NOTES ON COHOMOLOGY OF $SL_n(\mathbb{Z})$

RIXIN FANG

In this short notes, we study the restriction map res : $\mathrm{H}^*(\mathrm{SL}_n(\mathbb{Z}), M) \to \mathrm{H}^*(H, M)$, where H is a finite index subgroup of $\mathrm{SL}_n(\mathbb{Z})$ and M is an $\mathrm{SL}_n(\mathbb{Z})$ module.

To answer the question, we need find all finite index subgroups of $SL_n(\mathbb{Z})$. This problem was solved by Mennicke and Bass–Lazard–Serre [2], more specifically, they proved following theorem.

Theorem 0.1. [2, Theorem 14.1] The kernel of the reduction map $SL_n(\mathbb{Z}) \to SL_n(\mathbb{Z}/l)$ is denoted by $\Gamma_n(l)$. A subgroup H of $SL_n(\mathbb{Z})$ is called congruence subgroup if there exsits $l \in \mathbb{Z} \setminus \{0\}$ such that $\Gamma_n(l) \subseteq H$. For $n \geq 3$, all finite index subgroups of $SL_n(\mathbb{Z})$ are congruence subgroups.

For the case n = 2 Theorem 0.1 fails.

Let $\Gamma = [\operatorname{SL}_2(\mathbb{Z}), \operatorname{SL}_2(\mathbb{Z})] \subseteq \operatorname{SL}_2(\mathbb{Z})$. Then by [7, Chapter I 4.3, Proposition 18] Γ is a free group, and its rank is 2 [4, page 248, example 3]. We have computed $H_*(\operatorname{SL}_2(\mathbb{Z}), \mathbb{Z})$ in homework 6, and we have free resolution for \mathbb{Z} over $\mathbb{Z}[\Gamma]$ [4, page 18, example 4.3].

$$H_*(SL_2(\mathbb{Z})) = \begin{cases} \mathbb{Z}, & * = 0, \\ \mathbb{Z}/12, & * > 0, \text{odd}, \\ 0, & * > 0, \text{even.} \end{cases} \quad H_*(\Gamma) = \begin{cases} \mathbb{Z}, & * = 0, \\ \mathbb{Z}^{\oplus 2}, & * = 1, \\ 0, & \text{otherwise.} \end{cases}$$

Since $\operatorname{SL}_2(\mathbb{Z}) = \mathbb{Z}/4*_{\mathbb{Z}/2}\mathbb{Z}/6$, for a trivial $\operatorname{SL}_2(\mathbb{Z})$ -module M, using the resolution free resolution for \mathbb{Z} over $\mathbb{Z}[\Gamma]$ and Mayer-Vietoris sequence we get follows.

$$\mathbf{H}^*(\Gamma) = \begin{cases} M, & * = 0, \\ M \oplus M, & * = 1, \\ 0, & \text{otherwise.} \end{cases}$$

$$\cdots \longrightarrow \mathrm{H}^{n-1}(\mathbb{Z}/2, M) \longrightarrow \mathrm{H}^{*}(\mathrm{SL}_{2}, M(\mathbb{Z})) \longrightarrow \mathrm{H}^{n}(\mathbb{Z}/4, M) \oplus \mathrm{H}^{n}(\mathbb{Z}/6, M) \longrightarrow \mathrm{H}^{n}(\mathbb{Z}/2, M) \longrightarrow \cdot$$

Thus, by the formula of cohomology of finite cyclic groups we have follows.

$$0 \longrightarrow M \longrightarrow M \oplus M \longrightarrow M \longrightarrow H^1(\mathrm{SL}_2(\mathbb{Z}), M) \longrightarrow M_4 \oplus M_6 \longrightarrow M_2 \longrightarrow \cdots$$

Take M is torsion-free.

$$\mathrm{H}^{*}(\mathrm{SL}_{2}(\mathbb{Z}), M) = \begin{cases} \mathbb{Z}, & * = 0, \\ 0, & \mathrm{odd}, \\ M/4 \oplus M/3, & \mathrm{otherwise.} \end{cases}$$

Thus, for a finite order element $\alpha \in H^*(SL_2(\mathbb{Z}), M), * > 0$, we have $res(\alpha) = 0$, where $res : H^*(SL_2(\mathbb{Z}), M) \to H^*(\Gamma, M)$.

For $n \geq 3$, since every finite index subgroup $H \subseteq \mathrm{SL}_n(\mathbb{Z})$ is congruence subgroup, i.e., there exsits $\Gamma_n(l) \subseteq H \subseteq \mathrm{SL}_n(\mathbb{Z})$. By the functoriality of the restriction map, the original question is equivalent to the following question.

Question 0.2. For a finite order element $\alpha \in H^*(SL_n(\mathbb{Z}), M)$, can one find some $l \in \mathbb{Z} \setminus \{0\}$ such that res : $H^*(SL_n(\mathbb{Z}), M) \to H^*(\Gamma_n(l), M)$ sends α to 0.

Assume t is the order of $\alpha, t \in \mathbb{Z}_{>1}$, then $t | \# \mathrm{SL}_n(\mathbb{Z}/l)$. Since $\operatorname{cores} \circ \operatorname{res} \alpha = \# SL_n(\mathbb{Z}/l)\alpha = 0$. And also t can not invertible in M, otherwise t is invertible in $\mathrm{H}^*(\mathrm{SL}_n(\mathbb{Z} M))$, then $\alpha = 0$, contradiction. By Chinese remainder theorem we have

$$\#\mathrm{SL}_n(\mathbb{Z}/l) = \prod_{p|l} \#\mathrm{SL}_n(\mathbb{Z}/p^{k_p}).$$

By induction, one gets

$$\#\mathrm{SL}_n(\mathbb{Z}/p^{k_p}) = p^{(n^2 - 1)k_p} \prod_{i=2}^n (1 - \frac{1}{p^i}).$$

Next, we list some results to partially answer Question 0.2.

Recall that $\operatorname{SL}_n(\mathbb{Z})$ acts on $\operatorname{SL}_n(\mathbb{R})/\operatorname{SO}_n(\mathbb{R})$. X is a contractible manifold of dimension n(n+1)/2 - 1. The \mathbb{Q} -rank of $\operatorname{SL}_n(\mathbb{Q})/\operatorname{Radical} = \operatorname{SL}_n(\mathbb{Q})$ is n-1 given by diagonal matrices. For l > 2, $\Gamma_n(l) \subseteq \operatorname{SL}_n(\mathbb{Z})$ is torsion-free [4, page 40, exercises 3]. Passing to the cohomology of the compactification \tilde{X} of X we have the duality theorem.

Theorem 0.3. [3, Theorem 14.1, 14.2] Let N=n(n+1)/2-1-(n-1)=n(n-1)/2.

$$H^{i}(\Gamma_{n}(l), \mathbb{Z}[\Gamma_{n}(l)]) = \begin{cases} 0 & i \neq N, \\ D, & i = N. \end{cases}$$

D is a free abelian group of infinite rank.

For a $\Gamma_n(l)$ -module A, cap product induces isomorphism.

$$H^q(\Gamma_n(l), A) \simeq H_{N-q}(\Gamma_n(l), D \otimes A).$$

Recall the Steinberg module for a division ring Λ . Denote F the quotient filed of Λ . The Tits building $\mathscr{T}(n,\Lambda)$ is a simplicial complex. A p complex is a chain of proper subspace of $V = F^n$, $0 \subseteq W_0 \subseteq W_1 \subseteq \cdots \subseteq W_q \subseteq V$.

Theorem 0.4. [6, Theorem 2] $\mathscr{T}(n, \Lambda)$ has homotopy type of bouquet of (n-2)-spheres. Then St(n) is defined to be $H_{n-2}(\mathscr{T}(n,\mathbb{Z}))$, it is a free abelian group and has a natrual $GL_n(\mathbb{Q})$ action. $St(n,p) = H_{n-2}(\mathscr{T}(n,\mathbb{F}_p))$, it is a free abelian group and has a natrual $GL_n(\mathbb{F}_p)$ action.

Theorem 0.5. [5, Theorem 1.2 and corollary]

$$H^N(\Gamma_n(3),\mathbb{Z}) \simeq St(n,3).$$

Thus by Theorem 0.3, 0.4 and 0.5 we have following theorem.

Theorem 0.6. If there is finite order element $\alpha \in H^i(SL_n(\mathbb{Z}), i \geq N, i = 1$. Take subgroup $\Gamma_n(3)$. Then $res(\alpha) = 0$ where $res : H^i(SL_n(\mathbb{Z})) \to H^i(\Gamma_n(3), \mathbb{Z})$. Or there is not finite order element in $H^i(SL_n(\mathbb{Z}), i \geq N, i = 1$.

Actually the coefficients module M can taken to be a flat $\Gamma_n(3)$ -module, under this hypothesis the Theorem 0.6 still holds. Since we have $H_{N-q}(\Gamma_n(3), D \otimes M) = H_{N-q}(P_* \otimes D \otimes M) =$ $H_{N-q}(P_* \otimes D) \otimes M \simeq St(n,3) \otimes M$, where P_* is a projective resolution of \mathbb{Z} over $\mathbb{Z}[\Gamma_n(3)]$.

Remark 0.7. For n = 3, N = 3, $H^{i}(SL_{3}(\mathbb{Z}))$ is computed in [8, Section 2.2]. And it indeed has torsion, namely we have

$$\mathbf{H}^{i}(\mathrm{SL}_{3}(\mathbb{Z})) = \begin{cases} 6m\mathbb{Z}/2, & i = 12m + 1\\ 6m\mathbb{Z}/2, & i = 12m + 2\\ (6m + 2)\mathbb{Z}/2, & i = 12m + 3\\ 2\mathbb{Z}/3 \oplus 2\mathbb{Z}/4 \oplus 6m\mathbb{Z}/2, & i = 12m + 4\\ (6m + 1)\mathbb{Z}/2, & i = 12m + 5\\ (6m + 4)\mathbb{Z}/2, & i = 12m + 6\\ (6m + 3)\mathbb{Z}/2, & i = 12m + 7\\ \cdots \end{cases}$$

For lower dimension cohomology, we list some resluts on stable cohomology of $SL_n(\mathbb{Z})$ to answer Question 0.2.

 $\operatorname{SL}_n(\mathbb{Z})$ are homology stable with \mathbb{Z} -coefficients[1]. $H_i(\operatorname{SL}_n(\mathbb{Z}), \mathbb{Z}) \cong H_i(\operatorname{SL}_{n+1}(\mathbb{Z}), \mathbb{Z})$ for $n \ge 2i + 1$. If $M = \mathbb{Q}, \mathbb{Z}[1/p]$ or \mathbb{Z}/m for all integers m with (m, p) = 1, then $H_i(\Gamma_n(p); M) \cong H_i(\Gamma_{n+1}(p); M)$ for $n \ge 2i + 5$.

For *n* large, $H^1(SL_n(\mathbb{Z})) = H^2(SL_n(\mathbb{Z})) = 0$, $H^3(SL(\mathbb{Z})) \simeq \mathbb{Z}/2$, see[Lemma 2.1] [1]. For *n* large, res : $H^3(SL_n(\mathbb{Z});\mathbb{Z}) \to H^3(\Gamma_n(p);\mathbb{Z})$ is injective [1, Section 3].

Theorem 0.8. [1, Corollary 3.3] $c_2(\mathrm{SL}_n(\mathbb{Z}))$ generates $H^4(\mathrm{SL}_n(\mathbb{Z});\mathbb{Z}) \cong \mathbb{Z}/24$. For all odd primes p the restriction map

res:
$$H^4(\mathrm{SL}_n(\mathbb{Z}),\mathbb{Z}) \to H^4(\Gamma_n(p),\mathbb{Z})$$

is zero for $n \geq 9$.

Theorem 0.9. [1, Lemma 2.2] Using universal coefficients theorem, we have $H^5(SL_n(\mathbb{Z}))$ contains only 2- and 3-torsion.

The above discussion answer the Question 0.2 for $n \ge 9$.

Remark 0.10. For other cases, the results in [1] may be improved. The methods in [5] rely on the interpretation of low-dimensional homology.

References

- D. Arlettaz. On the homology and cohomology of congruence subgroups. In Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985), volume 44, pages 3–12, 1987.
- [2] H. Bass, J. Milnor, and J.-P. Serre. Solution of the congruence subgroup problem for $SL_n (n \ge 3)$ and $Sp_{2n} (n \ge 2)$. Inst. Hautes Études Sci. Publ. Math., (33):59–137, 1967.
- [3] A. Borel and J.-P. Serre. Corners and arithmetic groups. Comment. Math. Helv., 48:436–491, 1973.
- [4] K. S. Brown. Cohomology of groups, volume 87 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1982.
- [5] R. Lee and R. H. Szczarba. On the homology and cohomology of congruence subgroups. *Invent. Math.*, 33(1):15–53, 1976.
- [6] D. Quillen. Finite generation of the groups K_i of rings of algebraic integers. In Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pages 179–198. Lecture Notes in Math., Vol. 341, 1973.
- [7] J.-P. Serre. Trees. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation.
- [8] C. Soulé. The cohomology of SL₃(**Z**). Topology, 17(1):1–22, 1978.