
NOTES ON GROTHENDIECK RING OF VARIETIES

RIXIN FANG

Abstract. In this notes, we mainly concerned about K0(Vark). We will introduce the Grothendieck
spectrum of varieties in [19, 20], and also the main results of [19]. And we will introduce some results
on K0(Vark), and its relation with birational geometry.
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1. Introduction

Let Vark denote the category of varieties over a field k. By a variety X over k, we mean a reduced,
separated and finite type scheme over k. We define the Grothendieck ring of Vark as follows.

Definition 1.1. K0(Vark) := Z[Vark]/R. Z[Vark] is the free abelian group generated by isomor-
phism classes of varieties over k. And R is the subgroup of Z[Vark] generated by [X]− [Y ]− [X \
Y ], where Y is a closed subvariety of X. And the multiplication of K0(Vark) is defined to be
[X] · [Y ] := [(X ×k Y )red]. We denote the class of A1

k in K0(Vark) as L, called Lefschetz motive.
Mk := K0[Vark][L−1].

We interested in this ring because we can define motivic measure and motivic zeta function,
and it has many applications in birational geometry, for more details of its application one can see
[4, 7, 9, 11, 12].

Definition 1.2. A motivic measure valued in ring A is a ring homomorphism

µ : K0(Vark) → A.

So, µ satisfies
µ([X]) = µ([X \ Y ]) + µ([Y ])

µ([X × Y ]) = µ([X]) · µ([Y ]).

Example 1.3 (Z−valued motivic measure). For any variety X over k, let

µ([X]) =
∑
i

(−1)i dimQl
Hic(X ×k ks,Ql),

where (l, char(k)) = 1.
So, form the theory of étale cohomology, if k = C, then µ([X]) = χtop(X).
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Example 1.4. Let k = Fq, where q = pk. Let
Nr(X) = |X(Fqr)|.

N gives a Z−valued measure on K0(VarFq). This relates to 1.3 by étale cohomology theory.

Example 1.5. Let k = C. By the theory of Deligne’s mixed Hodge theory, the Hodge-Deligne
polynomial gives a measure, i.e.

Hdg : K0(Vark) → Z[u, v]

[X] 7→
∑

p,q≥0,0≤k≤2 dimX

(−1)khp,q(Hk(X,Q))upvq,

where hp,q is the Hodge number. Recall that a weight n pure Hodge structure is a Q−vector space
V together with a decomposition

V ⊗Q C = ⊕p+q=nV
p,q,

and V q,p = V p,q. A mixed Hodge structure is a finite dimensional Q−vector space V together with
weight filtration and Hodge filtration, i.e.

0 =W0 ⊆W1 ⊆ · · · ⊆W 2k = V.

V ⊗ C = F 0 ⊇ F 1 ⊇ · · · ⊇ Fm = 0.

F ∗ induces a filtration on GrWl =Wl/Wl−1, i.e. (F p∩Wl⊗C+Wl−1⊗C)/Wl−1⊗C. And we required
that there is a weight l pure Hodge structure on F p(GrWl ). Deligne proved for any X ∈ Obj(VarC),

there is a mixed Hodge structure for Hk(X,Q), i.e. there exists (H∗(X,Q),W∗, F
∗) is a mixed

Hodge structure. The Hodge number hp,q := dimCGrpF GrWp+qH
k(X,Q). So, if x is a smooth

projective variety over C, we take the trivial weight filtration Wl = 0, l 6= 2k, W2k = H2k(X,Q). By
Hodge decomposition Hk(X,C) = ⊕p+q=k H

p(X,Ωq), take F l = ⊕p+q=n,p≥l(H
p(X,Ωq)). Therefore

hp,q = dimCHp(X,Ωq). (This is the Hodge number in the classical case.)

Kontsevich use this measure to prove a result in birational geometry which was motivated by
the topological mirror symmetry test of string theory.

Proposition 1.6. [2, Corollary 6.29] Let X1, X2 be two birational equivalent Calabi-Yau vari-
eties(we only require canonical divisor trivial), then X1 and X2 have same Hodge numbers.

Definition 1.7. We say an element τ ∈ K0(Vark) is dimension d if there exists an expression

τ =
∑

ai[Xi]

with dimXi ≤ d, ∀i, and no expression with all dim ≤ d− 1.

The dimension function gives a filtration on Mk, i.e.
· · · ⊇ F−1Mk ⊇ F 0Mk ⊇ · · ·

F iMk is the subgroup generated by [X] · L−k with dim[V ] − k ≤ i, i.e. the subgroup with all
elements dim ≤ i. Then he defined M̂k to be the completion of this filtration, i.e. limiMk/F

iMk.

Sketch of proof of Proposition 1.6. First, we need to extend Hodge measure to
Mk → Z[u, v, (uv)−1].

Then we can extend Hodge measure to

E : M̂k → Z[u, v, (uv)−1,
1

uv − 1
,

1

(uv)2 − 1
, . . .].
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For any X ∈ ObjVarC we can define the arcs space J∞(X). Let f : X → Y be a proper birational
morphism, with discrepancy D = KY − f∗KX =

∑r
i=1 aiDi. The motivic integral of pair (Y,D) is

(1.0.1)
∫
J∞(Y )

FDLndµ =
∑

J⊆{1,...,r}

[D◦
J ] · (

∏
j∈J

L− 1

(L)aj+1 − 1
).

Let f : X1 99K X2. By Hironaka’s theorem we have two projective birational morphisms f1 :
Y → X1, f2 : Y → X2, such that f = f2 ◦ f−1

1 . Let Di = KY − f∗1KXi , i = 1, 2. Since the canonical
divisors are trivial, thus D1 ∼ D2.

By standard methods in birational geometry, we actually can show D1 = D2.
By transformation rule (analogue of change variables), we have∫

J∞(X1)
F0Lndµ =

∫
J∞(Y )

FD1Lndµ =

∫
J∞(X2)

F0Lndµ.

Now, by the formula in 1.0.1, the left hand side is [X1] and the right hand side is [X2]. So
[X1] = [X2] ∈ M̂k.

And we have the following commutative diagram

K0(Vark) Mk M̂k

Z[u, v] Z[u, v, (uv)−1] Z[u, v, (uv)−1, 1
uv−1 ,

1
(uv)2−1

, . . .]

Hdg E

Therefore E[X1] = E[X2]. So, if Hdg[X1] 6= Hdg[X2], by the commutativity of the above dia-
gram, we can have E[X1] 6= E[X2], but that gives a contradiction. So X1 and X2 have same Hodge
polynomial, thus they have same Hodge numbers. �

We thus have some questions relate to the above constructions.

Question 1.8. Is the localization map K0(Vark) → Mk injective? Or equivalently, is L a zero
divisor?

Question 1.9. More generally, is K0(Vark) a domain?

We can define the ”filtration” for K0(Vark).

Fn := Z[X| dimX ≤ n]/ < [X]− [X \ Y ]− [Y ] >,

where the generators are isomorphism classes of varieties with dimension ≤ n, Y is a closed subva-
riety of X. There is a map, namely

ψn : Fn → K0(Vark)

[X] → [X].

Question 1.10. Is ψn injective?

In [13], Poonen proved that K0(Vark) is not a domain. We will explain that in section 2. It
turns out Question 1.8 and Question 1.10 are related. In [19], Inna proved that if L is a zero divisor
then φn is not injective for some n. And in [3], Borisov proved that L is a zero divisor, So φn is not
injective for some n. We will explain Question 1.10 in section 3. There is also a question relates to
Question 1.8 and Question 1.10, but we still need some basic facts to illustrate it.

There are some basic facts.
Proposition 1.11.

(1) [∅] = 0 ∈ K0(Vark).
(2) [Spec k] = 1 ∈ K0(Vark).

3



(3) [Pnk ] = 1 + L+ · · ·+ Ln ∈ K0(Vark).
Proof.

(1) [X] = [X \X] + [X], so [∅] = 0.
(2) [X] = [X × Spec k] = [X] · [Spec k] = [Spec k] · [X].
(3) By induction on n, we have Pn = Ank

⊔
Pn−1
k , for n = 1 by (2) we have [P1

k] = 1 + L, so
[Pn] = 1 + · · ·+ Ln−1 + Ln. �

Definition 1.12. Let X ∈ ObjVark, Y is called locally closed subvariety of X if Y is a intersection
of open subset and closed subset.

Proposition 1.13. If X ∈ ObjVark and X = X1
⊔
. . .

⊔
Xr, where Xi is locally closed subvariety

of X. Then

[X] =

r∑
i=1

[Xi] ∈ K0(Vark).

Proof. By induction on dimX and then by induction on the number of irreducible components of
X of maximal dimension. When dimX = 0, this is trivial. Let X =

⋃k
i=0 Zi be the irreducible

decomposition.(Note X is finite type over k.) Assume dimZi0 = dimX, 0 ≤ i0 ≤ k Take the
generic point η of Zi0 , suppose η ∈ Xj , 1 ≤ j ≤ r. Then Zi0 = η ⊆ Xj . Write Xj = V ∩ Xj ,
V is open in X. Then X \

⋃
i ̸=i0 Zi =

⋂
i ̸=i0(X \ Zi) ⊆ X is open. And X \

⋃
i ̸=i0 Zi ⊆ Zi0 ,

so V ∩ X \
⋃
i ̸=i0 Zi ⊆ Zi0 ∩ Xj . Let U = V ∩ X \

⋃
i ̸=i0 Zi, then U is open in X. So we have

[X] = [U ] + [X \ U ], [Xj ] = [U ] + [Xj \ U ].

(1) If dimX \ U < dimX, and we have X \ U = Xj \ U
⊔
i ̸=j Xj . Then by induction [X \ U ] =

[Xj \ U ] +
∑

i ̸=j [Xj ], therefore [X] =
∑

i[Xi].

(2) If dimX \ U = dimX, then we claim |{Z ′
j | dimZ ′

j = dimX \ U,Z ′
j}| < |{Zj | dimZj =

dimX}|. Then by induction we also have [X \U ] = [Xj \U ]+
∑

i ̸=j [Xj ]. Then [X] =
∑

i[Xi].
Suppose the claim is false, assume

m = |{Z ′
j | dimZ ′

j = dimX \ U,Z ′
j is irreducible component}|,

n = |{Zj | dimZj = dimX}|.
Then m ≥ n. Any Z ′

j is also a irreducible component in X, because dimZi0 = dimX, so
n = m+ 1 ≤ m, a contradiction. �

Definition 1.14. Let X,Y be two varieties over k, X, Y are piecewise isomorphic if there are
decomposition X =

⊔n
i=1Xi, Y =

⊔n
i=1 Yi such that Xi ' Yi.

By Proposition 1.13, if two varieties X,Y are piecewise isomorphic, then [X] = [Y ] ∈ K0(Vark).
The natural question comes.

Question 1.15. If X,Y ∈ ObjVark, and [X] = [Y ] ∈ K0(Vark), does X and Y are piecewise
isomorphic? This also called cut-and-paste conjecture. See [9, Question 1.2].

Remark 1.16. It is clear that if X and Y are piecewise isomorphic then X and Y are bijective as
sets, but it is not clear that they are isomorphic as topological spaces. Moreover, it is incorrect
that they are isomorphic as schemes in general. Basically because for locally closed morphism
i : X → Y we only have sujective morphism

i−1OY → OX .

And actually there is a categorical way to understand piecewise isomorphism. In [3] Borisov gives a
counterexample of Question 1.15, and in [19] Inna also proved cut-and-paste conjecture fails using
1.10.
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Let Schemes be the category of scheme and Schemes0 be the full subcategory of Schemes whose
local rings are fields. There is a functor cons : Schemes → Schemes0 is the right adjoint with
i : Schemes0 → Schemes .

Proposition 1.17. [10, Proposition 2] Let X,Y ∈ ObjVark, then X,Y are piecewise isomorphic
if and only if Xcons ' Y cons.

Proposition 1.18. Let f : X → Y be a proper morphism of smooth varieties over k, which is a
blow up with a smooth center Z ⊆ Y of co-dimension d. Then [f−1(Z)] = [Z][Pd−1

k ].

2. K0(Vark) is not a domain

In this section, we will prove following theorem.

Theorem 2.1. [13, Theorem 1] Suppose k is characteristic 0, then K0(Vark) is not a domain.

We need some lemmas.

Lemma 2.2. Let k be a field with char(k) = 0. There exists an abelian variety A defined over k
such that Endk(A) = Endk(A) ' O, where O is ring of algebraic integers with class number 2.

Proof. By checking the database [18], we know that there is f ∈ S2(Γ0(590))
new ⊆ S2(Γ1(590))

new

such that the Fourier expansion of f is

f = q + (−1)q2 +
√
10q3 +

∞∑
n=4

anq
n, q = e2πiz.

And the field K = Q(a1, a2, . . .) = Q(
√
10). By [16, Theorem 1] and [5, Theorem 6.6.6, Definition

6.6.3], there is an abelian variety Af defined over Q which is a quotient of Jac(X1(590)) And
End(A) ⊗ Q ' K. And we know End(A) is an order of End(A) ⊗ Q, and End(A) containing
a3 =

√
10.(See [5, Definition 6.6.3].) Therefore End(A) containing Z[

√
10], and End(A) is rank 2

free abelian group, so End(A) ' Z[
√
10]. And Af is semistable because 590 is square free, so by

[14, Corollary 1.4], Endk̄(A) = End(A) ' Z[
√
10]. The class number of Z[

√
10] is 2 (By standard

method in number theory, for instance Minkowski bound. Or checking the database [18].) �

Let A be an abelian variety, denote O = End(A). There is a fully faithful functor:

T : fgprojOmod → Abvark .

fgprojOmod is the category of finitely generated projective O−module. Abvark is the category
of abelian varieties over k.

Roughly speaking, for a projective O−module M, we have a presentation

Om On M 0.
ψ

Then ψ gives a map from Am to An, now T (M) := coker(ψ∗). One can prove that T (M) is well
defined.

Let X,Y be two smooth projective geometrically integral varieties. X is stably birational to
Y if X × Pm is birational to Y × Pn for some m,n ∈ N. The set SBk be the equivalent class of
this relation. Let Z[SBk] be the free abelian group generated by SBk. And let Z[Abvark] be the
free group generated by isomorphism classes of abelian varieties. By [9, Theorem 2.3], there is an
unique morphism K0(VarC) → Z[SBC] and by taking the Albanese functor we can have a morphism
Z[SBC] → Z[AbvarC]. And actually these map can also defined for k |= ACF0, basically because
the method only require resolution of singularities and weak factorization of birational maps.
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Proof of Theorem 2.1. By Lemma 2.2, we can take a fractional ideal I ⊆ Q(
√
10), such that I 6= 0 ∈

Cl(Z[
√
10]). Because Z[

√
10] is Dedekind domain, by the structure theory of modules over Dedekind

domain, we know I ⊕ I ' Z[
√
10]⊕Z[

√
10]. Because [I] · [I] = 0 ∈ Cl(Z[

√
10]), and ranks are same.

Let B = T (I), then A,B ∈ ObjAbvark . And B ×k B ' T (I ⊕ I) ' T (Z[
√
10] ⊕ Z[

√
10]) '

A ×k A. But Bk̄ ' T (I) ≇ T (Z[
√
10]) ' Ak̄. Therefore [A ×k A] = [B ×k B] ∈ K0(Vark), i.e.

([A] + [B])([A] − [B]) = 0 ∈ K0(Vark). We claim that [A] + [B] 6= 0, [A] − [B] 6= 0. Consider the
map

K0(Vark) K0(Vark̄) Z[SBk̄] Z[Abvark̄].

[A] − [B] 6= 0 because [A] 6= [B] ∈ Z[Abvark̄], thus [A] − [B] 6= 0 ∈ K0(Vark), and [A] + [B] 6= 0
because A is not trivial abelian variety. Therefore K0(Vark) is not a domain. �

3. Cut-and-paste conjecture fails

In this section, we give an answer for Question 1.15 and Question 1.10. More precisely, we will
prove following theorem.
Theorem 3.1. Let k be a field with char(k) = 0, there exists X,Y ∈ ObjVark such that [X] = [Y ]
but X and Y are not piecewise isomorphic.

And actually we will prove a more general result.
Theorem 3.2. Let k be a field with char(k) = 0, there is n ∈ N such that ψn in 1.10 is not injective.

In order to understand the structure of K0(Vark), in [19] Inna defined a special Grothendieck
site to study K0(Vark), namely assembler, and for any assembler we can define a spectrum for the
assembler, and the ith homotopy group of the spectrum is called ith K-theory for the assembler.
Definition 3.3. Let C be a category. A full subcategory D of C is called a sieve in C if for any
morphism A→ B ∈ Mor(C) with B ∈ D then A ∈ D.
Remark 3.4. The above definition is slightly different with [17, Tag 00YX], but when we consider the
sieve in C/U , the above definition will coincide with [17, Tag 00YX]. However, the above definition
allow us to talk about the localization sequence, see Theorem 3.20.
Definition 3.5. A Grothendieck topology on a category is a collection J(C) of sieves in C/C for
all C ∈ Obj C, such that the following conditions hold:

• If S ∈ J(C) and f : B → C ∈ Mor(C) then f∗S ∈ J(B).
• Let S ∈ J(C) and T be any sieve in C/C. f∗T ∈ J(B) for any f : B → C ∈ ObjS then
T ∈ J(C).

• C/C ∈ J(C).

Remark 3.6. For any C ∈ C given {fi : Ci → C} we have a sieve S containing fi see [17, Tag 00YC].
And there is a topology on C containing S, we called this topology is generated by the coverage
{fi : Ci → C}. A category with a Grothendieck topology is called a Grothendieck site.

Given a family of morphisms in C {fi : Ai → A}i∈I we say it is a covering family if the full
subcategory containing

{g : X → A|∃i ∈ I, h : x→ A, h ◦ fi = g}
is in J(A).

Remark 3.7. One could use covering family to define Grothendieck pretopology, and for a pretopol-
ogy there is a Grothendieck topology associated to that pretopology. The category of sheaves over
the associated topology is equivalent to the category of sheaves on that pretopology, that is why
we usually define ”Grothendieck topology” to be the pretopology. See [17, Tag 00ZC]. But in our
case, we need the real Grothendieck topology.
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Definition 3.8. An assembler C is a small Grothendieck site satisfying following conditions:
• All the morphsims in C are monomorphism.
• For any A ∈ Obj C any two finite disjoint covering families have a common refinement which

itself a finite disjoint family.
• C has initial object ∅, the empty covering family is a covering family for ∅.

We denote D◦ to be the full subcategory of noninitial objects in D.

Example 3.9. For our case, we denote Vk to be the assembler whose objects are varieties over k
and morphisms are locally closed embedding. And the topology of Vk is generated by the coverage
{Y ↪→ X,X \ Y ↪→ X}, where Y is a closed subvariety of X.

Definition 3.10. Let C,D be two assemblers, F : C → D is a morphism of assemblers if F is a
morphism of sites and F preserve initial object and disjointness.

One can prove the category of assemblers have products and coproducts. Actually, if {Cx}x∈X
is X−tuples of assemblers. Then the class of objects of

∨
x∈X Cx is {∅}∪

⊔
x∈X Obj C◦

x, morphisms
are clear. The class of objects of

∏
x∈X Cx is

∏
x∈X Obj Cx, morphisms are clear.

Definition 3.11. Let C be an assembler. We define W (C) to have objects {Ai}i∈I , where I is
a finite set and all Ai ∈ Obj C◦. A morphism f : {Ai}i∈I → {Bi}j∈J is a map f : I → J and
morphisms fi : Ai → Bf(i). Such that {fi : Ai → Bj}i∈f−1(j) is a finite disjoint covering family in
C.

For a pointed set X, X ∧ C is denoted to be the assembler
∨
x∈X\{∗} Cx.

We define the K-theory spectrum of an assembler to be a spectrum associated to a Γ−space.

Definition 3.12. [15, Definition 1.1] Γ is the category whose objects are finite sets, whose morphism
S → T is a map θ : S → P(T ) such that θ(α) and θ(β) are disjoint for α 6= β. The composition of
θ : S → P(T ) and ϕ : T → P(U) is ψ : S → P(U) where ψ(α) =

⋃
β∈θ(α) ϕ(β). We denote n to be

the set {1, 2, . . . , n}+.

Definition 3.13. A Γ-category is a contravariant functor C form Γ to categories such that:
• C(∅+) is equivalent to the category with one object and one morphism.
• for each n, the functor pn : C(n) → C(1)× · · · × C(1)︸ ︷︷ ︸

n

induced by ik : 1 → {k} ⊆ n is an

equivalence of categories.

A Γ-space is a functor from Γ to the category of simplicial sets, satisfies some conditions that
you could imagine. Actually one could extend Γ-space as a bisimplicial set. Namely we have a
functor ∆op → Γop, [15, Corollary 2.2] says if C is a Γ−category then S → |N(C(S))| is a Γ-space.
And for any Γ-space A there is an Ω-spectrum BA, and actually (BA)n ' Ω(BA)n+1, n ≥ 1, and
(BA)0 ' ΩA(S1), A(S0) → ΩA(S1) is a group completion on π0. See [15, Section 4].

Definition 3.14. It turns out that X : S →W (S∧C) is a Γ- category for any assembler C, see [20,
Proposition 2.11 (3)]. So X : S → |N(W (S ∧C))| is a Γ-space, so We define the K-theory spectrum
K(C) to be the spectrum BX.

Remark 3.15. The above definition is slightly different form [20, Definition 2.12], but they are
equivalent, see [20, Theorem 2.13]. And the author think Definition 3.14 keeps the original idea of
defining K(C), roughly speaking, one need to find a spectrum for Vk whose 0-th homotopy group is
K0(Vark). But in general, π0 may not have group structure, from the theory of Γ−space we know
there is a method making π0 into a group(see [15, Section 4]), that is exactly how Definition 3.14
work. So, the main point is that W (C) contains the whole scissors congruence information in C.
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There are some important results on π∗(K(C)).

Theorem 3.16. (1) The group π0(K(C)) is the free abelian group on objects of C, under the
relations that for any finite disjoint covering family {fi : Ai → A} in C,

[A] =
∑
i

[Ai].

(2) Every element in π1(K(C)) can be represented by following data:
• a pair of finite tuples {Ai}i∈I , {Bj}j∈J of objects in C
• for ε = ±1, a map of finite set fϵ : I → J and for all i ∈ I, morphism fϵ,i : Ai → Bfϵ(i)

such that for {fϵ,i : Ai → Bj}i∈f−1
ϵ (j) is a covering family.

Sketch of proof. We only sketch the proof of (1) to get readers some feeling about this direction. We
keep the notations used in Definition 3.14. Actually π0(BX) is the group completion of π0(X(1)).
X(1) = |N(W (C))|. And π0(X(1)) is a monoid, the operation is induced by

π0(X(1))× π0(X(1)) ' π0(X(2)) → π0(X(1)).

The maps above are induced by following diagram :

(3.0.1) W (C)×W (C) W (C ∨ C) W (C).
P−1
2 µ

By the theory of simplicial homotopy theory, for instance see [6, Section 2], [8]. π0(X(1)) '
π0(N(W (C))) ' ObjW (C)/ ∼ . Therefore let {Ai}i∈I , {Bj}j∈J ∈ ObjW (C), the operation of
{Ai}i∈I and {Bj}j∈J under 3.0.1 is {Ck}k∈I⊔J where Ck = Ak if k ∈ I, Ck = Bk if k ∈ J. The
relations over π0(W (C)) is induced by 1-simplices ofN(W (C)), i.e. morphisms inW (C). A morphism
f : {Ai}i∈I → {Bj}j∈J with components morphisms {fi : Ai → Bj}j∈f−1(i). (Ai, Bj ∈ C◦). The
components are finite disjoint covering family, therefore f can be written as

⊔
j∈J{Ai → Bj}i∈f−1(j).

Therefore
[Bj ] =

∑
i∈f−1(j)

[Ai] ∈ π0(NW (C)).

Notice that {Ai}i∈I =
⊔
i∈I{Ai}, i.e.

[{Ai}i∈I ] =
∑
i∈I

[Ai] ∈ π0(NW (C)).

Therefore π0(X(1)) is the abelian group generated by noninitial objects in C modulo the relation
stated in the theorem. By the relation stated in the theorem, [∅] = 0 ∈ π0(K(C)). (HomC(C,∅) =
∅.) That means π0(K(C)) is isomorphic to the group in the theorem. Done. �

Now let us focus on the assembler Vk in the Example 3.9. We denote Ki(C) to be πi(K(C)). For
C = Vk, the spectrum K(Vk) is called Grothendieck spectrum of varieties in [19].
Theorem 3.17. K0(Vk) ' K0(Vark).

Proof. The generators are same for those two groups, by Proposition 1.13 and Theorem 3.16 the
relations are same. �

In the following, we fix a field, for instance k = C. And we write Vk as V.

Definition 3.18. Let Vn to be the full subcategory of varieties of dimension at most n, so actually
Vn is a sub assembler of V. Let Vn,n−1 be the assembler whose underlying category is the full
subcategory of V consisting of varieties of dimension exactly n and the empty variety. Let Bn be
the set of the birational isomorphism classes of irreducible varieties over k of dimension n. For any
α ∈ Bn, define

Aut(α) = Autk(k(X)),
8



where X is a representative of α.
Theorem 3.19. There is a spectral sequence for π∗K(V) = K∗(V), the first page of the spectral
sequence is

E1
p,q = πp(K(Vq,q−1)) '

⊕
α∈Bq

πp(Σ
∞
+BAutα) =⇒ Kp(V).

The qth graded piece of πp(V) is
E∞
p,q = im(πp(Vq) → πp(V))/ im(πp(Vq−1) → πp(V)).

Theorem 3.20 (Localization). Let D be a sub assembler of C that D is a sieve in C and C has
complements for all objects of D. Then

K(D) → K(C) → K(C \ D)

is a cofiber sequence. C \D is the full subcategory of C containing all objects not in D◦. a family
{fi : Ai → A}i∈I in C \ D is defined to be a covering family if there exists a family of morphisms
{fj : Aj → A}j∈J such that each Aj ∈ ObjD for j ∈ J and such that {fi : Ai → A}i∈I⊔J is a
covering family in C.
Theorem 3.21 (Devissage). Let C be an assembler and D a full subassembler. If ∀A ∈ C there
exists a finite disjoint covering family {Di → A}i∈I such that ∀i ∈ I,Di ∈ ObjD, then the induced
map

K(D) → K(C)
is an equivalence of spectra.
Sketch proof of Theorem 3.19. By Theorem 3.20, the cofiber of the map K(Vq−1) → K(Vq) is
K(Vq \Vq−1) = K(Vq,q−1). It is clear that we have a spectral sequence convergent to K∗(V) by the
standard method, namely consider following diagram :

(3.0.2)

· · · Kp(Vq−1,q−2) Kp−1(Vq−2) Kp−1(Vq−2,q−3) · · ·

· · · Kp(Vq,q−1) Kp−1(Vq−1) Kp−1(Vq−1,q−2) · · ·

· · · Kp(Vq+1,q) Kp−1(Vq) Kp−1(Vq,q−1) · · ·

∂ p

∂ p

∂ p

The above diagram gives a exact couple, this exact couple induce a spectral sequence with first
page

E1
p,q = πp(K(Vq,q−1)) =⇒ Kp(V).

We only need to compute πp(K(Vq,q−1)).

Let ˆVq,q−1 be the full subassembler of Vq,q−1 of all irreducible subvarieties. By Theorem 3.21,
K( ˆ(Vq,q−1)) is equivalence to K(Vq,q−1). For any α ∈ Bq pick Xα represents α. Let C be the full
subassembler of ˆVq,q−1 consisting of subvarieties of Xα for any α. Therefore for any irreducible
variety X, suppose X ∼ Xα, then there are isomorphism U → Uα, where U ⊆ X,Uα ⊆ Xα. X is
irreducible so dim(X \ U) < dimX = q, when q = 0, a 0−dimensional variety is just finite set,
so birational equivalence is isomorphic. By induction on the dimensional we know U → Uα is a
covering family in ˆ(Vq,q−1), so by Theorem 3.21, ˆK(Vq,q−1) ' K(C). And if some Z had morphisms
to Xα and Xβ , because the morphsims in Vq,q−1 are inclusion of dense open subsets, then Xα ' Xβ .
So

C '
∨
α∈Bq

CXα .

9



And K(CXα) ' K(SAut(α)) ' Σ∞
+BAut(α),see [20, Theorem 4.8]. For a group G, SG is the

assembler with two objects ∅, ∗, a injective morhism ∅ → ∗, and Aut(∗) = G. By Therefore
E1
p,q '

⊕
α∈Bq

πp(Σ
∞
+BAut(α)). �

So, we can compute E1
0,∗, E

1
1,∗. We have Σ∞

+BAut(α) ' S ∨ Σ∞BAut(α), so

E1
0,q '

⊕
α∈Bq

Z,

and by Hurewicz isomorphism we have E1
1,q '

⊕
α∈Bq

Z/2 ⊕ Aut(α)ab. Now we need to compute
the differentials in the spectral sequence. Note that ∂(Z/2) = 0, where ∂ is same as in 3.0.2.

Theorem 3.22. If there is a nonzero differential dr, r ≥ 1 between 1th column and 0th column,
then there is n ∈ N, ψn is not injective.

Proof. We need a fact.

Fact. Let ϕ be a birational automorphism of irreducible variety X, suppose dimX = q, and [ϕ] ∈
E1

1,q = K1(Vq,q−1). And also suppose ϕ : U → V is isomorphism for U, V ⊆ X, then ∂([ϕ]) =

[X \ U ]− [X \ V ] ∈ K0(Vq−1).

The proof of fact use Theorem 3.16 (2), and [20, Proposition 3.13]. With the fact, we can prove
the theorem. Since Er1,∗ is sub quotient of E1

1,∗, then there exists α ∈ B∗, ϕ ∈ Aut(α) such that
∂(ϕ) 6= 0, otherwise the differentials dr between 1th column and 0th column are all zero. Suppose
∂(ϕ) = [X \ U ] − [X \ V ] 6= 0 ∈ K0(Vq),(by the fact), but [X] = [X \ U ] + [U ] ∈ K0(Vark), [X] =
[X \ V ] + [V ] ∈ K0(Vark), and U ' V so [X \ V ] − [X \ U ] = 0 ∈ K0(Vark). Therefore ψq is not
injective. �

To analyses the differentials between 1th column and 0th column of the spectral sequence in
Theorem 3.19, we need another spectral sequence.

Definition 3.23. For any assembler C, denote ∇ : C ∨ C → C as the fold map which is given
by identity on each component. A simplicial assembler is a simplicial object in the category of
assemblers. For a simplicial assembler C. we define

K(C.) = hocolim[n]K(Cn).

Let F : C. → D. be a morphism of simplicial assemblers. The simplicial assembler C./F is defined
by

(C./F )n = Dn ∨
n∨
i=1

Cn.

The face map di see [20, Definition 6.1].

We denote L : V → V to be the morphism of assemblers which send X ∈ ObjVark to X × A1
k ∈

Vark . We write

C = cofib(K(V) K(V)).K(L)

It turns out, C ' K(V/L).([20, Theorem C].) We have the filtration:

· · · K(Vn/L) K(Vn+1/L) · · · K(V/L).

The above filtration gives a spectral sequence.
10



Theorem 3.24. We define l : Bn → Bn+1, l([X]) = [X ×A1
k]. The spectral sequence derived above

is
Ẽ1
p,q '

⊕
β∈Bq

πpCβ =⇒ Kp(V/L),

where
Cβ = C̃β ∨ cofib∇β ,

C̃ = cofib(
∨

α∈l−1β

Σ∞Aut(α) → Σ∞Aut(β)), ∇ :
∨
l−1β

S → S.

Sketch of Proof. We need to compute the cofiber of K(Vn−1/L) → K(Vn/L). Denote ι : Vn−1 ↪→
Vn, ι̃ : K(Vn−1/L) → K(Vn/L). By definition we have Vn/L/ι̃ ' Vn/ι/L̃. Therefore we need to
compute the cofiber of :

K(Vn−1/ι) K(Vn/ι).K(L̃)

We have the commutative diagram:

K(Vn−1/ι) K(Vn/ι)

K(Vn−1,n−2) K(Vn,n−1)

≃

K(L̃)

≃

K(L)

As seen in the proof of Theorem 3.19, we have can decompose Vn,n−1 by the birational isomorphism
classes. Therefore the bottom row can be written as⊕

β

(⊕α∈l−1(β)K(Vn−1.n−2|α) → K(Vn,n−1|β))).

So, Cβ = cofib
⊕

α∈l−1(β)K(Vn−1.n−2|α) → K(Vn,n−1|β). And it actually isomorphic to

cofib(
⊕

α∈l−1(β)

SAut(α) → SAut(β)).

Consider the following commutative diagram:

∨α∈l−1(β)S ∨α∈l−1(β)SAut(α) ∨α∈l−1(β)S

S SAut(β) S.

∇ L ∇

Therefore Cβ ' C̃β ∨ cofib∇β . �

So
E1

1,q =
⊕
β∈Bq

π1(C̃β)⊕ π1(∇β).

It is clear if l−1(β) = ∅, then π1(∇β) ' π1(S) ' Z/2Z. And l−1(β) 6= ∅, π1(∇β) = Z̃⊕l−1(β).
It is clear that the morphism K(V) → K(V/L) induce morphism of spectral sequences E1

p,q →
Ẽ1
p,q.

Definition 3.25. A birational morphism ϕ : X 99K Y between smooth projective of dimension n
varieties over a field k is convenient if

[X \ U ]− [Y \ V ] ∈ im(K0(Vn−2)
L−→ K0(Vn−1)),

11



where ϕ : U → V is a isomorphism. It can be proved that the above definition is independent of
the choice of open subsets. And a field k is convenient if all birational morphisms are convenient.

Basically, the morphism between spectral sequences E1
p,q → Ẽ1

p,q is surjective on permanent
cycles when work in convenient field.

Theorem 3.26. Field with char(k) = 0 is convenient.

Sketch of proof. The proof use weak factorization theorem, weak factorization theorem says every
birational isomorphism can be factored as blowups and blowdowns along smooth center. One can
induction on the number of blowups and blowdowns. The simplest case is when ϕ : X 99K Y is
blow up along the the smooth center Z ⊆ Y, so ϕ : X \ f−1(Z) → Y \ Z is isomorphism. Suppose
Z is codimension d, then by Proposition 1.18 we have,

[f−1(Z)]− [Z] = [Z][Pd−1] = [Z]([L] + [L]2 + · · ·+ [L]d−1) ∈ im(K0(Vn−2)
L−→ K0(Vn−1)).

Therefore ϕ is convenient. �

Theorem 3.27. In a convenient field k, if L is zero divisor then there is a nonzero differential
between 1th column and 0th column of the spectral sequence E1

p,q in Theorem 3.19.

Proof. We need some facts.
Fact.

(1) E1
p,q → Ẽ1

p,q is surjective on the component π1(C̃β).
(2) When l−1(β) 6= ∅, the component π1(∇β) is not permanent cycle.(This requires k is a

convenient field).
(3) When l−1(β) = ∅, π1(∇β) = Z/2, this component are permanent cycle, and it is clear that

E1
p,q → Ẽ1

p,q is surjective on this component.

Now suppose all the differentials of E1
p,q between 1th column and 0th column, then all the cycles

in E1
1,q are permanent cycle. By the above facts, we have⋂∞

r=1 Z
r
1,q/B

1
1,q

⋂∞
r=1 Z̃

r
1,q/B̃

1
1,q

E∞
1,q =

⋂∞
r=1 Z

r
1,q/

⋃∞
r=1B

1
1,q Ẽ∞

1,q =
⋂∞
r=1 Z̃

r
1,q/

⋃∞
r=1 B̃

1
1,q

Notice by Theorem 3.16 (2), any element in x ∈ K1(V/L) there is q such that x ∈ im(K1(Vq) →
K1(V/L)). Consider the commutative diagram with row exact,

0 im(K1(Vn−1) → K1(V)) im(K1(Vn) → K1(V)) E∞
1,n 0

0 im(K1(Vn−1/L) → K1(V/L)) im(K1(Vn/L) → K1(V/L)) Ẽ∞
1,n 0

By induction on n we can prove x has a preimage in im(K1(Vq) → K1(V)). Therefore K1(V) →
K1(V/L) is surjective. we have the long exact sequence

· · · K1(V) K1(V/L) K0(V) K0(V) K0(V/L) 0.L

Thus L is not zero divisor. �

Now, we can prove the main results.
12



Proof of Theorem 3.2. By [3, Theorem 2.2] and remark on [3], L is a zero divisor in K0(Vark). By
Theorem 3.27, there is a nonzero differential between 1th column and 0th column of the spectral
sequence E1

p,q in Theorem 3.19. Now by Theorem 3.22, there is n ∈ N, such that ψn is not
injective. �
Proof of Theorem 3.1. By Theorem 3.2, there is n ∈ N such that ψn is not injective, suppose
[X] = [Y ] ∈ K0(Vark) and [X] 6= [Y ] ∈ Fn = Z[X| dimX ≤ n]/ < [X]− [X \ Y ]− [Y ] > . Then X
and Y is not piecewise isomorphic. Otherwise, there are decomposition X =

⊔m
i=1Xi, Y =

⊔m
i=1 Yi

such that Xi ' Yi. ∀1 ≤ i ≤ n, dimXi = dimYi ≤ n. Therefore we have [Xi] = [Yi] ∈ Fn,
and [X] =

∑m
i=1[Xi], [Y ] =

∑m
i=1[Yi],(The proof of this is similar to Proposition 1.13.) but these

give we [X] = [Y ] ∈ Fn which contradicts the hypothesis. Therefore X and Y are not piecewise
isomorphic. �

Appendix A.

In this appendix, we list some facts and definitions used in the main text.

Definition A.1. Consider the subgroups of SL2(Z),
Γ(N) ⊆ Γ1(N) ⊆ Γ0(N) ⊆ SL2(Z).

Γ(N) = ker(SL2(Z)
reduction−−−−−−→ SL2(Z/NZ)).

Γ1(N) = {
(
a b
c d

)
|a ≡ d ≡ 1modN, c ≡ 0modN}.

Γ0(N) = {
(
a b
c d

)
|c ≡ 0modN}.

A subgroup Γ ⊆ SL2(Z) is called congruence subgroup if there is N ∈ Z, |N | > 1 such that
Γ(N) ⊆ Γ.

Definition A.2. Let H be the upper half complex plane, i.e. H = {z ∈ C| Im z > 0.} There is an

SL2(Z) action on H, namely ∀γ =

(
a b
c d

)
∈ SL2(Z), z ∈ H,

γz =
az + b

cz + d
∈ H.

And for a meromorphic function f : H → C, the weight k ∈ Z slash operator of γ is
f [γ]k = (cz + d)−kf(γz).

Definition A.3. Let Γ be a congruence subgroup of SL2(Z), k ∈ Z, a function f : H → C is a
modular form of weight k with respect to Γ if following conditions hold.

(1) f is holomorphic.
(2) ∀γ ∈ Γ, f [γ]k = f.
(3) f [γ]k is holomorphic at ∞ for all γ ∈ SL2(Z).
(4) The Fourier expansion of f [γ]k =

∑∞
n=0 anq

n with a0 = 0 for all γ ∈ SL2(Z).
Actually, a function f satisfies (1),(2),(3) is called modular form, if in addition f satisfies (4) we
call f as cusp form. The space of modular forms is denoted by Mk(Γ), the space of cusp forms is
denoted by Sk(Γ).

Definition A.4. The quotient space Γ\H is denoted by Y (Γ). The compactification of Y (Γ) is
denoted byX(Γ) which is a compact Riemann surface. We denoteX1(N) to beX(Γ1(N)), X0(N) =
X(Γ0(N)).

Fact. S2(Γ) ' Ω1
holX(Γ), Jac(X(Γ)) = Ω1

holX(Γ)∧/H1(X(Γ),Z).
13



Fact. The new forms S2(Γ0(N))new is a subspace of S2(Γ0(N)), and it is the orthogonal complement
of old forms.

Theorem A.5. [1, Theorem 0.1.1] Let φ : X1 99K X2 be a birational map between complete
nonsingular algebraic varieties X1 and X2 over an algebraically closed field K of characteristic
zero, and let U ⊂ X1 be an open set where φ is an isomorphism. Then φ can be factored into a
sequence of blowings up and blowings down with smooth irreducible centers disjoint from U , namely,
there exists a sequence of birational maps between complete nonsingular algebraic varieties

X1 = V0
φ199K V1

φ299K . . . φi99K Vi
φi+199K Vi+1

φi+299K . . .
φl−199K Vl−1

φl99K Vl = X2

such that
(1) φ = ϕl ◦ ϕl−1 ◦ · · ·ϕ2 ◦ ϕ1,
(2) ϕi are isomorphisms on U,
(3) either ϕi : Vi → Vi+1 or ϕ−1

i : Vi+1 → Vi is a morphism obtained by blowing up a smooth
irreducible center disjoint from U .
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