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Figure 1: Google matrix  of the network Wikipedia English

articles for Aug 2009 in the basis of nodes ordered by

PageRank index ; matrix indexes are  in  axes with

top values for  in the top left corner (see text for

definition of indexes ) . Left panel shows first

 matrix elements, right panel shows density of all

matrix elements coarse-grained on  cells. Color

shows the density of matrix elements changing from black for

minimum value ( ) to white for maximum value via

green and yellow; here the damping factor is , the

matrix size is . (from Ermann, 2015-b)
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  The Google matrix  of a directed network is a stochastic square matrix with nonnegative matrix elements

and the sum of elements in each column being equal to unity. This matrix describes a Markov chain (Markov,

1906-a) of transitions of a random surfer performing jumps on a network of nodes connected by directed links.

The network is characterized by an adjacency matrix  with elements  if node  points to node  and

zero otherwise. The matrix of Markov transitions  is constructed from the adjacency matrix  by

normalization of the sum of column elements to unity and replacing columns with only zero elements (dangling

nodes) with equal elements  where  is the matrix size (number of nodes). Then the elements of the Google

matrix are defined as

where the damping factor  is the

probability that a random surfer follows a link

according to the stochastic matrix  while with

probability  he may jump to any network

node. In this form the Google matrix was

introduced by Brin and Page in 1998 (Brin,

1998-a) for the description of the World Wide

Web (WWW). The right eigenvector of  with

the largest (by modulus) unit eigenvalue is the

PageRank vector whose non-negative

elements correspond to the stationary

probability to find a random surfer on a given

node. The product of two Google matrices is

also a Google matrix. The above construction

of  can be directly generalized to the case of

weighted transitions with the sum of elements

in each column of  equal to unity. The

general spectral properties of  matrix are

described below with concrete examples of

various real networks. An example image of  is shown in Figure 1 for the Wikipedia network. The Google

matrix belongs to the class of Perron-Frobenius operators which appear in the description of dynamical chaotic

systems (Brin, 2002-b) and related Ulam networks (Ulam, 1960-b,Ermann, 2010-a).
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Figure 2: (a) Example of simple network with directed links

between 5 nodes. (b) Distribution of 5 nodes from (a) on the

PageRank-CheiRank plane , where the size of node is

proportional to PageRank probability  and color of node is

proportional to CheiRank probability , with maximum at

red and minimum at blue; the location of nodes of panel (a) on

PageRank-CheiRank plane is: (2,4), (1,3),(3,1), (4,2), (5,5) for

original nodes 1,2,3,4,5 respectively; PageRank and

CheiRank vectors are computed from the Google matrices 

and  shown in Figure 3 at a damping factor . (from

Ermann, 2015-b)
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Simple network example

An example of simple directed network with 5 nodes is shown in Figure 2(a), here nodes are numbered from 1 to

5. The distribution of nodes on the PageRank-CheiRank plane of indexes  is shown in Figure 2(b) (see

definition of  in next Section). The corresponding adjacency matrix  and matrices  are given in

Figure 3(a,c,e). In addition it is useful to consider the network with inverted link directions. The corresponding

adjacency matrix  and related matrices  are shown for this case in Figure 3(b,d,f).

PageRank and CheiRank eigenvectors

According to the Perron-Frobenius theorem all eigenvalues  of  are distributed inside the unitary circle

. The right eigenvectors  are defined by the equation . In the following we

will also use the notation eigenstates for such eigenvectors in analogy to eigenstates in quantum Hamiltonian

systems. It can be shown that for  the eigenvalue  is not degenerate with only one right eigenvector

called the PageRank vector . The positive elements  of the PageRank vector, when the sum of them is

normalized to unity, give the probability to find a random surfer on a node  in the stationary limit of long times.

Only the eigenvectors of  for  (which may be degenerate) are affected by the damping factor while other

eigenvectors of  (with eigenvalues ) are also eigenvectors of  independent of  due to their

orthogonality to the left eigenvector (with identical unit entries) at  but with rescaled eigenvalues  for

 (Langville, 2006-b,Gantmacher, 2000-b). The variation of  in the range  does not
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Figure 3: (a) Adjacency matrix  of network of (a) with indexes

used there, (b) adjacency matrix  for the network with

inverted links; matrices  (c) and  (d) corresponding to the

matrices ; the Google matrices  (e) and  (f)

corresponding to matrices  and  for  (only 3 digits

of matrix elements are shown. (from Ermann, 2015-b)

significantly affect the PageRank

probabilities so that the results are usually

presented for a typical value 

(Langville, 2006-b, Ermann, 2015-b).

The network with inverted link directions is

described by the matrix , the PageRank

eigenvector of  is called the CheiRank

vector. The statistical properties of the

CheiRank vector  have been first studied

in (Chepelianskii, 2010-a) for the Linux

Kernel network and later extended to the

Wikipedia network (Zhirov, 2010-a).

All network nodes can be ordered by

monotonically decreasing propabilities of

PageRank or CheiRank vectors providing

indexes  and  with the maximal probability at , and mininum probability at .

The PageRank index  is used for the presentation of  in Figure 1: here all nodes are ordered by the PageRank

index  and the strength of matrix elements  is shown by color on a small scale (left panel) and on the

whole matrix scale with coarse-graining (right panel).

The distribution of nodes on the PageRank-CheiRank plane for the simple network example is shown in Figure

2(b).

It is known that on average the PageRank probability is proportional to the number of ingoing links,

characterizing how popular or known a given node is (Langville, 2006-b). Real networks are often characterized

by power law distributions for the number of ingoing and outgoing links per node  with typical

exponents  and  for the WWW (Donato, 2004-a,Dorogovtsev, 2010-b,Newman, 2010-b).

Assuming that the PageRank probability decays algebraically as  we obtain that the number of

nodes  with PageRank probability  scales as  with . Thus for the typical above

values of  we have  for PageRank  and  for CheiRank  which is

proportional to the number of outgoing links due to the inversion of direction. Examples of the probability decay

of  are shown in Figure 4 for networks of Wikipedia and University of Cambridge. It should be noted that

the decay is only approximately described by a power law. WWW networks of larger sizes (about 3.5 billions)

also only approximately described by an algebraic decay (Meusel, 2015-a).

For the case of the simple network visible in (a) the distribution of nodes on the PageRank-CheiRank plane is

shown in (b). The distributions for Wikipedia and Linux Kernel networks are shown in Figure 5. It is convenient

to characterize the network by the PageRank-CheiRank correlator 

(Chepelianskii, 2010-a) which takes different values depending on internal network properties even if the decay

of PageRank and CheiRank probabilities is approximately the same in these networks. Thus we have

 for panels (a;b) of Figure 5. At small correlators the density is homogeneous along the line

 while for large positive values it is more concentrated along the line . More

correlator values for different networks are given in (Ermann, 2015-b)]]).

It is also useful to rank network nodes by a 2DRank using a combination of PageRank and CheiRank: for this

one considers a sequence of squares on the PageRank-CheiRank plane with the left bottom corner at

 and increasing size placing nodes in 2DRank  in order of their appearance on square sides (see
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Figure 4: Dependence of probabilities of PageRank  (red

curve) and CheiRank  (blue curve) vectors on the

corresponding rank indexes  and  for networks of

Wikipedia Aug 2009 (top curves) and University of Cambridge

(bottom curves, moved down by a factor 100). The straight

dashed lines show the power law fits for PageRank and

CheiRank with the slopes  respectively,

corresponding to  for Wikipedia, and

 for Cambridge. (from Ermann, 2015-b)

Figure 5: Density distribution of network nodes

 shown on the plane of PageRank

and CheiRank indexes in log-scale  for all

, density is computed over equidistant grid in

plane  with  cells; color shows

average value of  in each cell for the unit normalization

condition for all nodes. Density  is shown by color

with blue for minimum in (a),(b) and white (a) and yellow (b)

for maximum (black for zero). Panel (a): data for Wikipedia

Aug (2009), , green/red points show top 100

persons from PageRank/CheiRank, yellow pluses show top 100

persons from (Hart, 1992-b). Panel (b): density distribution for

Linux Kernel V2.4 network with . (from Ermann,

2015-b)

more detail at (Zhirov, 2010-a)).

The characterization of a directed network

by both PageRank and CheiRank

probabilities allows to characterized in a

better way the information flow on the

network taking into account ingoing flows,

related to PageRank, and outgoing flows,

related to CheiRank (see more detail in

Ermann, 2015-b).

The density distribution of nodes on the

PageRank-CheiRank plane is shown in

Figure 5 for Wikipedia (a) and Linux (b)

networks. The density

 is computed on

logarithmic-equidistant greed (cells) so that

 is given by the number  of

network nodes appearing in a given cell

divided by the cell area on  plane.

Numerical methods for
 matrix

Usually scale-free networks have algebraic

distributions of ingoing and outgoing links

with a relatively small average number of

links  per node (see e.g. Dorogovtsev,

2010-b,Newman, 2010-b) corresponding to

a very sparse adjacency matrix. For example

for the networks of Figure 1, Figure 4,

Figure 5 we have .

Therefore the PageRank vector can be

efficiently computed by the power method

which consists of multiplying repeatedly the

matrix G to a random initial (sum

normalized) vector. Each such matrix vector

multiplication can be implemented by a loop

over the link index and has therefore a

complexity  which is much smaller than

the matrix size . The particular

contributions due to the dangling nodes or

the damping factor in the Google matrix

correspond to a complexity  and do not

increase the overall complexity. Due to the presence of a gap between  and the next eigenvalue with

 the convergence of the PageRank vector is exponential (e.g. after about 150 iterations the variation
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of the vector norm becomes less than  for the Wikipedia network of Figure 1).

For typical networks the whole set of nodes can be decomposed in invariant subspace nodes and fully connected

core space nodes leading to a block structure of the matrix  (Frahm, 2011-a):

The core space block  contains links between core space nodes and the coupling block  may contain links

from certain core space nodes to certain invariant subspace nodes. In contrast there are no links from subspace

nodes to the nodes of core space (block with zero elements). By construction there are no links from nodes of

invariant subspaces to the nodes of the core space. The subspace-subspace block  is actually composed of

many diagonal blocks for different invariant subspaces whose number can generally be rather large. Each of

these blocks corresponds to a column sum normalized matrix with positive elements of the same type as  and

has therefore at least one unit eigenvalue. This leads to a high degeneracy  of the eigenvalue  of , for

example  for the case of UK universities (see below). For each initial node one can iteratively

determine a limit set of nodes that can be reached by a chain of non-zero matrix elements of  from the initial

node. This set extends either over (nearly) the full network or it is limited, e.g. less than 10% of all network

nodes. In the first case the initial node is attributed to the core space and in the second case the limit set defines

an invariant subspace. For example for the WWW networks of UK universities, all invariant subspaces typically

represent about  of the whole network.

The largest eigenvalues of  (taken by their modulus) can be efficiently obtained by the powerful Arnoldi

method [1] (https://en.wikipedia.org/wiki/Arnoldi_iteration) (see also Stewart, 2001-b,Ermann, 2015-b). The

main idea of this method is to construct, by an iterative scheme of matrix vector multiplication and

orthogonalization, an orthonormal basis on a subspace of modest dimension , called Krylov space, and to

diagonalize the representation matrix of G on this subspace which provides typically good approximations for

the largest eigenvalues of G (taken by their modulus). Also the corresponding eigenvectors are available by this

method.

For the particular case of networks with a nearly triangular adjacency matrix the effects of numerical and

round-off errors on the precision of eigenvalues may become very important and require high precision

computations for the Arnoldi method or other particular special methods (Frahm, 2014-a,Ermann, 2015-b).

Spectrum of  matrix

Typical complex eigenvalue spectra of  are shown in Figs.6,7 for examples of UK universities and

Wikipedia networks.

The spectra of  of universities of Cambridge and Oxford in 2006 are shown in Figure 6. These networks

have a size . All subspace eigenvalues and  core eigenvalues with maximal  are

shown. There is a strong degeneracy of the unit eigenvalue (about  of all eigenvectors). The global spectral

structure has visible similarities with the spectra of random orthostochastic matrices of small size 

analyzed numerically and analytically in (Zyczkowski, 2003a). The spikes visible at certain angles  for

 correspond to approximate cycles of length  for the links between particular nodes ("close

friends") that appear in top rank positions of the corresponding eigenstates of such eigenvalues.

The spectrum of the core space of  for the Wikipedia network (Aug 2009) is shown in Figure 7. The eigenstates

with maximal values of  correspond to certain quasi-isolated communities, they are marked by the most
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Figure 6: Panels (a) and (b) show the complex eigenvalue

spectrum  of the matrix  for the University of Cambridge

2006 and Oxford 2006 respectively.The spectrum  of the matrix

 for Cambridge 2006 and Oxford 2006 are shown in panels

(c) and (d). Eigenvalues  of the core space are shown by red

points, eigenvalues of isolated subspaces are shown by blue

points and the green curve (when shown) is the unit circle.

Panels (e) and (f) show the fraction  of eigenvalues with

 for the core space eigenvalues (red bottom curve) and

all eigenvalues (blue top curve)from top row data for Cambridge

2006 and Oxford 2006. (from Ermann, 2015-b)

frequent words appearing in largest

amplitudes of the corresponding

eigenvectors.The results show that the

eigenvectors of  clearly identify

interesting specific communities of the

network.

Fractal Weyl law

In quantum mechanics the Weyl law (1912)

gives a fundamental relation between the

number of states and the phase volume of a

Hamiltonian closed system of dimension .

The generalization to operators of open

quantum systems, appearing in the problems

of quantum chaotic scattering with complex

eigenenergies (Gaspard, 2014b), has been

done relatively recently by

(Sjostrand,1990a). The spectrum of

corresponding operators has a complex

spectrum . The spread width 

of eigenvalues  determines the life time of

a corresponding eigenstate.

According to the fractal Weyl law the

number of eigenvalues , which have

escape rates  in a finite band width

, scales as

where  is a fractal dimension of a classical

strange repeller formed by classical orbits

nonescaping in future and past times,  is

the Planck constant. In the context of eigenvalues  of the Google matrix we have . As usual the

Planck constant is inversely proportional to the number of states, which is determined by the matrix size, so that

.

The fractal Weyl law of open systems with a fractal dimension  leads to a striking consequence: only a

relatively small fraction of eigenvalues  has finite values of  while

almost all eigenstates of the matrix operator of size  have . The eigenstates with finite  are

related to the classical fractal sets of orbits non-escaping neither in the future neither in the past. The fractal

Weyl law for the Ulam networks is discussed in next Section. This law has been shown to be valid for the Linux

Kernel network with  (see Figure 8 and related Section). For the Physical Review network it is found

that Frahm, 2014-a).

There is an expectation that the eigenstates with large , forming the fractal Weyl law, capture certain hidden

interesting communities. It is qualitatevely confirmed by the analysis of eigenvectors of Wikipedia matrix  (see
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Figure 7: Complex eigenvalue spectrum of the matrices  for

English Wikipedia Aug 2009. Highlighted eigenvalues represent

different communities of Wikipedia and are labeled by the most

repeated and important words following word counting of first

1000 nodes. Panel (a) shows complex plane for positive

imaginary part of eigenvalues, while panels (b) and (c) zoom in

the negative and positive real parts. (from Ermann, 2015-b)

Figure 8: Panel (a) shows distribution of eigenvalues  in the

complex plane for the Google matrix  of the Linux Kernel

version 2.6.32 with  and ; the solid curves

represent the unit circle and the lowest limit of computed

eigenvalues. Panel (b) shows dependence of the integrated

number of eigenvalues  with  (red squares) and

 (black circles) as a function of the total number of

processes  for versions of Linux Kernels. The values of 

correspond (in increasing order) to Linux Kernel versions

. The power law

 has fitted values  and

. Inset shows data for the Google

matrix  with inverse link directions, the corresponding

exponents are  and

. (from Ermann, 2015-b)

Figure 7 and Frahm, 2014-a).

Mathematical aspects of the fractal Weyl

law are reviewed in (Nonnenmacher,

2014b).

Ulam networks

By construction the Google matrix belongs

to the class of Perron-Frobenius operators

which naturally appear in ergodic theory and

dynamical systems with Hamiltonian or

dissipative dynamics (Brin, 2002-b). In 1960

Ulam (Ulam, 1960-b) proposed a method,

now known as the Ulam method, for a

construction of finite size approximants for

the Perron-Frobenius operators of dynamical

maps. The method is based on discretization

of the phase space and construction of a

Markov chain based on probability

transitions between such discrete cells given

by the dynamics. Using as an example a

simple chaotic map Ulam made a conjecture

that the finite size approximation converges

to the continuous limit when the cell size

goes to zero. Indeed, it has been proven that

for hyperbolic maps in one and higher

dimensions the Ulam method converges to

the spectrum of the continuous system. The

probability flows in dynamical systems have

rich and nontrivial features of general

importance, like simple and strange

attractors with localized and delocalized

dynamics governed by simple dynamical

rules. Such objects are generic for nonlinear

dissipative dynamics and therefore they can

have relevance for actual WWW structure.

The analysis of Ulam networks, generated

by the Ulam method, allows to obtain a

better intuition about the spectral properties

of Google matrix.

The Ulam method works as following: the

phase space of a dynamical map is divided in equal cells and a number of trajectories  is propagated by a map

iteration. Thus a number of trajectories  arriving from cell  to cell  is determined. Then the matrix of Markov
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Figure 9: Phase space representation of eigenstates of the Ulam

approximate of the Perron-Frobenius operator (UPFO)  for

 cells (color is proportional to absolute value 

with red for maximum and blue for zero). Panel (a) shows an

eigenstate with maximum eigenvalue  for the

Chirikov standard map with absorption at ,

the space region is ( , ), the

fractal dimension of the strange repeller set nonescaping in

future is . Panel (b) shows an eigenstate

at  of the UPFO of the map without absorption at

, the shown space region is

( ) and the fractal dimension of the

strange attractor is . (from Ermann, 2015-b)

transition is defined as . By

construction this matrix belongs to the class

of Perron-Frobenius operators which

includes the Google matrix. The physical

meaning of the coarse grain description by a

finite number of cells is that it introduces in

the system a noise of cell size amplitude.

More details can be found at (Ermann,

2015-b).

Examples of eigenstates of the Ulam

approximate of Perron-Frobenius operators

(UPFO) of two Ulam networks are shown in

Figure 9. The networks are generated by the

Ulam method applied to the dynamical map

Here bars mark the variables after one map iteration and we consider the dynamics to be periodic on a torus so

that ;  is a dimensionless parameter of chaos. At  we have the

area-preserving symplectic map, known as the Chirikov standard map (Chirikov, 2008-b), for  we

have a dissipative dynamics with a strange attractor. At  the absorption is introduced so that all orbits

leaving the interval  are absorbed after one iteration. Thus the UPFO has the maximal

eigenvalue  with a strange repeller of orbits remaining in the system after many map iterations. For the

dissipative case at  the orbits drop on a strange attractor (see Figure 9). The fractal dimension  of these

strange sets depends on the system parameters that allows to vary it in a large range . The spectral

analysis of UPFO in these systems confirms the validity of the fractal Weyl law for variation of the exponent 

in the interval  (Ermann, 2010-a).

Linux Kernel networks

Modern software codes represent now complex large scale structures and analysis and optimization of their

architecture become a challenge. An interesting approach to this problem was proposed in (Chepelianskii,

2010-a) on the basis of directed network analysis. Thus the Procedure Call Networks (PCN) are constructed for

the open source programs of Linux Kernel written in the C programming language. In this language the code is

structured as a sequence of procedures calling each other. Due to that feature the organization of a code can be

naturally represented as a PCN, where each node represents a procedure and each directed link corresponds to a

procedure call. For the Linux source code such a directed network is built by its lexical scanning with the

identification of all the defined procedures. For each of them a list keeps track of the procedures calls inside their

definition.

S
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It is found that the PageRank and CheiRank probabilities in this network decay as a power law with the

approximate exponent values  respectively. For V2.6.32 the top three procedures of PageRank are

printk, memset, kfree, while at the top of CheiRank we have start_kernel, btrfs_ioctl, menu_finalize. These

procedures perform rather different tasks with printk reporting messages and start_kernel initializing the Kernel

and managing the repartition of tasks. This gives an idea that both PageRank and CheiRank order can be useful

to highlight different aspects of directed and inverted flows on our network. Of course, in the context of WWW

ingoing links related to PageRank are less vulnerable as compared to outgoing links related to CheiRank, which

can be modified by a user rather easily.

For the Linux Kernel network the correlator  between PageRank and CheiRank vectors is close to zero. This

confirms the statistical independence of these two vectors. The density distribution of nodes of the Linux Kernel

network, shown in Figure 5(b), has a homogeneous distribution along  lines

demonstrating once more absence of correlations between  and . Indeed, such homogeneous

distributions appear if nodes are generated randomly with factorized probabilities .

The physical reasons for absence of correlations between  have been explained (Chepelianskii,

2010-a) on the basis of the concept of separation of concerns in software architecture. It is argued that a good

code should decrease the number of procedures that have high values of both PageRank and CheiRank since

such procedures will play a critical role in error propagation since they are both popular and highly

communicative at the same time. For example in the Linux Kernel, do_fork, that creates new processes, belongs

to this class. Such critical procedures may introduce subtle errors because they entangle otherwise independent

segments of code. The above observations suggest that the independence between popular procedures, which

have high  and fulfill important but well defined tasks, and communicative procedures, which have high

 and organize and assign tasks in the code, is an important ingredient of well structured software.

The different Linux versions from V1.0 to V2.6 provide a network size variation in a range

 allowing to demonstrate the validity of the fractal Weyl law with the fractal dimension

 (see Figure 8). Linux network data sets are available at (FETNADINE, 2015-e).

WWW networks of UK universities

The WWW networks of certain UK universities for the years between 2002 and 2006 are publicly available at

(UK universities, 2006-e; selected networks are given at EU-FET-NADINE site FETNADINE, 2015-e). The

universal emergence of PageRank, properties of PageRank and CheiRank vectors and the spectral properties of

 are analyzed in detail at (Frahm, 2011-a, see also Figs.4,6). It is estableshed that the rescaled distribution

of sizes  of invariant subspaces of university networks is described by a univerrsal function

 with , where  is an average subspace dimension computed for a

WWW of a given university. This is related with a universal power law decay of PageRank probability

 emerging at . It is shown that for certain universities the maximal eigenvalue of the core

space is enormously close to unity (e.g ); the corresponding eigenstates are localized on a small

node subset. More results are available at (Frahm, 2011-a,Ermann, 2015-b).

Wikipedia networks

The free online encyclopedia Wikipedia is a huge repository of human knowledge. Its size is growing

permanently accumulating a enormous amount of information. The hyperlink citations between Wikipedia

articles provide an important example of directed networks evolving in time for many different languages.

β ≈ 1; 0.5

κ

ln K + ln = constK ∗

P(K(i)) ( (i))P∗ K ∗

P(i), (i)P∗

P(K), ( )P∗ K ∗

P(K(i))
( (i))P∗ K ∗

2752 ≤ N ≤ 285510
d ≈ 1.3

G, G∗

di
F(x) = 1/(1 + 2x)3/2 x = / < d >di < d >

P ∝ 1/K 2/3 α → 0 λc
1 − <λc 10−16
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The decay of probabilities of PageRank and CheiRank are shown in Figure 4 for English Wikipedia edition of

August 2009 (Zhirov, 2010-a). They are satisfactory described by a power law decay with exponents

.

The density distribution of articles over the PageRank-CheiRank plane  is shown in Figure

5(a). The density is very different from those generated by the product of independent probabilities of  and 

which gives the distribution similar to the case of the Linux Kernel network shown in Figure 5(b) where the

correlator  between PageRank and CheiRank vectors is almost zero (while for Wikipedia ).

The difference between PageRank and CheiRank is clearly seen from the names of articles with highest ranks.

At the top of PageRank there are 1. United States, 2. United Kingdom, 3. France while for CheiRank one finds

1. Portal:Contents/Outline of knowledge/Geography and places, 2. List of state leaders by year, 3.

Portal:Contents/Index/Geography and places. Clearly the PageRank selects first articles on a broadly known

subject with a large number of ingoing links while the CheiRank selects first highly communicative articles with

many outgoing links. The 2DRank combines these two characteristics of information flow on directed network.

At the top of 2DRank  one has 1. India, 2. Singapore, 3. Pakistan. Thus, these articles are most

known/popular and most communicative at the same time. Results of ranking of the Wikipedia Aug 2009 edition

for various categories are available at (Wiki2009, 2010-e).

The complex spectrum of eigenvalues of  for this Wikipedia network is shown in Figure 7 (due to symmetry of

eigenvalues  only the upper plane of  is shown). As for university networks, the spectrum also has some

invariant subspaces resulting in degeneracies of the leading eigenvalue  of . However, due to the

stronger connectivity of the Wikipedia network these subspaces are significantly smaller compared to university

networks.

It is expected that the eigenstates with large values of  select certain specific communities. If  is close to

unity then the relaxation of probability from such nodes is rather slow and we can expect that such eigenstates

highlight some new interesting information even if these nodes are located in the tail of the PageRank. The

important advantage of the Wikipedia network is that its nodes are Wikipedia articles with a relatively clear

meaning allowing to understand the origins of appearance of certain nodes in one community. The frequency

analysis of words appearing at the largest amplitudes of eigenvectors with large modulus of  confirms this

expectation (see Figure 7 and Ermann, 2015-b).

Top 100 historical figures of Wikipedia

There is always significant public interest to know who are the most significant historical figures, or persons, of

humanity. The Hart list of the top 100 people who, according to him, most influenced human history is available

at (Hart, 1992-b). Hart “ranked these 100 persons in order of importance: that is, according to the total amount of

influence that each of them had on human history and on the everyday lives of other human beings.” Of course,

a human ranking can always be objected arguing that an investigator has his or her own preferences. Also

investigators from different cultures can have different viewpoints on the same historical figure. Thus it is

important to perform a ranking of historical figures on purely mathematical and statistical grounds which

exclude any cultural and personal preferences of investigators.

A detailed two-dimensional ranking of persons of the English Wikipedia August 2009 was done by (Zhirov,

2010-a). Earlier studies had been done in a non-systematic way without any comparison with established top 100

lists. The distribution of the top 100 PageRank, CheiRank, and Hart’s persons on PageRank-CheiRank plane is

shown in Figure 5(a). For the PageRank top 100 list the overlap with the Hart list is at 35% (PageRank), 10%

(2DRank), and almost zero for CheiRank. This is attributed to a very broad distribution of historical figures on

= 1/( − 1) = 0.92; 0.58βPR,CR μin,out

( K, )logN logN K ∗

P P∗

κ κ = 4.08

K2

G
λ = λ∗ λ
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the 2D plane, as shown in Figure 5(a), and a large variety of human activities. The distribution of the top 100

persons of the Wikipedia August 2009 remains stable and compact for PageRank and 2DRank for the period

2007–2011 while for CheiRank the fluctuations of positions are large (Ermann, 2015-b). This is due to the fact

that outgoing links are easily modified and fluctuating.

However, it is important to take into account not only the view point of English Wikipedia but also to consider

viewpoints of other language editions of Wikipedia representing other cultures. Thus the ranking of world

historical figures was done on the basis of 24 editions (Eom, 2015-a). In 2014 these 24 languages cover 59

percent of world population, and the corresponding 24 editions cover 68 percent of the total number of

Wikipedia articles in all 287 available languages. Also the selection of people from the rank list of each edition

is now done in an automatic computerized way. For this a list of about 1.1 million biographical articles about

people with their English names is generated. From this list of persons, with their biographical article title in the

English Wikipedia, the corresponding titles in other language editions are determined using the inter-language

links provided by Wikipedia. The rank score of each persons is averaged over all 24 editions thus equally taking

into account the opinions of these 24 cultures.

For PageRank the top global three historical figures are Carl Linnaeus, Jesus, and Aristotle. All other ranks are

available at (TopWikiPeople, 2014-e). The overlap of top 100 PageRank and Hart's lists have 43 common

persons. The fact that Carl Linnaeus is the top historical figure of the Wikipedia PageRank list came as a surprise

for media and the broad public (see Refs. in Ermann, 2015-b). This ranking is due to the fact that Carl Linnaeus

created a classification of world species including animals, insects, herbs, trees, etc. Thus all articles of these

species point to the article Carl Linnaeus in various languages. As a result Carl Linnaeus appears on almost all

top positions in all 24 languages. Hence, even if a politician, like Barak Obama, takes the second position in his

country language EN (Napoleon is at the first position in EN) he is usually placed at a low ranking in other

language editions. As a result Carl Linnaeus takes the first global PageRank position. More details, including the

distribution of historical figures over world countries and 35 centuries of human history, can be found at (Eom,

2015-a,Ermann, 2015-b,TopWikiPeople, 2014-e). The results of other research groups for ranking of historical

figures of Wikipedia are referenced in (PantheonMIT, 2015-e, StonyBrookranking, 2015-e, see more Refs. in

Eom, 2015-a, Ermann, 2015-b).

Wikipedia ranking of world universities

The ranking of universities for the English Wikipedia edition Aug 2009 was done in (Zhirov, 2010-a) giving at

the top of PageRank list: University of Harvard, University of Oxford, University of Cambridge with the overlap

of 70% for the top 100 list of Academic ranking of world universities of Shanghai in 2009 (Shanghai, 2015-e).

All results of ranking of universities are available at (Wiki2009, 2010-e). However, it is important also to take

into account the opinions of other cultures and not only of the English edition to determine the university

ranking.

Thus, the above appoach for ranking of historical figures is also used for the Wikipeida ranking of world

universities, using the same datasets of 24 Wikipedia editions. The combined results (Lages, 2016-a) obtained

from top 100 universities of each edition give total global lists of 1025, 1379, 1560 universities for PageRank,

CheiRank, and 2DRank algorithms respectively. All these results are available at (TopWikiUniversities, 2015-e).

The distribution of 1025 PageRank universities over the world countries is shown in Figure 10. For the global

PageRank list the top three positions are taken by University of Cambridge, University of Oxford, Harvard

University. The overlap of top 100 PageRank list with top 100 of Academic ranking of world universities of
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Figure 10: Geographical distribution of universities appearing in

the top 100 universities of all 24 Wikipedia editions given by

PageRank algorithm. The total number of universities is 1025.

Colors range from dark blue (small number of universities) to

dark red (maximum number of universities, here 118 for US).

Countries filled by dashed lines pattern have no university in the

top 100 lists of 24 editions. (from Lages, 2016-a)

Shanghai (Shanghai, 2015-e) is equal to 62

universities (English, French, German

editions have overlaps of 65, 41, 35

universities respectively; the comparison is

done for the year 2013).

The time evolution of the geographical

distribution of leading world universities

over 10 centuries is given in

(TopWikiUniversities, 2015-e). Before the

19th century universities of Germany

dominate this ranking (thus among the top

universities of PageRank list with 139

universities, founded before year 1800, the

main part of 25 universities is located in

Germany, see Fig.10 in (Lages, 2016-a)).

However, already for the universities

founded before the 20th century (before year

1900) the lead is taken by the USA (see

Fig.9 in (Lages, 2016-a)). The analysis of

the university ranking evolution through ten centuries shows that Wikipedia highlights significantly stronger

historically important universities whose role is reduced in the Shanghai ranking. Nowadays the PageRank

algorithm gives the top 5 countries: USA, UK, Germany, Sweden, and France, while the Shanghai ranking gives

USA, UK, Canada, Switzerland, and Japan.

The Wikipedia ranking provides a sound mathematical statistical evaluation of world universities which can be

viewed as a new independent ranking being complementary to already existing approaches. A comparison of

various web-based rankings of world universities is reported in (Pagell, 2016-a). In the view of the importance of

university ranking for higher education (Hazelkorn, 2015-b) it is possible to expect that the Wikipedia ranking of

world universities will also find a broad usage together with other rankings.

Multiproduct world trade network

The Google matrix of the world trade network was constructed in (WTN, 2011-e) on the basis of the United

Nations Commodity Trade Statistics Database (UNCOMTRADE, 2015-e) for all UN countries and various trade

commodities for all available years from 1962 to 2009. The trade flows on this network are classified with the

help of the PageRank and CheiRank algorithms and the distribution of countries on the PageRank-CheiRank

plane is shown in for the trade in all commodities (or all products). This ranking treats all countries on equal

democratic grounds independent of country richness but this method still puts at the top a group of industrially

developed countries, reproducing about 75% of G20 members. The matrix  is obtained by column

normalization of the monetary trade flow matrix  available for each year at (UNCOMTRADE, 2015-e) for

countries  and product  ( ). Then the matrix  is obtained by the general rule (1).

The case, when the trade is considered for all commodities, gives a typical distribution visible in with

concentration of countries in a vicinity of the diagonal . This is due to the economic trade balance

which each country tries to equilibrate roughly. In a certain sense the PageRank corresponds to country import

S
Mc pc′

c, c′ p c ≠ c′ G

K = K ∗
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Figure 11: Country positions in PageRank-CheiRank plane

 for the world trade in all commodities in 2008. Each

country is shown by circle with its own flag. (from Ermann,

2015-b)

Figure 12: Geographical distribution of the derivative of

probabilities balance  of world countries over

petroleum price  for the year 2008. The country balance is

determined from CheiRank and PageRank vectors as

. (from Ermann, 2015-a)

(ingoing links) and CheiRank to export

(outgoing links). However, the import and

export take into account only one link trade

between countries while the Google matrix

analysis takes into account multiple links

and significance of nodes. In general the

country distribution on the PageRank-

CheiRank plane is quite similar to the

distribution on the Import-Export plane (see

WTN, 2011-e). However, there are also

some exceptions with noticible differences

such as Singapore (it improves its position

from 15 in export rank to  in

CheiRank) showing the stability and

broadness of its export trade in 2008. On the

other hand Canada and Mexico have a lower

("better") position in export rank than in

CheiRank due to a too strong orientation of

their export to the USA.

The time evolution of PageRank and

CheiRank indexes captures correctly known

crises at certain years for certain countries (e.g Russia in 1998, Argentina in 2001) which typically lead to a

strong increase of the country's PageRank index  related to the drop of its import during a crisis.

The aproach developed in (WTN, 2011-e) allows to perform the Google matrix analysis for one specific product

or for all commodities counted together. In this way the matrix size is always restricted to the number of

countries  being significantly smaller than the total number of nodes  for a trade with  products.

The Google matrix of the muliproduct world

trade was constructed in (Ermann, 2015-a).

This construction treats all countries on

equal democratic grounds independently of

their richness and at the same time it

considers the contributions of trade products

proportionally to their trade volume. This is

achieved by the introduction of a

personalized vector in the term of  with

, that makes the contribution of

products being proportional to their trade

volume, while all countries are treated on

equal grounds. This analysis was done for

 products and up to 

countries. The obtained results show that the trade contribution of products is asymmetric: some of them are

export oriented while others are import oriented even if the ranking by their trade volume is symmetric in respect

to export and import after averaging over all world countries. The construction of the multiproduct Google

(K, )K ∗

= 11K ∗

K

Nc N = NcNp Np

d /dBc δ33
δ33

= ( − )/( + )Bc P∗
c Pc P∗

c Pc

G
(1 − α)

= 61Mp = 227Nc
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matrix allows to investigate the sensitivity of the trade balance with respect to price variations of products, e.g.

petroleum and gas, taking into account the world connectivity of trade links. An example of the country

sensitivity to the petroleum price increase  is shown in Figure 12. It shows that the dimensionless trade

balance  is increased for petroleum producing countries like Russia and Saudi

Arabia while the trade balance of China drops significantly (  are PageRank and CheiRank probabilities

of a country  after summation over all products).

The Google matrix analysis of multiproduct world trade allows to establish hidden dependencies between

various products and countries and opens new prospects for further studies of this interesting complex system of

world importance.

This approach was successfully extended to the analysis of the world network of economic activities from the

OECD-WTO TiVA database (Kandiah, 2015-a). This network describes the exchange of 37 activity sectors of 58

countries in years 1995 - 2008. In contrast to the UN COMTRADE these datasets contain also exchange

between different sectors. The exchange balance  allows to determine economically rising countries with a

robust network of economic relations. The sensitivity of  to price variations and labor cost in various countries

determines the hidden relations between world economies being not visible for the usual export-import exchange

analysis. The analysis of financial network transactions between various bank units can be also well suited for

the Google matrix approach.

The Google matrix analysis can be considered as a further extention of the matrix analysis of Input-Output

transactions broadly used in economy (Miller, 2009-b), starting from the fundamental works of Leontief

(Leontief, 1953-a, Leontief, 1986-b).

Other networks

The Google matrix approach allows to obtain interesting and useful results for a variety of directed networks:

network of integers and citation network of Physical Review with nilpotent (triangular or nearly triangular)

adjacency matrices, networks of game go (Kandiah, 2014-a) , the entire Twitter network of 41 million size in

2009, network of business process management, neural network of a large-scale thalamocortical model

(Izhikevich, 2008-a), neural network of C.elegans, networks of word transitions in DNA sequences, gene

regulation networks (see Refs. in Ermann, 2015-b).

Outlook

In physics, the Random matrix theory was introduced by Wigner (Wigner, 1967-b) to explain spectral properties

of complex nuclei, atoms and molecules. This theory, developed for Hermitian and unitary matrices, captures

universal spectral properties and find numerous applications in atomic, mesoscopic and nuclear systems (Guhr,

1998-b, Mehta, 2004-b, Fyodorov, 2011-b). This approach also describes the spectral properties of quantum

chaotic systems which are characterized by matrices of a relatively simple structure (Haake, 2001-b). It is

interesting to note that the quantum algorithm for computations with the Google matrix on a quantum computer

has been also analyzed recently (Paparo, 2014-a). The development of a random matrix theory for Markov

chains and Google matrix ensembles still remains a challenge. Some attempts in this direction are described

below. It is

δ33
= ( − )/( + )Bc P∗

c Pc P∗
c Pc

,Pc P∗
c

c

Bc

Bc
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Random matrix theory for G ?

On a first glance there are various preferential attachment models generating complex scale-free networks

(Dorogovtsev, 2010-b, Newman, 2010-b). A well known example is the Albert-Barabasi procedure (AB) which

builds networks by an iterative process. Such a procedure has been generalized to generate directed networks

with an expectation that such networks can generate spectra of Google matrices being close to real cases (see

Refs. in Ermann, 2015-b). However, it has been found that the spectrum of  of the AB model has all 

(except one unit eigenvalue). Thus, even if the decay of PageRank probability is well described by the relation

, the spectrum of  for the AB model is drastically different from real cases of WWW and other

networks described above.

A class of random matrix models of  has been analyzed in (Frahm, 2014-a). These models have  positive

random elements at random positions per column whose sum is normalized to unity. For this case it was shown

that all eigenvalues (except the unit one) are concentrated inside a circle around zero with radius .

Therefore these models are not suitable as well to reproduce spectral features of real networks.

The class of orthostochastic matrices of size  (Zyczkowski, 2003-a) approximately reproduces triplet

and cross structures well visible for real networks (see Figs.6,7,8), but their size is too small to be used for real

systems.

Anderson localization for Google matrix eigenstates

The phenomenon of Anderson localization appears in a variety of quantum physical systems including electron

transport in disordered solids and waves in random media (see Refs. in Guhr, 1998-b, Ermann, 2015-b, Zhirov,

2015-a). It is usually analyzed in the framework of Hermitian or unitary matrices. The possibilities of Anderson

like localization and delocalization for matrices belonging to the class of Markov chains and Google matrices are

considered in (Ermann, 2015-b, Zhirov, 2015-a). It was shown that certain matrix models, composed of blocks of

orthostochastic matrices of size  (Zyczkowski, 2003-a), can have an algebraic decay of PageRank

probability with the exponent  (for the case ) which is related to the existence of an Anderson

transition of eigestates and a mobility edge in the complex plane. A further development of such models can

allow to establish a closer link between the Anderson delocalization phenomenon in disordered solids and of

delocalization of eigenstates for the Google matrix of directed networks.

Reduced Google matrix

In many cases the real directed networks can be very large. However, in certain cases one may be interested in

the particular interactions among a small reduced subset of  nodes with  instead of the interactions of

the entire network. The interactions between these  nodes should be correctly determined taking into account

that there are many indirect links between the  nodes via all other  nodes of the network. This

leads to the problem of the reduced Google matrix  with  nodes which describes the interactions of a

subset of  nodes. The matrix  has the form (Frahm, 2016-a):

where  and  are sub blocks of the matrix  with respect to the decomposition of nodes in the

reduced and the complementary subset of nodes:

G | | < 0.4λi

P ∼ 1/K G

G Q
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The matrix  takes into account effective interactions between subset nodes by all their indirect links via the

whole network. It belongs to the class of Google matrices and its PageRank vector has the same probabilities as

the  nodes of matrix  (after rescaling due to noramlization). The numerical methods of computation of 

are described in (Frahm, 2016-a). This approach provides new possibilities to analyze effective interactions in a

group of nodes embedded in large directed networks. An example of application of this approach to recovery of

hidden links between political leaders is given in (Frahm, 2016b-a).

Historical notes

Starting from the work of Markov (Markov, 1906-a) many scientists contributed to the development of spectral

ranking of Markov chains. Research of Perron (1907) and Frobenius (1912) led to the Perron-Frobenius theorem

for square matrices with positive entries (see e.g. Brin, 2002-b). A detailed historical description of spectral

ranking research is reviewed by (Franceschet, 2011-a and Vigna, 2015-a). As described there, important steps

have been done by researchers in psychology, sociology and mathematics including J.R.Seeley (1949), T.-H.Wei

(1952), L.Katz (1953), C.H.Hubbell (1965). In the WWW context, the Google matrix in the form (1), with

regularization of dangling nodes and damping factor , was introduced by (Brin, 1998-a).

The PageRank vector of a Google matrix  with inverted directions of links has been considered by (Fogaras,

2003-a, Hrisitidis, 2008-a), but no systematic statistical analysis of 2DRanking was presented there. An

important step was done by (Chepelianskii, 2010-a) who analyzed  eigenvectors of  for directed network

and of  for network with inverted links. The comparative analysis of the Linux Kernel network and WWW of

the University of Cambridge demonstrated a significant difference in the correlator  for these networks and

different functions of top nodes in  and . The term CheiRank was coined in (Zhirov, 2010-a) to have a clear

distinction between eigenvectors of  and . We note that top PageRank and CheiRank nodes have certain

similarities with authorities and hubs appearing in the HITS algorithm (Kleinberg, 1999-a). However, the HITS

is query dependent while the rank probabilities  and  classify all nodes of the network.

Lectures about Google matrix

Video lectures about Google matrix are available at (Frahm, 2014-v,Georgeot, 2014-v,Shepelyansky, 2014-v).
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