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(2) Observations have beeln made of the electric fields anid field changes 
associated with 18 distant and 5 near thunderstorms. The sudden changes of 
field due to distant lighining discharges (> 8 km.) were predominantly negative 
in sign, those due to near discharges ( < 6 km.) predominantly positive. The 
relative frequencies of positive and negative changes were 1: 5 in the former 
case and 43: 1 in the latter. The steady electrie fields .below the 5 near storms 
were all strongly negative. 

(3) It is shown that these results indicate that the thunderclouds were 
bi-polar in nature and that the polarity was generally, if niot always, positive, 
the upper pole being positive and the lower pole negative. It is douibtful if 
any active storms of opposite polarity were observed at all. 

(4) The electric moments of the charges removed by 82 ligltning discharges 
have been measutred. The mean value is 94 coulomb-kilometres. 

The Quantum , Theory of the E i'mssion and Absorption of 
Radiatton. 

By P. A. M. DIRAC, St. John's College, Cambridge, and Institute for 
Theoretical Physics, Copenhagen. 

(Commlunicated by N. Bohr, For. Mern. R.S.-Received February 2,1927.) 

? 1. Introduction and Su.*mnary. 
The new quantum theory, based on the assumption that the dynamical 

variables do not obey the commutative law of multiplicationi, has by now been 
developed sufficiently to form a fairly complete theory of dynamics. One can 
treat mathematically the problem of any dynamical system composed of a 
number of particles with instantaneous forces acting between them, provided it 
is describable by a Hamiltonian function, and one can interpret the mathematics 
physically by a quite definite general method. On the other hand, hardly 
anything has been done up to the present on quantum electrodynamics. The 
questions of the correct treatment of a systemn in which the forces are propa- 
gated with the velocity of light instead of instanitaneously, of the produLction of 
an electromagnetic field by a moving electron, and of the reaction of this field 
on the electron have not yet been touched. In addition, there is a serious 
difficulty in miaking the theory satisfy all the requirements of the restricted 
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principle of relativity, since a Hamiltonian function can no longer be used. 
This relativity question is, of course, connected with the previous ones, and it 
will be impossible to answer any one question completely without at the same 
time answering them all. However, it appears to be possible to build up a 
fairly satisfactory theory of the emission of radiation and of the reaction of 
the radiation field on the emitting system on the basis of a kinematics and 
dynamics which are not strictly relativistic. This is the main object of the 
present paper. The theory is non-relativistic only on account of the time 
being counted throughout as a c-number, instead of being treated symmetrically 
with the space co-ordinates. The relativity variation of mass with velocity 
is taken into account without difficulty. 

The underlying ideas of the theory are very simple. Consider an atom inter- 
acting with a field of radiation, which we may suppose for definiteness to be 
confined in an enclosure so as to have only a discrete set of degrees of freedom. 
Resolving the radiation into its Fourier components, we can consider the energy 
and phase of each of the components to be dynamical variables describing the 
radiation field. Thus if Er is the energy of a component labelled r and Or 

is the corresponding phase (defined as the time since the wave was in a standard 
phase), we can suppose each Er and ?r to form a pair of canonically conjugate 
variables. In the absence of any interaction between the field and the atom, 
the whole system of field plus atom will be describable by the Hamiltonian 

H = ErEr + Ho (1) 

equal to the total energy, Ho being the Hamiltonian for the atom alone, since 
the variables Ern Or obviously satisfy their canonical equations of motion 

_ allH all 

= ao = ? (3r aEr 

When there is interaction between the field and the atom, it could be taken into 
account on the classical theory by the addition of an interaction term to the 
Hamiltonian (1), which would be a function of the variables of the atom and of 
the variables Er, Or that describe the field. This interaction term would give 
the effect of the radiation on the atom, and also the reaction of the atom on the 
radiation field. 

In order that an analogous method may be used on the quantum theory, 
it is necessary to assume that the variables Er, Or are q-numbers satisfying 
the standard quantum conditions OrEr- ErOr = ,h, etc., where h is (27)- 
times the usual Planck's constant, like the other dynamical variables of the 
problem. This assumption immediately gives light-quantum properties to 
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the radiation." For if vr is the frequency of the component r, 27VrOr is an 
angle variable, so that its canonical conjugate Er/27vrr can only assume a 
discrete set of values diflering by multiples of h, which means that Er can 
change only by integral multiples of the quantum (2wh) 'Vr If we now add an 
interaction term (taken over from the clasical theory) to the Hamiltonian (1), 
the problem can be solved according to the rules of quantum mechanies, and 
we would expect to obtain the correct results for the action of the radiation 
and the atomi on one another. It will be shown that we actually get the correct 
laws for the emission and absorption of radiation, and the correct values for 
Einstein's A's and B's. In the author's previous theory,t where the energies 
and phases of the components of radiation were e-numbers, only the B's could 
be obtained, and the reaction of the atom on the radiation could not be taken 
into account. 

It will also be shown that the Hamiltonian which describes the interaction 
of the atom and the electromagnetic waves can be made identical with the 
Hamiltonian for the problem of the interaction of the atom with an assembly 
of particles moving with the velocity of light and satisfying the Einstein-Bose 
statistics, by a suitable choice of the interaction energy for the particles. The 
number of particles having any specified direction of motion and energy, which 
can be used as a dynamical variable in the Hamiltonian for the particles, is 
equal to the number of quanta of energy in the corresponding wave in the 
Hiamiltonian for the waves. There is thus a complete harmony between the 
wave and liglit-quantum descriptions of the interaction. We shall actually 
build up the theory fromrl the light-quantum point of view, and show that the 
Hamiltonian transforms naturally into a form which resembles that for the 
waves. 

The mathematical development of the theory has been made possible by the 
author's general transformation theory of the quantum matrices.: Owing 
to the fact that we count the time as a c-number, we are allowed to use the notion 
of the value of any dynamical variable at any instant of time. This value is 

* Similar assumptions have been used by Born and Jordan ['Z. f. Physik,' vol. 34, 
p. 886 (1925)] for the purpose of taking over the classical formula for the emission of radiation 
by a dipole into the quantum theory, and by Born, Heisenberg and Jordan ['Z. f. Physik,' 
vol. 35, p. 606 (1925)] for calculating the energy fluctuations in a field of black-body 
radiation. 

t ' Roy. Soc. Proc.,' A, vol. 112, p. 661, ? 5 (1926). This is quoted later by, loc. cit., I. 
I 'Roy. Soc. Proc.,' A, vol. 113, p. 621 (1927). This is quoted later by loc. cit., II. An 

essentially equivalent theory has been obtained independently by Jordan ['Z. f. Physik,' 
vol. 40, p. 809 (1927)]. See also, F. London, I Z. f. Physik,' vol. 40, p. 193 (1926). 
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a q-nunber, capable of being represenited by a generallsed i inatrix " according 
to many different matrix schemes, sox e of which may have continuous ranges 

of rows and columns, and m ay require the matrix elements to involve certain. 
kinds of infinities (of the type given 'by the a functions*). A matrix scheme can 
be found in which any desired set of constants of integration of the dynamical 
system that commute are represented by diagonal matrices, or in which a set of 
variables that commute are represented by matrices that are diagonal at a 
specified timie.t The values of the diagonal elenments of a diagonal matrix 
representing any q-nuimber are the characteristic values of that q-number. A 
Cartesian co-ordinate or momentum will in general have all characteristic valhes 
from - o to + oo , while an actioni variable has only a discrete set of character- 
istic values. (We shall make it aJ rule to use unprimed letters to denote the 
dynamical variables or q-numbers, and the same letters primed or multiply 
primed to denote their characteristic values. Transformation functions or eigen- 
functions are functions of the characteristic values and not of the q-numbers 
themselves, so they should always be written in terins of primed variables.) 

If f(i, ) is any function of the canonical variables ib, rh, the matrix repre- 
sentingf at any time t in the matrix scheme in which the Lat time t are diagonal 
matrices mnay be written down without any trouble, since the matrices repre- 
senting the L and kc themselves at tine t are known, naimely, 

ik (44 k - i 8 WV i), 

Thus if the Hamiltonian H is giveni as a function of the L and _, we can at 
once write dowxn the matrix H(i' i"). We can then obtain the transformation 
function, (i'/') say, which transform-s to a nmatrix scheme (M) in which the 
Hamiltonian is a diagonal matrix, as ( '/oe') must satisfy the integral equation 

dH 1/R# d>' (4/7,)-A Wa)*('' (3) 

of which the characteristic valies W( c') are the energy levels. This equation 
is just Schrddinger's wave equation for the eigenfunetions ('foc'), which becomes, 
an ordinary differential equation when H is a simple algebraic ffunction of the 

* Loc. cit. II, ? 2. 
Jr One can have a matrix seliem in which a set of variables that commute are at all times 

represented by diagonal miatrices if one will sacrifice the condition that the matrices must 
satisfy the equations of motion. The transformation ftunction from such a scheme to one 
in which the equations of motion are satisfied will involve the time explicitly. See p. 628 
in loe. cit., 11. 
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L and koro account of the special quations (2) for the matrices representing 
Lk and 7. Equation (3) may be Nwritten in the mllore general foria 

JH ( ')d"('i2J-h a(1) ,(3') 

in which it can be applied to systems for which the Hamiltonian involves the 
time explicitly. 

Onie mnay have a dynamical system specified by a' Hamiltonian IH which 
cannot be expressed as an algebraic function of any set of canonical variables, 
bnlt which can all the same be represenited by a matrix H(S'ua). Snch a problem 
can still be solved by the present method, since one can still use equation (3) 
to obtain the energy levels and eigenfunctions. We shall find that the Hamilto- 
nian which describes the interaction of a light-quantum and an atomic system is 
of this more general type, so that the interaction can be treated mathematically, 
although one cannot talk about an in-teraction potenitial energy in the usuLal 
sense. 

It should be observed that there is a difference between a light-wave and the 
de Broglie or Schrddinger wave associated with the light-quanta. Firstly, the 
light-wave is always real, while the de Broglie wave associated with a light- 
quantum moving in a definite directioni must be taken to involve an imnaginary 
exponential. A more important difference is that their intensities are to be 
interpreted in different ways. The number of light-quanta per unit volume 
associated with a monochromatic light-wave equals the energy per unit volume 
of the wave divided by the energy (27rh)v of a single light-quantum. On the 
other hand a monochromatic de Broglie wave of amplitude a (multiplied into 
the imaginary exponential factor) must be interpreted as representing a2 light- 
quanta per unit volume for all frequencies. This is a special case of the general 
rule for interpreting the matrix analysisj according to which, if (i'/') or 

t (ik') is the eigenfunction in the variables 4 of the state ' of an atomic 
system (or simple particle), I (a4') I2 iS the probability of each 4 having the 
value L', [or !ia (i') 2 dil' dt' ... is the probability of each 4 lying between 
the values ik' and E.k'+ d<'k when the k. have continuous ranges of character- 
istic values] on the assumption that all phases of the system are equally probable. 
The wave whose intensitv is to be interpreted in the first of these two ways 
appears in the theory only when one is dealing with an assembly of the associated 
particles satisfying the Einstein-Bose statistics. There is thus no such wave 
associated with electrons. 

* Loc. cit., H. ?? 6, 7. 
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? 2. The Perturbation of a, A,ssembly of Independent Systems. 

We shall now consider the tra isitions produced in ani atomic system by an 
arbitrary perturbation. The iethod w re shall adopt will be that previously 
given by the author,t which leads in a simple way to equations which determine 
the probability of the system being in any stationary state of the unperturbed 
system at any time.i:- This, of course, gives immirediately the probable numnber 
of systems in that state at that time for an assembly of the systenms 
that are independent of one another and are all perturbed in the sa me way. 
The object of the present section is to show that the equations for the rates. 
of change of these probable numbers can be put in the Hamiltonian form in a 
simple m'anner, which will enable further developments in the theory to be 
made. 

Let H0 be the Hamiltonian for the unpert-urbed system and V the perturbing 
energy, which can be an arbitrary functiorn of the dynamical variables and may 
or may not involve the time explicitly, so that the Hamiltonian for the perturbed 
system is H = Ho + V. The eigenfunctions for the pertuLrbed systemn must 
satisfy the wave equation 

i a?at (Ho + V) D6, 

where (H10 -H- V) is an operator. If rardr is the solution of this equation 
that satisfies the proper initial conditions, where the Q. 's are the eigenfunctions 
for the unperturbed system, each associated with one stationary state labelled. 
by the suffix r, and the ar's are functions of the time only, then I a 12 is the prob- 
ability of the system being in the state r at any time. The a,'s must be nor- 
malised initially, and will then always remain normalised. The theory will 
apply directly to an assembly of N similar independent systems if we nm-ultiply 
each of these ar's by N-!' so as to make X,. I a7 12 = N. We shall now have that 
ar 12 iS the probable number of systems in the state r. 
The equation that determines the rate of change of the a,'s is? 

ihd7r =EsrsVas (4) 

where the V,,'s are the elements of the matrix represetiung T. The conjugate 
imaginary equation is 

-tazr - zq7Ts z.q -Ssas ATse ~~(4/) 

t Loc. cit. I. 
I The theory has recently been extended by Born [' Z. f. Physik,' vol. 40, p. 167 (1926)] 

so as to take into account the adiabatic changes in the stationary states that may be 

produced by the perturbation as well as the transitions. This extension is not used in 

the present paper. 
? Loc. cit., I, equation (25). 
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If we regard a,. and ih a,* as canonical conjugates, equations (4) and (4') take 
the Hamiltonian form with the Hamiltonian function F1 = rsar*V,T.as, 
namely, 

da}. I WIl * da7* aF, da - "F i hR --q dt i- i aa' dt aar 
We can transform to the canonical variables Nr, jr by the contact trans- 

formation 
aC. N le-4i4Ah a_* =- N * 4 

This transformation makes the new variables N,. and 0,. real, Nr being equal 
to aa,.?* =1 1ar2, the probable number of systems in the state r, and Orlh 
being the phase of the eigenfunction that represents them. The Hamiltonian 
F1 now becomes 

FJ. = ZrsVr.sN);1Ns2 ()S)h 

and the equations that determine the rate at which transitions occur have the 
canonical form 

WI ~~aF, 
8?>r q aN.r 

A mnore convenient way of putting the transition equations in the Hamiltonian 
formn may be obtained with the help of the quantities 

b = a e-w1th b_-* - a,. *%XYtIh 

W,. being the energy of the state r. We have I b,. 12 equal to I a. 12, the probable 
number of systems in the state r. For br we find 

ih b,. = WrbI. + ih ar e- iwrtIl 

- 'Wrbr + Es V,.8bse i (WI -W W.) tlh 

with the help of (4). If we put Vr, Vres(W t/h, so that v.s is a constaint 
when V does not involve the time explicitly, this reduces to 

ih br Wrbr + Esvrsbs 

-ESHI'ibS) (5) 

where HrS -- WI. 01.8 + v,.,, which is a matrix element of the total Hamiltonian 
H -ll + V with the time factor et (Wr-Ws) t/h reimoved, so that H,., is a constant 
when H does not involve the time explicitly. Equation (5) is of the same form 
as equation (4), and may be put in the Hamiltonian form in the same way. 

It should be noticed that equation (5) is obtained directly if one writes down 
the Schrbdinger equation in a set of variables that specify the stationary states 
of the unperturbed system. If these variables are Rh, and if H(i'4") denotes 

VOL. CXIV.-A. 5 
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a matrix element of the total Hamiiltonian H in the (4) sIheine, this 
Schri5dinger equation would be 

ik4 a ( ')lat > H (g'i") q g/"), (6) 

like equation (3'). This differs from the previous equation (5) only in the 
notation, a single suffix r being there used to denote; a stationary state instead 
of a set of numeric values i for the variables k, ud ,being nsed instead 
of: 4 ( '). Equation (6), and therefore also equation (5r), can still be used when 
the Hamiltonian is of the more general tyype which cai not be expressed as an 
algebraic fuinction of a st of canoniIal variables, btut can still be represented 
by a inatrix H (g't") or HI,,. 

We now tak-e b, and ih b to be canonically conjugate variables instead of 
ar and ih aj' The equiation (5) and its conjugate imaginary equation -nvill 
now take the Hamiltonian. form, with the Hamiltoniian function 

F rsbr HrsbXsb (7) 

Proceeding as before, we make the contact transformation 
b-. =N_ N e- bi N_' rcl'e (8) 

to the new canonical variables N., 0,, where N, is, as before, the probable 
iiumber of systemis in the state r, and 0r is a -new phase. The Hamiltonian F 
will now become 

F s= ,., N j Nj e2Cic0,-)/h 

aand the equLations for the ra.tes of change of N, and 0, will take the canonical 
fornm 

Ni a Or aNr. 

?he Hamiitoonian m-ay be written 
F - ?,.WrN, -F Eq,, S2Nj Ns2 e' (&0 )/h (9) 

The first term E,.WrNN is the total proper energy of the assembly, and the 
second may be regarded as the additional energy due to the perturbation. If 
tih perturbatio is zro, the phases 0, wvo ld increase linearly with the time, 
while the previous phases +,. would in this case be cons-tants. 

? 3. The Perturbation of an Assembly satisfying the Einstein-Bose Sttistics. 

According to the preceding section we can describe the effect of a perturba- 
tion on an asse-mbly of independent systems by ineans of canonical variables 
and Hamiltonian equations of motion. The development of the theory which 
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naturally suggests itself is to make these canonical variables q-nunmbers satisfy- 
ing the usual quantum conditions instead of c-numbers, so that their Hamilto- 
nian equations of motion become true quantuim equations. The Hamiltonian 
function will. now provide a Schr6dinger wave equation, which. must be solved 
and interpreted in the usual manner. The in-terpretation will give not merely 
the probable nuLmber of systems in any state, but the probability of any given 
distribution of the svstems among the various states, this probability being, 
in fact, equal to the square of the modulus of the normalised solution of the 
wave equation that satisfies the appropriate initial conditions. We could, of 
course, calculate directly from elementary considerations the probability of 
any given distribution when the systems are independent, as we know the 
probability of each system being in any particular state. We shall find thlat the 
probability calculated directly in this way does not atgree with that obtained 
from. the wave equation except in the special case when there is only one system 
in the assembly. In the general case it will be shown that the wave equation 
leads to the correct valtLe for the probability of any given distribut-ion when 
the systems obey the Einstein-Bose statistics instead of being independent. 

We assume the variables b,., ihbY l of ? 2 to be canonical q-nLmbers satisfying 
the quantum conditions 

b.i . ih b2.*- i7 bl.* . b2. = h 

or bqb2- b;. -_ 1, 

and brbS - bsbr 0, br*bs,* - bs-b,, 0, 

b -bs -bs*br 0 (s 4 qr). 

The transformation equations (8) m-wust now be written in the quantum form 

b. = (N2. -+ 1) e-01)1 e- (1o2N,i> 1 

b_t - Nr] e6i&/h _ 6ioGlh (Ni. + 1)U, 3 

in order that the Ni., . n0may also be canonical variables. These equations 
show that the N. can have only integral characteristic values not less than 
zero,t which provides us with a justification for the assumption that the 
variables are q-numbers in the way we have chosen. The nuimbers of systems 
in the different states are now ordinary quantum niumbers. 

t See ? 8 of the author's paper 'Roy. Soc. Proc.,' A, vol. 111, p. 281 (1926). What are 
there called the c-number values that a q-number can take are here given the more precise 
name of the characteristic values of that q-number. 

s 2 
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The Hamiltonian (7) now becomes 

F = 2rsb7*Hr bei8z lhHrs (Ns + 1) e- i0s11 
- Er$HrsNri (N, +- 1- A rs)!ei(0-)h (11) 

in which the Hrs are still c-numbers. We may write this F in the form corre- 
sponding to (9) 

F - ErWrNr + ErtvrsNr" (Ns +1 - rs)k ci(Or@)/h (11') 

in which it is again composed of a proper energy term ErWrN, and an inter- 
action energy term. 

The wave equation written in terms of the variables Nr ist 

ik (N1%, N2%, Ns' ...) = Fs (N1', N2%, N3' ), (12) 

where F is an operator, each Or occurring in F being interpreted to mean ih a /aNrt. 
If we apply the operator e+iG0Ih to any function f(N1', N2', ... Nr, ...) of the 
variables N'I N ', ... the result is 

e ? i,hf(Ni', N2', ... Nr' ) - eFb/IN,'f(N1', N2', ... Nrt'..) 

=f(N1', N2', ... Nr' T 1, ... 

If we use this rule in equation (12) and use the expression (11) for F we obtain: 

ih Tt + (Nl', N2', N3' 

-rbs Hrs Nr (Ns' + 1. - 3rs)l 2 (N1,' N2' ... Nr' 1, ... Ns' + 1, ...). (13} 

We see from the right-hand side of this equation that in the matrix repre- 
senting F, the term in F involving ei (, - 0.)!h will contribute only to 
those matrix elements that refer to transitions in which N, decreases. 
by unity and N. increases by unity, i.e., to matrix elements of the type 
F (N', N2' ... N,' ... Ns'; N', N2'... Nr'-1 ... Ns' + 1 ...). If we find, a, 
solution 6 (N,', N2' ...) of equation (13) that is normalised [i.e., one for which 

N2' 1 + (N,', N2 ...)12 1] and that satisfies the proper initial con- 
ditions, then I 4 (N1%, N2' *w) 2 will be the probability of that distribution in 
which N1' systems are in state 1, N2' in state 2, ... at any time. 

Consider first the case when there is only one system in the assembly. The 
probability of its being in the state q is determined by the eigenfunction 

t We are supposing for definiteness that the label r of the stationary states takes the 
values 1, 2, 3, .... 

i When s = r, # (N.,, N2'... Nrt'- 1... N*' + 1) is to be taken to mean # (N1'N2' ... N,'...). 
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4i(N1' N2', ...) in which all the N"s are pnt equal to zero except Nq', \vhich is 
puLt equal to unity. This eigenfunction we shall denote by t! {q}. When it is 
substituted in the left-hand side of (13), all the terms in the sumumation on 
the right-hand side vaanish except those for which r-q, and we are left with 

ih k Hq44} 

at 
which is the same equation as (5) with Q {q} playing the part of b,. This estab- 
lishes the fact that the present theory is equivalent to that of the preceding 
section when there is only olne system in the assembly. 

Now take the general case of anl arbitrary number of systems in the assembly, 
and assume that they obey the Einstein-Bose statistical mechanics. This 
requires that, in the ordinary treatment of the problem, only those eigen- 
functions that are symmetrical between all the syste:ms inust be taken into 
account, these eigenfunctions being by themselves sufficient to give, a complete 
quantum solution of the problem.t We shall now obtain. the equation for the 
rate of chang,e of one of these symnietrical eigenfunctions, and show that it is 
identical with equation (13). 

If we label each systenm with a numnber n, then the Hamniltonian for the 
a.ssembly wIll be H H = (n), where H (n) is the H of ? 2 (equal to Ho + V) 
expressed in terms of the variables of the nth system. A stationary state of 
the assembly is defined by the numbers rl, r2 ... rn ... which are the labels of the 
stationary states in which the separate systems lie. The Schr8dinger equation 
for the assembly in a set of variables that specify the stationary states will be, 
of the form (6) [with HA instead of H], and we can write it in the notation of 
equation (5) thus: 

ihb(r1r2 ...) Esl,s... 1A(rlr2 1SS2 *.-) b(s1s2...), (14) 

where HA(rlr2 ...; ss ...) is the general matrix 
elem. ent of HA [with the time 

factor removed]. This matrix element vanishes when more than onle sI, differs 
from the corresponding rn; equals Hrnl,;,, when sm differs from rm and every 
other sn equals r ; and equals SH ,. when every s. equals r, Substituting 
these values in (14), we obtain 

ih b (r1r2 ... ) =ms&frJ'rsk (r1Lr2 +m}1n+1 ) Y} XnHr)trnb (1'rr2...). (15) 

We must now restrict b (r1r2 ...) to be a symmetrical function of the variables 

rl, r2 ... in order to obtain the Einstein-Bose statistics. This is permissible 
since if b (r_r2' -") is symmetrical at any time, then equation (15) shows that 

t Loc. cit., I, ? 3. 
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b(r1r2 ...) is also symmetrical at that time, so that b (rr2 ...) will remain 
symmetrical. 

Let N,. denote the number of systems in the state r, Then a stationary state 
of the assembly describable by a symmetrical eigenfunction may be specified 
by the numbers N1, N2 . N... just as well as by the numbers re, ... r.2 
and we shall be able to transform equationl (15) to the variables N1, N2 
We cainnot actually take the new eigenfunction b (N1 , N2. ) eqaal to the pre- 
vious one b (r.1r2 ...), but must take one to be a numuerical multiple of the 
other in order that each may be correctly noimlnalised with respect to its 
respectiVe variables. We must have, in fact, 

Sr,,?,...16(rl 2 ...) 12 - I lb(N1, N2 .) 12- 

and hence we must take I b (N1, N2 ) 2 equal to the suzm of i b (rLr2 . 2 fo 

all values of the numnbers r, m2 ... such that there are N1 of them equal to 1, N2 
equal to 2, etco. There are iN !/N12! N2! ... terms in this sum, where N 

is the total inumnber of systems, and they are all equal, sinee b (rr ...) is a 
symmetrical funictionl of its variables r1, r2 .... Hence we must have 

b (N1 N2 ...) (N !/N1 ! N2! ...) b (rr2 ...). 

If we make this suLbstitutiont in equation (15), theG left-hand side will becomne 
ih (N1 ! N 2 ! ... /N !)- b (N1, N2 ...) The term b (r,.r2 ** rL1 8 ,/in-1 * *) 

in the fist summamtion on the right-hand side will becolme 

[N ! I .. (N2;-l) !.. .(Ns + J1) ! .. I/N !'H,sb (N,, 2 ... NN - I . Ns+ 1..), (iG) 

where we have Arritten f ?or r,,, and s for s,. This term must be s,uLime'd for 

a11 values of s except r, and must then be summ-ed for r taking each of the values 
i1, r2 T... hus each term (16) gets repeated by the summation process ui Ail 
it occurs a total of Nr times, so that it contributes 

Nr [NI 1 Ns . (N -i.) ! ... (Ns+ i) IN!t]-! T-.;36, (N,, N2..N1.- ...+ Ns + 1...) 

N-1 (s + I)` (NL ! N -N- ,sb (N, .-I ..N + ...) 

to the :right-hand side of (15). Finally, the term XE.ff Hrff,binb ( n_9 r.) becomes 

ErNHrr* b (rl2 Er2Ns1Hm.,_ (N1,! N2! ... /N !)- b (N1., N ...) 

Hence equation (15) becoines, witlh the reuoval of the factor (N,.! N2 !..../N IN)1 

ihb (N1, NS ...) = N; (Ns+l)i 15. (N1, N2 ... N-1 ... Ns + 1 ..) 
+ E)N7HTb (N, I 2 .. (17) 
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which is idenitical with (13) [except for the fact that in (17) the primes have 
been omitted from the N's, which is permissible when we do not require to refer 
to the N's as q-numbers]. We have thus established that the Hamiltonian 
(11) describes the effect of a perturbation on an assembly satisfying the Einistein- 
Bose statistics. 

? 4. The Reaction of the Assemnbly on the Perturbing System. 

Up -to the present we have considered only perturbations that can be repre- 
sented by a perturbing energy V added to the Hamiltonian of the perturbed 
system, V being a function only of the dynamical variables of that system and 
perhaps of the time. The theory may readily be extended to the case when 
the perturbation consists of interaction with a perturbing dynamical systemn 
the reaction of the perturbed system on the perturbing system being taken 
int-o account. (The distinction between the perturbing systema and the per- 
turbed systenm is, of course, not real, but it will be kept up for convenience.) 

We now consider a perturbing system, described, say, by the canonical 
variables J,, , the J's being its first integrals when it is alone, interacting 
with an assenmbly of perturbed systems with no mutual interaction, that satisfy 
the Einistein-Bose statistics. Thi-e total Hamiltonian will be of the formi 

IT = Hp (J) + E.1- (n) 

where H. is the lam iltonian of the perturbing systerm (a function of the J's 
only) and H (n) is equal to the proper energy Ho (n) plus the perturbation energy 
V(n) of the nth system of the assembly. H (n) is a function only of the variables 
of the nth system of the assemxbly and of the J's and wv's, and does not involve 
the time explicitly. 

The Schr6dinger equation corresponding to equation (14) is now 

hb ( n lf2...e EJ sI >2 .. HT( 2 l ;J SIS2 ...*) b (J ,802 ...) 
in which the eigenfunction b involves the additional variables J'. The matrix 
element HT (J', rLr2 ... ; J", s1s2 ...) is now always a constant. As before, it 
vanishes when more than one sn, differs from the corresponding, . When 

sM, differs fromn qrn and every other s. equals r?,, it reduces to H (J'r ; J"tsn), 
which is the (J'r; J"s.n) matrix element (with the time factor removed) of 
H = Ho +- V, the proper energy plus the perturbation eniergy of a single 
system of the assembly; while when every sn equals rf, it has the value 
Hr (J') aj j + - H (J'r,; J"rqb). If, as before, we restrict the eigenfunctions 
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to be symmnetrical in the variables r_, r 2 *.., we can again transform to the 
variables N1, N2 ... which will lead, as before, to the result 

ihb(Jtn Nt, 2' *...=Hr (J) b (J', Y, N2/ .. 
+ SJ ?, sNi~~2- (Y rs) t J'r,3s) b (JFfl N/r:N 2 . .Ni .. ̂  Ns, + I . ) (18) 

This is the Schrddinger equLation corresponding to the Hamiltonian function 

F = Hp (J) + rs Ifrs NP (Ns + I--s)-l et (0-)/, (1 9) 
in which H,Js is now a fuLnction of the J's and w's, being such that when repre- 
sented by a m-atrix in the (J) scheme its (J' J") element is H (J'r; J's). (It 
should be noticed that HIS, still commutes with the N's and O's.) 

Thus the nteraction of a perturbing system and an assemibly satisfying the 
Einstein-Bose statistics can be described by a Haamiltonian of the form (19). 
We can put it in the forn corresponding to (11') by observing that the matrix 
element H (J'r; J"s) is composed of the sumii of two parts, a part that comes 
from the proper energy Ho, which eqaals W, when Jk"= Jj, and s r and 
vanishes otherwise, and a part that comes fronm the j-uteraction energy Y, 
which mnay be denoted by v (J'r; J"s). Thus we shall have 

HRIS = i. ks + V2ss. 

where v,. is that function of the J's anid w's which is represented by the tiatrix 
whose (J' J") element is v (J'r ; J"s), and so (19) becomes 

F ci Hp (J) + EIW,N, + sVsNr (Ns + 1 - A j(OO9!b. (20) 

The Hamiltonian is thus the sunm of the proper energy of the perturbinlg system 
Hp (J), the proper energy of the perturbed systems Y,WVA7,Nr and the perturba- 
tionl energy E,. ,v;s.AJ (Ns + 1 -- &,s)A e( )/h 

? 5. Theory of Transitions in a Systemfomn One State to Others of the Same Energy. 

Before applying the results of the preceding sections to light-quanta, we 
shall consider the solution of the problem presented by a Hamiltonian of the 
type (19). The essential feature of the problem is that it refers to a dynamical 
system which can, under the influence of a perturbation energy which does 
not involve the time explicitly, make tranlsitions from one state to others of 
the same energy. The problem of collisions between an atomic system and an 
electron, which has been treated by Born,* is a special case of this type. Born's 
method is to find a periodlic solu-tion of the wave equation which consists, in 
so far as it involves the co-ordinates of the colliding electron, of planie waves, 

* Born. 'Z. f. Phvsik.' vol 38. D. 803 (1926). 
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representing the incident electron, approaching the atomic systenm, which are 
scattered or diffracted in all directions. The square of the amplituLde of the 
waves scattered in any direction with any frequency is then assumed by Born 
to be the probability of the electron being scattered in that direction with 
the corresponding energy. 

This method does not appear to be capable of extension in any simple manner 
-to the general problem of systenms that make transitiors from one state to others 
,of the same energy. Also there is at present no very direct and certain way 
of interpreting a periodic solution of a wave equation to apply to a non-periodic 
physical phenomenon such as a collision. (The more definite mnethod that 
will now be given shows that Born's assulmption is not quite riglht, it being 
necessary to multiply the square of the amplitude by a certain factor.) 

An alternative method of solving a collision problem is to find a non-periodic 
Solultion of the wave equation which consists initially simply of plane waves 
moving over the whole of space in the necessary direction with the necessary 
frequency to represent the incident electron. In course of time waves moving 
in other directions must appear in order that the wave equation may remain 
satisfied. The probability of the electron being scattered in any direction with 
any energy will then be determined by the rate of growth of the corresponding 
harmonic component of these waves. The way the mathematics is to be 
interpreted is by this method quite definite, being the same as that of the 
beginning of ?2. 

We shall apply this method to the general problem of a system which makes 
transitions from one state to others of the same energy under the action of a 
perturbation. Let Ho be the Hamiltonian of the unperturbed system and 
V the pertuLirbing energy, which must not involve the time explicitly. If we 
take the case of a continuous range of stationary states, specified by the first 
integrals, oXk say, of the unperturbed motion, then, following the nmethod of 
? 2, we obtain 

ih &(a') V V(ooc") d%" . a (c'), (21) 

corresponding to equation (4). The probability of the system being in a state 
for which each OCk lies between oC' and OCk7'+ daCk' at any time is I a (Oc) 12do-.' . doc2' 
when a (oc') is properly normalised and satisfies the proper initial conditions. 
If initially the system is in the state oc0, we must take the initial value of a (o ') 
to be of the form a . a (oc' - oc0). We shall keep a0 arbitrary, as it would be 
inconvenient to normalise a (oc') in the present case. For a first approximation 
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we mnay substitute for a (o'c) in the right-hand side of (21) its initial value. This 
gives 

ih 4 (a') = a0V (a'a?) = oc?v (Mo') eiXW(a')-W(a?)It/h 

where v (M'oJ0) is a constant and W (o') is the energy of the state oc'. Hence 

ih a (c.') = a (o' - 4o) + aov (c,'c() e[W () - W (CI)]t/h-I (22Y 

For values of the ock' such that W (a') differs appreciably from W (MO), a (a') 
is a periodic function of the time whose amplitude is small when the perturbing 
energy V is small, so that the eigenfunctions corresponding to these stationary 
states are not excited to any appreciable extent. On the other hand, for values 
of the cXk' such that W (a') - W (o!2) and OCa' # Oko for some k, a (oc') increases 
uniformly with respect to the time, so that the probability of the system being 
in the state a' at any time increases proportionally with the square of the time. 
Physically, the probability of the system being in a state with exactly the same 
proper energy as the initial proper energy W (ac?) is of no importance, being 
infinitesimal. We are interested only in the integral of the probability 
through a small range of proper energy values about the initial proper energy, 
which, as we shall find, increases linearly with the time, in agreement with the 
ordinary probability laws. 

We transform from the variables rl,, o2 ... oa to a set of variables that are 
arbitrary independent functions of the a's such that one of them is the proper 
energy W, say, the variables W, Y -' Y2. yu 1. The probability at any time 
of the system lying in a stationary state for which each Yk lies between yk' and- 
Yk' + dyk' is now (apart from the normalising factor) equal to 

d * dy2' ... d-'l'i a (') 1 2 a ( (X4l X2 * 
- 

X ) - dW'. (23) 
(WI, Ti' Yu-i') 

For a time that is large compared with the periods of the system we shall find 
that practically the whole of the integral in (23) is contributed by values of 
W' very close to WO W (a?). Put 

a (a') - a (W', y') and a (cl', OC2' .X -')/a (W', Yl YU-1') J (W' y ) 
Then for the integral in (23) we find, with the help of (22) (provided Yk' ? Y 0 

for some k) J a(WI, y) 12 J (W', y') dW' 

- a? I2' I v (W, y' ; WO, yO) 12 J (W', Y/) [ei(WWO)tIh 1] [ei- (W'-VO) th_1l dW" J ~~~~~~~~~(WI - WO)2 

2 1a0 12 iv (W,y'; w?,yo) 12 J (W',y') [1-cos (W'-W?) t/h]/(W'-WO)2 . dWI 

= 2 ao?12t/h. lv(W?+hx/t,y'; WO,yO)12J(WO+hx/t,y')(1-cosxv)/x2. dx, 
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if one makes the substitution (W'-W?)t/h - x. For large values of t this 
reduces to 

2 1 a? 12 t/h. v (WO, y' ; W?, ye) 12 J (W0, y') ! (1coS X)/X2 . dx 

=27r I ao 12 tlh. v (W?, y' ;W? ? 2J( ') 

The probability per unit time of a transition to a state for which each yk, lies 

between Y,' and yk' + dyk>' is thus (apart from the normalising factor) 

2 a0 1 ao 12/h . I v (WO, y' ; W , yO) 12 J (WO, y') dyl' . d2 ' ... dyu-1l, (24) 

which is proportional to the square of the nmatrix element- associated with that 
transition of the perturbing energy. 

To apply this result to a simple collision problem, we take the ac's to be. the 
components of mnomentum PZ, pg, p, of the colliding electron and the y's to 
be 0 and q4, the angles which determine its direction of motion. Tf, taking the 
relativity change of mrass with velocity into accotint, we let P denote the 
resultant momentumn, equal to (px2 + py2 + pz2)Y, and E the energy, equal to 
(m2C4+P2c2)A2, of the electron, in being its rest-mass, we find for the Jacobian 

jaPi 
uPz)- Psin 0. 

a(,,) E C2 

Thus the J (W0, y') of the expression (24) has the value 

J (W', y') = E'P' sinn 0/c2 (2) 

where E' and P' refer to that value for the energy of the scattered electroi wxtiich 

makes the total energy equal the initial energy Wo (i.e., to that value required 
by the conservation of energy). 

We must now interpret the initial value of a (c'), namely, a' 8 (or' --), 
which we did not normalise. According to ? 2 the wave function in terms of the 
variables c,. is b (oc')= a (oc') e siW'toh SO that its initial value is 

ao 8 (act -_ cc0) e-iWt a0 a(P.' - Px0) g (pr - p,Y) 
g (P' - Pz) e-iV't 

If we -use the transformation function* 

(x'lp') =-- (27rh)-3/2eiV3!Xtpx'x'/l7 

and the transformation rule 

- 4 (x') --^ |(x'lp') + (p') dpx' dpy' dpz' 

we obtain for the iniiitial wave function in the co-ordinates x, y, z the value 

a0 (22rh)1-2 etxp.~P9x'Ih e-iW'tIh 

. The syinbol x is used for brevity to denote x, y. z. 
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This corresponds to an initial distribution of I aQ 1 2(27h)3 electrons per unit 
volume. Since their Veloeity is POC2/Eo, the numuber per tmit time striking a 
unit smface at right-angles to their directioni of motion is I a 2 POc2/(2uh)3 E 0. 
Dividing this into the expression (24) we obtain, witlh the help of (25), 

4n2 (2nh)2 E' (p'; p) 2 
P 

sin 0' dO' db'. (26) 

This is the efective area that in-st be hit by an electron in order that it shall 
be scattered in the solid angle sin 0dO' d d+' with the energy F. This result 
differs by the factor (27rh)2/2mE' . P'/PO from Born's.* The necessity for the 
factor P'/P' in (26) could have beei predicted froin the prin ipie of detailed 
balancing, as the factor j v (p'; pO) 12 iS symnmetrica-l betwecen the direct and 
Teverse process s.t 

? 6. Application to Liyht-Quancota. 

We shall now apply the theory of ? 4 to the case whet the systems of the 
assembly are light-quanta, the theory being applicable to this case since light- 
quanta obey the Einstein-Bjose statistics and have no muttual itteraction. A 

light-quantu-m is in a stationary state when it is moving with constant momen- 
tum in a straight line. Thus a stationary state r is fixed by tthe three com- 
ponents of momentum of the iqliht-quantum and a variable that specifies its 
state of polarisationv. We shall work on the ass-umption that there are a finite 
n mber of these stationary states, lying very close to one another, as it would 
be inconvenient to use continuous ranges. The interaction of the light-quanta 
with an atomic system will be described by a Hamiltonian of the form (20), 
in which Hp (J) is the Hamiltonian for the atomic system alone, and the 
coefficients v., are for the present unknown. We shall show that this fort 
for the Hamiltonian, with the v,, arbitrary, leads to Einstein's laws for the 
em ission and absorption of radiation. - 

The light-quant-iium has the pecuLliarity that it apparenLtly ceases to exist 
wheni it is in one of its stationary states, narnely, the zero state, in wvhich its 
momentum, and therefore also its energy, are zero. WVen , light-quantumn 
is absorbed it can be considered to jumnp into this zero state, and wvhen one is 
emitted it can be considered to j'ump from-L the zero state to one -in wlich it is 

* In a more recent paper ('Nachr. Gesell. d. Wiss.,' Gottingen, p. 146 (1926)) Born has 
obtained a result in agreement with that of the prese it paper for non-relativity mechanics, 
'by using an interpretation of the analysis based on the conservation theorems. I amn 
indebted to Prof. N. Bohr for seeing an advance copy of this work. 

t See Klei and Rosseland, 'Z. f. Physik,' vol. 4, .p 46, equation (4) (192l1). 
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physically in evidence, so that it appears to have been created. Since there is. 
no limit to the number of light-quanta that may be created in this way, we must 
suppose that there are an infinite number of light-quanta in the zero state, so, 
that the N0 of the Hamiltonian (20) is infinite. We mast now have 0G, the 
variable canonically conjugate to N., a constant, since 

00 = aF/aNo WWo + terms inlvolving No0 or (No + Ir! 

and W0 is zero. In order that the Hamiltonian (20) may remain finite it is, 
necessary for the coefficients v,.O, vo0. to be infinitely small. W e shall Seuppose 
that they are infinitely small in such a way as to make vToNo! and vorNo 
finite, in order that the transition probability coefficients may be finite. Thus. 
we put 

vrO (No + 1)Ar 6 -i yr vo.NOeio/Il - 12*.. 

where vr and vr* are finite and conjugate imaginaries. We may consider the 
v, and v* to be functions only of the J's and w's of the atomic system, since 
their factors (N0 - 1)-2- e-ioo'h and N0oeiOoI are practically constants, the rate 
of change of No being very small compared with No. The Hamiltonian (20), 
now becomes 

F HPp (J) + ErWrN r + Er o[v,NA 4/+ v,* (N. -H 1)r e-i&/l 

+ Er - 0 'Es o vrsNr- (Ns + 1 -8 rs) et -Gi/h (27); 
The probability of a transition in which a light-quantum in the state r is. 

absorbed is proportional to the square of the modulus of that matrix element of 
the Hamiltonian which refers to this transition. This matrix element mustl 
come from the term v7N Ie"OIh in the Hamiltonian, and must therefore be 
proportional to Nrt' where N,' is the number of light-quanta in state r before. 
the process. The probability of the absorption process is thus proportional 
to Nr'. In the same way the probability of a light-quantum in state r being 
emitted is proportional to (Nr' + 1), and the probability of a light-quantum in) 
state r being scattered into state s is proportional to Nr' (N8' + 1). Radiative 
processes of the more general type considered by Einstein and Ehrenfest,t in 
which more than one light-quantum take part sininltaneously, are not allowed 
on the present theory. 

To establish a connection between the number of light-quanta per stationary 
state and the intensity of the radiation, we consider an enclosure of finite 
volume, A say, containing the radiation. The number of stationary states 
for light-quanta of a given type of polarisation w:hose frequency lies in the 

t 'Z. f. Physik,' vol. 19, p. 301 (1923). 
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range v. to v, - dVr anid whose direction of notion lies in the solid anlgle dcx. 
about the direction of motion for state r will now be Avrl2dv.do,/c3. The energy 
of the light-quanta in these stationary states is tlhus N' 2nhv,.. Av2dv,dCw)r/c3. 
This inust equal AcmJ,dvrdor, where IJ is the intensity per unit frequency 
ra:nge of the radia-tioni about the state r. Hence 

1 - Nr (27h) v7/C2, (28) 

so t'llmt NJ. is proportional to I. and (N' --? 1) is proportional to T2 + (2Ah) v 3/c2. 
We thus obtaiin that the probability of an absorption process is proportional to 

It., t hte ncident intermsity -er unit trequency range, and that of an emission 
process is proportional to 1,+ (2 nh) v3/C2, which are just Einstein's laws. 
In the same way the probability of a process in wNThich a light-quantutm is scattered 
fro:m a state 'r to a state s is proportio 1al to 1, [LI + (27ch)V73/c2], which is Pauli's 
law for the sea-ttering of radiation by a m eiectron.t' 

? 7. The Probability Coeficietlds for Eiiiission antd Absorption. 

We, shall now consider the interaction of an atom and radiationi fromn- the wave 
point of view. We resolve the radiatio r into its Fourier comiponents, and 
suLppose that their niumber is yery large but f-inite. Let each component be 
labelled by a suffix r, and suppose there are a. components associated witlh the 
radiation of a definiite type of polarisation per unit solid ai-gle per -unit fre- 
quency range abolt the component r. Each component r can be described by 
a vector potential 1c, chose m so as to inake the scalar potential zero. The 
perturbation term to be added to the flamiltonian will now be, according to 
the classical theory with neglect of relativity mechanics, C-41 X. r. X,r where XT 
is the component of the total polarisation of the atom in the direction of K2, 

which is the direction of the electric vector of the component r. 
We can, as explained in ? 1, suppose the field to be described by the ca mo nical 

varialbles Nr, 02, of which N, is the number of quanta of energy of the com- 

ponent ir, anad 0, is its canonically conijugate phase, equLal to 27chv, times the 

0r of ? 1. We shall now have c, ar cos 0,/h, where ar iS tne amplitude of 
KIC 97 which can be connected with N, as follows:-The fow of energy per uinit 
areta per unit time for the component r is 17rc1 a 2Vr2. Hence the intensity 

- Llie ratio of stimtulated to spontaneous emission in the present theory is just twice its 
value in Einstein's. This is because in the present theory either polarised component of 
the incident radiation can stimulate only radiation polarised in the same way, while in 
Einstein's the two polarised components are treated together. This remnark applies also 
to the scattering process. 

t Pauli, 'Z. f. Physik,' vol. 18, p. 272 (1923). 
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pet unit frequfency range of the radiation in the neighbourhood of the com- 
ponent r is T2227r-1 a2 2. Coinparing this with equation (28), we obtain 
a,, 2 (hvr/cajr)`Nj) and hence 

K2.= 2 (hvr/5cc)` N37 Cos Or/ht. 
The T:amiltonian for the whole systemn of atom plus radiation would now be, 

according to the classical tlleory, 
F Hp (J) -- Lr (27ihVr) N, + 2c1 , (h v, /Cn) XrNr! cos 0,/h, (29) 

where H, (J) is the Halmiltonian for the atoml alone. On the quanturm theory 
we must make the variables Nr anid 01 canionical q- iumbers like the variables 
Jk, w1k that describe the atoi. We mnst nlow replace the N7, cos 0,/h in (29) 
by the real q-nuimber 

iN fi 6i rl + 6---i0rjhN N- t rlh (.4 ~ Nj e'Io+~zrl2Nj-1~{ e%f (N2. -1- e - Ci9rII2} 

,so that the liamiltonian (29) becomnes 

XF t1P (2 ) + ES (2J;71hVr) N2.X + hA C >2;r (V)r/(Tr)~ 2'X {Nq.- gi8 I + (Nr + )~ C i!t}. 
(30) 

This is of the form (27), -with 
v. = v.*-h c- (h2/Gr)' Xr (31) 

and vr 0 (r, s X0). 

The wave point of view is thus consistent with the light-quantunm point of view 
and gives values for the unkniown interaction coefficient vrs in the light- 
quantum theory. These val-ues are not such as would enable one to express 
the interaction energy as an algebraic function of canonical variables. Since 
the wave theory gives vr.s. 0 for r, a s 0, it would seem to show that there are 
no direct scattering processes, b-ut this may be due to an incompleteness in 
the present wave theory. 

We shall now show that the Hamiltonian (30) leads to the correct expressions 
for Einsteirn's A's and B's. We mnust first modify slightly the anal is of ? 5 
so as to apply to the case wheni the system has a large number of discrete station- 
ary states instead of a continuous range. instead of equation (21) we shall 
now have 

ih a (Vc) -- V (oa'oc") a 

If the system is initially in the state oo, we must take the initial value of a (') 
to be 8 which is now correctly normalised. This gives for a first approxi- 
mnation 

ih 
c (z)=V (cx'ot 0) _-- v(c4'x? eiL '-W(? 

which leads to 
ieLW('>) w(ol?)] t| 1L ih a (x')-A + v (o'0?.) ; W - - 
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corresponding to (22). If, as before, we transform to the variables W, y, 
Y2 Yff-1b we obtain (when y' y O) 

a (W'y') = v (W', y'; w TO) L[-Ce(W'-W0)t/h]/(Wf _WO). 

The probability of the system being in a state for which each yk equals Ykt 

is Yw, I a (W' y')12. If the stationary states lie close together and if the timYle t 

is not too great, we can replace this sum by the integral (/AW)-ij' a (W'y') 2 dW', 

where A.W is the separation between the energy levels. Evaluating this integral 
as before we obtain for the probability per unit time of a transition to a state 
for which each YkT Yk' 

2n/hAW . 'I V (WO, y'; W0, 0) 12. (32) 

In applying this resullt we can take the ys to be any set of variables that are 
independent of the total proper energy W and that together with W define 
a stationary state. 

We now return to the problem defined by the Hamiltonian (30) and considler 
an absorption process in which the atom jumps from the state JO to the state 
JX with the absorption of a light-quantum from state r. We talke the variables 
y' to be the variables J' of the atom together with variables that define the 
direction of imotion and state of polarisation of the absorbed quantuml, burt 
not its energy. The matrix elemeict v (W0, y'; W0, TO) is now 

h1/C C: ( Mr /,g ) /2 Xv (J?J')Nro? 

where X)r (JJX) is the ordinary (J?J') matrix element of X. Hence from (32) the. 
probability per unit time of the absorption process is 

27vc hvlk (J0- 
z, 7w jcr Xr ( 'JoJ) 1 2N0 

To obtain the probability for the process wheii the light-quantnm comes from 
any direction in a solid angle dc, we must i.aultiply this expression by the nusmber 
of possible directions for the ligbt-quantum in the solid angle d4, which is 
dt) grAW/27rh. This gives 

Tcl a X (J2J) Nr0 2 1 - X (J?J') 1 2I 

with the help of (28). Hence the probability coefficient for the absorption 
process is 1/272cvr2. X Xr(J0J') 12, in agreement with the usual value for EiTh- 
stein's absorption coefficient in the matrix mechanics. The agreemel A for 
the emission coefficients may be verified in the same manner. 
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The present theory, since it gives a proper account of spontaneous emission, 
must presumably give the effect of radiation reaction on the emitting system, 
and enable one to calculate the natural breadths of spectral lines, if one can 
overcome the mathematical difficulties involved in the general solution of the 
wave problem corresponding to the Hamiltonian (30). Also the theory enables 
one to understand how it comes about that there is no violation of the law of the 
conservation of energy when, say, a photo-electron is emit;ted from an atom 
under the action of extremely weak incident- radiation. The energy of inter- 
action of the atom and the radiation is a q-numiber that does not commute with 
the first integrals of the motion of the atom alone or with the intensity of the 
radiation. Thus one cannot specify this energy by a c-number at the same 
time that one specifies the stationary state of the atom and the intensity of the 
radiation by c-numbers. In particular, one cannot say that the interaction 
energy tends to zero as the intensity of the incident radiation tends to zero. 
There is thus always .an unspecifiable amount of interaction energy which 
can supply the energy for the photo-electron. 

I would like to express my thanks to Prof. Niels Bohr for his interest in this 
work and for much friendly discussion about it. 

Summary. 

The problem is treated of an assembly of similar systems satisfying the 
Einstein-Bose statistical mechanics, which interact with another different 
system, a iHamiltonian function being obtained to describe the motion. The 
theory is applied to the interaction of an assembly of light-quanta with an 
ordinary atom, and it is shown that it gives Einstein's laws for the emission 
and absorption of radiation. 
.The interaction of an atom with electromagnetic waves is then considered, 

and it is shown that if one takes the energies and phases of the waves to be 
q-numbers satisfying the proper quantum conditions instead of c-numbers, 
the Hamiltonian function takes the same form as in the light-quantum treat- 
ment. The theory leads to the correct expressions for Einstein's A's and B's. 
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