
Int. J. High Performance Computing and Networking, Vol. X, No. Y, 200x 1

Copyright © 20XX Inderscience Enterprises Ltd.

Fast graph centrality computation via sampling:
a case study of influence maximisation over OSNs

Rui Wang, Min Lv*, Zhiyong Wu, Yongkun Li and
Yinlong Xu
School of Computer Science and Technology,
University of Science and Technology of China,
Hefei, Anhui, China
Email: rwang067@mail.ustc.edu.cn
Email: lvmin05@ustc.edu.cn
Email: wzylucky@mail.ustc.edu.cn
Email: ykli@ustc.edu.cn
Email: ylxu@ustc.edu.cn
*Corresponding author

Abstract: Graph centrality computation, e.g., asking for the most important vertices in a graph,
may incur a high time cost with the increasing size of graphs. To address this challenge, this
paper presents a sampling-based framework to speed up the computation of graph centrality. As a
use case, we study the problem of influence maximisation, which asks for the k most influential
nodes in a graph to trigger the largest influence spread, and present an IM-RWS algorithm. We
experimentally compare IM-RWS with the state-of-the-art influence maximisation algorithm
IMM and IM-RW, and the results show that our solution can bring a significant improvement in
efficiency as well as a certain extent improvement in empirical accuracy. In particular, our
algorithm can solve the influence maximisation problem in graphs containing millions of nodes
within tens of seconds with an even better performance result in terms of influence spread.

Keywords: random walk; sampling; graph centrality; online social networks; influence
maximisation.

Reference to this paper should be made as follows: Wang, R., Lv, M., Wu, Z., Li, Y. and Xu, Y.
(xxxx) ‘Fast graph centrality computation via sampling: a case study of influence maximisation
over OSNs’, Int. J. High Performance Computing and Networking, Vol. X, No. Y, pp.xxx–xxx.

Biographical notes: Rui Wang is currently a Master student at University of Science and
Technology of China. She received her Bachelors in Computer Science from Donghua
University in 2016. Her research interests include graph analysis, graph storage and file system.

Min Lv received her Bachelors and a Masters in Applied Mathematics from Anhui University in
1999 and 2002, respectively and PhD in Applied Mathematics from University of Science and
Technology of China in 2005. Then she has been a Post-Doctor in the School of Computer
Science and Technology at University of Science and Technology of China for two years. She is
currently a Lecturer in the School of Computer Science and Technology, University of Science
and Technology of China. Her research interests are social networks, security and privacy, and
combinatorial mathematics.

Zhiyong Wu received her Bachelors in Computer Science from Anhui University of Technology
in 2015 and is currently working toward his Masters at the School of Computer Science and
Technology, University of Science and Technology of China, Hefei, China. His research mainly
focuses on graph mining, graph analysis and graph storage.

Yongkun Li is currently an Associate Professor in School of Computer Science and Technology,
University of Science and Technology of China. He received his BEng in Computer Science
from University of Science and Technology of China in 2008, and PhD in Computer Science and
Engineering from The Chinese University of Hong Kong in 2012. After that, he worked as a
Post-Doctoral Fellow in Institute of Network Coding at The Chinese University of Hong Kong.
His research mainly focuses on performance evaluation and architectural design of networking
and storage systems.

Yinlong Xu received his BS in Mathematics from Peking University in 1983, and the MS and
PhD in Computer Science from University of Science and Technology of China (USTC) in 1989
and 2004, respectively. He is currently a Professor at the School of Computer Science and
Technology at USTC, and is leading a research group in doing some networking and high
performance computing research. His research interests include network coding, storage systems,

2 R. Wang et al.

combinatorial optimisation, design and analysis of parallel algorithms, parallel programming
tools, etc. He received the excellent PhD advisor award of Chinese Academy of Sciences in
2006.

This paper is a revised and expanded version of a paper entitled ‘Fast graph centrality
computation via sampling: a case study of influence maximization over OSNs’ presented at 4th
Conference on CCF BigData, Lanzhou, China, 11–13 October 2016.

1 Introduction

The graph centrality which asks for the most important
vertices in a graph has many important applications
(Gao et al., 2014; Schlegel and Wong, 2015; Weng et al.,
2016). For example, it can be used to identify the most
influential users in a social network, or the key transport
hubs in an urban network and so on. The commonly used
centralities include degree centrality referring to the number
of connected edges of each node, closeness centrality
referring to the average length of the shortest paths between
a node and all other nodes in the graph, betweenness
centrality referring to the times of a node being a bridge
along the shortest path between two other nodes, and so on.
Due to the importance of the graph centrality, lots of
algorithms for improving the computation have been
proposed in recent years (Brandes, 2001; Newman, 2005;
Zhao et al., 2014).

One wide application of graph centrality is influence
maximisation (IM), which was first formulated by
Domingos and Richardson as an algorithmic problem
(Domingos and Richardson, 2001; Richardson and
Domingos, 2002). The definition of an IM problem is as
follows: given a graph G(V,E) and a positive integer k,
select the set S of k nodes from G which can trigger the
largest influence spread in the network under a given
diffusion model. A typical application of IM is in viral
marketing, which takes use of the ‘word-of-mouth’ effect.
That is, a company may first choose an initial set of
influential users and give them a discount or free samples,
then rely on these initial users to attract their friends to
further purchase, and finally a large amount of people may
buy the product due to the influence spread through out the
whole network.

To solve the IM problem, many approaches are based on
some heuristics, e.g., directly choosing the k nodes with the
highest degree or the k nodes with the highest closeness
centrality (Brandes, 2001; Newman, 2005; Zhao et al.,
2014). Even though these heuristic algorithms are usually
time-efficient, they can not give any guarantee on the
computation accuracy.

Kempe et al. (2003) proposed a greedy algorithm with
an approximation ratio of 1 − 1/e ≈ 63%, but with high
computational complexity. Later on, some researchers
further improved the greedy algorithm to reduce the time
complexity, like CELF and CELF++ (Chen et al., 2010;
Goya et al., 2011; Leskovec et al., 2007). However, the time
cost of these algorithms is still very high due to the use of
the greedy framework.

To overcome the high time complexity of greedy
approaches, some algorithms based on community are
proposed (Cao et al., 2010; Galstyan et al., 2009; Wang
et al., 2010). The idea is to first divide the graph into several
communities by using a community partition algorithm, and
then transform the influence maximisation problem to a
dynamic resource allocation problem among different
communities. This kind of algorithms show a big
improvement in time efficiency compared with greedy
algorithm.

Though the algorithms based on community partition
greatly reduce the time complexity of greedy approaches,
they are still time-consuming to deal with a huge graph.
Recently, Borgs et al. (2014) presented a near linear time
influence maximisation algorithm. It first randomly samples
some nodes to generate a super-graph, in which each edge
corresponding to a set of nodes that could be influenced by
a randomly selected node, as its influence estimation. Then
it uses the greedy algorithm to select the top-k nodes.
Inspired by this work, Tang et al. (2014, 2015) further
presented two algorithms, TIM and IMM. In particular,
IMM is the state-of-the-art algorithm and it can reach
O((k + l)(n + m) log n/εl) expected running time and return a
(1 − 1/e − ε) approximate solution with probability of
1 − 1/nl.

Considering that existing approaches to solve IM are all
performed over the whole graph, so intuitively, their time
costs should increase rapidly along with the increase of
graph size. Thus, for large graphs containing tens of
millions of nodes and billions of edges, even IMM is still
time-consuming due to the need of traverse over the whole
graph.

To address the efficiency issue of IM in large graphs, in
this paper, we propose a new computing approach called
IM-RWS by using graph sampling. The main idea is to first
get a set of subgraphs by sampling, then compute the
influence values of nodes in each subgraph, and finally
aggregate the influence values computed from all subgraphs
to approximate the influence in the original graph. With this
sampling framework, the time complexity can be reduced to
O(nT), where n is the number of sampled nodes in each
subgraph and T is the number of subgraphs or the times of
sampling. In particular, the time complexity of IM-RWS
does not depend on the size of the original graph, but the
number of sampled nodes and the times of sampling, which
makes IM-RWS time-efficient even for large-size graphs.

To evaluate the time efficiency and accuracy of
IMRWS, we conduct extensive experiments to compare
IMRWS with the state-of-the-art algorithms on several

 Fast graph centrality computation via sampling 3

realworld OSNs. The results show that IM-RWS brings a
significant improvement of time efficiency as well as a
certain extent of improvement in accuracy. In summary, this
paper makes the following main contributions.

• We introduce a new method to speed up the
computation of graph centrality for large-scale graphs
with sampling. In particular, our method first sample
multiple relatively small subgraphs from the original
large graph, then compute the centrality over the small
subgraphs, and finally aggregate the computed results
to estimate the original graph centrality.

• As a special study case of our method, we present an
algorithm IM-RWS for solving the influence
maximisation problem. In this algorithm, we use
random walk to sample a certain number of subgraphs
and adopt the idea of IM-RW algorithm to calculate the
influence values of nodes in each subgraph.

• We conduct experiments with real-world datasets to
validate the effectiveness and efficiency of our
approach. Results show that our approach can
significantly reduce the time cost and meanwhile keeps
the same or even higher accuracy.

Organisation. The rest of this paper is organised as follows.
Section 2 describes preliminaries of the influence
maximisation problem, and introduces the background on
random walk. Section 3 first proposes the sampling-based
framework and then presents our algorithm IMRWS for
solving the influence maximisation problem. We show the
experiment results in Section 4. Section 5 overviews the
related works and Section 6 concludes the paper.

2 Preliminaries

In this section, we first introduce the diffusion model and
then give the formal definition of influence maximisation
problem. Finally, we overview random walk to facilitate the
discussions of our algorithm in subsequent sections.

2.1 Diffusion models

Diffusion models define how the influence spreads through
a social network. Usually, in different scenarios, the ways of
influence spreading are also different. Thus, there are many
diffusion models, such as linear threshold cascade (LT)
model (Granovetter, 1978; Kempe et al., 2003), CTIC
model (Saito et al., 2009), weighted cascade model (Kempe
et al., 2003) and so on (Even-Dar and Shapira, 2007;
Mahajan et al., 1991). The most commonly used model is
independent cascade (IC) model (Kempe et al., 2003;
Watts, 2002). The influence spread process under the IC
model can be described as follows. The influence starts
from an initial set of nodes called seeds. When a node u is
influenced at timestamp t, then u will influence its
out-neighbours with probability p at timestamp t + 1. The
influence spreads until there is no more nodes can be
influenced.

2.2 Influence maximisation problem

Definition: The influence maximisation problem (Domingos
and Richardson, 2001; Richardson and Domingos, 2002) is
defined as follows. Given a social network denoted as
G(V,E), a small positive integer k and a diffusion model, the
goal is to find a node set with size k from V so as to
influence the largest number of nodes, which can be
mathematically formulated as follows:

* argmax{ () | , }.A A A k A Vσ= = ⊆

Here, σ(A) denotes the number of nodes being influenced by
node set A.

To evaluate the performance of an algorithm which
solves the above influence maximisation problem, we
consider the following two aspects:

Accuracy: It is characterised by the distance between the
selected set of k seeds obtained from an influence
maximisation algorithm and the optimal solution. However,
since it is impossible to directly compute the optimal
solution, especially for a large graph, instead, we measure
the number of eventually influenced nodes by the selected k
nodes. The rationale is that the more number of nodes that
can be influenced by the k nodes selected by an algorithm,
then the higher accuracy the algorithm achieves.

Efficiency: It is characterised by the time required to run an
influence maximisation algorithm. Note that this measure is
also important, because if the time cost of an algorithm is
too high, then the algorithm may not be able to return a
feasible solution in a reasonable time for large social
networks.

2.3 Random walk

The process of simple random walk on social networks can
be described as follows. It first randomly selects a node
from the social network as the start point, then randomly
selects a candidate node from the neighbours of the current
node and walks to it. The above steps repeat until the
termination condition is satisfied. During the process of
random walk, there may be no candidate node to walk to in
a directed graph. For instance, when the out-degree of the
current node is 0, the walk can not continue. In order to
overcome this drawback, at each step, we allow the walk to
jump back to the start node and restart the walk with
probability p, and with the rest probability 1 − p, we
continue the current walk.

There are lots of applications for random walk on social
networks, such as PageRank (Page et al., 1999), similarity
(Jeh and Widom, 2002) and so on (Li et al., 2014;
Zhao et al., 2015; Zhong and Shen, 2006). Here, we just
introduce two applications of random walk which are
related to our work:

1 Random walk sampling (RW). It is an exploratory
sampling method, which selects the nodes that are
visited by the random walk process as sample nodes

4 R. Wang et al.

2 Influence maximisation with random walk,
e.g., IM-RW algorithm in Zhao et al. (2016).

This influence maximisation algorithm first simulates L-step
walk R times for each node, then compute the influence
value of each node according to the number of times each
node being accessed, and finally applies the greedy method
to select the top-k nodes.

3 Methodology

In this section, we first present a general sampling based
framework to speed up the computation of centrality in
large-scale graphs. To further show the effectiveness of this
framework, we take the influence maximisation problem as
an instance, and develop an algorithm called IM-RWS
based on the sampling based framework. Finally, we
introduce each step of the IM-RWS algorithm in details and
analyse its time complexity.

3.1 The general sampling based framework

To speed up the computation of centrality in large-scale
graphs, we propose a general sampling based method. The
idea is as follows: We first do sampling on the original large
graph and get multiple relatively small subgraphs, then
compute the centrality values by analysing each of the
sampled subgraphs, and finally aggregate the values to get
the final result. Specifically, the method can be divided into
the following four steps:

1 sample multiple subgraphs from the original large
graph by using a certain sampling method

2 for each subgraph sampled in last step, calculate the
centrality value with existing centrality computation
algorithms

3 map the centrality values from the sampled subgraph to
the whole large graph for each subgraph and then get
the value distributions of the centrality values

4 aggregate the distributions to obtain the final solution.

Note that the above framework is general in the sense that it
can be applied to speed up the computation of various graph
centralities. In this paper, we take the influence
maximisation problem as an example, and propose an IM-
RWS algorithm to validate the feasibility of the above
sampling based framework, and also use it to show the
improvement it can achieve.

According to the sampling based framework, the
IMRWS algorithm also consists of four steps. Specifically,
we first sample a certain number of subgraphs from an
OSN, then we calculate the distribution of the influence
values of nodes in each subgraph. Next, we map this
distribution to the original OSN. Finally, we make an
aggregation of the distributions over each sampled subgraph
to obtain the final influence value distribution of nodes in
the entire OSN. Figure 1 shows the algorithm process of

IM-RWS, and Algorithm 1 describes pseudocode. In the
following subsections, we will introduce each step of the
algorithm in details.

Figure 1 The process of IM-RWS algorithm

3.2 Sampling subgraphs from OSN

Firstly, we use random walk based sampling technology to
obtain subgraphs. In particular, we run random walk on a
given social network G(V,E), and keep track of the visited
nodes, and denote the set of nodes as V′. For any u, v ∈ V′,
if the edge uv ∈ E′, then it will be remained in the subgraph.
In other words, we take all visited nodes by the random
walk, as well as all edges with both end nodes belonging to
the visited node set as a sampled subgraph. For ease of
presentation, we denote the set of the edges in the sampled
subgraph as E′, and denote the sampled subgraph as
G′(V′, E′). We repeat the sampling process T times to get T
subgraphs. Figure 2 shows an example of this sampling
process.

Algorithm 1 IM-RWS algorithm

In Figure 2, the left figure shows the original graph G,
where the red node represents the start node, and the yellow
nodes imply that they are visited by random walk, and the
arrows show the path of the random walk. Suppose that the
terminate condition is to sample 10 nodes, then the size of
the subgraph is 10, which means |V′| = 10. After getting
node set V′, it is easy to get the edge set E′. The right figure
shows the sampled subgraph G′. The corresponding
algorithm is shown in Algorithm 2.

 Fast graph centrality computation via sampling 5

Figure 2 An example of random walk based sampling
(see online version for colours)

Algorithm 2 RWSampling fuction

3.3 Calculating influence values in subgraphs

For each subgraph obtained in the last step, we calculate the
influence value of each node in each subgraph. Here, we
follow the idea of the IM-RW algorithm (Zhao et al., 2016),
which uses random walk to approximate the influence
values. The main idea is to simulate R random walks of
length L for each node, and according to the times of a node
being visited by all random walks, we can determine its
influence value. The detailed process is described as
follows:

1 For ∀i ∈ V′, where V′ represents the node set in the
sampled subgraph. We simulate R times random walks
of length L starting from i.

2 In each step of the random walk, we randomly pick one
node from the neighbours of the current node, and walk
to it in the next step.

3 Repeat the last step until the length of the walk reaches
L.

4 Initially we set D(i) = 0 for ∀i ∈ V′, where D(i)
presents the influence value of node i in the subgraph.
Every time a node u is visited by a random walk, we
plus D(u) by 1/R.

5 When R random walks are all performed, we can get a
distribution of the influence values of all nodes in the
subgraph, which is denoted as Dt(nt), where t denotes
the id of current subgraph and nt = |V′|.

Figure 3 shows an example to illustrate this process. The
subgraph is obtained in the last subsection. In this subgraph,
we simulate a 3-step random walk 4 times for each node.
Initially, the influence values of all nodes are set as 0. When
a node is accessed by a random walk, then its influence
value increases by 1/4. After 4 random walks, we get the
influence value distribution Dt(n) of the current subgraph, as
shown in Figure 3. The specific implementation is given in
Algorithm 3.

Figure 3 Calculating influence values in subgraphs
(see online version for colours)

Algorithm 3 computingInfluenceValue Fuction

3.4 Mapping Dt(n) to OSN

Based on the obtained influence value distribution Dt(n), in
this subsection, we introduce how to map this distribution to
the entire social network. In other words, for each subgraph,
we will get a distribution over all nodes in the original
graph. During this process, we define a function to reflect
the influence value of each node as follows:

[]

(), if ,
()

· (), if ,
t t

t
i tj in link i

D i i G
q i

p P j i G
∈ −

∈⎧⎪= ⎨ ∉⎪⎩∑
 (1)

6 R. Wang et al.

where we define p as the decay factor. The physical
meaning is that the influence will decrease as the distance
increases. The process of the above mapping process is
described as follows:

1 initially, we set G(i) = 0 for ∀i ∈ V′, where G(i)
presents the influence value of node i in the entire
graph, and for the sampled nodes, we set G(i) = D(i)

2 define a queue Q, which is initialised as the sampled
node set, to represent the node set which can spread the
influence in the graph

3 in each iteration, we get a node u form the head of Q,
then for each neighbour v of node u, we update G(v) by
setting G(v) = G(v) + p ∗ G(u), and push v into Q

4 repeat the process until the queue is empty.

Figure 4 An example showing the mapping of the influence
from a subgraph to the original OSN (see online
version for colours)

Algorithm 4 mappingToOriginalGraph Fuction

Figure 4 shows an example of this process, where the red
and the yellow nodes (d0~d9) belong to the current
subgraph. The influence values are computed in above
steps. For the nodes that are not in the subgraph, their

influence values are computed by equation (1). The detailed
implementation is given by Algorithm 4.

3.5 Aggregation

Since we have many subgraphs, which means each node
will have many influence values after mapping. We need to
aggregate them to get a final solution. Here we use a simple
but efficient method by directly computing the average
value and using the average value as the final influence
value of each node. Finally, we sort the nodes by their
influence values, and select the k nodes with the largest
values as the most influential nodes.
The aggregation can be formulated as follows, and the
detailed implementation is shown in Algorithm 5.

1

1() ().
T

tt
P n P n

T =∑ (2)

Algorithm 5 aggregation Fuction

3.6 Time complexity analysis

The time complexity of IM-RWS comes from four parts. In
the first part, in order to get T subgraphs, we have to run
random walk with T times, and each walk needs to sample
n* nodes, so the time cost in the sampling step is O(Tn*). In
the second part, we compute the influence probability
distribution Dt(n*) for T times since there are T subgraphs.
In each computation, the time cost is O(RLn*), so the total
time complexity in this part is O(TRLn*). In the third part,
in order to map Dt(n*) to the entire OSN, we need to
traverse the OSN, which leads to a time cost O(n), where n
is the total number of nodes in the OSN. Thus, the total time
cost of this part is O(Tn). The time cost in the fourth part is
the same as that in the third part. So, from the analysis, we
can conclude that the time complexity of our algorithm is
O(TRLn*) + O(Tn). In experiment, we set R = 100, L = 3,
n* = 1%n, and the time complexity is close to O(Tn). We
also find that T = 10 is already enough to achieve a good
efficiency and accuracy.

4 Performance evaluation

In this section, we conduct experiments on several
real-world datasets to compare our IMRWS algorithm with
the state-of-the-art influence maximisation algorithm IMM
and IM-RW from both aspects of accuracy and efficiency.
Our algorithm is implemented in C++ and compiled with
g++ 4.8.1. We run the experiments on a machine with an
Intel Xeon E5-2407 v2 2.40 GHz*4 CPU and 48 GB
memory.

 Fast graph centrality computation via sampling 7

4.1 Experimental settings

Datasets. The datasets we used in our experiments are all
real-world graphs as shown in the Table 1. Among them,
Yelp comes from Yelp Dataset (https://www.yelp.com/
dataset_challenge/dataset), Flixster comes from Jamali and
Ester (2010), Twitter comes from Twitter Dataset
(https://an.kaist.ac.kr/traces/WWW2010.html) and all others
come from Stanford Network Analysis Project (SNAP)
(Leskovec and Krevl, 2014). We point out that the datasets
include both small and large graphs, and in particular, the
number of nodes of Twitter reaches several tens of millions,
and the number of edges reaches one billion.

Table 1 Datasets

Dataset # of nodes # of edges

Ciao 2,342 57,544
NetHEPT 15,229 62,752
Epinions 18,089 355,813
Slashdot0811 77,360 905,468
Slashdot0902 82,168 948,464
Yelp 174,100 2,576,179
Flixster 300,000 6,394,798
LiveJournal 4,847,571 68,993,773
Twitter 41,652,230 1,468,365,182

Parameter settings. The parameters we used in our method
are listed in Table 2, and the value settings of these
parameters are listed in Table 3. In particular, in Table 3,
SR is set as 1% and 0.01%, which are used in the first two
sets of experiments and the last set of experiments,
respectively.

Algorithms. In our experiment, we compare our IM-RWS
algorithm with the state-of-the-art influence maximisation
algorithm IMM and IM-RW in the aspects of accuracy and
efficiency.

4.2 Results for efficiency

The efficiency of an algorithm is measured by the running
time. Since the actual running time has a small fluctuation,
we execute 10 times for each experiment and take the
average value. Figure 5 shows the efficiency results for
IMM, IM-RW and IM-RWS algorithms running on the
eight datasets. The X-axis represents the seed set size k,
varying from 5 to 50 with step 5, and the Y-axis represents
the running time of each algorithm in seconds.

Table 2 Algorithm parameters

Parameter Description

-G Online social network G
-n The number of nodes in G
-m The number of edges in G
-d Degree of every node in G
-k The size of seed set
-T The number of sampled subgraphs
-SR Sample rate of each subgraph
-R The number of random walks of each node
-L The length of each random walk
-Model Influence diffusion model

Table 3 Value setting of the parameters

Algorithm steps Parameters Values

Select top-k -k 5 to 50 with step 5
Sample subgraphs from OSN -T-SR 10 1%, 0.01%
Calculate influence -R 100
value in subgraphs -L 3
Compute influence -Model IC

Figure 5 Results of efficiency, (a) Ciao (b) NetHEPT (c) Epinions (d) Slashdot0811 (e) Slashdot0902 (f) Yelp (g) Flixster (h) LiveJournal

(a) (b) (c) (d)

(e) (f) (g) (h)

8 R. Wang et al.

The results indicate that the running time has no significant
variation with the increase of the seed set size k. By
contract, for all eight graphs, our IM-RWS has a much
shorter running time compared with IMM and IM-RW, with
the efficiency increased by 4 to 8 times. Besides, for the
largest graph LiveJournal [Figure 5(h)], IM-RWS costs only
tens of seconds, while the running time of IM-RW is too
long time so we do not show it in the figure to make the
figure clear.

4.3 Results for accuracy

In our evaluations, we use the influence spread of the k
starting nodes that are selected as the seed set to measure
the accuracy of the algorithms. The more nodes the seed set
can influence under the IC model in the whole graph G, the
larger the influence spread is, so the higher accuracy the
algorithm achieves.

Figure 6 shows the results of the accuracy for IMM, IM-
RW and IM-RWS algorithms running on the eight datasets.
The X-axis represents the seed set size k, varying from 5 to
50 with step 5. The Y-axis represents the number of nodes
that can be influenced by the set of seed nodes under the IC
model in the original graph G.

From the results we can see that with the increase of the
seed set size k, the influence spread of IMM, IMRW and
IM-RWS algorithms all increase in a nearly linear manner.
Besides, IMM and IM-RW have the similar accuracy. From
the comparison with our IMRWS algorithm, for the
relatively small graphs Ciao [Figure 6(a)], NetHEPT
[Figure 6(b)] and Epinions [Figure 6(c)], IM-RWS has a
relatively lower accuracy, which is mainly caused by the
sampling. However, with the increase of the graph size, the
disparity is getting smaller. Finally, for the large graphs
Slashdot0811 [Figure 6(d)], Slashdot0902 [Figure 6(e)],
Yelp [Figure 6(f)] and Flixster [Figure 6(g)], our IM-RWS
algorithm achieves even higher accuracy over IMM and

IM-RW. To further show the effectiveness and efficiency of
our algorithm on large graphs, we run another experiment
by using a large dataset in the next subsection.

4.4 Results on large graph

For the Twitter graph we used, the number of nodes reaches
tens of millions, and the number of edges reaches one
billion. We believe that this graph is large enough to show
the impact of our algorithm on large graphs. Also, this
dataset is effective to further motivate our framework in
speeding up the centrality computation as existing algorithm
on this graph already takes a very long time. In this set of
experiments, we compare our algorithm IM-RWS with
IMM only, also from the aspects of accuracy and efficiency.
Here, in IM-RWS, we set T as 10 and the sample rate as
0.01%.

Figure 7 shows the results on Twitter graph, where
Figure 7(a) shows the accuracy and Figure 7(b) shows the
results of efficiency. The X-axis represents the seed set size
k, varying from 50 to 300 with step 50. The Y-axis
represents the number of nodes that can be influenced by
the seed set under the IC model in the whole graph G and
the running time, respectively.

From the results we can see that IM-RWS can get a
large improvement both in accuracy and efficiency
compared with IMM. For accuracy, the influence spread of
IM-RWS is almost twice as that of IMM as shown in Figure
7(a). For efficiency, as shown in Figure 7(b), IMM takes
several minutes to run out. Moreover, as k increases, the
running time also increases. However, IM-RWS only needs
about 24 seconds, and more importantly, its running time is
independent on k, which denotes the number of initial nodes
being influenced. This implies that our algorithm IM-RWS
has a very good scalability in both graph size and initial
seed set size.

Figure 6 Results of accuracy, (a) Ciao (b) NetHEPT (c) Epinions (d) Slashdot0811 (e) Slashdot0902 (f) Yelp (g) Flixster
(h) LiveJournal

(a) (b) (c) (d)

(e) (f) (g) (h)

 Fast graph centrality computation via sampling 9

Figure 7 Results on a large graph Twitter, (a) accuracy
(b) efficiency

(a) (b)

In summary, with the increase of graph size, our IM-RWS
algorithm has higher accuracy. Moreover, the larger the
graph is, the more accurate results we can achieve. This
conforms to our original intension to design IM-RWS with
the idea of sampling. The main reason is that for large-scale
graphs, the traditional way of direct computation on the
whole graph will be trapped in a relatively small area, and
thus causes estimation error. With the increase of graph
size, the error also increases. In a contrast, our sampling
based IM-RWS algorithm disperses the computation over
the graph and thus reduces estimation error. In terms of
efficiency, with sampling, the time complexity of IM-RWS
does not strictly depend on the size of the original graph,
but mainly depend on the number of sampled nodes and the
times of sampling. As a result, IM-RWS is also time-
efficient to analyse large sized graphs.

5 Related work

As a seminal work, Kemple et al. (2003) make a great
contribution on the influence maximisation problem. They
first formulate the influence maximisation problem as a
discrete optimisation problem and show that it is NP-hard in
general. By taking use of the idea of approximation, they
design a greedy algorithm which can give a guarantee on
the result with a factor of 1 −1/e under the triggering model.
However, it leads to a high time cost of O(knmr), which
makes it unfeasible to be applied to a large-scale OSN.
Motivated by this, lots of techniques are proposed to
improve the efficiency. Among these works, CELF and
CELF++ (Goya et al., 2011; Leskovec et al., 2007) are
developed based on the submodularity of the spread
function, and they also have a significant improvement on
efficiency. However, due to the framework of the greedy
algorithm, their time complexity still retains O(knmr). In the
meantime, many researchers design lots of heuristic
algorithms, which can offer a higher efficiency, but none of
them can give a theoretical guarantee on the accuracy of the
results. Recently, Borgs et al. (2014) make a theoretical
breakthrough on the influence maximisation problem, and
they present an algorithm which can not only give a
guarantee on accuracy, but can also reduce the time
complexity to O(kl2(m + n)(logn)2/ε3). However, the small ε
means that the time complexity still has a large constant
factor, which incurs high overheads in practice. Motivated
by Borg et al.’s idea. Tang et al. (2014, 2015) propose two

algorithms to improve the efficiency, TIM and IMM, and
IMM is now the state-of-art influence maximisation
algorithm in terms of efficiency.

With respect to the sampling approaches, they can be
roughly classified into four categories (Krishnamurthy et al.,
2005; Leskovec and Faloutsos, 2006; Leskovec et al., 2005;
Luo et al., 2008). The first category is random node
sampling, which includes RN, RPN, RDN. The second
category is random edge sampling, which includes RE,
RNE, HYB, and so on. The third category is heuristics
based sampling, which includes RNN, RW, and FF. The last
category is the traditional graph traverse methods, which
mainly include BFS, DFS, etc.

6 Conclusions

In this paper, we present a sampling-based method to
compute graph centrality in large online social networks. In
particular, to validate the effectiveness of the method, we
take the influence maximisation problem as an application
example, and present an IM-RWS algorithm to solve the
influence maximisation problem by introducing the
sampling idea to the existing influence maximisation
algorithm IM-RW. The experiments show that our
algorithm can achieve a significant improvement in
efficiency, and it also improves the accuracy for middle and
large OSNs, compared with the state-of-the-art influence
maximisation algorithm IMM and IM-RW. For the future
work, we will continue to focus on the influence
maximisation problem, but try other methods in the second
step for calculating the influence in subgraphs, so as to
validate the generality of the methods of our sampling
method and try to find a better algorithm for solving the
influence maximisation problem. In addition, we also prefer
to consider the implementation of our sampling based
method to other graph centrality computation problems,
such as similarity, so as to further validate the generality of
our sampling based method.

References
Borgs, C., Brautbar, M., Chayes, J. and Lucier, B. (2014)

‘Maximizing social influence in nearly optimal time’,
Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp.946–957.

Brandes, U. (2001) ‘A faster algorithm for betweenness centrality’,
Journal of Mathematical Sociology, Vol. 25, No. 2,
pp.163–177.

Cao, T., Wu, X., Wang, S. and Hu, X. (2010) ‘OASNET: an
optimal allocation approach to influence maximization in
modular social networks’, in Proceedings of the 2010 ACM
Symposium on Applied Computing.

Chen, W., Yuan, Y. and Zhang, L. (2010) ‘Scalable influence
maximization in social networks under the linear threshold
model’, in 2010 IEEE International Conference on Data
Mining.

Domingos, P. and Richardson, M. (2001) ‘Mining the network
value of customers’, in ACM SIGKDD.

10 R. Wang et al.

Even-Dar, E. and Shapira, A. (2007) ‘A note on maximizing the
spread of influence in social networks’, in International
Workshop on Web and Internet Economics, Springer.

Galstyan, A., Musoyan, V. and Cohen, P. (2009) ‘Maximizing
influence propagation in networks with community structure’,
Physical Review E, Vol. 79, No. 5, pp.1–7, 056102.

Gao, F., He, J. and Ma, S. (2014) ‘Modelling the relationship
between trust and privacy in network environments’,
International Journal of Computational Science and
Engineering, Vol. 9, No. 4, pp.347–354.

Goyal, A., Lu, W. and Lakshmanan, L.V. (2011) ‘Celf++:
optimizing the greedy algorithm for influence maximization
in social networks’, in Proceedings of the 20th International
Conference Companion on World Wide Web, ACM.

Granovetter, M. (1978) ‘Threshold models of collective behavior’,
American Journal of Sociology, Vol. 83, No. 6,
pp.1420–1443.

Jamali, M. and Ester, M. (2010) ‘A matrix factorization technique
with trust propagation for recommendation in social
networks’, in ACM RecSys.

Jeh, G. and Widom, J. (2002) ‘SimRank: a measure of structural-
context similarity’, in ACM SIGKDD.

Kempe, D., Kleinberg, J. and Tardos, E. (2003) ‘Maximizing the
spread of influence through a social network’, in ACM
SIGKDD.

Krishnamurthy, V., Faloutsos, M., Chrobak, M., Lao, L., Cui, J-H.
and Percus, A.G. (2005) ‘Reducing large internet topologies
for faster simulations’, in International Conference on
Research in Networking, Springer.

Leskovec, J. and Faloutsos, C. (2006) ‘Sampling from large
graphs’, in ACM SIGKDD.

Leskovec, J. and Krevl, A. (2014) ‘SNAP datasets:
Stanford large network dataset collection’, June 2014 [online]
http://snap.stanford.edu/data (accessed 1 May 2016).

Leskovec, J., Kleinberg, J. and Faloutsos, C. (2005) ‘Graphs over
time: densification laws, shrinking diameters and possible
explanations’, in ACM SIGKDD.

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen,
J. and Glance, N. (2007) ‘Cost-effective outbreak detection in
networks’, in ACM SIGKDD.

Li, R-H., Yu, J.X., Huang, X. and Cheng, H. (2014) ‘Random-
walk domination in large graphs’, in 2014 IEEE 30th
International Conference on Data Engineering, IEEE.

Luo, Y., Joshi, A., Phansalkar, A., John, L. and Ghosh, J. (2008)
‘Analysing and improving clustering based sampling for
microprocessor simulation’, International Journal of High
Performance Computing and Networking, Vol. 5, No. 4,
pp.200–214.

Mahajan, V., Muller, E. and Bass, F.M. (1990) ‘New product
diffusion models in marketing: a review and directions for
research’, Journal of Marketing, Vol. 54, No. 1, pp.1–26.

Newman, M.E. (2005) ‘A measure of betweenness centrality based
on random walks’, Social Networks, Vol. 27, No. 1,
pp.39–54.

Page, L., Brin, S., Motwani, R. and Winograd, T. (1999) The
PageRank Citation Ranking: Bringing Order to the Web,
Technical Report, Stanford InfoLab, November [online]
http://ilpubs.stanford.edu:8090/422/ (accessed 1 March 2016).

Richardson, M. and Domingos, P. (2002) ‘Mining knowledge-
sharing sites for viral marketing’, in ACM SIGKDD.

Saito, K., Kimura, M., Ohara, K. and Motoda, H. (2009) ‘Learning
continuous-time information diffusion model for social
behavioral data analysis’, in Asian Conference on Machine
Learning, Springer.

Schlegel, R. and Wong, D.S. (2015) ‘Private friends on a social
networking site operated by an overly curious SNP’,
International Journal of Computational Science and
Engineering, Vol. 10, No. 3, pp.281–292.

Tang, Y., Shi, Y. and Xiao, X. (2015) ‘Influence maximization in
near-linear time: a martingale approach’, in ACM SIGMOD.

Tang, Y., Xiao, X. and Shi, Y. (2014) ‘Influence maximization:
Near-optimal time complexity meets practical efficiency’, in
ACM SIGMOD.

Twitter Dataset [online] https://an.kaist.ac.kr/traces//
WWW2010.html. (accessed 1 October 2016).

Wang, Y., Cong, G., Song, G. and Xie, K. (2010) ‘Community-
based greedy algorithm for mining top-k influential nodes in
mobile social networks’, in ACM SIGKDD.

Watts, D.J. (2002) ‘A simple model of global cascades on random
networks’, Proceedings of the National Academy of Sciences,
Vol. 99, No. 9, pp.5766–5771.

Weng, M.M., Hung, J.C., Weng, J-D. and Shih, T.K. (2016) ‘The
recommendation mechanism for social learning environment’,
International Journal of Computational Science and
Engineering, Vol. 13, No. 3, pp.246–257.

Yelp Dataset [online] https://www.yelp.com/dataset_challenge/
dataset (accessed 1 May 2016).

Zhao, J., Lui, J., Towsley, D. and Guan, X. (2014) ‘Measuring and
maximizing group closeness centrality over disk-resident
graphs’, in Proceedings of the 23rd International Conference
on World Wide Web, ACM.

Zhao, J., Lui, J.C.S., Towsley, D., Wang, P. and Guan, X. (2015)
‘A tale of three graphs: sampling design on hybrid social-
affiliation networks’, in 2015 IEEE 31st International
Conference on Data Engineering, IEEE.

Zhao, P., Li, Y., Xie, H., Wu, Z., Xu, Y. and Lui, J.C.S. (2016)
‘Measuring and maximizing influence via random walk in
social activity networks’, DASFAA, Forthcoming, arXiv
preprint arXiv:1602.03966.

Zhong, M. and Shen, K. (2006) ‘Random walk based node
sampling in self-organizing networks’, ACM SIGOPS
Operating Systems Review, Vol. 40, No. 3, pp.49–55.

