‖∞ is much smaller than Dn,M . This is discussed below.

The above comparison only contrasts 1-point statistics of the empirical and exact distri-
butions of x(t). In order to study convergence of a statistic that truly reflects the determi-
nantal nature of the process, we compare the exact probability A(θ) that there are no points
xk(t) in the interval (−θ, θ) with the empirical measure of A(θ) (our notation follows [7,
Sect. 5.4]). The gap probability A(θ) is given by the Fredholm determinant

A(θ) = det(I − KN), (2.7)

with kernel KN acting on L2(−θ, θ). We compute this Fredholm determinant using a nu-
merical procedure introduced by Bornemann [6].

There are some numerical subtleties in these calculations. While equation (1.6) provides
a complete prescription for the exact distribution of all correlation functions once V is given,
in order to compute FN we must determine πk , ck and KN accurately. This is a delicate prob-
lem, since ck grows rapidly. For the choices of g and q tested here, we used the orthogonal
polynomial generator developed by Gautschi along with a standardized C++ implementa-
tion developed by Yang et al. [13, 24]. We find that KN can be computed accurately only
for N ≤ 30. However, as N increases, both the density KN(λ,λ) and distribution func-
tion FN(λ) converge exponentially fast to the density ρ(λ) and distribution F∞(λ) respec-
tively, and the convergence is uniform in λ. The convergence of densities KN(λ,λ) to ρ

is illustrated in Fig. 1 for different potentials. For example, the L∞ distance between the
finite and limiting distributions shown for N = 30 is only 1.024e–3. For the same reason,
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Fig. 1 Comparison of finite laws for N = 30 with limiting laws. (a, b) Comparison of probability density
functions. (c) Cumulative-distribution functions

we restrict our comparison of A(θ) with the empirical measure to N ≤ 30 (Note that our
sampling scheme is not restricted to N ≤ 30: the point is that it is numerically subtle to
compute exact formulas in random matrix theory! See [5, 6] for a lively discussion of this
issue).

2.3 Results

We first present a visual comparison of the empirical distributions for a single trial with a
large matrix (N = 300). In these experiments, the time T is O(N). This is a much longer
time scale than required, but it serves to establish that the scheme is stable. The limiting
spectral distributions F∞ is compared with the empirical distribution for two different po-
tentials in Fig. 2.
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Fig. 2 Histogram of empirical distribution after one long run. A histogram of the empirical distribution of
λk is compared with the theoretical limiting law (dashed line). The system size is N = 300, the maximal time
is T = 1200, the time step is %t = 1/N2

Fig. 3 Oscillations for small N . A histograms of the empirical distribution of λk is compared with the exact
law for two different quartic potentials. The number of particles is N = 6, the maximal time is T = 24, the
time step is %t = 1/N4 and M = 5000 trials are performed

For small N the density ρN(s) oscillates and it is interesting to test if the scheme is
sensitive to these oscillations. Of course, for small N it is necessary to use a large number
of trials to obtain a large enough data set. Figure 3 presents the results of such a numerical
experiment. We see that the scheme captures the oscillations of the density quite well. We
measured the rate of convergence to equilibrium in the KS distance (2.6) for many different
ensembles (i.e. potentials V ), systems sizes N , number of samples M , and time steps %t .
A representative sample of the results is provided in Figs. 4, 5, and 6. We draw the reader’s
attention to the robust exponential decay to the equilibrium measure with a rate of O(1) in
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Fig. 4 Exponential decay of the
KS distance. The KS distance
defined in (2.6) is plotted as a
function of time for several
ensembles. In these simulations,
N = 100, the maximal time is
T = 10, the time step is
%t = 1/2N2, and M = 1000
trials were performed.
Exponential decay to the
equilibrium distribution is seen in
a time of O(1)

Fig. 5 Exponential decay of the KS distance for the empirical measure. The KS distance defined in (2.6) is
plotted as a function of time for the ensemble with V (x) = x4/4 for different values of N . (a) N = 6, maximal
time T = 8 and time step %t = 1/N4. (b) Maximal time T = 8, time step %t = 1/4N2 and M = 1000 trials

all these figures. Exponential convergence to equilibrium with a rate of O(1) is also seen for
the gap probability A(θ) in Fig. 6.

3 Conclusion

We have used a tamed explicit Euler scheme for Dyson Brownian motion to sample the equi-
librium measure of the Coulomb gas on the line with a non-Gaussian potential V . Despite
the singular nature of the Coulomb interaction and the nonlinear growth of the confining
potential V , our scheme was always observed to be stable and convergent for time steps of
O(1/N2), and to reach equilibrium in a time of O(1). At present, these rates refer only to
our numerical experiments with quartic potentials, but the stable performance in this case, as
well as the theoretical bound (1.9) suggest that these rates may hold for more general convex
potentials. The simulation results agree with the exact laws for both finite and limiting cases.
The KS distances between the empirical and exact distributions decay exponentially with re-
spect to simulation time. We view this as a demonstration of the practical utility of tamed
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Fig. 6 Exponential decay of the KS distance for gap probabilities. A(θ) for the quartic potential
V (x) = x4/4. (a) System size N = 20, maximal time T = 2.5 and time step %t = 1/4N2. (b) Maximal
time T = 2.5, time step %t = 1/4N2 and M = 10000 trials

explicit Euler schemes in situations where theoretical convergence results are not known to
apply.

Our method can be combined with sampling techniques for matrices from the unitary
group to sample a random matrix from the invariant ensemble with potential V . We find that
the cost of M trials is O(MN3), though further acceleration may be provided by the fast
local relaxation of the Dyson Brownian motion. To the best of our knowledge, our work and
the simultaneous work of Olver et al. [22], present the first systematic sampling schemes for
invariant ensembles.
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