LAMBDA ALGEBRA AND ADAMS SPECTRAL SEQUENCE

RIXIN FANG

ABSTRACT. In this notes, we mainly introduce the construction of lambda algebra and its
relation with Adams spectral sequence.
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1. INTRODUCTION

1.1. Original definition of A.

Let V' be the Z/2 vector space with basis {\,,p > 0}. T'(V) be the tensor algebra, i.e.
T(V) = &V

I be the ideal of T'(V') generated by

Z (ZL) Apti @ Agpya4j € V2 p > 0,n > 0.

i+j=n

Then we define A = T(V)/I. Clearly, A is a bigraded Z/2 algebra. A = @, ;50A%, s
represents length, ¢ — s is the degree in the usual sense, i.e. for a fixed (s,t), A®' is the
7,/2 subspace of A generated by A(aj,...,as) = Agy ... Aa,, £ = a1 + -+ + a5+ s. And the
differential of A is given by

d(An-1) = Z (Zb) Aic1 ® Aj_1,n > 1.

i+j=n
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1.2. Another definition of A .

A is a bigraded Z/2- algebra with generators \,, € A¥ "1 n > 0 and relations

n—j3—1 ,
AiN2if14n = Z ( j )Ai+n—j)\2i+1+g‘, for i,n >0
70 J
with differential .
n p—
dn) =3 ( , ]>An_jAj_1.
Jj=>1 J
The above definitions are equivalent, due to [I1, Theorem 1.5.4, 1.6.5]. We only sketch
the proof. For a combinatorial proof one can see [7, Lemma 6.3].

Definition 1.1. A monomial \; A\, --- \;, € A is admissible if 2i, > ¢4, for 1 < r < s.
A(n) is the subcomplex spanned by admissible monomials with i; < n.

Sketch of proof. 1. Notice x; = A\jAg;01 = 0 € A. And there is a derivation map D : A — A
such that D()\,) = A,y1,n > 0. This is because there exists D : T(V) — T(V), such that
D(\,) = A\ut1, and D(I) C I. This is basically because I =< z;, D(x;), ..., D"(z;), -+ >.
(By Leibniz formula).

2. Then,

n
D"z = NAaig14m + E (p—jj Nitn—j A2t 145
>0

by using admissible basis and operator D, we can get a,_;; = (”_j:_l).
Therefore, the relations can be reformulated as follow

n—jy—1
)\i/\2i+1+n = Z < j >)‘i+n—j)\2i+1+j-
720 J
3. For the differential formula, setting
d(An) = bojira—j1)j.
Jj=0

By using admissble basis and comparing coefficients we can get b,,_; ; = (”;j )

O

Remark 1.2. Actually, there is a topological way to simplify the relations, we will explain it
later. But I do not know how to caculate it.

One might ask, why should we consider this werid algebra. Actually, lambda algebra is
E page of a spectral sequence, and it has close relation with Adams spectral sequence.

Definition 1.3. (The lower p-central series)
Let G be a group and p a prime. The p-central series of G is the filtration
- CIGC-- CG C NG =G,

where I',.GG is the subgroup generated by all elements

3

lat, ... a;l?

for which k > 1,kp’ > r, and each a; € G, the symbol [, ..., | denotes the commutator|...[, ],...
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For any semisimplicial spectrum X, we have a free group spectrum FX, 7, F X = 7, X.
Then we consider the lower 2-central series of F'.X,

o CTlynn FX CIlwFX C--- CIMG = FX,

We denote (E,X,d.X) to be the derived spectral sequence of the homotopy exact couple
of this filtration.
i.e.,

720 = im{m,_(Tgs [Tostr FX) — m_(Tgs [T9s1 FX)},
B3 = im{m;_s(Lgs—rt1/T9s FX) — m;_o(Tgs JT9s1 FX)},
Ert = 23/B}".
And d, defined in a natrual way.
Remark 1.4. A priori, we should take
- CTL W FXCIL,FXC..-CI'hG=FX.

But we later will prove 7, (I, /T, 1 FX) =0, if r # 28 Vk > 0.
Then, by standard argument we have m,(Tyr /Tyry 1 FX) =~ 7y (Tar /Tor1 FX). After rein-
dexing subscripts, we will get the real lambda algebra.

Especially, if we take X to be the sphere simplicial spectrum S, we will get the main result
of the paper.

Theorem 1.5. [1, 2.6] (E1S,d,S) is the A we described before, and (EyX,dyX) is the Es
page of Adams spectral seqence of X.

In the next sections, we will give necessary background material and prove Theorem 1.5
in detail.

2. SIMPLICIAL HoMoOTOPY THEORY
The main material are [3],[2],[1],[5],[12, 8.1-8.4], [9, 14.1-14.3 and 14.24].

Definition 2.1. A simplicial set K is a sequence of sets, K = { Ky, K1, ..., K,,...}, together

with functions
di : Kn — anl,

s K, — Kn-i—la
for each 0 < 7 < n. These functions are required to satisfy the simplicial identities
didj = djfldl' for 4 < j,
ijldia for i < j
d;s; = identity, fori=j,j+1
dez‘,l, for ¢ > j + 1.
5i8; = Sj418;  for for i<j+1,
Remark 2.2. The standard n simplex Aln| is the simplicial set with vertices 0,1,2,...,n,
where

(Aln])g = {{vo, - -, vy) :3O<UO< s <y < i



Let i, = (0,4,...,n) € (A[n]),. The "boundary of A[n] " is A[n] = A[n]®~Y = the n — 1
skeleton.

The n sphere S™ is the quotient simplicial set A[n|/0A[n]|. Thus S™ has two nondegenerate
simplices, a vertex which we call %, and o, in dimension n, which is the image of i,,. In
dimensions n + ¢, S™ has the iterated degeneracy of *, and simplices s;, - - s;,0,, Where
n+q>ig>--->14 = 0.

Definition 2.3. (Extension condition)

Let K be a simplicial set. Then K satisfies the extension condition < for every collection
Yo, - -+ Uk, - - -, Yn of simplices in K,,_1, with d;y; = d;_1y; for i < j,i # k, j # k, and there is
a simplex y € K,, with d;y = y;,7 # k.

Definition 2.4. A simplicial set satisfying extension condition is called Kan complex.

Definition 2.5. Let K be a Kan complex, x,y € K,. we define x ~ y, if dix = d;y
for all ¢, and for some 0 < k < n there is w € K, with dyw = z,dpyw = y, and
diw = dispx = d;spy, k #1 # k + 1.

Remark 2.6. If K is a Kan complex, then the relation above is indeed a equivalence relation.
[3, proposition 2.4]

Definition 2.7. Let (K, ¢) be a simplicial complex with base point, and K is a Kan complex.
For every integer n > 0 we define a set m,(K, ¢) as follows. Ler I',, be the set consisting of
those n simplices 0 € K such that

d;o = Sp_9---81500, 0<1<n.

The equivalence relation ~ divides I',, into classes.
We define

(K, ¢) =T /(~).

Remark 2.8. For n > 0 let a,b € m,(K,¢), 0 € a,7 € b, since K is Kan comlex, there is a
(n 4+ 1) simplex p € K such that

dnflp =0, dn+1 =T, dzp = Sp—1""" 5180¢.

We then define product of ab = [d,,p].
This product defined a group structure on 7, (K, ¢).

Definition 2.9. A simplicial group is a simplicial set {G,}, each G,, is a group. And those
face maps and degeneracy maps are group homomorphism.

Remark 2.10. Simpilicial groups are Kan complexes. [3, proposition 5.2]
We now focus on simplicial abelian group.

Definition 2.11. (Moore complex) Let A, be a simplicial abelian group For each n > 1, we
define a group homomorphism 0 : A, — A,_1 by the formula

d(o) = Z di(o).

It’s easy to cheek 0o 0 = 0.



(2.1) Co(A) = {An itn>0

0 otherwise

C4(A) is called the moore complex of A.

Definition 2.12. Let A, be a simplicial abelian group. For each n > 0, let D, (A) de-
note the subgroup of C,(A) = A, generated by the images of the degeneracy operators
{s; 1 A1 — A”}Ogign—l‘ By convention, we set D, (A) = 0 for n < 0.

Proposition 2.13. Let A. be a simplicial abelian group. For every positive integer n,
the boundary operator 0 : C,(A) — C,_1(A) carries the subgroup D, (A) into D,_1(A).
Consequently, we can regard D,(A) as a subcomplex of the Moore complex C.(A).

Definition 2.14. (The Normalized Moore Complex: First Construction)

Let A. be a simplicial abelian group. We let N, (A) denote the chain complex given by the
quotient C,(A)/D.(A), where C,(A) is the Moore complex of 2.11 and D,(A) C C,(A) is the
subcomplex of Proposition 2.13 We will refer to N,(A) as the normalized Moore complex of
the simplicial abelian group A,.

Definition 2.15. (The Normalized Moore Complex: Second Construction)

Let A. be a simplicial abelian group. For each n > 0, we let Nn(A) denote the subgroup
of C,(A) = A, consisting of those elements x which satisfy d;(z) = 0 for 1 < i < n. Note
that if x satisfies this condition, then we have

=0
Moreover, the identity d;do(z) = dod;+1(x) = 0 shows that d(x) = do belongs to the subgroup

N,—1(A) € C,—1 = A,—1. We can therefore regard N,(A) as a subcomplex of the Moore
complex C,(A).

Proposition 2.16. Let A, be a simplicial abelian group. Then the composite map N, (A) —
C.(A) — N, (A) is an isomorphism of chain complexes. In other words, the Moore complex
C.(A) splits as a direct sum of the subcomplex N.(A) of 2.15 and the subcomplex D.(A) of
Proposition 2.135.

Proposition 2.17.
H,(N.(A)) ~ m,(A,e),n >0

Theorem 2.18. (The Dold-Kan Correspondence)
The normalized Moore complex functor determines an equivalence of categories

N, : AbA — Ch(Z)ZO

Definition 2.19. A semisimplicial spectrum (or set spectrum or simply spectrum) X con-
sists of
(1) for every integer q a set X, with a distinguished element * (called base point); the

elements of X, will be called simplices of degree q.
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(2) for every integer ¢ > 0 and every integer ¢ a function d; : X, — X(4-1) such that
dix = * (the i-face operator) and a function s; : X5 — X(g41) such that s;x = x (the
i-degeneracy operator). These operatirs are required to satisfy the following axioms: I.

didj = dj—ldi for i < ]

d;sj = sj_1d; forv <y
= identity fori=j,7+1
= 5;d;—1 fori>jg+1
5i8; = 8jSi_1 forv >

II. For every simplex o € X all but a finite number of its faces are ”at the base point,”
i.e. d;oe = * for all but a finite number of i ’s.

Definition 2.20. A subspectrum of a spectrum X is a subset of X which is closed under
all (face and degeneracy) operators.

Definition 2.21. A map w : X — Y between two spectra is a degree preserving function
which commutes with all operators. An equivalence is a map which is 1 — 1 onto.

Remark 2.22. A useful spectrum is the sphere spectrum S, i.e. the spectrum all of whose
simplices are degenerate (i.e. of the form s;a for some i and « ) except one simplex ¢ of
degree O .

Definition 2.23. For every simplicial spectrum X and integer ¢ we define a complex X, €
7, as follows. An n-simplex of X, is any o € X such that degree « =n —q,dy...d,o0 = *
and djo = x for j > n. The base point will be the simplex * € X(_,) The face and degeneracy
operators of X, are those induced by the corresponding operators of X. It is not difficult to
verify that X, is indeed a set complex, i.e. that for every n-simplex a € X, the simplices
d;a and s;a are also in X, for 0 < j < n.

Remark 2.24. For the sphere spectrum 2.22 and every integer ¢ > 0, .5, is the semisimplicial
g-sphere. In this case, the natural map v : £5;, — S; 41 is an equivalence.

3. CONSTRUCTION

For a simplicial spectrum X, consider the free group spectrum FX.
Denote(E; X, d; X) the spectral sequence associated with the homotopy exact couple of the
following filtration of F'.X

o Clyni FX CTy FX C--- CIZWFX CIZWFX = FX.

Theorem 3.1. (The structure of (E15,d,S)). Let S denote the sphere spectrum. Then
(1)(ELS,dy1S) is the graded associative differential 7.2 algebra.
(2)With generators \; (of degree i) for every integer i > 0.
(3)For m > 1,n > 0 a relation

n
Z (Z.))\i—1+m/\j—1+2m = 0.

i+j=n
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(4 )Differential is given by

n
d( A1) = Z (i)Ai_w_l.
1+j=n
Theorem 3.2. (The structure of (F1X,d1X)).
(1) (ErX,d1 X) is a differential right (EyS,d,S) module, where

(2) the module structure is given by
X =H,X®ES.
(8) The differential is given by
di(a®1) = Z(aSqi ® Ni—1),a € Hy X.

i>0

Since we only consider Z/2 coeffients (co)homology , then H,(X) = Hom(H"(X),Z/2).
There steenrod algebra acting on H, X in an obvious way, which decreasing the homological
degree.

In order to see the E;S module structure of £1.X, we have to introduce free restricted Lie
algebra.

We recall the definition of the free restricted Lie algebra on a Z/pZ-module M.

Let TM be the tensor algebra TM = @®,>0M®", where M®" = M ® ... ® M r-times. For
a,b € TM, define [a,b] = ab — ba and aP! = a?; then the free unrestricted Lie algebra LM
on M is the smallest sub Z/pZ-module of TM containing M. Denote by

LM =Y L'M,L"M = L"M N M®".

r>0
And the free restricted Lie algebra LM on M is the smallest sub Z/pZ-module of T'M
containing M and closed under the operations [, ] and (). Put

L.M=LMnNM"

so that
LM = Z L, M.
r>1

For each r, L, M is a functor of M. A result of Zassenhaus is
Proposition 3.3. [, Prop 3.3] If G is a free group, there is for each r a natrual isomorphism
[G/T1G ~ L.(G/TLG).
Since the isomorphism is natrual , and I'/T'y = A, by applying to F'X, we get
Tl T FX >, L, AX 7 > 0.

We now can define the composition operation on homotopy groups of m,(I', /"1 1) FX =~
mo L, AX.

Definition 3.4. For = € m L, AS, we have © € m L, AS; = mL,.K(s), by Dold-Kan
correspondence, it corresponds to a map

ASi s =K(t+s) — L, K(s) = L.AS;.
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And y € m,L,AX, it corresponds to
AS; = K(s) — L,AX.

We therefore define their composition xy to be

ASips = K(t +8) —* LK (s) = L AS, Y L. L, AX — L, AX .

This is an element of m,, (LAX.

Now, we see the composition operation turns m,LAS into an associative graded algebra
with unit and 7,LAX into a right module over it.

For Theorem 3.2 (2), there is an isomorphism

H. X @ m,LAS — 7. LAX
given by a ® 1 — a.

Proof. (Sketch) This is trivial if X has homotopy type of g-fold suspension ¥4S of sphere
spectrum. For arbitary X, this is basically follows from AX is Z/2 simplicial vector space,
which must be direct sum of K(Z/2,n) = AX"S. O

3.1. The additive structure of E;S.

The groups m,LAS,, are connected by the suspension homomorphisms
T« LAS, =, Tur1LAS, 11 n >0
and for each element o € 7 L, AS,, by the composition homomorphism (defined as above )
T LsAS; = m.L.sAS,

We will often use the same symbol for an element o € m,LAS,, and its suspensions as
well as for the corresponding element of 7,_,LAS. No confusion will arise as composition is
compatible with suspension; i.e. the diagram

Ty LASq+1 EL) Tst1 LASnJrl

E Tsmp

m.LAS, —*— 7m.LAS,

is commutative for every o € m,LAS,,. Of course, all these are also hold for the groups
T L"AS, where L" is the free unrestricted Lie algebra functor.

Definition 3.5. Let V' be a simplicial vector space, let y € V,,z € V,. Then define y®z €
(V®V)y4q to be

YRz = Z 5y @ 5,2.
(b,a)
Sq4 = Sa,*** Say> Sb = Sp, "+ Sp,. Where sum is taken over all permutations {a1,..., a4, b1, ...
of {0,...,p+ ¢ — 1} for which a; < --- < a, and b; < --- < b,. The sign is the sign of
permutation. (If p = ¢ = 0, this is just the tensor product.)

Remark 3.6. This is also denoted as yVz, called the shuffle product.
8
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Definition 3.7. (The elements \,)
Let i, € AS,, be the element represents the unique class in 7, AS,,, then we define

1= [Zn] S WnLlASn,
>\n = [Zn@Zn] € WangASn.

Since we need to compute 7, LAS, we need the stable version of this , thus A, will also
stand for any of its suspension.

Proposition 3.8. (Additive structure of m,LAS) The compositions
Aip oA, 1
for which k > 0 and i;11 < 2i;,5 > 0, form a basis for m,LAS.
In order to prove it, we just need the following unstable version proposition.
Proposition 3.9. (Additive structure of m,LAS,,) The compositions
Ay oA, 1
for which k> 0,41 > n and 41 < 2i;,5 >0, form a basis for m,LAS,,.
Proposition 3.9 is a consequnce of following 2 lemmas combining with induction.

Lemma 3.10. The inclusion map L*AS, — LAS, and the function “composition on the
right with Ao 7 induces isomorphisms

oL, AS, ~ . L AS,, rodd.
T Ly AS,, >~ . L AS,, + ’/T*LgASn, reven.
Proof. (Sketch)

This is follows form,
(1) notice that we have decomposition

LM = LM x LM

as set, through squaring map.
(2) The map on homotopy groups induced by squaring map is composition with Ag. O

Lemma 3.11. Let n > 0. Then the suspension homomorphism % : w,_1L"AS,_1 — m,LAS,
and the composition homomorphism A\, : m,L"*ASs, — m,L"*AS,, induces isomorphisms

T Ly AS, ~ . L AS,—1, rodd,

oLy ASy, ~ T 1 LAS,—1 + W*L%AS%, reven.

Remark 3.12. If we have already proved Lemma 3.11, we are be able to prove Proposition
3.9.

Remark 3.13. By notice the module structure of 7, LAX, we will get
0, )T, FX =, L,AX = 0,if r # 2%,

for some k.

This k stand for the length of monomial \;, ---\;
9
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Proof of Theorem 3.1 (1) and Theorem 3.2 (1). It remains to prove the statements about
the differential in part (1) of Theorem 3.1 and 3.2. Form the Remark 3.13 let

o € mgloyi AX = Ty (ng/l“gm) FX

5 € WtLQjAS = Tt (FQj/F2j+1)FS

Let b € T'y; F'S be such that dob € ['g+1 F'S,d;b = * for ©+ # 0 and projb € . Then proj
dob € dfs.

o This is because we view § € m, (g /Tgi+1) F'Ss), form the definition of homotopy group
of simplicial spectrum. We then have following diagram.

F2j+1 FSS sz FSS sz/F2j+1 FSS

! "
0 »Nyygr1 —— Neysp1 —— Ny (g ——0

do do do
/! 2
0 Nt-l-s Niys Nt+54>0
do do do

! "
0 »Niyg 1 —— Nigso1 ——— Ny ——0

Write b in the form B(F'i) where B is a formula involving only degeneracy operators and
the operations product and inverse and where i € S is the only non-degenerate simplex.

Let m be the largest integer for which B involves the operator s,, and let £ be an integer
such that 2k >t + m.

Then there exists a simplex a € ['yi X such that doga € T'yit1 F X, d;a = * for i # 2k and
proj a € o and hence proj dora € dav.

o This is because we view a € Top—si(2k—s)(F2i /T2i+1 F X1 —5). And from the similar dia-

gram as following:
10



F2i+1 FXQ]{,S ng FXZkfs FQi/FQiJrl FXQkfs

k+
dogy1 dog41 dak41
/ "
0 N, Nay N 0
do dog doy,

e Recall the composition map:

A8y 1 A8 L AX

And it turns to be:

L«
ASi 4oy (2k—s) 2, Lyj ASoy, re, Loiv; AXop—s

This implies that the simplex B(a) € Tyt FXo,_s, such that proj B(a) € Ba, proj
doB(a) € B(da), proj dex4+B(a) € (dfB) o and d; B(a) = * for i # 0,2k + t.
For 1 <[ < 2k, we have
dB(Fi) = 0,
thus
dlB(CL) =0.

For 2k < | < 2k +t, since the choice of 2k we can use the simplicial relation of d;and s;
move d; next to a, i.e.

di(B(a)) = B(di_a) = 0.

We have following diagram,
11



Doivit1 F' Xop_ Doivi F Xop_s Iyits /P2i+]’+l FXo_s

proj

/ "
_ _ _— _—

e
do do do
/ proj "
0 ———— Nopyy ———— Nopgy Nt » 0
do do do

proj

/ "
—_ -
0——— Njpoy 4 Nopri1 Nojri-1 0

And,
0
Copt — Coppr—1
o,
Nogrt — Nogri—1-
2kt 2t
Which means we can calculate 0(B(a)) = Z(—l)idiB(a) = Z d;B(a) and project it to
i=0 i=0

the normalized group. But dyB(a) + dag+B(a) already in N2k+t—_1, which means dyB(a) +
dor+¢B(a) is what we want.
ie.,
d(Ba) = proj(dB(a)) = proj(deB(a) + (=1)**'dy1+B(a)) = (dB)a + (—1)"B(da).
O

Remark 3.14. The d above is the differential map of E1.X, we write d for d; : E1 X — E1 X
to distinguish with the face map dy : Xy — Xp_1.

In order to prove the lemmas, we need some facts are the analogue of the Whitehead
lemma.

Definition 3.15. A free simplicial Lie algebra Y is an s.s. Lie algebra for which there exists
submodules B,, CY,, with the properties

(1) Y,, is the free unrestricted Lie algebra on B,, for all n.

(2)if b € By, and 0 < i < n, then s;b € B, ;.

Let V and W be two vector spaces, and

p: VoW =W,
12



be the projection map.

Then the kernel of map

L(p): LY(Vae W) — L*W,

is L*(U).[3, proposition 3.1]

where

U=VTW)=VeVeaW) e --o(VeaW) a---.
LY(U) — L*(V @& W) is defined by
VRW R @wy = [, [v,wi], ..., wy].
o If V1, V5, ...V, are vector spaces, we have
LY (@i, Vi) = @i L*(V)).

o The lower central series of a simplicial Lie algebra R is defined by I''R = R, and
I''R=[T,1R R].

« The Abelianization of Lie algebra R is AbR = R/[R, R] = R/TyR.

Proposition 3.16. (Whithead Lemma for simplicial Lie algebras) Let f Y — Y’ be a Lie
map between connected free simplicial Lie algebras. If m,Abf is a isomorphism, then so is

T f.

Proposition 3.17. If R is a connected free simplicial Lie algebra, then I'. R is logsr conneted,
i.e.,my(I'yR) = 0 for q < logar.

Remark 3.18. The important here is that the connectivity I', R — oo.

Proposition 3.19. Let f : R — R’ be a homomorphism of free simplicial Lie algebras. Then
if (Abf). is an isomorphism, so is

(Crf /g1 f)s

We now already to prove Lemma 3.11.

Proof of Lemma 3.11. We shall proof it for n > 1.
Let W be the simplicial Lie algebra freely generated by simplices z,y and z in dimensions
n — 1,nand 2n respectively, with faces d,y = x, d;y = * for ¢ # n, and d;z = *, for all .

W o~ L*(AS,—1 & AS,, & ASa,).
And let f: W — L*AS,, be the Lie map given by y — i, and z — ©,®1,,.
f correspondes to the projection:

XeoYopzZ—-Y

(z,y,2) = (0,3,y2y)
The complex T' = ker f then is a free simplicial Lie algebra which in every dimension is
freely generated by the simplices of the form

I [z,y,...,y] r>1
I [(y@y_z)ay77y] 7021

where the s,, are iterated degeneracy operators, and AbT is an simplicial Z/2-module on the
same generators. Let U C AbT be the submodule generated by the simplices of the form I

and let V = (AbT")/U. Then one readily verifies that m;U = Z/2 with generator [z,y, ..., ]
13



whenever ¢ = rn — 1 for some r > 1 and m;U = 0 otherwise and that =,V = Z/2 with
generator [(y ® y — 2),v,...,y| whenever i = rn for some r > 2 and m;V = 0 otherwise.
However, in AbT' the generators in dimension > n — 1 kill each other, i.e.

drn[(y@y—z),y,--.,y] = [x,y,y,...,y]
di[(yQy — 2),y,...,y] =0 fori<rn

These are follows from :

d;(yQy — z) = d;(yQy) = dl(z S0y ® SpY) = Z disay ® d;spy = Z S diy @ sgrdiny.

e Those «, 8 can not move d; next to y will kill each other. This can only happen when
1t — 1,7 not on the same half shuffle. Since, suppose i — 1,7 € «a, then by the simplicial
relations of d;, sj, we can know d; can move next to y. Suppose ¢ — 1 € «,7 € 3, we take a
new shuffle o/, 8’ only exchange the position of 7 — 1 and 7. And it indeed is a shuffle.

Therefore we have

di(y®y — z) = di(y®y) =0, if i # 2n
dQﬂ(y@y) = Z koSay X d2k85y

= Z Sardny @ SgY + Z Sany & 36”dny

= Z Sq @ Spy + Z Sa/T & SpY

=rQy+yc=I[z,yl.

(3.1)

e One may use
O(yxy) = dyQy + yRdy.
Therefore we have
Again by calculate
' den([y @y — 2,9, y]) = [T, 9, ..,y

we can have
di([z,y,...,y]) =0.
And thus 7, 1 AbT = Z/2 with generator x and mAbVT = 0 for i # n—1. Asn > 1 the
Whitehead Lemma implies that the Lie maps g : L*AS,,_1 — T and h : W — L"*ASj,, given
by 4,1 — x and z — s, induce isomorphisms of the homotopy groups. As the composition

LAS, T 2y My ruas,,

is trivial it follows that 7 S TV is trivial on the homotopy groups. The exactness of the
homotopy sequence of the fibre map f: W — L*AS,, now yields the desired result.
And we shall notice that
T~
T L"AS,, — w1 L"AS, 1
14



Therefore we have

moLASs, ~ W f*> T L"AS,, 2, Te1 LY AS,_1

is split.
Which means we have

T LiAS, >~ T 1 LYAS, 1 + W*L%AS%, r even.

3.2. Relations of lambda algebra. In this section, we will prove Theorem 3.1 (3),(4).
As m,L5AS is generated by the A, and as the map

m I AX =H, X % 1. 1,AX = H, X @ 7, L, AS

is natural. It follows from the duality between H, X and H* X that there are unique elements
T,, € </ (Steenrod algebra), with degree 7,, = n such that

a i> Z (aTn X /\n—l)
n>0
for all « € H, X and we thus have to prove that T, = Sq" for all n > 0.
This we will do using the following fact.

Remark 3.20. Sq™ € f is the only non-zero element of degree n which vanishes on Hy,,_1 AS,,_1.

Let X be the spectrum such that Xy = AS,_; and X, is the g-fold suspension of X, for
q > 0. Then we have a commutative diagram

d
Hyp1 Xo = Wzn—2(F1/F2)GX0 — 7T2n—3(r2/F3)GX0 = E(Hz’ Xo® 7T2n—3L2ASi—1> +u

:l f lg
HQn—l X = 7T2n_1(F1/F2)FX d—1> 7T2n_2<F2/F3)FX = E(Hl X (%9 7T2n_2_iL2AS)

where G is as in [3, Section 7] and f and g are induced by the "inclusion” Xy C X. The upper
left equality is proved as in [3, Theorem 15.1] and implies that f : Hy, 1 Xo — Hg,—1 X is
the isomorphism induced by the "inclusion”. The upper right equality is a consequence of
3.9; as cross effects are killed by suspension. one can choose the direct summand U in such
a manner that it is killed by g. And as on X(H; X ® ma,_3L2AS;_1) the map g is the map
induced by the "inclusions” Xg C X and S;_; C S it follows 3.9 that an element b ® \,,_; is
in the image of g only if b = 0. Thus a7,, = 0 for all a € Hy,_1 X and therefore also for all
a € Hy,—1 X and it thus (Remark 3.20) remains to show that 7}, # 0.

In order to do this we take a closer look at the spectral sequence for AS.

First we recall from [10].

Remark 3.21. H, AS is a polynomial algebra on generators &; of degree 2! — 1(i > 0) with
one relation £, = 1. The Sq™ operate on the right on H, AS according to the formulas

§Sq =&+ & where Sq = ) Sq"

(€€') Sq = (€Sq) (€/Sq) for all £,¢ € H, AS.
15



Now 77 = 0 would imply that 1 ® \g € E,AS, which would contradict the convergence
of the spectral sequence [0, Theorem 4.1].

e Since di(1 ® \g) = 0, and T; = 0, therefore it cann’t lives in im(d;) . Thus 1 ® Ag €
Ey'AS, and in B, AS.

Proposition 3.22. [6, Theorem 4.1] If X is simply connected and has finitely generated
homotopy groups, then FE; X is weakly convergent, and E..X is the graded group associated
with filtration of m.(X;p).

Remark 3.23. Then spectral sequence F; X mentioned above is just the unstable version we
construced in this section.

Thus T} = Sq¢*. Similarly T, = Sq? (because otherwise 1 ® A\; or 1 ® A\; + & ® )¢ is in
EAS).

Therefore assume inductively that T,, = Sq¢™ for n < 2k(k > 1) and suppose Toy,1 were
0 . Then a simple calculation (using 3.20) yields that dyd; (5155’) is a polynomial in the ¢&;
with coefficients in 7,L4AS of which the constant term is A\ Agp_1.

o This is basically because

(3.3) d'd (6&8) = Y (6&5)Se)Se @ A+ ) &&sSq @ d' Ay
i>0,j>0 >0
For the reason of degree, the second term above can’t have constant term. And in the
first term, ¢ must be 2k, j =k + 1.

But as did; = 0 this would imply AxAox—1 = 0, in contradiction to 3.9. Thus Thry; =
Sq?* 1. Applying the same argument to £2¢5 we get also that Thy, o = S 2.

Proof of Theorem 3.1 (3) and (4). One can write did; (£7€5") (m > 1) as a polynomial in
the &; with coefficients in 7, L4AS.

Let’s compute the constant term of dyd;(£7°€5") and dydy(&}).

First, we compute the constant term of did; (£7).

Since we have

(&1)Sq = (&15¢)"
= (& +1)"

(1)

Since S¢' : H,(AS) — H._;(AS), therefore we have £1'Sq* = ()&,

(3.4)

didy (&) = dl(z &1Sq" ® Ni—1)
>0
(3.5) =di(D>_&8e) @M1+ &8¢ @ dNia
>0 1>0
= Z (&75¢")S¢ @ Aj—1Aim1 + Z ErSq" @ dNiy
1,5>0 i>0
Since we are computing constant term, therefore ¢ + j = n, constant term in the sencond

term ¢ must be n.
16



i.e. we have

Z <n) (n B Z) Aj—idic1 +dA—1 =0
i)\ J

i,7>0

(3.6) i
> (i)Ai_lAH = d\y
(£163")Sq = (&59)™ (&u1Sq9)"
= (& +&)"(&+1)"
(3.7) =0 (7?) e (Z) )
a=0 B=0
ol
didy (§1€5") = di (D> 165" Sq" @ Aia)
>0
= di(Y_ &GS @Ay + ) 66Sq @ dhiy
(3.8) >0 >0
=) (§8'Sq)S¢ @ N\adio+ Y EESe @ dhiy
1,7>0 >0

For the reason of degree, the second term in the last row of (3.8) have no constant term.
Then the constant term of (3.8) must be

N €[ G B

2a+4-p=1,2a/+p'=j,a+a’'=m,f+ L' =n+m
But for the reason of degree agin, o must be m.
Then the constant term is

n n
Z (ﬁ) )\jfl)\ifl = Z (Z/) )\i’+m71)\j’+2m71

i=2m+B,j=m-+n—p i/+j'=n,i'=n—L

n
> <2’) Airgm-1Ajrr2m—1 = 0.

i'+j'=n,i'=n—p
And these are all relations, because these relations just tell us nonadmissble monomials
how to represent by admissble basis.

Then in A we have

O

Remark 3.24. As said before, there is a way to get the relations in 1.2.
Which is by calculate

didi(r) =0=>_ 25¢'S¢ @ \j1hio1 + > 2S¢ ® dAiy.
,7>0 i>0
17



using Adem relations:

[a/2]

b—1-—

Sq*Sq’ = Z ( . QCC> Sqett=eS¢c,  for 0 < a < 20.
c=0

4. COMPARISON WITH ADAMS SPECTRAL SEQUENCE
In this section, we will prove following result.

Theorem 4.1. Let X be a simplicial spectrum, the spectral sequence {F;X,d; X }we con-
structed in section 3 is exactly the Adams spectral sequence of X, when 1 > 2.

We only need to prove
H,T9j1 FX =1, Al F X

|

H, Ty FX = m, ATy FX

is trivial map.
By [5, 15.4] the naturality result, we have following diagram.

7T*AF2j+1 FX —— W*Arzj FX
7T*F2j+1FAX E— W*ngFAX
we only need to show the bottom map is trivial.

Proposition 4.2. The spectral sequence collapses for spectra of the form AX, i.e. if X is
a spectrum, then
EyAX = B AX.

Proof. Tt suffices to prove this if X = S. By 3.1, 3.2 and Remark 3.20 F;AS is freely
generated by the elements
(1) g

for which a; > 0 for all ¢ and ;41 < 2¢; for all j > 0. Moreover, a straightforward
calculation, using Remark 3.20 and caculation in section 3, yields

(4.2) dy (&7 - & Ay Ai) = 67 G A A e A, +Z§11 N A

where j = oy, - 271 4+ .- 4+ a; — 1 and where the sum is taken over certain generators with
the property that

im

0, gy yan) < (Bry oy B1) < (g, ..oy 1)
in the lexicographical ordering.

For every integer t > 0 let F' be the submodule generated by the generators of the form
(4.1) for which k +m > ¢ where k is the largest integer for which o, > 0. By (4.2) v € F*
implies d;y € F* and hence Q' = F'/F'™! is again a differential module. Now for fixed ¢ and
s < tlet G° C Q" be generated by the generators of the form (4.1) for which either m > s or
m=sand i, <agp-28+---+a;-2—2. Then R* = G*® /G is again a differential module

18



and it follows readily from (4.2) that H, R® = 0 for all s, which implies that H, Q" = 0 for
all ¢ > 0. Again, using (4.2), a standard argument now yields that E;AS = Z/2
o This is basically because we have
0 F? 5 F'=Q'—=0
and
0= F > F?*—>Q*—0
0= F™ S5 F' Q"' —0
Since H, Q" = 0,7 > 0.
We get
0=H. Q' —H,F>— S HF'— S H.Q =0

0=H,, Q' — H, F'"'' — H, FF — H. Q"' =0

But for fixed * > 0 when i — oo H,(F") = 0, therefore E;AS = Ho(F1AS) = Z/2.
Therefore EyAS = E AS.
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