
MOTIVIC HOMOTOPY THEORY

RIXIN FANG

Abstract. This note is for a talk in the upcoming IWOAT winter school. We introduce motivic
homotopy theory using the language of ∞-category, and the classical construction will be briefly
mentioned. We will explain how to construct the element τ using Milnor–Witt K-theory, and we
introduce the main results in [GWX21]. In the end, we talk about connections between algebraic
K-theory and t-structure.

1. Introduction

A classical question asked by Serre is whether every finitely generated projective k[x1, . . . , xn]
module is free when k is a field. This question can be reformulated as follows, whether

Vectr(Spec k) → Vectr(An
k)

is a bijection, for any n ≥ 1. Here, Vectr(X) is the set of isomorphism classes of rank r vector
bundles over X. The answer is yes, and it is proved by Quillen and Suslin. This can be viewed as
an A1-invariant phenomenon, and there are more A1-invariant phenomena. For smooth scheme X
over a field k, we have isomorphisms

CH∗(X) → CH∗(X ×k A1),

K∗(X) → K∗(X ×k A1),

H∗
ét(X,µl) → H∗

ét(X ×k A1, µl).

In the above, l is a prime number and coprime to the char k. In the topological setting, we consider
a topological space (or CW complex) X, we have bijection

Vectr(X) → Vectr(X × I).

And also for reasonable coefficients (celluar) cohomology, we have isomorphism

H∗(X,Q) → H∗(X × I,Q).

The above phenomena suggest that A1 is an analogue of interval I = [0, 1]. And there should exist
homotopy theory for (smooth) schemes.

Theorem 1.1 (Atiyah–Hirzebruch spectral sequence). Let E be a generalized cohomology theory,
we may take (complex) topological K-theory, then for any space (CW complex) X we have a spectral
sequence as follows

Ep,q
2 = Hp(X,Eq(∗)) =⇒ Ep+q(X).

There should be a (Weil) cohomology theory for smooth schemes such that there is a spectral
sequence from (Weil) cohomology to algebraic K-theory.
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2. Motivic homotopty theory and motivic stable homotopy theory

If a category C equipped with model structure (in the sense of Quillen), there is a homotopy
theory for C. But nowadays, it seems that the most convenient language is the ∞-category. If we
want to use homological algebra method to study a scheme, we can consider the coherent sheaves
over the scheme (or abelian sheaves). We denote S to be the category of simplicial sets.

Theorem 2.1 ([Lur09, Proposition A.2.8.2]). Let C be a small category, then the functor category
Fun(C,S) has a model structure, called projective model structure. The weak equivalence is pointwise
weak equivalence, and the fibration is pointwise fibration.

The above theorem suggests that we should consider simplicial presheaves over schemes if we
want to do homotopy theory over schemes. Let SmS denote the category of smooth finite type
schemes over S, and the base scheme S is noetherian. Denote P(SmS) to be the category of
presheaves of simplicial sets over SmS , therefore by Theorem 2.1, P(SmS) is a model category.
Usually we consider a certain (Grothendieck) topology over SmS , and finally the motivic spaces
over S is defined to be Shv(SmS)[A1-equivalence−1]. To be more precisely, we recall some basic
definitions.

Definition 2.2. A morphism of schemes f : X → Y is said to be étale if f is flat and unramified.
A morphism f is flat if the induced map of local rings is flat. A morphism f is called unramified
if f is locally finite type, and for any x ∈ X, y = f(x), the residue field k(y) is a separable field
extension of k(x).

There are some other ways to define étale morphism, e.g. formally étale (the uniqueness lifting
property for square zero extension) and locally finite presentation; smooth and relative dimension
0. The main point is that étale is an algebraic analogue of local homeomorphism in topology. Note
that algebraic K-theory does not satisfies étale descent, but it satisfies Nisnevich descent, thus we
need to consider Nisnevich topology.

Definition 2.3 ([Lur09, Definition 6.2.2.1]). Let C be an ∞-category. A sieve on C is a full
subcategory C(0) ⊆ C having the property that if f : C → D is a morphism in C and D belongs to
C(0), then C also belongs to C(0). Let C ∈ Obj(C), then a sieve on C is a sieve on C/C .

A Grothendieck topology on an ∞-category C consists of a specification, for each object C ∈ Obj C
a collection of sieves on C which we called covering sieves, such that the following conditions hold.

(1) If C ∈ Obj C, the maximal sieve on C is a covering sieve, i.e. C/C is a covering sieve.
(2) If f : C → D ∈ Mor C, and C(0)

/D is a covering sieve on D then f∗C(0)
/D is a covering sieve on

C.
(3) Let C ∈ Obj C, C(0)

/C is a covering sieve on C and C(1)
C is an arbitrary sieve on C. Suppose

for each morphism f : D → C ∈ Mor C(0)
/C , the pullback f∗(C(1)

/C ) is a covering sieve on D,

then C(1)
/C is a covering sieve on C.

Remark 2.4. A Grothendieck topology on C can be also defined as the homotopy category hC
equipped with a Grothendieck topology.

Definition 2.5 ([Lur09, Definition 6.2.2.6, 6.2.2.7]). A presheaf (of simplicial sets) F on a category
C with Grothendieck topology is a sheaf if and only if for any C ∈ C and any covering sieve C(0)

/C on
C

F (C) ≃ lim
C′∈C(0)

/C

F (C ′).
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Definition 2.6. Let X ∈ SmS , a finite family of maps {Ui → X}i∈I is called Nisnevich covering,
if it is étale covering, and for any x ∈ X there is i ∈ I, y ∈ Ui such that k(x) ≃ k(y). The Nisnevich
topology is the Grothendieck topology generated by these covering families.

The sheaf condition (Čech descent) on site with a cd topology is closed related to Mayer-Vietoris
property.

Theorem 2.7 (See [Voe10]). Let SmS equipped with a cd topology, then F ∈ P(SmS) is a sheaf if
and only if F (∅) ≃ ∗ and for every distinguished square

W V

U X

we have F (X) ≃ F (U)×F (W ) F (V ).

For Zariski topology, the distinguished square is

U ×X V V

U X

p

i

where p and i are open immersions.

Definition 2.8. Let X be a scheme. A Nisnevich distinguished square is a Cartesian diagram of
schemes

W V

U X

p

i

where i is an open immersion, p is étale, and p : p−1(X \ U) → X \ U is isomorphism.

Remark 2.9. For cdh topology, we need to add abstract blowup squares.

Theorem 2.10 ([Lur09, Proposition 6.5.2.14]). Let C be a small category equipped with a Grothendieck
topology and let A denote the category of simplicial presheaves on C endowed with the local model
structure (local projective model structure, see [Lur09, Remark 4.2.4.5]). The full subcategory A◦

consisting with fibrant and cofibrant objects. Then N(A◦) ≃ Shv(C)∧.

The above discussion suggest that we should let C = N(SmS) and consider ShvNis(C)∧. Since we
are considering Nisnevich topology, descent is equivalent to hyperdescent (when S has finite Krull
dimension, see [Rob15, Theorem 2.30]). We know that P(SmS) is presentable, and according to
[Lur09, Proposition 5.5.4.15] we find that ShvNis(C)∧ ≃ ShvNis(C)hyp is presentable. And Nisnevich
topology is subcanonical, therefore we still have Yoneda embedding. We write H(S) to be the
localization of ShvNis(C)∧ with respect to the family of maps {X ×A1 → X}X∈Obj SmS

. This H(S)
is the A1 homotopy category that we want to construct (cf. [Rob15, Section 2.4]).

Note that H(S) has a final object, namely S.
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Definition 2.11. Let p : S → H(S) be the inclusion, where S viewed as one point set. The
pointed motivic homotopy category H(S)∗ is defined to be H(S)p/ which is a presentable category
(see [Lur09, Proposition 5.5.3.11]). An object of H(S)∗ consists of X ∈ ObjH(S) and a morphism
S → X ∈ Mor(H(S)).

The forgetful functor H(S)∗ → H(S) admits left adjoint (−)+ : H(S) → H(S)∗, it sends any X
to X

⨿
S.

Since the underlying model category M = Shv(SmS)[(A1equivalence)−1] admits symmetric
monoidal structure, and hence for M∗. According to Theorem 2.10, it would be not surprised
that H(S)∗ is a symmetric monoidal presentable ∞-category.

Theorem 2.12. The category H(S) admits a symmetrical monoidal structure (basically induced
by product) and by [Rob15, Corollary 2.32] H(S)∗ admits a monoidal structure, given by X ⊗ Y :=
X × Y/X

⨿
∗ Y. And we have an equivalence of presentable symmetric monoidal ∞-categories

H(S)⊗∗ → N⊗(((M)◦∗)
∧),

cf. [Rob15, Proposition 2.37].

From now, let us restrict to the situation that S = Spec k, where k is a field. In this situation,
we have Spec k+ ≃ S0 ∈ H(k)∗ which is the unit of H(k)∗. Let us consider the following pullback
square

(A1 \ {0}, 1) (A1, 1)

(A1, 1) (P1, 1)

p

i

which is a Nisnevich square, basically because i, p are open immersions, assume P1 = Proj k[x, y],
then P1 \A1 = V (y) ⊂ D+(x) = A1 ≃ Spec k[y/x]. Thus p : p−1(P1 \A1) → P1 \A1 is isomorphism.
By Theorem 2.7 and the definition of colimit in the ∞-category we arrive at a push-out square

(A1 \ {0}, 1) (A1, 1)

(A1, 1) (P1, 1)

p

i

in H(k)∗. By the consideration that (A1, 1) ≃ Spec k+ in H(k)∗ and (P1, 1) ≃ (P1,∞) (using the
map x → [1 : x]), therefore we have S1 ∧ (Gm, 1) ≃ (P1,∞) where (S1, ∗) is the pointed simplicial
sphere. And also (A1/A1 \ {0}, 1) ≃ (P1,∞).

Definition 2.13. We define the motivic stable homotopy category as the formal inversion H(k)⊗∗ [(P1,∞)−1],
which is a presentable stable symmetric monoidal ∞-category (cf. [Rob15, Definition 2.6]). We
denote the category to be SH(k), and we denote the canonical functor as Σ∞ : H(k)∗ → SH(k).

It is clear that Σ∞ Spec k+ is the unit of SH(k), we denoted it by 1 . Note that an object in
SH(k) is nothing but a P1-spectrum, i.e. a sequence of motivic spaces (Xn)n∈N ⊆ ObjH(k)∗, with
bonding maps Xi ≃ ΩP1Xi+1, where ΩP is the right adjoint of (−)⊗ P1. The objects in SH(k) can
be called as k-motivic spectra.
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3. Motivic spectra and the element tau

We denote Σ1,1 := ΣGm := (−) ∧ Σ∞Gm : SH(k) → SH(k) and Σ1,0 := ΣS1 := (−) ∧ Σ∞ S1 :

SH(k) → SH(k). For p, q ∈ Z, we set Σp,q := (Σ1,1)◦p(Σ1,0)◦(q−p).

Definition 3.1. For E ∈ SH(k), we define the motivic homotopy group to be

πi,j(E) := [Σi,j 1, E] = π0Map(Σi,j 1, E).

we set
πi(E)j := πi−j,−j(E).

From the definition of motivic homotopy groups and Definition 2.13, we find that if A → B → C
is a cofiber sequence, then for any q ∈ Z we have a long exact sequence

· · · π∗+1,q(C) π∗,q(A) π∗,q(B) π∗,q(C) · · ·

Let Cor(SmS) be the category with same object as SmS but whose morphisms are finite S-
correspondences. For any X,Y ∈ Obj SmS , the set MorCor(SmS)(X,Y ) := CorS(X,Y ) is the free
abelian group generated by closed integral subschemes Z ⊆ X×SY such that the induced morphism
Z → X is finite and dominates an irreducible component of X. The category Cor(SmS) is additive
and admits direct sum and has symmetric monoidal structure. We denote Ptr(SmS , R) to be the
category of additive presheaves of simplicial R-modules over Cor(SmS). Let R be a commutative
ring, we have adjunction:

Rtr : P(SmS) ⇆ Ptr(SmS , R) : utr.

For S = Spec k, Rtr(X) := C•R(X), i.e. Cn(R(X))(U) = R ⊗Z Cork(U × ∆n, X), where ∆n :=
Spec k[x0, . . . xn]/(

∑n
i=0 xi − 1), X ∈ Obj Smk . For general objects in P(SmS), we define Rtr using

left Kan extension. See [MVW06, Definition 2.14]. We still have the adjunction pair after localiza-
tion (along Nisnevich topology and A1-equivalence) and some compatible properties cf. [HKOsr17,
Section 2.1], meaning that we have adjunction:

LRtr : H(k) ⇆ Htr
Nis,A1(Smk, R) : utr.

Definition 3.2. For any p ≥ q ≥ 0, and an R-module A, the motivic Eilenberg-Maclane space
K(A(q), p) ∈ H(k) is defined to be

K(A(q), p) := utr(LRtrSp,q ⊗L
R A).

Note that this space does not depend on R, since we have

K(A(q), p) ≃ utr(LZtrSp,q ⊗L
Z A).

This is exactly the motivic complex constructed in [MVW06, Definition 3.1], and note that
motivic cohomology can be computed by Nisnevich hyper cohomology [MVW06, Remark 13.11].
The Elienberg-Maclane spectrum HA ∈ SH(k) is defined by

HA := utr(LRtr 1⊗L
RA).

By Dold-Kan correspondence, we have an adjunction

LRtr : SH(k) ⇆ DM(k,R) : utr,

where DM(k,R) is the derived category of FunNis,A1((Cor(Smk))
op,Ch−(R)), i.e. Voevodsky’s

derived category of motives.
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Definition 3.3. We define the cohomology theory induced by HA ∈ SH(k) to be
HAp,q(X) := [X,Σp,qHA],

for any X ∈ SH(k). And note that for X ∈ Obj Smk we have
Hp,q(X,A) ≃ [Σ∞X+,Σ

p,qHA]

by [HKOsr17, Theorem 2.13]. Then combining with Definition 3.1, we have
πp,qHA ≃ HA−p,−q(1) ≃ H−p,−q(Spec k,A).

The computation of motivic cohomology sometimes may reduce the computation of étale coho-
mology, due to [HW19, Theorem B,C].

Theorem 3.4. Let X ∈ Obj Smk, and l is a prime number and co-prime to char k. Then we have
isomorphism

Hp,q(X,Z/l) ≃ Hp
ét(X,µ⊗q

l )

for p ≤ q.

And basically for degree reason, we have the vanishing result.

Theorem 3.5 ([MVW06, Theorem 3.6]). For any X ∈ Obj Smk, we have
Hp,q(X,A) = 0

for any abelian group A, and p > q + dimX.

By the virtue of Theorem 3.4, 3.5, we have
H∗,∗(Spec k,Z/l) ≃ Z/l[τ ],

where k is an algebraic closed field, and τ is a primitive l-th root of unity, the degree |τ | = (0, 1).
The homotopy groups of motivic sphere spectrum turns out related to Milnor–Witt K-theory.

Definition 3.6. Let k be a field. The graded ring KMW
∗ (k) called Milnor–Witt K-theory of k is

defined to be the quotient of the free non-commutative algebra on generators [a] in degree 1 for
a ∈ k× and a generator η in degree −1, subject to the following relations

(1) η[a] = [a]η;
(2) [a][1− a] = 0, for a ∈ k \ {0, 1};
(3) [ab] = [a] + [b] + η[a][b];
(4) η(2 + η[−1]) = 0.

Remark 3.7. Note that the quotient KMW
∗ (k)/(η) ≃ KM

∗ (k). For u ∈ k× we define ⟨u⟩ := 1+η[u] ∈
π0,0(1). We then have ηh = η(⟨−1⟩ + 1) = η(2 + η[−1]). The h corresponds to hyperbolic plane
over k, and it is zero in GW (k). And we actually have isomorphism GW (k) ≃ π0,0(1).

Theorem 3.8. The graded ring π0(1)∗ = π−∗,−∗(1) ≃ KMW
∗ (k), where 1 is the unit of SH(k).

And the elements [a] ∈ KMW
1 (k) corresponds to a ∈ Gm(k), i.e. a : Spec k → Gm. The map

H : A2 \ {0} → P1, corresponds to η : Σ1,1 1 → 1, by noticing that A2 \ {0} ≃ Gm ∧ P1.

Now for k = C, take a sequence of compatible primitive p-power roots of unity {ζpk}∞k=1. Note
that [ζpk ] ∈ π−1,−1(1), set αk := (2 + [−1]η)[ζpk ]. By the relations of Milnor–Witt K-theory, we
have

pk[ζpk ] ≡ [1] mod η,

[1] = −η([1])2.

Therefore,
pkαk = (2 + [−1]η)pk[ζpk ] = 0.
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Recall that we have

· · · π0,−1(1 /pk+1) π−1,−1 1 π−1,−1 1 · · ·

· · · π0,−1(1 /pk+1) π−1,−1 1 π−1,−1 1 · · ·

pk+1

=

pk

p

Each row is exact in the above diagram and each square is commutative. Using the fact that
pαk+1 − αk ∈ Ker(pk), the standard diagram chasing eventually arrive at a compatible sequence
of classes {θk}, where θk ∈ π0,−1(1 /pk) is a lift of αk. By passing to limit, we get a class τ ∈
π0,−1(1∧

p ), this is exactly the element we want to construct. By passing to p-completion we view τ

as (Σ0,1 1)∧p → 1∧
p . The cofiber of τ will denoted by 1∧

p /τ, it is an E∞-algebra object in SH(C) as
stated in [GWX21].

Remark 3.9. Note that under suitable choice, τ ∈ π0,−1(1p) sends to τ ∈ π0,−1(HZ/p) ≃ Z/p,
this can be proved from following facts.

(1) For d ≥ 0, we have isomorphisms
CHd(SpecC, d) ≃ KM

d (C) ≃ Hd,d(SpecC,Z),

KMW
d (C)/(η) ≃ KM

d (C).
Or, the spectrum HZ is weakly orientable, meaning that η ∈ π1,1(1) sends to 0 ∈ π1,1(HZ).

(2) We have isomorphisms π−1,−1(HZ) ≃ H1,1(SpecC,Z) ≃ CH1(C, 1) ≃ KM
1 (C) ≃ C×.

For every X ∈ Obj Smk, it is clear that we have K-theory space K(X) (consider the category
of finite rank of vector bundles on X, and using the group completion). This gives an object in
P(Smk), and it is A1-invariant (by the smoothness), and satisfies Nisnevich descent (Thomason–
Trobaugh). It is not obvious that we have a P1-spectrum, but we actually have.

Definition 3.10. There is an object KGL ∈ ObjSH(k), such that for any X ∈ Obj Smk we have
Ki(X) ≃ [Σi,0Σ∞X+,KGL].

As discussed in Section 1, we have Atiyah–Hirzebruch type spectral sequence.

Theorem 3.11 (Motivic spectral sequence). Let X ∈ Obj Smk, we have a spectral sequence
Ep,q

2 ≃ Hp−q,−q(X,Z) =⇒ K−p−q(X).

And there is motivic analogue of cobordism.

Definition 3.12. The algebraic cobordism spectrum MGL ∈ ObjSH(k) is the P1-spectrum
(Th(γ0),Th(γ1), . . .),

where γn is the universal vector bundle
γn → BGLn .

4. Motivic Adams spectral sequence

The similarity of algebraic Novikov spectral sequence and motivic Adams spectral sequence for
1∧
p /τ suggests that there should have deep connections between 1∧

p /τ and BP-theory. This was
discovered by the authors [GWX21], more precisely they proved Theorem 4.7, 4.8.

One can define the motivic Steenrod algebra as the algebra of bistable motivic cohomology
operations (typically, this is incorrect, but when we consider SH(C), it turns out to be true, cf.
[HKOsr17, Theorem 1.1]). We denote A∗,∗

p ≃ (HZ/p)∗,∗(HZ/p) to be the mod p motivic Steenrod
algebra.
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Definition 4.1 ([HKOsr17, Theorem 5.1]). For p odd, A∗,∗
p is the H∗,∗(SpecC,Z/p) ≃ Fp[τ ]-algebra

generated by {β, P 0, P 1, . . .} satisfies the usual Adem relations.

Definition 4.2 ([HKOsr17, Theorem 5.1]). For p = 2, the Steenrod algebra A∗,∗
2 is the F2[τ ]-algebra

generated by {Sq1, Sq2, . . .} satisfies the following homogeneous relations for a < 2b:

SqaSqb =
∑
c

(
b− 1− c

a− 2c

)
τ ?Sqa+b−cSqc,

where ? is 0 or 1. And |Sq2k| = (2k, k), |Sq2k−1| = (2k − 1, k − 1), for k ≥ 1.

In the following, we fixed a prime number p, and denote HZ/p ∈ SH(C) by H. We will consider
H cellular modules H-Modcell, which is the smallest stable full subcategory of SH(C) satisfies
following properties.

(1) contains Σp,q 1∧H, for all p, q ∈ Z;
(2) closed under arbitrary small colimits.

Thus (1 /pn)/τ belongs to H-Modcell for any n ≥ 1.
Now, for any X ∈ SH(C), one can form a cosimplicial object in SH(C):

H ∧X H ∧H ∧X H ∧H ∧H ∧X . . .

If X is H-cellular, then we have Künneth isomorphism (cf. [DI10, Lemma 7.6]),
H∗,∗(X)⊗Fp[τ ] H∗,∗(H)⊗s ≃ H∗,∗(X ∧H∧(s)).

Here, H∗,∗ is the H-homology. Let H to be the homotopy fiber of 1 → H, we know that H is
H-cellular. Consider the standard Adams tower {Xs,Ws}, Xs := H

∧(s) ∧X, Ws = H ∧H
∧(s) ∧X.

From the tower, and by standard method we arrive at a spectral sequence
E∗,∗

1 = π∗,∗(Ws) ≃ (H∗,∗(H))⊗s ⊗Fp[τ ] H∗,∗(X).

Note that
H∗,∗(Ws) ≃ H∗,∗H ⊗Fp[τ ] ⊗(H∗,∗(H))⊗s ⊗Fp[τ ] H∗,∗(X).

Therefore the cobar complex
0 → H∗,∗(X) → H∗,∗(W0) → H∗,∗(W1) → · · ·

is a resolution. And combining with following two facts, we can identify E2 page as E∗,∗
2 ≃

ExtH∗,∗ H(Fp[τ ],H∗,∗(X)).

(1) (H∗,∗ ≃ Fp[τ ],H∗,∗H) is a Hopf algebroid (cf. [HKOsr17, Proposition 5.5], and note that
for SH(C), ρ = 0).

(2) For any Hopf algebroid (A,Γ), and M is an arbitrary A-module, we have isomorphisms
M ≃ HomA(A,M) ≃ HomΓ(A,Γ⊗A M).

Theorem 4.3 ([DI10, Proposition 7.10]). For any X is H-cellular, we have (homological) motivic
Adams spectral sequence as follows:

E
s,(t+s,u)
2 ≃ ExtH∗,∗ H(Fp[τ ],H∗,∗(X)) =⇒ πt,u(X

∧
H).

It would not be surprised that we have cohomological motivic Adams spectral sequence.

E
s,(t+s,u)
2 ≃ ExtA∗,∗(H∗,∗(X),Fp[τ ]) =⇒ πt,u(X

∧
H).

But actually, it requires that H∗,∗(X) is free Fp[τ ]-module, cf. [DI10, Proposition 7.14].
In the following, we mainly live in the p-complete world. We denote 1p to be the p-completed

motivic sphere spectrum, and 1p /τ is the cofiber of τ ∈ π0,−1(1p). And also p-complete suspension
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Σs,w := (Σs,w 1)∧p ∧1p −. We denote 1p /τ -Modcell to be the smallest stable subcategory of 1p-Mod
satisfies following properties.

(1) contains Σs,w(1p /τ), for all s, w ∈ Z;
(2) closed under arbitrary small colimits.

Definition 4.4. Let X be a motivic spectrum in 1p /τ -Mod, X is said to be harmonic if X is
1p /τ -cellular, and the map

X → X∧
MGL

induces isomorphism on π∗,∗.

Definition 4.5. For a motivic spectrum X, the Chow–Novikov degree of an element in πs,w(X) is
s − 2w. If I ⊆ Z, we say X has Chow–Novikov degree concentrated on I if any nonzero element
whose Chow–Novikov degree belongs to I.

Remark 4.6. For a P1-spectrum E, if we set Ei(X) := [Σi,0Σ∞X+, E] for any X ∈ Obj Smk,
then πs,w(E) = [1s,w, E] ≃ [1s,w, E ∧ Pw] ≃ [1s,w, E ∧ 12w,w] ≃ [1s−2w,0, E] = Es−2w(Spec k). In
paritular, if we take E = KGL, we get Ks−2w(Spec k) ≃ πs,w(KGL).

We now arriving at the main result in [GWX21].

Theorem 4.7 ([GWX21, Theorem 1.1]). There is an equivalence of stable ∞-categories equipped
with t-structures at each prime p,

Db(BP∗ BP -CoModev) → 1p /τ -Modbharm .

And the t-structure of 1p /τ -Modbharm is induced by Chow–Novikov degree. It means that we
have following.

Theorem 4.8 ([GWX21, Theorem 1.13, Proposition 1.10]). Let 1p /τ -Mod≥0
harm be the full subcat-

egory of 1p /τ -Modharm whose objects have Chow–Novikov degree concentrated on Z≥0.

Let 1p /τ -Mod≤0
harm be the full subcategory of 1p /τ -Modharm whose objects have Chow–Novikov

degree concentrated on Z≤0.

The pair (1p /τ -Mod≥0
harm, 1p /τ -Mod≤0

harm) determines a t-structure on 1p /τ -Modharm, and the
heart is equivalent to

BP∗ BP -CoModev .

5. Algebraic K-theory and t-structure

In this section, we explore the localization sequence concerning algebraic K-theory of motivic
spectrum 1∧

p follow the idea of [ABG18] and [Lur17]. Since 1∧
p is an E∞-algebra object in SH(C),

so the set S = {1, τ, τ2, . . .} ⊆ π∗,∗(1∧
p ) satisfies Ore condition. By [Lur17, Proposition 7.2.3.17],

and a merely same argument as in [ABG18, Theorem 1.11], we have localization sequence of stable
∞-categories,

ModS−nil
1∧
p

→ Mod1∧
p
→ ModS−1 1∧

p
.

And actually,
Mod(End(1∧

p /τ))op → Mod1∧
p
→ Mod1∧

p [τ
−1] .

By [Pst23, Theorem 4.37], we actually have

Mod(End1∧p
(1∧

p /τ))op Mod1∧
p

Mod1∧
p [τ

−1]

ModS∧p

Re ≃
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By taking compact objects, and applying non-connective algebraic K-theory, we have a fiber
sequence:

K((End1∧
p
(1∧

p /τ))op) → K(1∧
p ) → K(S∧p ).

Thus it is natural to ask whether
K(1∧

p /τ) → K((End1∧
p
(1∧

p /τ))op)

an isomorphism?
If this is true, then by [GWX21, Theorem 1.1] and [Bar15, Theorem 6.1] we have

K∗(1
∧
p ) ≃ K∗(S∧p )⊕K∗(MFG).
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