
NOTES ON MODULI PROBLEMS

RIXIN FANG

Abstract. In this note, we mainly concerned about some examples of moduli problems,
and some of examples come from the exercises mentioned in the course.

1. Examples

In any area of mathematics, we always care about classification problem. In algebraic
geometry, we intended to classify algebraic varieties. But actually, there are two different
ways to study the problem. Namely, the first strategy is to study the representative element
of a class of varieties, the second strategy is to study the equivalent class of varieties via
algebraic geometry method. The first strategy is called birational geometry, while the second
strategy is called moduli space method.

In the first case, we always study varieties up to birational equivalent, so the equivalence
relation is fixed. But in the second case, the problem indeed depends on the equivalence
relation that you defined. Let us see some basic examples.

First, let us see a naive example.(May not related to algebraic geometry.)

Example 1.1. Consider all invertible matrix over C of order n, may view as GLn(C).
Define A ∼1 B if there is a P ∈ GLn(C) such that A = P−1BP. Define A ∼2 B if there are
P,Q ∈ GLn(C), such that A = PBQ. It is clear that ∼1 and ∼2 are different equivalence
relations, and from basic linear algebraic facts, the moduli space under ∼2 is one point set
{In}, while the moduli space under ∼1 is not. M∼1 consists of all diagonal matrixes with
Jordan type.

We actually already know so called moduli problem, namely:

Definition 1.2. A moduli problem is a set A of a class of objects (comes from algebraic
geometry), with an equivalence relation ∼ over A. The moduli set of this problem is A/ ∼ .

Remark 1.3. The terminology above is not standard, but it is acceptable.

Example 1.4. Consider 1−dimensional projective space P1
C. All vector bundles over P1

C is
a collection of objects we interested. The equivalence relation is isomorphism between two
vector bundles. The moduli set of this problem is all the tuples (a1, a2, . . . , an) ∈ Zn with
a1 ≥ a2 ≥ . . . ≥ an. Actually, it corresponds to the vector bundle O(a1)⊕O(a2)⊕· · ·⊕O(an).

Remark 1.5. Before give a proof of 1.4 we remark that 1.4 only classifying vector bundles in
a weak sense. We have

Ext1OP1
(O(1),O(−1)) ' H1(P1,O(−1)⊗O(1)∨) ' H1(P1,O(−2)) ' C.

The first isomorphism is followed from the fact that Hom and ⊗ are adjoint and Exti,Hi are
universal δ functors. The last isomorphism is followed by Serre duality. There is a family of
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vector bundle V over P1 × Spec(Sym(Ext1(O(1),O(−1)))) ' P1 × SpecC[t] ' P1 ×A1 is an
extension of bundle O(−1)⊕O(1). In other words, V|P1×0 ' O(−1)⊕O(1). For a 6= 0 ∈ C,
V|P1×a is a vector bundle over P1 corresponds to the extension a ∈ Ext1(O(1),O(−1)) ' C.
Since this vector bundle must be O ⊕ O, so V|P1×a ' O ⊕ O. This is a jump phenomena,
namely for any a ∈ A1 \ {0} the family are isomorphic, but when a = 0, VP1×0 is not
isomorphic to VP1×b, b 6= 0.

In the above, we actually have used a fact.

Fact 1. If X is scheme, G,H are vector bundles over X, then there is a family of bundles(see
1.6) V over X ×Spec(SymExt1(G,H)∨) such that for any e ∈ Ext1(G,H), the restriction of
V|X×{e} is a vector bundle over X and corresponds to the extension e ∈ Ext1(G,H).

We now present a proof of 1.4, one can see [2].

Proof of 1.4. P1 is covered by two affine space. Namely U0 = {x0 6= 0}, U1 = {x1 6=
0}. U0 = SpecC[x1/x0], U1 = SpecC[x0/x1]. So U0 \ {0} ' SpecC[x1/x0, x0/x1] ' U1 \
{0} ' SpecC[x0/x1, x1/x0]. So actually P1 is obtained by gluing two affine space U0 =
SpecC[x], U1 = SpecC[y] via isomorphism

U0 \ {0} = SpecC[x, x−1] ' SpecC[y, y−1]

x→ y−1

Let E be a vector bundle of rank n over P1, so E|U0 ' U0×An, E|U1 ' U1×An are trivial,
because vector bundle over affine space are trivial. So E is obtained by gluing U0 × An and
U1×An via a linear map over U0\{0} ' SpecC[x, x−1], this gives a matrix g ∈ GL(C[x, x−1]).
And if E is isomorphic to E ′, then PgEQ = gE′ , where P ∈ GLn(C[x]) = Aut(E|U0), Q ∈
GLn(C[x−1]) = Aut(E|U1). And from the definition of O(n) we know that gO(n) = xn. So
O(a1)⊕O(a2)⊕ · · · ⊕ · · ·O(an) corresponds to the matrix

(1.0.1)


xa1 0 · · · 0
0 xa2 · · · 0
... ... . . . ...
0 0 · · · xan .


We denoted (1.0.1) by diag(a1, a2, · · · , an).

Now, we only need to show ∀g ∈ GLn C[x, x−1], there is P ∈ GLn C[x], Q ∈ GLn C[x−1]
such that PgQ is of form in (1.0.1). And formula in (1.0.1) is determined by the tuple
(a1, a2, . . . , an), a1 ≥ a2 ≥ · · · ≥ an.

1) After multiple xsI, s� 0, we actually may assume g ∈ GLn C[x].
2) After changing rows we may assume deg g11 = min{deg bj1|1 ≤ j ≤ n}.
3) Let gj1 = Kjg11 + rj, where Kj ∈ C[x], deg rj < deg g11. So we can do a collection

of row transformations so that the matrix is like
g′11 · · · ∗
0 · · · ∗
... · · · ∗
0 · · · ∗

 .

4) Now g′11 = xk1 , because det(g) = xp, and g′11| det(g).
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5) By induction on n we can assume the matrix transform to the following form:
xk1 ∗ ∗ ∗ ∗
0 xk2 0 · · · 0
... . . . ...
0 · · · 0 · · · xkn

 .

6) Consider all the matrix equivalent to the matrix in 5) such that k1 is maximal. This
is capable, because k1 ≤ deg det(g). Then k1 ≥ max{k2, . . . , kn}. Otherwise, suppose
kj > k1, for some j ≥ 2. Then we exchange first column and jth column and exchange
first row and jth row, so that xkj is in the (1,1) position but this matrix contradicts
to the choice of k1.

7) Now g1j = Pjx
kj +Rj, j ≥ 2 where Pj ∈ C[x], degRj < kj. So we can do a collection

of row transformations so that deg g1j < kj, j ≥ 2. In particular, k1 ≤ g1j, j ≥ 2.
8) Now, subtracting g1j/xk1 ∈ C[x−1] multiples of first column from jth column we get

a diagonal matrix, because g1j − g1j/x
k1 · xk1 = 0. In other words we get a matrix

diag(k1, k2, . . . , kn).
9) We have to show the standard matrix is unique, i.e. if we have P diag(a1, a2, · · · , an)Q =

P ′ diag(b1, b2, · · · , bn)Q′, {P, P} ⊆ GLn C[x], {Q,Q′} ⊆ GLn C[x−1]. So we actually
have A diag(a1, a2, · · · , an) = diag(b1, b2, · · · , bn)B,A ∈ GLn C[x], B ∈ GLn C[x−1].

10) From the property of minors we have

A1,2,...,k
i1,...,ik

xai1+···+aik = xb1+···+bkB1,2,...,k
i1,...,ik

for all i1 < i2 < · · · < ik. Because A ∈ GLn C[x], B ∈ GLn C[x−1], so there is some
i1, . . . , ik such

A1,2,...,k
i1,...,ik

6= 0.

So b1 + · · · bk ≥ ai1 + · · · + aik ≥ a1 + · · · + ak, for all 1 ≤ k ≤ n. By symmetry
a1+ · · ·+ak ≤ b1+ · · · bk, for all 1 ≤ k ≤ n. So we have a1 = b1, which implies b2 ≥ a2
and a2 ≥ b2, so b2 = a2. So after n− 1 steps we get ai = bi, ∀1 ≤ i ≤ n. □

As said in Remark 1.5, we actually want a moduli problem omitted jump phenomena. So
instead of define a moduli problem in set level we need to defined a moduli problem in the
category level, so that the good behavior is preserved by good morphism.

Example 1.6 (Moduli of vector bundles on X). Suppose X is an algebraic variety over C.
For a fixed rank n, we define a functor

F : Schemes /C → Sets

S 7→{A family of vector bundle over S}/ ∼
A family vector bundle over S is a V,a vector bundle over X ×S, ∀s ∈ S, s is a closed point.
And V|X×κ(s) is a vector bundle of rank n. V1 ∼ V2 iff V1 ' V2 as vector bundles over S.

We expect that the moduli space is an algebraic geometry object, i.e. the space could
have a scheme structure. A very basic example is all the hypersurface of degree m in Pn

k ,
it just corresponds to V (f), f is homogenuous, deg f = k, And V (f) = V (λf), λ ∈ k. So
the moduli set actually is P(

m+n
n
)−1

k . This set has an algebraic structure so that we can use
algebraic geometry to study it.
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Definition 1.7. A (contravariant)functor

F : Schemes → Sets

is said to be representable if F ' hX , for some scheme X.

hX = Hom(−, X).

And a moduli problem F like 1.6 has a fine moduli space if F ' hX , for some X, X is called
fine moduli space of F.

But actually, many moduli problems that we concern have no fine moduli space.

Example 1.8. If F : Schemes /k → Sets is a moduli functor parameterizing a class of
objects. Suppose F (k) has non-trivial automorphism g ∈ Aut(F (k) we might construct a
nontrivial family such that every fiber is isomorphic. Then F is not representable. The first
example one might get is vector bundles over curves. Let X = SpecC in 1.6, so we have
a moduli functor, F (C) = {vector space over C}. It is obviously that there is a nontrivial
family that are isomorphic on any fiber, namely OP1(−1) is vector bundles over P1. O(−1) is
nontrivial (by 1.4, i.e. OP1(−1) ≇ OP1).But any fiber O(−1)|p ' C, ∀p ∈ P1, because O(−1)
is a vector bundle. So F is not representable. We need to prove following fact.

Fact 2. If F : Schemes /k → Sets is a moduli functor, There is a nontrivial family i.e. an
element α ∈ F (S) such that α is not obtained by base change over S → k. In other words,
∀β ∈ F (k), α ≇ β ×k S.(This notation is clear if we know the definition of stack, i.e. β is in
the fiber category F (k), so that we are free to talk about base change), and any fiber ∀s ∈ S,
all αs are isomorphic. Then F is not representable.

Proof. Suppose the converse is true, i.e. F satisfies the condition and F is representable. So
there is M ∈ Schemes /k, such that Ψ : F ' hM . Then α ∈ Hom(S,M), and any fiber αs

sends to same element in Hom(Spec k,M). It means following diagram is commutative.

S Spec k M.
η

Ψ(α)

Ψ(αs)

But the above diagram actually says Ψ(α) is the image of Ψ(αs) under the map hM(η) :
hM(k) → hM(S). And hM(η) is obtained by base change, namely we have Ψ(α) = Ψ(αs)×k

S ∈ hM(S), and because Ψ is an isomorphism between two functors, so after apply Ψ−1 we
have α = αs ×k S ∈ F (S), i.e. α ' αs ×k S. But that contradicts to the hypothesis that α
is nontrivial family. Therefore F is not representable. □

There is an example about nontrivial family of elliptic curves.

Example 1.9. Consider a family of elliptic curves V over C defined by equation

y2 = x3 − t.

This is a family of elliptic curves over SpecC[t, t−1] = A1 \ {0}, it is smooth when t 6= 0,
because ∆ = −16·27t2 6= 0. (See [3, Chapter 3 Proposition 1.4]). And for any t ∈ C\{0}, the
j-invariant j = 0, so by [3, Chapter 3 Proposition 1.4(b)] all the fiber of V are isomorphic.
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But V is a nontrivial family, if it is trivial family then V isomorphic to y2 = x3 − 1 over
P2
SpecC[t,t−1]. By [3, Chapter 3], the only change variable preserve that form of equation is

x = u2x′, y = u3y′, for some 0 6= u ∈ C(t).
So, all the possible forms of V are

u6Y 2 = u6X3 − t.

If V is isomorphic to y2 = x3 − 1, that will give u6t = 1, for some u. But t1/6 is not in C(t).
Therefore V is a nontrivial family, as a consequence the moduli functor of elliptic curves is
not representable(by the fact 2).

There are several strategies to solve the non-representable problem.
(1) We define so called coarse moduli space.
(2) We expend the category of schemes to the category of stacks, and also category of

algebraic stacks, Artin stacks and Deligne–Mumford stacks etc.
(3) We modify our moduli problems so that the objects have small automorphism groups,

namely we defined moduli of stable curves, moduli of stable sheaves over curves.

2. Coarse moduli and Stacks

Definition 2.1. A coarse moduli space of a moduli functor F : Schemes /k → Sets is a
scheme X/k together with a natural transformation η : F → hX , satisfies following condi-
tions.

• η(k) is a bijection.
• For any scheme T/k, φ : F → hT , if φ(k) is a bijection, then there is an unique

morphism α : X → T such that the following diagram is commutative.

F hX

hT

η

φ
hα

Example 2.2. Consider the moduli functor F of elliptic curves over C.
F : Schemes /C → Sets

S 7→ {C → S family of elliptic curves and σ : S → C is a section}/ ∼
A (smooth) family of elliptic curves C → S is a smooth and proper morphism such that
∀s ∈ cl(S), Cs is an elliptic curve. cl(S) is the set of closed points of S.

(C1 → S) ∼ (C2 → S)

iff there is an isomorphism f : C1 → C2 such that

C1 C2

S S

f

idS

A1 is coarse moduli space of F.
Sketch of Proof.
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• The first condition is clear by [3, Chapter 3 Proposition 1.4], because if E,E ′ are
elliptic curves then E ' E ′ ⇐⇒ j(E) = j(E ′).

• Now, for any C → S we need to define a point in A1(S). For any open affine U =
SpecR ⊆ S, using the section σ we can define an embedding CU → P2

U . By changing
variable (see [3, Chapter 3 §1]) we may assume the equation is of form

y2 = x3 + Ax2 +B,A,B ∈ R.

We now define j(CU) = −1728(4A)3/∆,∆ = −16(4A3+27B2). j(CU) ∈ A1(U). Now,
since F is a stack, so morphisms are able to glued. Finally this gives an element in
A1(S). And this map is functorial, because the morphisms gluing in a unique way.(An
axiom of stack).

• Assume there is another scheme T satisfies the first condition of coarse moduli space of
F. Then for an affine scheme Y = SpecC[λ, λ−1, (λ−1)−1], there is a family of elliptic
curve over Y defined by y2 = x(x−1)(x−λ). So there is a morphism form Y → T, S3

acting on Y. Namely by permuting those three elements. And actually Y → T factor
though Y/S3 → T, basically because S3 acting trivially on T. And j = 28(λ2−λ+1)3

λ2(λ−1)2
,

one can show Y/S3 ' SpecC[j]. So we get a morphism A1
j = SpecC[j] → T satisfies

the commutative diagram. □
We have seen examples that objects has nontrivial automorphism group, but it actually

depends on the description of the moduli problem.

Example 2.3. Consider moduli of genus g curves in P5. The moduli functor should be
F : Schemes /C → Sets, F (S) = {C ⊆ P5

S, C is a smooth curve of genus g}/ ∼ . And
[C ⊆ P5

S] ∼ [C ′ ⊆ P5
S]

if there is an isomorphism f : C → C ′ such that the following diagram is commutative.

C P5
S

C ′ P5
S

f id

So in this case object in F (C) has Aut = {id}.

As seen before, we need to define stack so that we can think moduli problem strictly.

Definition 2.4. Let C be a category and let p : S → C be a functor. Category S is fibered
in groupoids over C if the following conditions hold.

• For any ψ : U → V in C, and any y ∈ ObjS is over T, there is an x ∈ ObjS, and
f : x→ y, such that p(f) = ψ.

• Given maps f : x → z, g : y → z. For any α : p(x) → p(y) such that p(f) = p(g)α
then there is a unique h : x→ y, such that f = gh, p(h) = α.

Remark 2.5. We call S is fibered in groupoids because the fiber category S(T ) for any
T ∈ ObjC is a groupoid. The objects in S(T ) are objects in S which are over T. For any
x, y ∈ ObjS(T ), we define HomS(T )(x, y) to be the morphisms over idT .(This is similar to
the equivalence relation in Example 2.2). In other words ∀f ∈ HomS(T )(x, y), p(f) = idT .
By the second condition in Definition 2.4, any f ∈ HomS(T )(x, y) is invertible. Therefore
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S(T ) is a groupoid. The intuition is that we should think the objects of S(T ) as family of
objects parameterized by T, and morphisms of S(T ) should be understood as isomorphism
between two family of objects. From Definition 2.4 we know what is so called base change
mentioned in proof of 2, the ”base change” actually is the first condition in 2.4, and it is
unique by the second condition.
Definition 2.6. Let S, T be categories over C fibered in groupoids. A morphism f : S → T
is a functor between these two categories ans for any x ∈ S, pS(x) = pT (f(a)).

Definition 2.7. Let C be a site.(A category with a Grothendieck topology). A category S
fibered in groupoids over C is called a stack if the following condition holds. Let {Ti → T}
be a covering of T ∈ ObjC.

• For any x, y ∈ S(T ), and morphisms fi : x|Ti
→ y such that fi|Tij

= fj|Tij
then there

is f : x→ y such that fri = fi where ri : x|Ti
→ y such that p(ri) = Si → S.

• For objects xi ∈ ObjS(Ti) and isomorphisms fij : xi|Tij
→ xj|Tij

. If the isomorphisms
satisfies cocycle condition fjk|Tijk

fij|Tijk
= fik|Tijk

, then there exists x ∈ S(T ) and
isomorphisms φi : x|Ti

→ xi such that fijφi|Tij
= φj|Tij

.

Definition 2.8. Let S, T be stacks over site C, morphism f : S → T is morphism between
categories fibered in groupoids.
Remark 2.9. The first condition says we could gluing morphisms, the second condition says
we could gluing objects. So first condition says the second step in sketch of proof of Example
2.2 is workable.
Remark 2.10. For any scheme X, hX : Schemes → Sets . Consider the category X with
objects of pairs (a, S), a ∈ hX(S). HomX ((a, S), (b, T )) = {f : S → T |hX(f)(b) = a}. It is
clear that X is a category over Schemes fibered in groupoids. But it is not clear that X is a
stack over Schemesét, this is actually a fact follows form the decent theory.
Fact 3. X is a stack over Schemesét. See [1, Theorem 4.29, Theorem 4.31].
Definition 2.11. Let g ≥ 2. Consider the category Mg with objects (f : C → S). f is smooth
and proper morphism and for any s ∈ cl(S), the fiber Cs is a smooth connected curve with
genus g. A morphism (f1 : C1 → S1) → (f2 : C2 → S2) is maps α : C1 → C2, β : S1 → S2

such that f2 ◦ α = β ◦ f1. And p : Mg → Schemes is defined by p((C → S)) = S. It is
clear that Mg is a category over Schemes fibered in groupoids, because we have pull back.
From the fact that there is étale decent for morphisms we know Mg satisfies first condition
in Definition 2.7.
Fact 4. Mg is a stack over Schemesét . See [4, Tag 0E83].
Definition 2.12. Let k[ϵ] = k[ϵ]/ϵ2. Let i : Spec k → Spec k[ϵ]. X is an algebraic stack and
x : Spec k → X the tangent space of X at x is the set

{(y, τ)|y : Spec k[ϵ] → X , τ is a 2 morphism form x to y ◦ i}/ ∼ .

A 2 morphism τ is a natural transformation form x to i ◦ y such that τ(T ) is a morphism in
the fiber category X (T ) for all T ∈ Obj(Spec k). (y, τ) ∼ (y′, τ ′) iff there is an isomorphism
α : y ' y′ such that τ ′ = α ◦ τ. So for any T ∈ Obj(Spec k), we have τ ′(T ) = α ◦ τ(T ),
therefore α is an isomorphism which is identity restrict to Obj(Spec k). This is similar with
the definition of equivalence relation of two deformations over Spec k[ϵ] → Spec k.
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We recall a basic fact mentioned in the course.
Fact 5. If X is smooth over k then Def(X) ' H1(X,TX).

Example 2.13. Now, take a C-point of Mg, i.e. a smooth proper curve over C of genus g,
[C] : SpecC → Mg. From the definition of tangent space and the fact any deformationD of C
over C[ϵ] is a family of genus g curves, because any such deformationD would have only closed
fiber DC ' C. And the equivalence relations are same. By fact 5 So TMg ,[C] ' Def(C) '
H1(C, TC). By Riemann–Roch theorem χ(Tc) = deg(TC) + 1 − g = − deg(KC) + 1 − g =
2− 2g + 1 − g = 3 − 3g. Now dimC(H

0(C, TC)) − dimC(H
1(C, TC)) = 0 − dimC(H

1(C, TC)).
Because deg(TC) = 2 − 2g ≤ 2 − 4 = −2 < 0, therefore dimC(H

0(C, TC)) = 0, other-
wise the linear system of it is nonempty but that contradicts to deg(TC) < 0. Therefore
dimC(TM,[C]) = dimC(H

1(C, TC)) = −(3 − 3g) = 3g − 3. And actually, using a general de-
formation theory(generalization of fact 5) we can prove Mg is smooth over SpecZ [4, Tag
0E84], so we actually have dim(Mg) = dimC(TMg ,[C]) = 3g − 3.
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