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What is symmetry?

How to describe symmmtry percisely?

In Mathematics, automorphism group represnts symmetry.

Definition

A group is a set G , together with an operation(multiplication), and
there exists an identity element and the operation satisfies
asscoiative law.
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For example, the set of rotations and reflections is the
symmetry information of circle.

And it indeed forms a group, the operation is composition.
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Defintion

1. A subgroup of G is a subset H which is still a group under
the operation of G .

2. A group G is called abelian group, if the operation is
commutative.

Jordan Theorem

∀n ∈ N, there exists a constant Cn such that if G is a finite
subgroup of GL(n,R)(invertible linear transformation), then G has
an abelian subgroup A, [G : A] ≤ Cn.
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Jordan theorem shows us the (automorphism group)symmetry
of linear space has Jordan property.

What if we consider non-linear space?

Definition

A n dimensional smooth manifold is locally like Rn, and with
smooth condition.

Homology of manifold are alebraic information of manifold,
can be view as ID of the space.Denoted by H∗(X ).

Euler characteristc is also algebraic information of a space.
Denoted by χ.
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Let’s see some examples of manifold.

Roughly speaking, the paper proofs if G is finite subgroup of
diffeomorphism group of some manifold, then it satisfies the
Jordan property.
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Notation

Suppose that C is a set of finite groups, in the proof, we let C be
the set of finite subgroups of Diff (X ).

P(C) be the set of allT ∈ C , the order of T is a prime power.

We denote by TA(C ) the set of all T ∈ C such that there exist
primes p and q, an abelian Sylow p-subgroup P of T , and a
normal abelian Sylow q-subgroup Q of T , such that T = PQ.
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Definition

Let c and d be positive integers. We say that a set of groups C
satisfies (the Jordan property) J(c , d), if each G ∈ C has an
abelian subgroup A such that [G : A] ≤ c and A can be generated
by d elements.

Lemma 3.2

Let d and M be positive integers. Let C be a set of finite groups
which is closed under taking subgroups and such that
P(C ) ∪ TA(C ) satisfies J(M, d). Then there exists a positive
integer C0 such that C satisfies J(C0, d).
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Theorem 1.2

Let X be a smooth manifold belonging to one of following three
collections, if finite group G acting effectively and smoothly on X ,
then G satisfies J(C,d), and C,d depending only on
dimX ,H∗(X ).

1. Acyclic manifolds, H0(X ) = Z,Hi (X ) = 0, i > 0.

2. Connected compact manifolds with χ ̸= 0

3. H∗(X ,Z) ≃ H∗(S
n,Z)

Since G acting effectively and smoothly on X , G is a
subgroup of Diff (X ).
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For group action, we have following lemma.

Lemma 2.1

Let a finite group Γ act effectively and smoothly on a connected
manifold X , and let x ∈ X Γ.
Then we get an inclusion Γ → GL(TxX ) = GL(n,R).

For p -group action case, we have following lemma.

Lemma 2.2

p be a prime, let X be a Zp acyclic manifold, Zp acts on X, then F
(fix point space) is not empty, and F is Zp acyclic manifold.
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Lemma 2.3

Let Y be a compact smooth manifold, satisfying χ(Y ) ̸= 0. Let p
be a prime, and let G be a finite p-group acting smoothly on Y .
Let r be the biggest nonnegative integer such that pr divides
χ(X ). There exists some y ∈ Y whose stabilizer Gy satisfies
[G : Gy ] ≤ pr .

Lemma 2.4

Let X be a manifold, let p be a prime, and let G be a finite
p-group acting continuously on X . We have∑

j

bj(X
G ,Zp) ≤

∑
j

bj(X ,Zp)
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For TA(C ) type group action, we have following.

Lemma 4.2

Suppose that X is a smooth connected manifold and that
G ∈ TA(C ). Assume that there is a G-invariant connected
submanifold Y ⊂ X . Let GY be the group consisting of all
diffeomorphisms of Y which are induced by restricting to Y the
action of the elements of G. Let r := dimX − dimY . If GY is
abelian, then there is an abelian subgroup A ⊂ G satisfying
[G : A] ≤ r !.
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Sketch of proof of case 1

For p-group case, by lemma 2.2, XG is Fp acyclic, therefore it
is nonempty and connected, then by lemma 2.1, G is
subgroup of GL(n,R), then use Jordan theorem.

For TA(C )-group case, let G = PQ,Y = XQ ,for the same
reason, we have Y is nonempty and connected.

Since Q is normal in G , Y is G -invariant space, by lemma
4.2, G has Jordan property.
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Sketch of proof of case 2,3

p-group case, by lemma 2.3, there is a point x , [G : Gx ] ≤ pr .

By lemma 2.1 Gx is the subgroup of GL(Tx) = GL(n,R),then
use Jordan theorem, Gx has Jordan property, so G has.

TA(C ) case, first find Q ′ ⊂ Q, which is normal in G , and it
has fix point.

Then, by lemma 2.4, the component of XQ′
is bounded, for a

component Y , find P ′ ⊂ P which the fix point space is not
empty, and P ′ preserves x , then for P ′Q ′ use lemma 4.2.

Case 3, p−group case is known, for TA(C ) group case, the
key thing is to use Borel formula.
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Summary

A finite group acting effectively and smoothly on three types
of manifolds, then it has Jordan property.

The main idea of proof is to reduced to p-group case and
TA(C )group case.

For p-group case,we find a fix point then use 2.1.

For TA(C ), we find a submanifold, and using lemma 4.2.
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Summary

The theorem reflects the symmetry information of some
geometric spaces.

For example, The finite subgroups of SO(3) (rotation group
of 3 dimensional space) exactly corresponds to all regular
polyhedrons and sphere!

What about other manifolds(Spaces)?
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