
LAMBDA ALGEBRA AND ADAMS SPECTRAL SEQUENCE

RIXIN FANG

Abstract. In this notes, we mainly introduce the construction of lambda algebra and its
relation with Adams spectral sequence.
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1. Introduction

1.1. Original definition of Λ.

Let V be the Z/2 vector space with basis {λp, p ≥ 0}. T (V ) be the tensor algebra, i.e.

T (V ) = ⊕kV
⊗k.

I be the ideal of T (V ) generated by∑
i+j=n

(
n

i

)
λp+i ⊗ λ2p+1+j ∈ V ⊗2, p ≥ 0, n ≥ 0.

Then we define Λ = T (V )/I. Clearly, Λ is a bigraded Z/2 algebra. Λ = ⊕s,t≥0Λ
s,t, s

represents length, t − s is the degree in the usual sense, i.e. for a fixed (s, t), Λs,t is the
Z/2 subspace of Λ generated by λ(a1, . . . , as) = λa1 . . . λas , t = a1 + · · · + as + s. And the
differential of Λ is given by

d(λn−1) =
∑
i+j=n

(
n

i

)
λi−1 ⊗ λj−1, n ≥ 1.
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1.2. Another definition of Λ .

Λ is a bigraded Z/2- algebra with generators λn ∈ Λ1,n+1, n ≥ 0 and relations

λiλ2i+1+n =
∑
j≥0

(
n− j − 1

j

)
λi+n−jλ2i+1+j, for i, n ≥ 0

with differential
d(λn) =

∑
j≥1

(
n− j

j

)
λn−jλj−1.

The above definitions are equivalent, due to [11, Theorem 1.5.4, 1.6.5]. We only sketch
the proof. For a combinatorial proof one can see [7, Lemma 6.3].
Definition 1.1. A monomial λi1λi2 · · ·λis ∈ Λ is admissible if 2ir ≥ ir+1, for 1 ≤ r < s.
Λ(n) is the subcomplex spanned by admissible monomials with i1 < n.
Sketch of proof. 1. Notice xi = λiλ2i+1 = 0 ∈ Λ. And there is a derivation map D : Λ → Λ,
such that D(λn) = λn+1, n ≥ 0. This is because there exists D : T (V ) → T (V ), such that
D(λn) = λn+1, and D(I) ⊆ I. This is basically because I =< xi, D(xi), . . . , D

n(xi), · · · >.
(By Leibniz formula).

2. Then,
Dnxi = λiλ2i+1+n +

∑
j≥0

an−j,jλi+n−jλ2i+1+j

by using admissible basis and operator D, we can get an−j,j =
(
n−j−1

j

)
.

Therefore, the relations can be reformulated as follow

λiλ2i+1+n =
∑
j≥0

(
n− j − 1

j

)
λi+n−jλ2i+1+j.

3. For the differential formula, setting
d(λn) =

∑
j≥0

bn−j,jλn−j−1λj.

By using admissble basis and comparing coefficients we can get bn−j,j =
(
n−j
j

)
.

□
Remark 1.2. Actually, there is a topological way to simplify the relations, we will explain it
later. But I do not know how to caculate it.

One might ask, why should we consider this werid algebra. Actually, lambda algebra is
E1 page of a spectral sequence, and it has close relation with Adams spectral sequence.
Definition 1.3. (The lower p-central series)

Let G be a group and p a prime. The p-central series of G is the filtration
· · · ⊆ ΓrG ⊆ · · · ⊆ Γ2G ⊆ Γ1G = G,

where ΓrG is the subgroup generated by all elements
[a1, . . . , ak]

pi

for which k ≥ 1,kpi ≥ r, and each aj ∈ G, the symbol [ , . . . , ] denotes the commutator[. . . [ , ], . . . ], ].
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For any semisimplicial spectrum X, we have a free group spectrum FX, πqFX = πqX.
Then we consider the lower 2-central series of FX,

· · · ⊆ Γ2r+1FX ⊆ Γ2rFX ⊆ · · · ⊆ Γ1G = FX,

We denote (ErX, drX) to be the derived spectral sequence of the homotopy exact couple
of this filtration.

i.e.,

Zs,t
r = im{πt−s(Γ2s/Γ2s+rFX) → πt−s(Γ2s/Γ2s+1FX)},

Bs,t
r = im{πt−s(Γ2s−r+1/Γ2sFX) → πt−s(Γ2s/Γ2s+1FX)},

Es,t
r = Zs,t

r /Bs,t
r .

And dr defined in a natrual way.

Remark 1.4. A priori, we should take
· · · ⊆ Γr+1FX ⊆ ΓrFX ⊆ · · · ⊆ Γ1G = FX.

But we later will prove π∗(Γr/Γr+1FX) = 0, if r 6= 2k, ∀k ≥ 0.
Then, by standard argument we have π∗(Γ2r/Γ2r+1FX) ' π∗(Γ2r/Γ2r+1FX). After rein-

dexing subscripts, we will get the real lambda algebra.

Especially, if we take X to be the sphere simplicial spectrum S, we will get the main result
of the paper.

Theorem 1.5. [1, 2.6] (E1S, d1S) is the Λ we described before, and (E2X, d2X) is the E2

page of Adams spectral seqence of X.

In the next sections, we will give necessary background material and prove Theorem 1.5
in detail.

2. Simplicial Homotopy Theory

The main material are [3],[2],[4],[5],[12, 8.1-8.4], [9, 14.1-14.3 and 14.24].

Definition 2.1. A simplicial set K is a sequence of sets, K = {K0, K1, . . . , Kn, . . .}, together
with functions

di : Kn → Kn−1,

si : Kn → Kn+1,

for each 0 ⩽ i ⩽ n. These functions are required to satisfy the simplicial identities
didj = dj−1di for i < j,

disj =
sj−1di, for i < j
identity, for i = j, j + 1
sjdi−1, for i > j + 1.

sisj = sj+1si for for i ⩽ j + 1,

Remark 2.2. The standard n simplex ∆[n] is the simplicial set with vertices 0, 1, 2, . . . , n,
where

(∆[n])q = {〈v0, . . . , vq〉 : 0 ⩽ v0 ⩽ · · · < vq ⩽ n} .
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Let in = 〈0, i, . . . , n〉 ∈ (∆[n])n. The ”boundary of ∆[n] ” is ∂∆[n] = ∆[n](n−1) = the n− 1
skeleton.

The n sphere Sn is the quotient simplicial set ∆[n]/∂∆[n]. Thus Sn has two nondegenerate
simplices, a vertex which we call ∗, and σn in dimension n, which is the image of in. In
dimensions n + q, Sn has the iterated degeneracy of ∗, and simplices siq · · · si1σn, where
n+ q > iq > · · · > i1 ⩾ 0.

Definition 2.3. (Extension condition)
Let K be a simplicial set. Then K satisfies the extension condition ⇔ for every collection

y0, . . . , ŷk, . . . , yn of simplices in Kn−1, with diyj = dj−1yi for i < j, i 6= k, j 6= k, and there is
a simplex y ∈ Kn with diy = yi, i 6= k.

Definition 2.4. A simplicial set satisfying extension condition is called Kan complex.

Definition 2.5. Let K be a Kan complex, x, y ∈ Kn. we define x ' y, if dix = diy
for all i, and for some 0 ⩽ k ⩽ n there is w ∈ Kn+1 with dkw = x, dk+1w = y, and
diw = diskx = disky, k 6= i 6= k + 1.

Remark 2.6. If K is a Kan complex, then the relation above is indeed a equivalence relation.
[3, proposition 2.4]

Definition 2.7. Let (K,φ) be a simplicial complex with base point, and K is a Kan complex.
For every integer n ≥ 0 we define a set πn(K,φ) as follows. Ler Γn be the set consisting of
those n simplices σ ∈ K such that

diσ = sn−2 · · · s1s0φ, 0 ≤ i ≤ n.

The equivalence relation ∼ divides Γn into classes.
We define

πn(K,φ) = Γn/(∼).

Remark 2.8. For n > 0 let a, b ∈ πn(K,φ), σ ∈ a, τ ∈ b, since K is Kan comlex, there is a
(n+ 1) simplex ρ ∈ K such that

dn−1ρ = σ, dn+1 = τ, diρ = sn−1 · · · s1s0φ.
We then define product of ab = [dnρ].
This product defined a group structure on πn(K,φ).

Definition 2.9. A simplicial group is a simplicial set {Gn}, each Gn is a group. And those
face maps and degeneracy maps are group homomorphism.

Remark 2.10. Simpilicial groups are Kan complexes. [3, proposition 5.2]

We now focus on simplicial abelian group.

Definition 2.11. (Moore complex) Let A∗ be a simplicial abelian group For each n ≥ 1, we
define a group homomorphism ∂ : An → An−1 by the formula

∂(σ) =
n∑

i=0

di(σ).

It’s easy to cheek ∂ ◦ ∂ = 0.
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We set

(2.1) Cn(A) =

{
An if n ≥ 0

0 otherwise

C∗(A) is called the moore complex of A.

Definition 2.12. Let A• be a simplicial abelian group. For each n ≥ 0, let Dn(A) de-
note the subgroup of Cn(A) = An generated by the images of the degeneracy operators
{si : An−1 → An}0≤i≤n−1. By convention, we set Dn(A) = 0 for n < 0.

Proposition 2.13. Let A. be a simplicial abelian group. For every positive integer n,
the boundary operator ∂ : Cn(A) → Cn−1(A) carries the subgroup Dn(A) into Dn−1(A).
Consequently, we can regard D∗(A) as a subcomplex of the Moore complex C∗(A).

Definition 2.14. (The Normalized Moore Complex: First Construction)
Let A. be a simplicial abelian group. We let N∗(A) denote the chain complex given by the

quotient C∗(A)/D∗(A), where C∗(A) is the Moore complex of 2.11 and D∗(A) ⊆ C∗(A) is the
subcomplex of Proposition 2.13 We will refer to N∗(A) as the normalized Moore complex of
the simplicial abelian group A•.

Definition 2.15. (The Normalized Moore Complex: Second Construction)
Let A. be a simplicial abelian group. For each n ≥ 0, we let Ñn(A) denote the subgroup

of Cn(A) = An consisting of those elements x which satisfy di(x) = 0 for 1 ≤ i ≤ n. Note
that if x satisfies this condition, then we have

∂(x) =
n∑

i=0

(−1)idi(x) = d0(x).

Moreover, the identity did0(x) = d0di+1(x) = 0 shows that ∂(x) = d0 belongs to the subgroup
Ñn−1(A) ⊆ Cn−1 = An−1. We can therefore regard Ñ∗(A) as a subcomplex of the Moore
complex C∗(A).

Proposition 2.16. Let A• be a simplicial abelian group. Then the composite map Ñ∗(A) ↪→
C∗(A) → N∗(A) is an isomorphism of chain complexes. In other words, the Moore complex
C∗(A) splits as a direct sum of the subcomplex Ñ∗(A) of 2.15 and the subcomplex D∗(A) of
Proposition 2.13.

Proposition 2.17.
Hn(N∗(A)) ' πn(A, e), n > 0

Theorem 2.18. (The Dold-Kan Correspondence)
The normalized Moore complex functor determines an equivalence of categories

N∗ : Ab∆ → Ch(Z)≥0.

Definition 2.19. A semisimplicial spectrum (or set spectrum or simply spectrum) X con-
sists of

(1) for every integer q a set X(q) with a distinguished element ∗ (called base point); the
elements of X(q) will be called simplices of degree q.

5



(2) for every integer i ≥ 0 and every integer q a function di : X(q) → X(q−1) such that
di∗ = ∗ (the i-face operator) and a function si : X(q) → X(q+1) such that si∗ = ∗ (the
i-degeneracy operator). These operatirs are required to satisfy the following axioms: I.

didj = dj−1di for i < j

disj = sj−1di for i < j

= identity for i = j, j + 1

= sjdi−1 for i > j + 1

sisj = sjsi−1 for i > j

II. For every simplex α ∈ X all but a finite number of its faces are ”at the base point,”
i.e. diα = ∗ for all but a finite number of i ’s.

Definition 2.20. A subspectrum of a spectrum X is a subset of X which is closed under
all (face and degeneracy) operators.

Definition 2.21. A map w : X → Y between two spectra is a degree preserving function
which commutes with all operators. An equivalence is a map which is 1− 1 onto.

Remark 2.22. A useful spectrum is the sphere spectrum S, i.e. the spectrum all of whose
simplices are degenerate (i.e. of the form siα for some i and α ) except one simplex φ of
degree 0 .

Definition 2.23. For every simplicial spectrum X and integer q we define a complex Xq ∈
S∗ as follows. An n-simplex of Xq is any α ∈ X such that degree α = n− q, d0 . . . dnα = ∗
and djα = ∗ for j > n. The base point will be the simplex ∗ ∈ X(−q) The face and degeneracy
operators of Xq are those induced by the corresponding operators of X. It is not difficult to
verify that Xq is indeed a set complex, i.e. that for every n-simplex α ∈ Xq the simplices
djα and sjα are also in Xq for 0 ≤ j ≤ n.

Remark 2.24. For the sphere spectrum 2.22 and every integer q ≥ 0, Sq is the semisimplicial
q-sphere. In this case, the natural map u : ΣSq → Sq+1 is an equivalence.

3. Construction

For a simplicial spectrum X, consider the free group spectrum FX.
Denote(EiX, diX) the spectral sequence associated with the homotopy exact couple of the

following filtration of FX

· · · ⊆ Γ2j+1FX ⊆ Γ2jFX ⊆ · · · ⊆ Γ2FX ⊆ Γ1FX = FX.

Theorem 3.1. (The structure of (E1S, d1S)). Let S denote the sphere spectrum. Then
(1)(E1S, d1S) is the graded associative differential Z/2 algebra.
(2)With generators λi (of degree i) for every integer i > 0.
(3)For m ≥ 1, n ≥ 0 a relation∑

i+j=n

(
n

i

)
λi−1+mλj−1+2m = 0.
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(4)Differential is given by

d(λn−1) =
∑
i+j=n

(
n

i

)
λi−1λj−1.

Theorem 3.2. (The structure of (E1X, d1X)).
(1) (E1X, d1X) is a differential right (E1S, d1S) module, where
(2) the module structure is given by

E1X = H∗ X ⊗ E1S.

(3) The differential is given by

d1(a⊗ 1) =
∑
i>0

(aSqi ⊗ λi−1), a ∈ H∗ X.

Since we only consider Z/2 coeffients (co)homology , then Hn(X) = Hom(Hn(X),Z/2).
There steenrod algebra acting on H∗ X in an obvious way, which decreasing the homological
degree.

In order to see the E1S module structure of E1X, we have to introduce free restricted Lie
algebra.

We recall the definition of the free restricted Lie algebra on a Z/pZ-module M.
Let TM be the tensor algebra TM = ⊕r≧0M

⊗r, where M⊗r = M ⊗ . . .⊗M r-times. For
a, b ∈ TM , define [a, b] = ab − ba and a[p] = ap; then the free unrestricted Lie algebra LM
on M is the smallest sub Z/pZ-module of TM containing M . Denote by

LuM =
∑
r>0

Lu
rM,LuM = LuM ∩M⊗r.

And the free restricted Lie algebra LM on M is the smallest sub Z/pZ-module of TM
containing M and closed under the operations [ , ] and ( )[p]. Put

LrM = LM ∩M r

so that
LM =

∑
r≧1

LrM.

For each r, LrM is a functor of M. A result of Zassenhaus is

Proposition 3.3. [6, Prop 3.3] If G is a free group, there is for each r a natrual isomorphism
ΓrG/Γr+1G ' Lr(G/Γ2G).

Since the isomorphism is natrual , and Γ/Γ2 = A, by applying to FX, we get
π∗Γr/Γr+1FX ' π∗LrAX, r > 0.

We now can define the composition operation on homotopy groups of π∗(Γr/Γr+1)FX '
π∗LrAX.

Definition 3.4. For x ∈ πtLrAS, we have x ∈ πt+sLrASs = πtLrK(s), by Dold-Kan
correspondence, it corresponds to a map

ASt+s = K(t+ s) → LrK(s) = LrASs.
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And y ∈ πsLqAX, it corresponds to
ASs = K(s) → LqAX.

We therefore define their composition xy to be

ASt+s = K(t+ s)
x

// LrK(s) = LrASs

Lq(y)
// LqLrAX // LqrAX .

This is an element of πt+sLAX.
Now, we see the composition operation turns π∗LAS into an associative graded algebra

with unit and π∗LAX into a right module over it.
For Theorem 3.2 (2), there is an isomorphism

H∗ X ⊗ π∗LAS → π∗LAX

given by a⊗ 1 7→ a.

Proof. (Sketch) This is trivial if X has homotopy type of q-fold suspension ΣqS of sphere
spectrum. For arbitary X, this is basically follows from AX is Z/2 simplicial vector space,
which must be direct sum of K(Z/2, n) = AΣnS. □

3.1. The additive structure of E1S.

The groups π∗LASn are connected by the suspension homomorphisms

π∗LASn
Σ−→ π∗+1LASn+1 n ≥ 0

and for each element α ∈ πqLrASn by the composition homomorphism (defined as above )

π∗LsASq
α−→ π∗LrsASn

We will often use the same symbol for an element α ∈ πqLASn and its suspensions as
well as for the corresponding element of πq−nLAS. No confusion will arise as composition is
compatible with suspension; i.e. the diagram

π∗LASq+1
Σα

// π∗+1LASn+1

π∗LASq
α

//

Σ

OO

π∗LASn

Susp

OO

is commutative for every α ∈ πqLASn. Of course, all these are also hold for the groups
π∗L

uASn where Lu is the free unrestricted Lie algebra functor.

Definition 3.5. Let V be a simplicial vector space, let y ∈ Vp, z ∈ Vq. Then define y⊗z ∈
(V ⊗ V )p+q to be

y⊗z =
∑
(b,a)

±sby ⊗ saz.

sa = saq · · · sa1 , sb = sbp · · · sb1 . Where sum is taken over all permutations {a1, . . . , aq, b1, . . . , bp}
of {0, . . . , p + q − 1} for which a1 < · · · < aq and b1 < · · · < bp. The sign is the sign of
permutation. (If p = q = 0, this is just the tensor product.)

Remark 3.6. This is also denoted as y▽z, called the shuffle product.
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Definition 3.7. (The elements λn)
Let in ∈ ASn be the element represents the unique class in πnASn, then we define

1 = [in] ∈ πnL1ASn,

λn = [in⊗in] ∈ π2nL2ASn.

Since we need to compute π∗LAS, we need the stable version of this , thus λn will also
stand for any of its suspension.

Proposition 3.8. (Additive structure of π∗LAS) The compositions
λi1 · · ·λik1

for which k > 0 and ij+1 ≤ 2ij, j > 0, form a basis for π∗LAS.

In order to prove it, we just need the following unstable version proposition.

Proposition 3.9. (Additive structure of π∗LASn) The compositions
λi1 · · ·λik1

for which k > 0, i1 ≥ n and ij+1 ≤ 2ij, j > 0, form a basis for π∗LASn.

Proposition 3.9 is a consequnce of following 2 lemmas combining with induction.

Lemma 3.10. The inclusion map LuASn → LASn and the function “composition on the
right with λ0 ” induces isomorphisms

π∗LrASn ' π∗L
u
rASn, rodd.

π∗LrASn ' π∗L
u
rASn + π∗L r

2
ASn, reven.

Proof. (Sketch)
This is follows form,
(1) notice that we have decomposition

LM = LuM × LM

as set, through squaring map.
(2) The map on homotopy groups induced by squaring map is composition with λ0. □

Lemma 3.11. Let n > 0. Then the suspension homomorphism Σ : π∗−1L
uASn−1 → π∗LASn

and the composition homomorphism λn : π∗L
uAS2n → π∗L

uASn induces isomorphisms
π∗L

u
rASn ' π∗L

u
rASn−1, rodd,

π∗L
u
rASn ' π∗−1L

u
rASn−1 + π∗L

u
r
2
AS2n, reven.

Remark 3.12. If we have already proved Lemma 3.11, we are be able to prove Proposition
3.9.

Remark 3.13. By notice the module structure of π∗LAX, we will get
π∗Γr/Γr+1FX = π∗LrAX = 0, if r 6= 2k,

for some k.
This k stand for the length of monomial λi1 · · ·λik .
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Proof of Theorem 3.1 (1) and Theorem 3.2 (1). It remains to prove the statements about
the differential in part (1) of Theorem 3.1 and 3.2. Form the Remark 3.13 let

α ∈ πsL2iAX = πs (Γ2i/Γ2i+1)FX

β ∈ πtL2jAS = πt (Γ2j/Γ2j+1)FS

Let b ∈ Γ2jFS be such that d0b ∈ Γ2j+1FS, dib = ∗ for i 6= 0 and proj b ∈ β. Then proj
d0b ∈ dβ.

•This is because we view β ∈ πt+s(Γ2j/Γ2j+1)FSs), form the definition of homotopy group
of simplicial spectrum. We then have following diagram.

Γ2j+1FSs Γ2jFSs Γ2j/Γ2j+1FSs

...

��

...

��

...

��

0 // N ′
t+s+1

//

d0
��

Nt+s+1
//

d0
��

N ′′
t+s+1

d0
��

// 0

0 // N ′
t+s

//

d0
��

Nt+s
//

d0
��

N ′′
t+s

d0
��

// 0

0 // N ′
t+s−1

��

// Nt+s−1

��

// N ′′
t+s−1

��

// 0

... ... ...

Write b in the form B(Fi) where B is a formula involving only degeneracy operators and
the operations product and inverse and where i ∈ S is the only non-degenerate simplex.

Let m be the largest integer for which B involves the operator sm and let k be an integer
such that 2k > t+m.

Then there exists a simplex a ∈ Γ2iFX such that d2ka ∈ Γ2i+1FX, dia = ∗ for i 6= 2k and
proj a ∈ α and hence proj d2ka ∈ dα.

• This is because we view α ∈ π2k=s+(2k−s)(Γ2i/Γ2i+1FX2k−s). And from the similar dia-
gram as following:
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Γ2i+1FX2k−s Γ2iFX2k−s Γ2i/Γ2i+1FX2k−s

...

��

...

��

...

��

0 // N ′
2k+1

//

d2k+1

��

Nt+s+1
//

d2k+1

��

N ′′
t+s+1

d2k+1

��

// 0

0 // N ′
2k

//

d2k
��

N2k
//

d2k
��

N ′′
2k

d2k
��

// 0

0 // N ′
2k−1

��

// N2k−1

��

// N ′′
2k−1

��

// 0

... ... ...

• Recall the composition map:

ASt+s
β

// L2jASs

L(α)
// L2i+jAX

And it turns to be:

ASt+s+(2k−s)
β

// L2jAS2k

L(α)
// L2i+jAX2k−s

This implies that the simplex B(a) ∈ Γ2i+jFX2k−s, such that proj B(a) ∈ βα, proj
d0B(a) ∈ β(dα), proj d2k+tB(a) ∈ (dβ)α and diB(a) = ∗ for i 6= 0, 2k + t.

For 1 ≤ l ≤ 2k, we have

dlB(Fi) = 0,

thus

dlB(a) = 0.

For 2k < l < 2k + t, since the choice of 2k we can use the simplicial relation of dland sj
move dl next to a, i.e.

dl(B(a)) = B(dl−ta) = 0.

We have following diagram,
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Γ2i+j+1FX2k−s Γ2i+jFX2k−s Γ2i+j/Γ2i+j+1FX2k−s

...

��

...

��

...

��

0 // N ′
2k+t+1

//

d0
��

N2k+t+1
proj

//

d0
��

N ′′
2k+t+1

d0
��

// 0

0 // N ′
2k+t

//

d0
��

N2k+t
proj

//

d0
��

N ′′
2k+t

d0
��

// 0

0 // N ′
2k+t−1

��

// N2k+t−1

��

proj
// N ′′

2k+t−1

��

// 0

... ... ...
And,

C2k+t
∂

//

π

��

C2k+t−1

π

��

N2k+t
d0

// N2k+t−1.

Which means we can calculate ∂(B(a)) =
2k+t∑
i=0

(−1)idiB(a) =
2k+t∑
i=0

diB(a) and project it to

the normalized group. But d0B(a) + d2k+tB(a) already in N2k+t−1, which means d0B(a) +
d2k+tB(a) is what we want.

i.e.,
d(βα) = proj(∂B(a)) = proj(d0B(a) + (−1)2k+td2k+tB(a)) = (dβ)α + (−1)tβ(dα).

□
Remark 3.14. The d above is the differential map of E1X, we write d for d1 : E1X → E1X
to distinguish with the face map d1 : Xk → Xk−1.

In order to prove the lemmas, we need some facts are the analogue of the Whitehead
lemma.

Definition 3.15. A free simplicial Lie algebra Y is an s.s. Lie algebra for which there exists
submodules Bn ⊆ Yn with the properties

(1) Yn is the free unrestricted Lie algebra on Bn, for all n.
(2) if b ∈ Bn, and 0 ≤ i ≤ n, then sib ∈ Bn+1.

Let V and W be two vector spaces, and
p : V ⊕W → W,

12



be the projection map.
Then the kernel of map

Lu(p) : Lu(V ⊕W ) → LuW,

is Lu(U).[8, proposition 3.1]
where

U = V ⊗ T (W ) = V ⊕ (V ⊗W )⊕ · · · ⊕ (V ⊗W⊗n)⊕ · · · .
Lu(U) → Lu(V ⊕W ) is defined by

v ⊗ w1 ⊗ · · · ⊗ wn → [. . . , [v, w1], . . . , wn].

• If V1, V2, . . . Vr are vector spaces, we have
Lu(⊕r

i=1Vi) ' ⊕r
i=1L

u(Vi).

• The lower central series of a simplicial Lie algebra R is defined by Γ1R = R, and
ΓrR = [Γr−1R,R].

• The Abelianization of Lie algebra R is AbR = R/[R,R] = R/Γ2R.

Proposition 3.16. (Whithead Lemma for simplicial Lie algebras) Let f : Y → Y ′ be a Lie
map between connected free simplicial Lie algebras. If π∗Abf is a isomorphism, then so is
π∗f.

Proposition 3.17. If R is a connected free simplicial Lie algebra, then ΓrR is log2r conneted,
i.e.,πq(ΓrR) = 0 for q < log2r.

Remark 3.18. The important here is that the connectivity ΓrR → ∞.

Proposition 3.19. Let f : R → R′ be a homomorphism of free simplicial Lie algebras. Then
if (Abf)∗ is an isomorphism, so is

(Γrf/Γr+1f)∗.

We now already to prove Lemma 3.11.
Proof of Lemma 3.11. We shall proof it for n > 1.

Let W be the simplicial Lie algebra freely generated by simplices x, y and z in dimensions
n− 1, nand 2n respectively, with faces dny = x, diy = ∗ for i 6= n, and diz = ∗, for all i.

W ' Lu(ASn−1 ⊕ ASn ⊕ AS2n).

And let f : W → LuASn be the Lie map given by y → in and z → in⊗in.
f correspondes to the projection:

X ⊕ Y ⊕ Z → Y

(x, y, z) → (0, y, y⊗y)

The complex T = ker f then is a free simplicial Lie algebra which in every dimension is
freely generated by the simplices of the form

I [x, y, . . . , y] r ≥ 1
II [(y⊗y − z), y, . . . , y] r ≥ 1

where the sαi
are iterated degeneracy operators, and AbT is an simplicial Z/2-module on the

same generators. Let U ⊂ AbT be the submodule generated by the simplices of the form I
and let V = (AbT )/U . Then one readily verifies that πiU = Z/2 with generator [x, y, . . . , y]

13



whenever i = rn − 1 for some r ≥ 1 and πiU = 0 otherwise and that πiV = Z/2 with
generator [(y ⊗ y − z), y, . . . , y] whenever i = rn for some r ≥ 2 and πiV = 0 otherwise.
However, in AbT the generators in dimension > n− 1 kill each other, i.e.

drn[(y⊗y − z), y, . . . , y] = [x, y, y, . . . , y]

di[(y⊗y − z), y, . . . , y] = 0 for i < rn

These are follows from :

di(y⊗y − z) = di(y⊗y) = di(
∑

sαy ⊗ sβy) =
∑

disαy ⊗ disβy =
∑

sα′di′y ⊗ sβ′di′′y.

• Those α, β can not move di next to y will kill each other. This can only happen when
i − 1, i not on the same half shuffle. Since, suppose i − 1, i ∈ α, then by the simplicial
relations of di, sj, we can know di can move next to y. Suppose i − 1 ∈ α, i ∈ β, we take a
new shuffle α′, β′ only exchange the position of i− 1 and i. And it indeed is a shuffle.

Therefore we have
di(y⊗y − z) = di(y⊗y) = 0, if i 6= 2n

(3.1)

d2n(y⊗y) =
∑

d2ksαy ⊗ d2ksβy

=
∑

sα′dny ⊗ sβ′y +
∑

sα′′y ⊗ sβ′′dny

=
∑

sax⊗ sby +
∑

sa′x⊗ sb′y

= x⊗ y + y ⊗ x = [x, y].

• One may use
∂(y⊗y) = ∂y⊗y + y⊗∂y.

Therefore we have
di([x, y]) = 0.

Again by calculate

(3.2)
di([y ⊗ y − z, y, . . . , y]) = 0, if i 6= rn.

drn([y ⊗ y − z, y, . . . , y]) = [x, y, . . . , y].

we can have
di([x, y, . . . , y]) = 0.

And thus πn−1AbT = Z/2 with generator x and πiAbT = 0 for i 6= n − 1. As n > 1 the
Whitehead Lemma implies that the Lie maps g : LuASn−1 → T and h : W → LuAS2n given
by in−1 → x and z → i2n induce isomorphisms of the homotopy groups. As the composition

LuASn−1
g→ T

incl−→ W
h−→ LuAS2n

is trivial it follows that T
incl→ W is trivial on the homotopy groups. The exactness of the

homotopy sequence of the fibre map f : W → LuASn now yields the desired result.
And we shall notice that

π∗L
uASn

∂
// π∗−1L

uASn−1

σ
vv

14



Therefore we have

π∗LAS2n ' π∗W
f

// π∗L
uASn

∂
// π∗−1L

uASn−1

is split.
Which means we have

π∗L
u
rASn ' π∗−1L

u
rASn−1 + π∗L

u
r
2
AS2n, r even.

□

3.2. Relations of lambda algebra. In this section, we will prove Theorem 3.1 (3),(4).
As π∗L2AS is generated by the λn and as the map

π∗L1AX = H∗ X
d1−→ π∗L2AX = H∗ X ⊗ π∗L2AS

is natural. It follows from the duality between H∗ X and H∗ X that there are unique elements
Tn ∈ A (Steenrod algebra), with degree Tn = n such that

a
d1−→

∑
n>0

(aTn ⊗ λn−1)

for all a ∈ H∗ X and we thus have to prove that Tn = Sqn for all n > 0.
This we will do using the following fact.

Remark 3.20. Sqn ∈ A is the only non-zero element of degree n which vanishes on H2n−1 ASn−1.

Let X be the spectrum such that X0 = ASn−1 and Xq is the q-fold suspension of X0 for
q ≥ 0. Then we have a commutative diagram

H2n−1 X0 = π2n−2(Γ1/Γ2)GX0

f≃
��

d1
// π2n−3(Γ2/Γ3)GX0 = Σ(Hi X0 ⊗ π2n−3L2ASi−1) + u

g

��

H2n−1 X = π2n−1(Γ1/Γ2)FX
d1

// π2n−2(Γ2/Γ3)FX = Σ(Hi X ⊗ π2n−2−iL2AS)

where G is as in [3, Section 7] and f and g are induced by the ”inclusion” X0 ⊂ X. The upper
left equality is proved as in [3, Theorem 15.1] and implies that f : H2n−1 X0 → H2n−1 X is
the isomorphism induced by the ”inclusion”. The upper right equality is a consequence of
3.9; as cross effects are killed by suspension. one can choose the direct summand U in such
a manner that it is killed by g. And as on Σ(Hi X0 ⊗ π2n−3L2ASi−1) the map g is the map
induced by the ”inclusions” X0 ⊂ X and Si−1 ⊂ S it follows 3.9 that an element b⊗ λn−1 is
in the image of g only if b = 0. Thus aTn = 0 for all a ∈ H2n−1 X and therefore also for all
a ∈ H2n−1 X0 and it thus (Remark 3.20) remains to show that Tn 6= 0.

In order to do this we take a closer look at the spectral sequence for AS.
First we recall from [10].

Remark 3.21. H∗ AS is a polynomial algebra on generators ξi of degree 2i − 1(i ≥ 0) with
one relation ξ0 = 1. The Sqn operate on the right on H∗ AS according to the formulas

ξiSq = ξi + ξi−1 where Sq =
∑

Sqn

(ξξ′)Sq = (ξSq) (ξ′Sq) for all ξ, ξ′ ∈ H∗ AS.
15



Now T1 = 0 would imply that 1 ⊗ λ0 ∈ E∞AS, which would contradict the convergence
of the spectral sequence [6, Theorem 4.1].

• Since d1(1 ⊗ λ0) = 0, and T1 = 0, therefore it cann’t lives in im(d1) . Thus 1 ⊗ λ0 ∈
E0,1

2 AS, and in E∞AS.

Proposition 3.22. [6, Theorem 4.1] If X is simply connected and has finitely generated
homotopy groups, then EtX is weakly convergent, and E∞X is the graded group associated
with filtration of π∗(X; p).

Remark 3.23. Then spectral sequence EtX mentioned above is just the unstable version we
construced in this section.

Thus T1 = Sq1. Similarly T2 = Sq2 (because otherwise 1 ⊗ λ1 or 1 ⊗ λ1 + ξ1 ⊗ λ0 is in
E∞AS).

Therefore assume inductively that Tn = Sqn for n < 2k(k ≥ 1) and suppose T2k+1 were
0 . Then a simple calculation (using 3.20) yields that d1d1

(
ξ1ξ

k
2

)
is a polynomial in the ξi

with coefficients in π∗L4AS of which the constant term is λkλ2k−1.
• This is basically because

(3.3) d1d1(ξ1ξ
k
2 ) =

∑
i>0,j>0

((ξ1ξ
k
2 )Sq

i)Sqj ⊗ λj−1λi−1 +
∑
i>0

ξ1ξ
k
2Sq

i ⊗ d1λi−1

For the reason of degree, the second term above can’t have constant term. And in the
first term, i must be 2k, j = k + 1.

But as d1d1 = 0 this would imply λkλ2k−1 = 0, in contradiction to 3.9. Thus T2k+1 =
Sq2k+1. Applying the same argument to ξ21ξ

k
2 we get also that T2k+2 = Sq2k+2.

Proof of Theorem 3.1 (3) and (4). One can write d1d1 (ξ
n
1 ξ

m
2 ) (m ≥ 1) as a polynomial in

the ξi with coefficients in π∗L4AS.
Let’s compute the constant term of d1d1(ξn1 ξm2 ) and d1d1(ξ

n
1 ).

First, we compute the constant term of d1d1(ξn1 ).
Since we have

(3.4)

(ξn1 )Sq = (ξ1Sq)
n

= (ξ1 + 1)n

=
n∑

i=0

(
n

i

)
ξn−i
1

Since Sqi : H∗(AS) → H∗−i(AS), therefore we have ξn1Sq
i =

(
n
i

)
ξn−i.

(3.5)

d1d1(ξ
n
1 ) = d1(

∑
i>0

ξn1Sq
i ⊗ λi−1)

= d1(
∑
i>0

ξn1Sq
i)⊗ λi−1 +

∑
i>0

ξn1Sq
i ⊗ dλi−1

=
∑
i,j>0

(ξn1Sq
i)Sqj ⊗ λj−1λi−1 +

∑
i>0

ξn1Sq
i ⊗ dλi−1

Since we are computing constant term, therefore i+ j = n, constant term in the sencond
term i must be n.
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i.e. we have

(3.6)

∑
i,j>0

(
n

i

)(
n− i

j

)
λj−1λi−1 + dλn−1 = 0

∑
i,j

(
n

i

)
λi−1λj−1 = dλn−1

(3.7)

(ξn1 ξ
m
2 )Sq = (ξ2Sq)

m(ξ1Sq)
n

= (ξ1 + ξ2)
m(ξ1 + 1)n

= (
m∑

α=0

(
m

i

)
ξm−α
2 ξα1 )(

n∑
β=0

(
n

β

)
ξn−β
1 )

=
∑
α,β

(
m

α

)(
n

β

)
ξm−α
2 ξα+n−β

1

(3.8)

d1d1(ξ
n
1 ξ

m
2 ) = d1(

∑
i>0

ξn1 ξ
m
2 Sqi ⊗ λi−1)

= d1(
∑
i>0

ξn1 ξ
m
2 Sqi)⊗ λi−1 +

∑
i>0

ξn1 ξ
m
2 Sqi ⊗ dλi−1

=
∑
i,j>0

(ξn1 ξ
m
2 Sqi)Sqj ⊗ λj−1λi−1 +

∑
i>0

ξn1 ξ
m
2 Sqi ⊗ dλi−1

For the reason of degree, the second term in the last row of (3.8) have no constant term.
Then the constant term of (3.8) must be∑

2α+β=i,2α′+β′=j,α+α′=m,β+β′=n+m

(
m

α

)(
n

β

)(
m− α

α′

)(
α + n− β

β′

)
ξm−α−α′

2 ξα
′+α+n−β−β′

1 ⊗λj−1λi−1

But for the reason of degree agin, α must be m.
Then the constant term is∑

i=2m+β,j=m+n−β

(
n

β

)
λj−1λi−1 =

∑
i′+j′=n,i′=n−β

(
n

i′

)
λi′+m−1λj′+2m−1

Then in Λ we have ∑
i′+j′=n,i′=n−β

(
n

i′

)
λi′+m−1λj′+2m−1 = 0.

And these are all relations, because these relations just tell us nonadmissble monomials
how to represent by admissble basis.

□
Remark 3.24. As said before, there is a way to get the relations in 1.2.

Which is by calculate

d1d1(x) = 0 =
∑
i,j>0

xSqiSqj ⊗ λj−1λi−1 +
∑
i>0

xSqi ⊗ dλi−1.
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using Adem relations:

SqaSqb =

[a/2]∑
c=0

(
b− 1− c

a− 2c

)
Sqa+b−cSqc, for 0 < a < 2b.

4. Comparison with Adams spectral sequence

In this section, we will prove following result.

Theorem 4.1. Let X be a simplicial spectrum, the spectral sequence {EiX, diX}we con-
structed in section 3 is exactly the Adams spectral sequence of X, when i ≥ 2.

We only need to prove
H∗ Γ2j+1FX = π∗AΓ2j+1FX

��

H∗ Γ2jFX = π∗AΓ2jFX

is trivial map.
By [5, 15.4] the naturality result, we have following diagram.

π∗AΓ2j+1FX

≃
��

// π∗AΓ2jFX

≃
��

π∗Γ2j+1FAX // π∗Γ2jFAX

we only need to show the bottom map is trivial.

Proposition 4.2. The spectral sequence collapses for spectra of the form AX, i.e. if X is
a spectrum, then

E2AX = E∞AX.

Proof. It suffices to prove this if X = S. By 3.1, 3.2 and Remark 3.20 E1AS is freely
generated by the elements
(4.1) ξα1

1 · · · ξαk
k λi1 · · ·λim

for which αi ≥ 0 for all i and ij+1 ≤ 2ij for all j > 0. Moreover, a straightforward
calculation, using Remark 3.20 and caculation in section 3, yields

(4.2) d1 (ξ
α1
1 · · · ξαk

k λi1 · · ·λim) = ξα2
1 · · · ξαk

k−1λjλi1 · · ·λim +
∑

ξβ1

1 · · · ξβk

k λj0 · · ·λjm

where j = αk · 2k−1 + · · · + α1 − 1 and where the sum is taken over certain generators with
the property that

(0, αk, . . . , α2) < (βk, . . . , β1) ≤ (αk, . . . , α1)

in the lexicographical ordering.
For every integer t > 0 let F t be the submodule generated by the generators of the form

(4.1) for which k +m ≥ t where k is the largest integer for which αk > 0. By (4.2) γ ∈ F t

implies d1γ ∈ F t and hence Qt = F t/F t+1 is again a differential module. Now for fixed t and
s ≤ t let Gs ⊂ Qt be generated by the generators of the form (4.1) for which either m > s or
m = s and i1 ≤ αk · 2k + · · ·+ α1 · 2− 2. Then Rs = Gs/Gs+1 is again a differential module

18



and it follows readily from (4.2) that H∗ R
s = 0 for all s, which implies that H∗ Q

t = 0 for
all t > 0. Again, using (4.2), a standard argument now yields that E2AS = Z/2

• This is basically because we have
0 → F 2 → F 1 → Q1 → 0

and
0 → F 3 → F 2 → Q2 → 0

0 → F i+1 → F i → Qi → 0

Since H∗ Q
i = 0, i > 0.

We get
0 = H∗+1 Q

1 // H∗ F
2 // H∗ F

1 // H∗ Q
1 = 0

0 = H∗+1 Q
i // H∗ F

i+1 // H∗ F
i // H∗ Q

i = 0

But for fixed ∗ > 0 when i → ∞ �H∗(F
i) = 0, therefore E2AS = H0(E1AS) = Z/2.

Therefore E2AS = E∞AS.
□
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