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Abstract. In this notes, we introduce the periodicity theorem and explain the proof.
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1. Introduction

Definition 1.1. Let X be a p−local finite spectrum, and n ≥ 0. A self-map v : ΣkX → X
is said to be a vn self-map if

K(m)∗v =


multiplication by a rational number, if m = n = 0,

isomorphism, if m = n ̸= 0,

nilpotent, otherwise.

Let C0 be the homotopy category of p−local finite spectra, we denote Cn, n ≥ 1 the full
subcategory of C0 with K(n− 1)∗(X) = 0,∀X ∈ Cn.

The main reference is [3], and the main theorem is following,

Theorem 1.2. [3, Theorem 9] A p−local finite spectrum X admits a vn self-map iff X ∈ Cn.
And if X admits a vn self-map, then exists N ∈ N, and v : Σ2(pn−1)pNX → X, such that such
that

(1.2.1) K(m)∗v =

{
vp

N

n , if m = n,

0, otherwise.

Denote Vn to be the full subcategory of C0 admitting self-map v satisfies (1.2.1). So The-
orem 1.2 is just saying Vn = Cn.
Proof of Theorem 1.2 (logically).

We need three facts.

(1) Vn is thick.
(2) Vn ⊆ Cn.
(3) ∃x x ∈ Cn \ Cn+1 ∧ x ∈ Vn.

Fact 1 says ∃m ∈ N,Vn = Cm(thick subcategory theorem), fact 2 says m ≥ n, fact 3 says
m = n. Otherwise, m ≥ n+ 1, then X ∈ Cm \ Cn+1 = ∅, a contradiction. So, Vn = Cn. □
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Now, we only need to prove those three facts. Basically fact 1 followed by some algebraic
facts about K(m)∗(X ∧DX), and we will prove it in section 2. The proof of fact 3 involves
constructing X ∈ Cn\Cn+1 and an element in π∗(X∧DX) such that the image in K(m)∗(X∧
DX) satisfies 1.2.1, we will use several Adams spectral sequences to ”approximates” vp

N

n ,
and we will prove fact 3 in section 3.

Now we present a proof of fact 2.

Proof of fact 2. It is equivalent to show if X is p−local finite spectra, admitting v satisfies
1.2.1, then K(n − 1)∗X = 0. Suppose the converse holds, i.e ∃X X ∈ Vn \ Cn, then K(n −
1)∗X ̸= 0. We denote the cofiber of v : Σ2(pn−1)pNX → X as Y. Apply K(n−1)∗ to the exact
triangle, we have

0 → K(n− 1)∗X → K(n− 1)∗Y → K(n− 1)∗−1Σ
2(pn−1)pNX → 0.

This gives K(n − 1)∗(Y ) ̸= 0. Apply K(n)∗ to the exact triangle, we get K(n)∗(Y ) = 0.
These together gives Y ∈ Cn+1 \ Cn = ∅. A contradiction. □

2. Vn is thick

We may consider n ≥ 1, because for any p−local finite spectra, the degree p map is a
v0−map.

By the theory of Spanier-Whitehead duality, a self map ΣkX → X is dual to Sk → R =
F ∧DF.

Definition 2.1. Let R be a finite ring spectrum, n ≥ 1. An element

α ∈ π∗R

is called vn−element if

K(m)∗α =

{
unit, if m = n,

nilpotent, otherwise.

Remark 2.2. K(m)∗α is the image of α under the map π∗(S
0 ∧R) → π∗(K(m)∗ ∧R).

Claim. The definition 1.1 and definition 2.1 are equivalent in some sense.

Proof. We need to prove X has vn−self map iff R = X ∧ DX has vn−element. Form
Spanier-Whitehead theory we should have

[X, Y ] π∗(DX ∧ Y )

HomK(m)∗(K(m)∗(X), K(m)∗(Y )) K(m)∗(DX ∧X).

≃

Hure

≃

So, there is a vn−self map if and only if the dual of that map is a vn−element in π∗(R). □

We now need a lemma convert a vn−element to satisfy (1.2.1) in some sense.

Lemma 2.3. Let R = X ∧DX, and α ∈ π∗(R) is a vn−element, there exists i, j ∈ N such
that

K(m)∗(α
i) =

{
vjn, if m = n,

0, otherwise.
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We actually will need following facts.

Proposition 2.4. Let X and Y be finite spectra. For m ≫ 0, we have

(1) K(m)∗(X) ≃ HFp∗X ⊗K(m)∗,
(2) K(m)∗(f) = HFp∗f ⊗ idK(m)∗ , for any f : X → Y.

Proof of Lemma 2.3. By Proposition 2.4 (1) we have HFp∗α is nilpotent, and since X is
finite spectra, for the reason of dimension after raising α to a power, we get for m ≫ 0,
HFp∗α = 0. But that just gives K(m)∗(α) = 0, for m ≫ 0. Again, after raising α to a
power, we get K(m)∗(α) = 0, for m ̸= n. K(n)∗(α

i) is a power of vn meaning that αi =
1 ∈ K(n)∗R/(vn − 1). And K(n)∗R/(vn − 1) ≃ ⊕0≤i<|vn|K(n)iR generates K(n)∗(R). And
it is finite because X is finite spectrum, so K(n)∗(R) is finite dimensional K(n)∗−vector
space, thus ⊕0≤i<|vn|K(n)iR can be finite dimensional Fp−vector space. Then we take the
order of group K(n)∗(R)/(vn − 1), we get αi = 1 ∈ K(n)∗(R)/(vn − 1), that just means
αi = vjn ∈ K(n)∗(R). □

There is an algebra fact about Z(p)−algebra.

Lemma 2.5. Suppose x and y are commuting elements of Z(p)−algebra, and if x − y is
torsion and nilpotent, then there exists N ∈ N, such that

xpN = yp
N

.

Proof. Take N ≫ 0, so that xpN = (y + (x− y))p
N
= yp

N
. □

Lemma 2.6. Let R = X ∧DX, α ∈ π∗(R) is a vn−element. There exists i > 0, αi is in the
center of π∗(R).

Proof. By Lemma 2.3, raising α to a power, we may assume that K(m)∗(α) is in the center of
K(m)∗(R) for allm. Let l(α), r(α) ∈ π∗(R) be the left multiplication and right multiplication
by α. Since R ∈ C1 (H∗(R,Q) = 0), l(α)−r(α) has finite order. And K(m)∗(l(α)−r(α)) = 0,
then l(α) − r(α) is nilpotent.(we actually used nilpotence theorem here). By Lemma 2.5,

l(α)p
M
= r(αpM ), for some M ∈ N. □

In the proof above we actually have used following fact.

Proposition 2.7 (Nilpotence Theorem). [3, Theorem 3 (i)] Let R be a p−local ring spectrum.
An element α ∈ π∗(R) is nilpotent if and only if K(n)∗(α) is nilpotent for all n ∈ N.
Lemma 2.8. Let x, y ∈ π∗(R) be vn−elements. Then there are i, j ∈ N, such that xi = yj.

Proof. Similar to Lemma 2.6, after raising x, y to powers, we may assume K(m)∗(x−y) = 0,
and x, y are commute. Then by Proposition 2.7, x − y is nilpotent. And x − y is torsion,
because R ∈ C1. Then by Lemma 2.5, there are i, j ∈ N, xi = yj. □

Corollary 2.9. Suppose X and Y have vn self-maps vX and vY . There are i, j ∈ N, such
that for any Z and any

f : X → Y

the following diagram commutes.

ΣkX ΣkY

X Y.

Σf

viX vjY

f
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Proof. The spectrum W = DX ∧ Y has two vn self maps: DvX ∧ idY , idDX ∧vY . By Lemma
2.8 and the claim in Remark 2.2, DviX ∧ idY are homotopic to idDX ∧vjY . Assume f is dual

to f̂ ∈ π∗(W ), W is a module spectrum over DX ∧X, the product v̂iX f̂ = (Dvix ∧ idY )f̂ is

the adjoint of fviX . And also (idX ∧vjY )f̂ is adjoint to vjY f, so fviX ≃ vjY f. □

We actually have used following fact.

Proposition 2.10. For any two spectra X and Y, the natural map

K(n)∗X ⊗K(n)∗ K(n)∗(Y ) → K(n)∗(X ∧ Y )

is an equivalence.

Corollary 2.11. The full subcategory of C1 consisting of spectra admitting a vn self-map is
thick.

Proof. Denote the category in the statement to be C. Note that X ∈ C iff ΣX ∈ C. To show
C is closed under cofiber sequences, we only need to show if

X → Y → Z

is a cofiber sequence with X, Y ∈ C, then Z ∈ C. (Because of the triangulated structure of
spectra category). Using Corollary 2.9, we can choose vX , vY are vn maps of X and Y, such
that

ΣkX ΣkY ΣkZ

X Y Z

vX vY

is commutative. And any map vZ : ΣkZ → Z making the diagram a map of cofiber sequences
is a vn map.(And such map exists by an axiom of triangulated category). Now we need to
show C is closed under retracts. Let i : Y → X, p : X → Y, and p ◦ i is homotopic to idY .
By Lemma 2.6 and claim in Remark 2.2, we can choose a vn self map X of X, such that v
commutes with i ◦ p. Then the map

ΣkY ΣkX X YΣki v p

is a vn map of Y. □

Remark 2.12. The fact that p ◦ v ◦ Σki is a basic algebra exercise. It is equivalent to the
following question. Let A,B be R−modules, f : B → B, i : A → B, p : B → A, f is an
isomorphism, p ◦ i = idA, f commutes with i ◦ p, then p ◦ f ◦ i is an isomorphism.

Corollary 2.13. The full subcategory of C1 consisting of spectra admitting a vn self-map
satisfying (1.2.1) is thick, i.e. Vn is thick, n ≥ 1.

Proof. The proof is the same, the only trouble is the powers in Lemma 2.3 and Lemma 2.8
could be not a power of p. But actually the condition (1.2.1) says that cannot happen. □
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3. Constructing a vn-element

We need to prove fact 3, and the claim in Remark 2.2 tells us we only need to find an
element in π∗(R) satisfying Lemma 2.3.

The strategy is use several Adams spectral sequences to ”approximates” vn ∈ K(n)∗. So,
we first recall some basic facts about Steenrod algebra.

Definition 3.1 (mod 2 Steenrod algebra). [7, Chapter II §3]
Let V be the F2−vetor space with basis {Sq0, Sq1, . . .}. T (V ) be the tensor algebra, and

I is the ideal of T (V ) generated by

{SqaSqb −
[a/2]∑
j=0

(
b− 1− j

a− 2j

)
Sqa+b−jSqj, Sq0Sqk − Sqk, SqkSq0 − Sqk}

for 0 < a < 2b, k ≥ 0. Then A2 := T (V )/I.

Definition 3.2 (mod p Steenrod algebra, p odd). [7, Chapter VI §2]
Let V be the Fp−vetor space with basis {β, P 0, P 1, . . .}. T (V ) be the tensor algebra, and

I is the ideal of T (V ) generated by

{P aP b −
[a/p]∑
j=0

(
(p− 1)(b− j)− 1

a− pj

)
P a+b−jP j, P 0P k − P k, P kP 0 − P k, βP 0 − β, P 0β − β}

∪{P a′βP b′−
∑[a′/p]

j=0 (−1)a
′+j

(
(p−1)(b′−j)

a′−pj

)
βP a′+b′−jP j−

∑(a′−1)p
j=0 (−1)a

′+j−1
(
(p−1)(b′−j)−1

a′−pj−1

)
P a′+b′−jβP j.}

for 0 < a < pb, 0 < a′ ≤ b′, k ≥ 0. Then Ap := T (V )/I.

Remark 3.3. We actually omit the notion ⊗ in the defining ideals I.
Definition 3.4 (The dual Steenrod algebra).

A2∗ ≃ F2[ξ1, ξ2, . . .], |ξi| = 2i − 1.

Ap∗ ≃ Fp∗ [ξ1, ξ2, . . .]⊗ Λ[τ0, τ1, . . .], |ξi| = 2(pi − 1), |τi| = 2pi − 1.

Remark 3.5. There are some conventions, we denote P s
t ∈ A, s < t to be the element dual

to ξp
s

t . Qn ∈ Ap dual to τn if p is odd and ξn+1 if p = 2. We have (P s
t )

p = 0, Q2
n = 0.

The subalgebra of A generated by

Sq1, Sq2, . . . , Sq2
n

,when p = 2,

β, P 1, P p, . . . , P pn−1

,when p oddn ̸= 1,

β,when p odd n = 0.

is denoted An.
The subalgebra generated by Qn is denoted by E[Qn] ⊆ A.

Definition 3.6. Given an A−module M, the Margolis homology H(M,d) is the homology
of the complex (M∗, d∗) with

Mn = M,n ∈ Z,
d2n = d,

d2n+1 =

{
dp−1, if d = P s

t ,

d, if d = Qn.
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And we denote H(X, d) to be H(H∗X, d).

We mentioned that we need Adams spectral sequence.

Proposition 3.7. [1, Theorem 2.1] There is a spectral sequence, with terms Es,t
r = Es,t

r (X)
which are zero if s < 0 or if t < s, and with differentials

dr : E
s,t
r → Es+r,t+r−1

r

satisfying the following conditions.
(i) There is a canonical isomorphism

Es,t
2

∼= Exts,tA (H∗(X), Zp) .

(ii) There is a canonical isomorphism

Es,t
r+1

∼= Hs,t (Er; dr) .

(iii) There is a canonical monomorphism from Es,t
R to Es,t

r for s < r < R ⩽ ∞.
(iv) If (using (iii)) we regard Es,t

r as a subgroup of Es,t
s+1 for s < r ⩽ ∞, we have

Es,t
∞ =

⋂
s<r<∞

Es,t
r

(v) There exist groups Bs,t such that

Bs,t ⊂ Bs−1,t−1 ⊂ · · · ⊂ B0,t−s, B0,m = πS
m(X)

and

Es,t
∞ ≃ Bs,t/Bs+1,t+1.

(vi)
⋂

t−s=m Bs,t = Km

Remark 3.8. In our case, X is a finite p−local spectrum, the Adams spectral sequence has
filtration to 0, i.e. Km = 0 above. Actually, in our case we have an Adams filtration (Xs, gs)
such that limXs = pt, and if limXs = pt, we have Km = 0. See [5, Lemma 2.1.12, 2.1.16].

There is an ring spectrum k(n) such that k(n)∗ = Fp[vn] ⊂ K(n)∗ = Fp[vn, v
−1
n ].

Lemma 3.9. The transformation k(n)∗X → K(n)∗X extend to a natrual isomorphism

v−1
n k(n)∗X ≃ K(n)∗X.

Corollary 3.10. If k(n)∗X is finite then K(n)∗X = 0

Proof. k(n)∗X is finite meaning for j ≫ 0, k(n)jX = 0. Therefore x ∈ k(n)∗X, take m ≫ 0,
vmn x = 0. □

The mod p cohomology H∗ k(n) has been calculated by Bass and Madsen [2, Theorem
A,B].

Proposition 3.11. As a A−module

H∗ k(n) ≃ A//E[Qn] ≃ A⊗Fp E[Qn].

So the E2 page of the Adams spectral sequence of π∗(k(n) ∧X) is

Exts,tA (A//E[Qn]⊗ H∗X,Fp) ≃ Exts,tE[Qn]
(H∗X,Fp).
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Remark 3.12. In the above, E[Qn] ⊆ A is a sub Hopf algebra, this can be showed directly
by checking the dual algebra is a quotient Hopf algebra. Let B ⊆ C are Hopf algebra over k.
Then HomC(C ⊗B M,N) ≃ HomB(M,N). This gives Ext∗C(C ⊗M,N) ≃ Ext∗B(M,N). And
we also have C ⊗B M ≃ C//B⊗k M ≃ C ⊗B k⊗k M. So, these together give ExtC(C//B⊗
M,N) ≃ Ext∗B(M,N).

Corollary 3.13. If X is a finite spectrum and H(X,Qn) = 0, then K(n)∗X = 0.

Proof. Note that we have a injective E[Qn] resolution

(3.13.1) 0 Fp Σ2pn−1Fp[x]/x
2 Σ2(2pn−1)Fp[x]/x

2 · · · .xx x x

Apply Homt(H∗(X),−) to it, one can prove if H(X,Qn) = 0, then Exts,t(H∗(X),Fp) = 0 for
s > 0. Actually we have projective resloution

(3.13.2) 0 Fp Σ2pn−1Fp[x]/x
2 Σ2(2pn−1)Fp[x]/x

2 · · · .x x x

And because H∗(X) is finite type overE[Qn], so Tor
E[Qn]
s,t (H∗X,Fp) = 0 ⇒ Exts,tE[Qn]

(H∗X,Fp) =

0. And apply ⊗Fp to 3.13.2 we then have Tor
E[Qn]
s,t (H∗X,Fp) = H(X, d) = 0, s > 0.

Therefore k(n)∗X ≃ Ext0,∗(H∗X,Fp), and because X is finite so when ∗ ≫ 0 we have
H∗X = 0, then Ext0,∗(H∗X,Fp) = 0. By Lemma 3.10, K(n)∗X = 0. □

Theorem 3.14. There is a finite spectrum Xn satisfies following.
(i) all differentials in the Adams spectral sequence

Exts,tE[Qn]
(H∗Xn ∧DXn,Fp) → k(n)∗Xn ∧DXn

are zero.
(ii) The Margolis homology groups H(Xn ∧DXn, d) = 0 if |d| < |Qn|.

We will sketch the proof later.

Theorem 3.15. ∃Xn ∈ Cn \ Cn+1 and has a vn self map satisfying Definition 1.2.1, i.e.
Xn ∈ Vn.

Proof. Denote R = Xn∧DXn, where Xn is obtain in Theorem 3.14. Xn ∈ Cn−1 by condition
(ii) in Theorem 3.14 and Corollary 3.13. And K(n)∗(Xn) ̸= 0 by (i) of Theorem 3.14. So,
Xn ∈ Cn\Cn+1. Note that if B ⊂ A sub Hopf algebra, then the ring ExtB(H

∗R,Fp) is a central
algebra over ExtB(Fp,Fp). As said in 2.2, we only need to find an element α ∈ π∗(R) whose
Hurewicz image in K(m)∗ satisfying 2.3. Note that we have a injective E[Qn] resolution

0 Fp Σ2pn−1Fp[x]/x
2 Σ2(2pn−1)Fp[x]/x

2 · · · .xx x x

So, Ext0,2p
n−2

E[Qn]
⊂ Hom2pn−2(Fp,Σ

2pn−1Fp[x]/x
2) = 0. By (v) in Proposition 3.7, vn ∈ B0,2pn−2 =

B1,2pn−1. Now take a class in Ext1,2p
n−1

E[Qn]
reprensents vn, by abuse notion we still denote as

vn. We need find a class w ∈ Ext
pN ,pN (2pn−1)
A (H∗R,Fp) restricting to vp

N

n · 1, for N ≫ 0.
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Consider the following diagram

w ∈ ExtA(H
∗R,Fp) π∗(R) ∋ v

w̃ ∈ ExtAm(Fp,Fp) ExtAm(H
∗R,Fp) ∋ w̃ · 1

vp
N

n ∈ ExtE[Qn](Fp,Fp) ExtE[Qn](H
∗R,Fp) k(n)∗R

aprroximation

Hurewicz

restriction restriction

Claim.
(1) There is b > 0, ExtA(H

∗R,Fp) = 0 when s > 1/(2pn − 2)(t− s) + b.
(2) The approximation map is isomorphism if s > 1/(2pn − 2)(t − s) + k, where k < 0,

and k → −∞ if m → ∞.
(3) For N ≫ 0, vp

N

n is in the image of the restriction map.

Now, claim 3 says we can find w̃ ∈ ExtAm(Fp,Fp) restricting to vp
N

n . Claim 2 says we
can find w ∈ ExtA(H

∗R,Fp) restricting to w̃ · 1. And w is in the commutes with every

α ∈ Exts,tA (H∗R,Fp), s ≥ 1/(2pn−2)(t−s)+b. Since d2w = 0, choose N ≫ 0, so that drw
pN =

0, r > N. Because drw
pN lie in s ≥ 1/(2pn−2)(t− s)+ b. And dr(w

p) = pdr−1(w), d2(w) = 0,

so dN(w
pN−1

) = 0. Therefore wpN is a permanent cycle. We need to show k(n)∗(v)− vp
N

n =

0. Form the commutative diagram we get k(n)∗(v) − vp
N

n is represents by a class in v′ ∈
Exts,t(H∗X,Fp), s = 1/(2pn−2)(t−s)+1. Therefore some power of it represented by a class
above vanishing line. That means v′ is represented by a class in v′′ ∈ Exts,t(H∗X,Fp), s =
1/(2pn − 2)(t − s) + 2. After finitely times the class is 0 =

⋂
t′−s′=t−sB

s′,t′ = Kt−s ∈
πt−s(k(n) ∧R). Therefore k(n)∗(v)− vp

N

n = 0.

Now k(m)∗(v) − vp
N

n = 0, if m < n for trivial reason. And form (3.13.1), we have
Exts,tE[Qm](H

∗R,Fp) = 0,where s = 1/(2pm − 2)(t − s) for degree reason. So when m > n,

k(m)∗(v) is above this vanishing line, thus it is zero.
□

Claim 1 is:

Proposition 3.16. [4] If M is a connective A-module with

H(M,d) = 0 for |d| ≤ n,

then
Ext∗,∗A (M,Fp)

has a vanishing line y = x/n+ b, b is a constant depending only on n.

Remark 3.17. The proof of Proposition 3.16 actually using the duality of Ext and Tor, so
we actually require that M is finite type. For more detail see [4, Lemma 1.1].

Proposition 3.18. Suppose that M is a connective A-module, and

y = mx+ b

is a vanishing line for Ext∗,∗A (M,Fp). If N is a (c− 1)-connected A-module, then
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y = m(x− c) + b

is a vanishing line for
Ext∗,∗A (M ⊗N,Fp) .

Claim 2 is:

Proposition 3.19. Let M be a connective A-module, and suppose that Ext∗,∗A (M,Fp) has a
vanishing line of slope m. For n ≫ 0, there is b < 0 such that the restriction map

Exts,tA (M,Fp) → Exts,tAn
(M,Fp)

is an isomorphism when
s ≥ m(t− s) + b.

Claim 3 is:

Proposition 3.20. Suppose that B ⊂ C are finite, connected, graded, cocommutative Hopf
algebras over a field k of characteristic p > 0. If

b ∈ Ext∗,∗B (k, k),

then for N ≫ 0, bp
N
is in the image of the restriction map

Ext∗,∗C (k, k) → Ext∗,∗B (k, k).

Sketch of proof. Reduce to the case when B is normal in C. Now we have the spectral
sequence

Ext∗C//B(k,Ext
∗
B k,R) ⇒ Ext∗C(k,R).

Finiteness gives there is M ≫ 0, bp
M

is invariant under C//B. This gives an class in the

spectral sequence, and is a permanent cycle. So the class in Ext∗C(k, k) represents b
pM is the

desired class. □

We now explain the proof of Theorem 3.14, for more detail see [6, Appendix C].

Definition 3.21. A p−local finite CW-complex Y is strongly type n if it satisfies the
following conditions.

(1) Margolis homology group H(Y, d) = 0, if |d| < |Qn|.
(2) Qn acts trivially on H∗(Y ).
(3) K(n)∗(Y ) and H∗(Y ) have the same rank.

Definition 3.22. A p−local finite CW-complex Y is partial type n if it satisfies (2) and
(3) of Theorem 3.21. And each Qi, i < n and P 0

t acts nontrivially on H∗(X).
Proof sketch of Theorem 3.14. Denote the sub-Hopf algebra generated by P s

n, n > 0, s < n
by Tn.

(1) A strongly type n complex Y satisfying conditions in Theorem 3.14.

(2) A partial type n exists, namely B2pn

2 = B2pn/B1. Where Bk is the k−skeleton of
BZ/p.

(3) Consider X(l) = X ∧X ∧ . . . ∧X︸ ︷︷ ︸
l times

, Σl acts on X(l). This gives an action on H∗(X(l)).

And it gives an Z(p)[Σl]−module.
9



(4) Let V be a Fp vector space. There is eV ∈ Z(p)[ΣkV ], eV is an idempotent, kV is a
constant depending only on V.

(5) If V is a module over either E[Qn] or Tn, and V = U ⊕ F, where F is a nontrivial
free module. Then eV V

⊗kV is a free module over E[Qn] or Tn, [6, Theorem C.2.2].
(6) Now X is of partial type n, then Qi, i < n and P 0

t acts nontrivially on H∗(X). This
gives a nontrivial free direct summand of H∗(X(l)) for l sufficiently large. Note that
in this step, we used that Tt is self injective, so a free sub module is always a direct
summand.

(7) There is an operation of spectra, such e ∈ Z(p)[Σk] idempotent, H∗(eX(k)) ≃ eH∗(X(k)).
Namely the direct limit of the system

X(k) X(k) · · · .e e

(8) Finally, we take Y = eVX
(lkV ), where V = H∗(X(l)). So (5),(6),(7) tell us the Margolis

homology of Y is vanishing. So Y is strongly type n. Therefore Y satisfying the
conditions of Theorem 3.14.

□
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