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It is shown (by means of a perturbation series) that for a class of potentials V(x) the
stationary distribution of the solution x(t) of the quantum Langevin equation approaches
in the weak-coupling limit (f—0) the quantum mechanical canonical distribution of the
displacement of the oscillator, subject to the potential V(x), if and only if E(t) is the
operator version of the purely random Gaussian process so that, in particular, higher
symmetrized averages (E(t, ) E(t„)), are expressible in terms of pair correlations, in
the usual way.

PACS numbers: 05.30.-d, 03.65.Db

It is well known that classically the action of a
heat bath of absolute temperature T on a particle
in the bath can, under appropriate circumstances,
be described by the "Langevin fore e"'

-f dx/dt+E(t),

where f is a friction coefficient and E(t) a purely
random Gaussian process, i.e., a Gaussian ran-
dom process with mean zero and covariance given
by the formula

(E(t, )E(t2)) = 2k Tf d(t, —f, ).

If the particle (of mass m) is subject to an out-
side force derivable from the potential V(x), one
is led to the Langevin equation

m„, +f „+V'(x) =E(t), —d g

which can be made a basis for studying the aP-
Proach to equilibrium of the particle (it is, of
course, assumed that the heat bath being in es-
sence infinite in size remains for all times in
equilibrium).

The simplest (and most fundamental) fact of the
theory of the Langevin equation is embodied in

the theorem that, in the limit as f —~, P(x„P, ~
x,

P; i), where P(x„P,I x, P; t) is the probability den-
sity of x and P at time f given that at time 0 the
particle was at x, with initial momentum p„ is
the canonical (Maxwell-Boltzmann) density.

We shall assume from now on that V(x) ap-
proaches + ~ as x-+~. In the simplest case of
the harmonic oscillator V'(x) = &'x, the Langevin
equation can be solved explicitly and the above
statement verified directly. For more general
(nonlinear) forces one has to use the fact that the
process (x(t), P(t)) is Markovian and that P satis-
fies the Kramers equation. ' The Maxwell-Boltz-
mann density is the unique stationary solution of
the Kramers equation.

Is there an analogous theory within the realm
of quantum mechanics? This question has been
the subject of a large number of papers and at
least two reviews, ' to which the reader is direct-
ed for further references. It appears that with
one exception' all papers deal exclusively with
the harmonic oscillator (which turns out to be
somewhat misleading), and the quantum Langevin
equation is introduced by more or less heuristic
arguments. To avoid polemic, we shall adhere
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to the line of thought which motivated Ford, Kac,
and Mazur' (FKM), and while in so doing we shall
restrict the physical implications of our conclu-
sions, we shall gain in clarity and sharpness. In
FKM, a purely dynamical model of a heat bath
was proposed which rigorously yielded (in an ap-
propriate limit) (3) and (2). The model is rather
special since the heat bath is an assembly of
coupled oscillators harmonically coupled to a
particle which in turn is acted upon by an outside
force —V'(x). The only statistical assumption
was that the heat bath was canonically distributed.
The quantum Langevin equation was then obtained

~

by treating the dynamical system quantum me-
chanically and interpreting the canonical distribu-
tion of the heat bath also qua-ntum mechanically.
The quantum mechanical version is formally iden-
tical with (3) except that now x and its derivatives
are operators and so is E(t). E(t) is, in fact, a
limit of a linear combination of creation-and anni-
hilation operators (for details see FKM) where
one can calculate easily the commutator [E(t,),
E(t,)],

[E(t,), E(t,)]=ifk(8/st, —8/». )&(t, —t, ), (4)

and the average

(E(t,)E(t,)),= 2(E(t,)E(t,) + E(t,)E(t, )) = (mf/m) J, d&u A &o coth(k~/2k T}cos[~(t,—t, )].
It is, of course, understood that the average ()
(without the subscript s which signifies symmet-
rization) is taken with respect to the (quantum
mechanical) canonical ensemble of the heat bath,
i.e., with respect to exp(-PH), with the H being
the Hamiltonian of the heat bath which in terms of
creation and annihilation operators is H=g»h&u»
&& (a„*a»+ 2). It goes without saying that (5) is the
result of the same limiting process which leads
to (4). This limiting process, described in detail
in FKM, consists of letting the numbers of bath
oscillators, as well as a certain cutoff frequency,
approach infinity. The higher symmetrized aver-
ages (E(t, )E(t,) E(t„)), obey the usual Gaussian
property and, of course, (E(t))=0. In order to
avoid certain divergence difficulties as well as
the ever present difficulties stemming from the
inherent noncommutativity of quantum mechanical
operators, we shall forego the search for the
most suitable analog of the approach to equilibri-
um in the classical case and confine our attention
to the distribution of the position eoordina. te x(t)
only.

The position of a quantum mechanical particle
subject to an external potential V(x) and in equi-
librium with a heat bath of absolute temperature
T should be distributed according to the probabili-
ty density

Q exp(-PE„)(„'(x)
n=l

P exp(- PE„)
n= j.

1
kT'

where the E„'s and („'s are respectively the eigen-
values and the normalized eigenfunctions of the
Schrodinger equation with potential V. [Because
of our assumption that V(x)-~ as x-a~, the
spectrum is discrete. ] One might thus suspect

that as t-~ the probability density of x(t) should
approach the canonical density (6). But this can-
not be so for f10, because for nonvanishing fric-
tion one should expect shifting and broadening of
spectral lines. What one should, therefore, ex-
pect is that only in the additional limit f-0, the
limiting distribution of x(t) as t-~ should be (6).

The (somewhat imperfect) analog of the ap-
proach to equilibrium in the classical case stated
for future reference in terms of the moment-gen-
erating function (exp[bx(t)]) is thus

limlim (exp[bx(t)])
f~p g —&oo

f" d e (I, )
Z, exP(- P&, 0, (x)

Q„exp(- pE„) (7)

with W(k*) = W*(k) (so that V is real). Actually,
we shall only prove (7) to all orders in perturba-
tion, but in the case (8) with suitably restricted
W(k) the perturbation series will converge Ior
sufficiently small

~
e ~.

The calculation of the expansion of the right-
hand side of (7) is relatively easy and is most
effectively accomplished by the use of the Feyn-
man-Kac formula. ' If we choose units such that
m =1, 8=v 2, and z'= 2, then with potential V(x)
=x'/4+ eexp(ax) the coefficients of the e' and c

In the sequel we shall sketch a proof of (7) first
for potentials of the form V(x) = —,'v'x'+ e exp(ax),
with c &0 and a real (so as not to violate hermitic-
ity), and then for potentials of the form

V(x) = —,
' K'x'+ e J W(k) exp(ikx) dk,
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terms in the expansion are exp[b'g, (0)/2] and

—exp[(a2+ b~)go(0)/2] f dP, J exp[aba(P, )J —1J, (9)

respective!y, where g,(0) = coth(j3/2) and A(y) = cosh()3/2 —y)/sinh(jj/2), 0 - y -p. The notation g, (0) will
become c!ear in the sequel [see (14)]. Considerably more involved is the perturbative treatment of the
Langevin equation. It turns out that instead of taking the limit t- ~ in (7) it is enough to set

t
x(t) =u(t) —oaf K(t —g) exp[ax(()]d(,

where

u(t) = J K(t —t)E(g) dg and K(s) = exp( —f s)sin(vs)/r,

with s&0 and v'=A' ——,f'. It is therefore sufficient to calculate the limit, as f-0, of &exp[bx(t)]) with
x(t) defined as above. We shall need in the sequel the commutator [u(t,), u(t, ) J and &exp[bu(t) J&. Both
are easily computed and we record the results:

!t,—t, ~ sinv(t, —t,)
[u(t,), u(t, )]=i —exp -f (i0)

& exp [ bu(t ) ] ) = exp [b'g(0) /2 ],
where

e(0) = (o'(t)) = — )tt cote( ), ,),
0

or more generally

g(t) =-.'&u(t)u(t+&) +u(t+ &)u(t) &
=—2f it&8 cos((t) g)

(12)

As f-0 we obtain

g,(g) = lim g(&) =coth(j3/2)cos(&/v 2 ), (i4)

in the units chosen above. Finally, we record a generalization of (11)

&exp[ g b, u(t „)] &
= exp[ Z b; b, g( I t; —t, I )/2],

k =J.

which underscores the Gaussian nature of u(t) and is i dentica/ in form with the corresponding classical
formula (except, of course, for the difference in the expressions for g, the classical g being obtained
from the quantum mechanical one by letting 8-0). The essential quantum mechanical features appear
because in the perturbative calculation of &exp[bx(t)]) one encounters symrnetrized averages &g~exp[b„
xu(t, )]),which by repeated applications of the Baker-Campbell-Hausdorf formula and the formula
(10) for the commutators [u(t, ), u(t, ) J (fortunately, these are c-numbers!) turn out to be the "classical"
(12) multiplied by products of terms generated by the commutators.

It remains to sketch how one goes about calculating (recursively. ) the terms of the power series (in
e) for &exp[bx(t)]) and checking that in the limit f-0 they are equal to the corresponding terms in the
expansion of the right-hand side of (7). We start with the identity

h(b; t) = exp[bu(t)] —ea f db'exp[(b —b')u(t)] J „d(K(t ()h(a; g)h(b'; t)—,

where h(b;t) =exp[bx(t)]. This can be easily verified by premultiplying both sides of (16) by exp[- bu(t)]
and taking derivatives of both sides with respect to b. For the more general perturbation (8) the iden-
tity is

h(b;t) =exp[bu(t)] —caf „dk W(k) f, db exp[(b —b')u(t)] f „drK(t —f)h(ik;t;)h(b';t). (17)
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Expanding h in powers of e, so that h (b;t) =QH„(b;t)e", we get from (16)

H„+,(b;t) =-af, db'exp[(b -b')u(t)] f „dgK(t —f) Q H&(a;f)H, (b';t),
f+j =n

(18)

and it should be clear that H, (b;t) =exp[bu(t)]. A simple straightforward calculation gives, in the units
chosen above,

H, (b;t) = —v 2f „dt exp[au(f) +bu(t)] sin[abK(t —g)/v 2], (19)

(20)

and, upon averaging and using (15),

(H, (b;t)) = —~2exp[(a2+b2)g(0)/2] f, dX exp[abg(X)] sin[ abK(A)/W2].

How does one see that, in the limit f-0, (20) is the same as (9), or etluivalently how does one see
that

lim&2f d& exp[abg(X)] sin[abK(A. )/v 2] =f dp(e xp[a ba(p)] —lj?
f ~p

(21)

This is a nice excercise in contour integration
and it uses in an essential way the identity

m. '(i~~p) = &(p)

and

v.'(&+i~~p) =v. (p), (22b)

where p, '(A. )
—= lim&-, [g(A.) + iK(A. )/W2] = cos(X/~2

v ip/2)/sinh(p/2). The symmetry (22b) is formal-
ly identical with the familiar KMS (Kubo-Martin-
Schwinger) condition. Verification of etluality of
coefficients of higher powers of & requires no
new ideas but more care and patience. For the
coefficients of e' and e' the verification has been
explicitly performed and this suggested a general
inductive procedure which is in the process of
being worked out.

We are, of course, aware that there may be a
number of (possibly subtle) questions of rigor
having mainly to do with interchanges of limiting
processes. There is, however, no doubt in our
minds that the results as presented are correct.

We conclude with two remarks. (1) There
should be a nonperturbative proof of the approach
to the quantum mechanical canonical distribution.
One cannot escape the feeling that our calcula-
tions merely constitute an elaborate verif ication
of the inner consistency of quantum mechanics.
(2) If one follows our calculations in detail it be-
comes clear that the properties of E(t) as em-
bodied in (4) and (5), as well as in E(t) being
Gaussian, are not only sufficient for (I) but also
necessary. ' lt follows that either the Langevin
equation studied here is a fluke of the special
FKM model which led to it or that there is no
generally valid quantum Langevin equation. The
authors who, guided by the harmonic oscillator,
proposed alternative forms of the Langevin equa-
tion might well ponder these inexorable alterna-
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For simplicity we consider the one-dimensional
case only.
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This is rigorously true if one assumes that the com-
mutator [E(t&), E(t2)] is a c-number.


