Finite Group actions on Manifolds

Ignasi Mundet i Riera¹ Rixin Fang ²

¹Universitat de Barcelona

²USTC

May 29, 2020

Universitat de Barcelona, USTC

• What is symmetry?

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 目 のへ(

Universitat de Barcelona. USTC

Introdution	Main Theorem and Preparation	Some lemmas for group action	Sketch of proof	

- What is symmetry?
- How to describe symmetry percisely?

- What is symmetry?
- How to describe symmetry percisely?

In Mathematics, automorphism group represnts symmetry.

Definition

A group is a set G, together with an operation(multiplication), and there exists an identity element and the operation satisfies associative law.

Introdution	Main Theorem and Preparation	Some lemmas for group action	Sketch of proof	

- For example, the set of rotations and reflections is the symmetry information of circle.
- And it indeed forms a group, the operation is composition.

Defintion

- 1. A subgroup of *G* is a subset *H* which is still a group under the operation of *G*.
- 2. A group G is called abelian group, if the operation is commutative.

Jordan Theorem

 $\forall n \in N$, there exists a constant C_n such that if G is a finite subgroup of GL(n, R) (invertible linear transformation), then G has an abelian subgroup A, $[G : A] \leq C_n$.

 Jordan theorem shows us the (automorphism group)symmetry of linear space has Jordan property.

Universitat de Barcelona, USTC

- Jordan theorem shows us the (automorphism group)symmetry of linear space has Jordan property.
- What if we consider non-linear space?

Universitat de Barcelona, USTC

- Jordan theorem shows us the (automorphism group)symmetry of linear space has Jordan property.
- What if we consider non-linear space?

Definition

A *n* dimensional smooth manifold is locally like R^n , and with smooth condition.

- Homology of manifold are alebraic information of manifold, can be view as ID of the space.Denoted by H_{*}(X).
- Euler characteristc is also algebraic information of a space. Denoted by χ .

Let's see some examples of manifold.

 Roughly speaking, the paper proofs if G is finite subgroup of diffeomorphism group of some manifold, then it satisfies the Jordan property.

Notation

Suppose that C is a set of finite groups, in the proof, we let C be the set of finite subgroups of Diff(X).

- P(C) be the set of all $T \in C$, the order of T is a prime power.
- We denote by T_A(C) the set of all T ∈ C such that there exist primes p and q, an abelian Sylow p-subgroup P of T, and a normal abelian Sylow q-subgroup Q of T, such that T = PQ.

Definition

Let c and d be positive integers. We say that a set of groups C satisfies (the Jordan property) J(c, d), if each $G \in C$ has an abelian subgroup A such that $[G : A] \leq c$ and A can be generated by d elements.

Lemma 3.2

Let *d* and *M* be positive integers. Let *C* be a set of finite groups which is closed under taking subgroups and such that $P(C) \cup T_A(C)$ satisfies J(M, d). Then there exists a positive integer C_0 such that *C* satisfies $J(C_0, d)$.

Theorem 1.2

Let X be a smooth manifold belonging to one of following three collections, if finite group G acting effectively and smoothly on X, then G satisfies J(C,d), and C,d **depending only on** dimX, $H_*(X)$.

- 1. Acyclic manifolds, $H_0(X) = \mathbb{Z}, H_i(X) = 0, i > 0.$
- **2**. Connected compact manifolds with $\chi \neq 0$
- 3. $H_*(X,\mathbb{Z}) \simeq H_*(S^n,\mathbb{Z})$
- Since G acting effectively and smoothly on X, G is a subgroup of Diff(X).

For group action, we have following lemma.

Lemma 2.1

Let a finite group Γ act effectively and smoothly on a **connected** manifold X, and let $x \in X^{\Gamma}$. Then we get an inclusion $\Gamma \to GL(T_xX) = GL(n, \mathbb{R})$.

For *p*-group action case, we have following lemma.

Lemma 2.2

p be a prime, let X be a \mathbb{Z}_p acyclic manifold, \mathbb{Z}_p acts on X, then *F* (fix point space) is not empty, and *F* is \mathbb{Z}_p acyclic manifold.

Lemma 2.3

Let Y be a **compact** smooth manifold, satisfying $\chi(Y) \neq 0$. Let p be a prime, and let G be a finite p-group acting smoothly on Y. Let r be the biggest nonnegative integer such that p^r divides $\chi(X)$. There exists some $y \in Y$ whose stabilizer G_y satisfies $[G:G_v] \leq p^r$.

Lemma 2.4

Let X be a manifold, let p be a prime, and let G be a finite *p*-group acting continuously on X. We have

$$\sum_{j} b_{j}(X^{\mathsf{G}}, \mathbb{Z}_{p}) \leq \sum_{j} b_{j}(X, \mathbb{Z}_{p})$$

Ignasi Mundet i Riera Rixin Fang Finite Group actions on Manifolds Universitat de Barcelona, USTC

• For $T_A(C)$ type group action, we have following.

Lemma 4.2

Suppose that X is a smooth connected manifold and that $G \in T_A(C)$. Assume that there is a G-invariant **connected** submanifold $Y \subset X$. Let G_Y be the group consisting of all diffeomorphisms of Y which are induced by restricting to Y the action of the elements of G. Let $r := \dim X - \dim Y$. If G_Y is abelian, then there is an abelian subgroup $A \subset G$ satisfying $[G : A] \leq r!$.

Sketch of proof of case 1

- For *p*-group case, by lemma 2.2, X^G is F_p acyclic, therefore it is nonempty and connected, then by lemma 2.1, G is subgroup of GL(n, R), then use Jordan theorem.
- For $T_A(C)$ -group case, let $G = PQ, Y = X^Q$, for the same reason, we have Y is nonempty and connected.
- Since Q is normal in G, Y is G-invariant space, by lemma 4.2, G has Jordan property.

Sketch of proof of case 2,3

- *p*-group case, by lemma 2.3, there is a point *x*, $[G : G_x] \leq p^r$.
- By lemma 2.1 G_x is the subgroup of $GL(T_x) = GL(n, \mathbb{R})$, then use Jordan theorem, G_x has Jordan property, so G has.
- *T_A(C)* case, first find *Q'* ⊂ *Q*, which is normal in *G*, and it has fix point.
- Then, by lemma 2.4, the component of X^{Q'} is bounded, for a component Y, find P' ⊂ P which the fix point space is not empty, and P' preserves x, then for P'Q' use lemma 4.2.
- Case 3, p-group case is known, for T_A(C) group case, the key thing is to use Borel formula.

Summary

- A finite group acting effectively and smoothly on three types of manifolds, then it has Jordan property.
- The main idea of proof is to reduced to *p*-group case and T_A(C)group case.
- For *p*-group case, we find a fix point then use 2.1.
- For $T_A(C)$, we find a submanifold, and using lemma 4.2.

Summary

- The theorem reflects the symmetry information of some geometric spaces.
- For example, The finite subgroups of SO(3) (rotation group of 3 dimensional space) exactly corresponds to all regular polyhedrons and sphere!
- What about other manifolds(Spaces)?