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Abstract: Graph centrality computation, e.g., asking for the most important vertices in a graph, 
may incur a high time cost with the increasing size of graphs. To address this challenge, this 
paper presents a sampling-based framework to speed up the computation of graph centrality. As a 
use case, we study the problem of influence maximisation, which asks for the k most influential 
nodes in a graph to trigger the largest influence spread, and present an IM-RWS algorithm. We 
experimentally compare IM-RWS with the state-of-the-art influence maximisation algorithm 
IMM and IM-RW, and the results show that our solution can bring a significant improvement in 
efficiency as well as a certain extent improvement in empirical accuracy. In particular, our 
algorithm can solve the influence maximisation problem in graphs containing millions of nodes 
within tens of seconds with an even better performance result in terms of influence spread. 
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1 Introduction 

The graph centrality which asks for the most important 
vertices in a graph has many important applications  
(Gao et al., 2014; Schlegel and Wong, 2015; Weng et al., 
2016). For example, it can be used to identify the most 
influential users in a social network, or the key transport 
hubs in an urban network and so on. The commonly used 
centralities include degree centrality referring to the number 
of connected edges of each node, closeness centrality 
referring to the average length of the shortest paths between 
a node and all other nodes in the graph, betweenness 
centrality referring to the times of a node being a bridge 
along the shortest path between two other nodes, and so on. 
Due to the importance of the graph centrality, lots of 
algorithms for improving the computation have been 
proposed in recent years (Brandes, 2001; Newman, 2005; 
Zhao et al., 2014). 

One wide application of graph centrality is influence 
maximisation (IM), which was first formulated by 
Domingos and Richardson as an algorithmic problem 
(Domingos and Richardson, 2001; Richardson and 
Domingos, 2002). The definition of an IM problem is as 
follows: given a graph G(V,E) and a positive integer k, 
select the set S of k nodes from G which can trigger the 
largest influence spread in the network under a given 
diffusion model. A typical application of IM is in viral 
marketing, which takes use of the ‘word-of-mouth’ effect. 
That is, a company may first choose an initial set of 
influential users and give them a discount or free samples, 
then rely on these initial users to attract their friends to 
further purchase, and finally a large amount of people may 
buy the product due to the influence spread through out the 
whole network. 

To solve the IM problem, many approaches are based on 
some heuristics, e.g., directly choosing the k nodes with the 
highest degree or the k nodes with the highest closeness 
centrality (Brandes, 2001; Newman, 2005; Zhao et al., 
2014). Even though these heuristic algorithms are usually 
time-efficient, they can not give any guarantee on the 
computation accuracy. 

Kempe et al. (2003) proposed a greedy algorithm with 
an approximation ratio of 1 − 1/e ≈ 63%, but with high 
computational complexity. Later on, some researchers 
further improved the greedy algorithm to reduce the time 
complexity, like CELF and CELF++ (Chen et al., 2010; 
Goya et al., 2011; Leskovec et al., 2007). However, the time 
cost of these algorithms is still very high due to the use of 
the greedy framework. 

To overcome the high time complexity of greedy 
approaches, some algorithms based on community are 
proposed (Cao et al., 2010; Galstyan et al., 2009; Wang  
et al., 2010). The idea is to first divide the graph into several 
communities by using a community partition algorithm, and 
then transform the influence maximisation problem to a 
dynamic resource allocation problem among different 
communities. This kind of algorithms show a big 
improvement in time efficiency compared with greedy 
algorithm. 

Though the algorithms based on community partition 
greatly reduce the time complexity of greedy approaches, 
they are still time-consuming to deal with a huge graph. 
Recently, Borgs et al. (2014) presented a near linear time 
influence maximisation algorithm. It first randomly samples 
some nodes to generate a super-graph, in which each edge 
corresponding to a set of nodes that could be influenced by 
a randomly selected node, as its influence estimation. Then 
it uses the greedy algorithm to select the top-k nodes. 
Inspired by this work, Tang et al. (2014, 2015) further 
presented two algorithms, TIM and IMM. In particular, 
IMM is the state-of-the-art algorithm and it can reach  
O((k + l)(n + m) log n/εl) expected running time and return a 
(1 − 1/e − ε) approximate solution with probability of  
1 − 1/nl. 

Considering that existing approaches to solve IM are all 
performed over the whole graph, so intuitively, their time 
costs should increase rapidly along with the increase of 
graph size. Thus, for large graphs containing tens of 
millions of nodes and billions of edges, even IMM is still 
time-consuming due to the need of traverse over the whole 
graph. 

To address the efficiency issue of IM in large graphs, in 
this paper, we propose a new computing approach called 
IM-RWS by using graph sampling. The main idea is to first 
get a set of subgraphs by sampling, then compute the 
influence values of nodes in each subgraph, and finally 
aggregate the influence values computed from all subgraphs 
to approximate the influence in the original graph. With this 
sampling framework, the time complexity can be reduced to 
O(nT), where n is the number of sampled nodes in each 
subgraph and T is the number of subgraphs or the times of 
sampling. In particular, the time complexity of IM-RWS 
does not depend on the size of the original graph, but the 
number of sampled nodes and the times of sampling, which 
makes IM-RWS time-efficient even for large-size graphs. 

To evaluate the time efficiency and accuracy of 
IMRWS, we conduct extensive experiments to compare 
IMRWS with the state-of-the-art algorithms on several 
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realworld OSNs. The results show that IM-RWS brings a 
significant improvement of time efficiency as well as a 
certain extent of improvement in accuracy. In summary, this 
paper makes the following main contributions. 

• We introduce a new method to speed up the 
computation of graph centrality for large-scale graphs 
with sampling. In particular, our method first sample 
multiple relatively small subgraphs from the original 
large graph, then compute the centrality over the small 
subgraphs, and finally aggregate the computed results 
to estimate the original graph centrality. 

• As a special study case of our method, we present an 
algorithm IM-RWS for solving the influence 
maximisation problem. In this algorithm, we use 
random walk to sample a certain number of subgraphs 
and adopt the idea of IM-RW algorithm to calculate the 
influence values of nodes in each subgraph. 

• We conduct experiments with real-world datasets to 
validate the effectiveness and efficiency of our 
approach. Results show that our approach can 
significantly reduce the time cost and meanwhile keeps 
the same or even higher accuracy. 

Organisation. The rest of this paper is organised as follows. 
Section 2 describes preliminaries of the influence 
maximisation problem, and introduces the background on 
random walk. Section 3 first proposes the sampling-based 
framework and then presents our algorithm IMRWS for 
solving the influence maximisation problem. We show the 
experiment results in Section 4. Section 5 overviews the 
related works and Section 6 concludes the paper. 

2 Preliminaries 

In this section, we first introduce the diffusion model and 
then give the formal definition of influence maximisation 
problem. Finally, we overview random walk to facilitate the 
discussions of our algorithm in subsequent sections. 

2.1 Diffusion models 

Diffusion models define how the influence spreads through 
a social network. Usually, in different scenarios, the ways of 
influence spreading are also different. Thus, there are many 
diffusion models, such as linear threshold cascade (LT) 
model (Granovetter, 1978; Kempe et al., 2003), CTIC 
model (Saito et al., 2009), weighted cascade model (Kempe 
et al., 2003) and so on (Even-Dar and Shapira, 2007; 
Mahajan et al., 1991). The most commonly used model is 
independent cascade (IC) model (Kempe et al., 2003; 
Watts, 2002). The influence spread process under the IC 
model can be described as follows. The influence starts 
from an initial set of nodes called seeds. When a node u is 
influenced at timestamp t, then u will influence its  
out-neighbours with probability p at timestamp t + 1. The 
influence spreads until there is no more nodes can be 
influenced. 

2.2 Influence maximisation problem 

Definition: The influence maximisation problem (Domingos 
and Richardson, 2001; Richardson and Domingos, 2002) is 
defined as follows. Given a social network denoted as 
G(V,E), a small positive integer k and a diffusion model, the 
goal is to find a node set with size k from V so as to 
influence the largest number of nodes, which can be 
mathematically formulated as follows: 

*  argmax{ ( )  | , }.A A A k A Vσ= = ⊆  

Here, σ(A) denotes the number of nodes being influenced by 
node set A. 

To evaluate the performance of an algorithm which 
solves the above influence maximisation problem, we 
consider the following two aspects: 

Accuracy: It is characterised by the distance between the 
selected set of k seeds obtained from an influence 
maximisation algorithm and the optimal solution. However, 
since it is impossible to directly compute the optimal 
solution, especially for a large graph, instead, we measure 
the number of eventually influenced nodes by the selected k 
nodes. The rationale is that the more number of nodes that 
can be influenced by the k nodes selected by an algorithm, 
then the higher accuracy the algorithm achieves. 

Efficiency: It is characterised by the time required to run an 
influence maximisation algorithm. Note that this measure is 
also important, because if the time cost of an algorithm is 
too high, then the algorithm may not be able to return a 
feasible solution in a reasonable time for large social 
networks. 

2.3 Random walk 

The process of simple random walk on social networks can 
be described as follows. It first randomly selects a node 
from the social network as the start point, then randomly 
selects a candidate node from the neighbours of the current 
node and walks to it. The above steps repeat until the 
termination condition is satisfied. During the process of 
random walk, there may be no candidate node to walk to in 
a directed graph. For instance, when the out-degree of the 
current node is 0, the walk can not continue. In order to 
overcome this drawback, at each step, we allow the walk to 
jump back to the start node and restart the walk with 
probability p, and with the rest probability 1 − p, we 
continue the current walk. 

There are lots of applications for random walk on social 
networks, such as PageRank (Page et al., 1999), similarity 
(Jeh and Widom, 2002) and so on (Li et al., 2014;  
Zhao et al., 2015; Zhong and Shen, 2006). Here, we just 
introduce two applications of random walk which are 
related to our work: 

1 Random walk sampling (RW). It is an exploratory 
sampling method, which selects the nodes that are 
visited by the random walk process as sample nodes 
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2 Influence maximisation with random walk,  
e.g., IM-RW algorithm in Zhao et al. (2016). 

This influence maximisation algorithm first simulates L-step 
walk R times for each node, then compute the influence 
value of each node according to the number of times each 
node being accessed, and finally applies the greedy method 
to select the top-k nodes. 

3 Methodology 

In this section, we first present a general sampling based 
framework to speed up the computation of centrality in 
large-scale graphs. To further show the effectiveness of this 
framework, we take the influence maximisation problem as 
an instance, and develop an algorithm called IM-RWS 
based on the sampling based framework. Finally, we 
introduce each step of the IM-RWS algorithm in details and 
analyse its time complexity. 

3.1 The general sampling based framework 

To speed up the computation of centrality in large-scale 
graphs, we propose a general sampling based method. The 
idea is as follows: We first do sampling on the original large 
graph and get multiple relatively small subgraphs, then 
compute the centrality values by analysing each of the 
sampled subgraphs, and finally aggregate the values to get 
the final result. Specifically, the method can be divided into 
the following four steps: 

1 sample multiple subgraphs from the original large 
graph by using a certain sampling method 

2 for each subgraph sampled in last step, calculate the 
centrality value with existing centrality computation 
algorithms 

3 map the centrality values from the sampled subgraph to 
the whole large graph for each subgraph and then get 
the value distributions of the centrality values 

4 aggregate the distributions to obtain the final solution. 

Note that the above framework is general in the sense that it 
can be applied to speed up the computation of various graph 
centralities. In this paper, we take the influence 
maximisation problem as an example, and propose an IM-
RWS algorithm to validate the feasibility of the above 
sampling based framework, and also use it to show the 
improvement it can achieve. 

According to the sampling based framework, the 
IMRWS algorithm also consists of four steps. Specifically, 
we first sample a certain number of subgraphs from an 
OSN, then we calculate the distribution of the influence 
values of nodes in each subgraph. Next, we map this 
distribution to the original OSN. Finally, we make an 
aggregation of the distributions over each sampled subgraph 
to obtain the final influence value distribution of nodes in 
the entire OSN. Figure 1 shows the algorithm process of  
 

IM-RWS, and Algorithm 1 describes pseudocode. In the 
following subsections, we will introduce each step of the 
algorithm in details. 

Figure 1 The process of IM-RWS algorithm 

 

3.2 Sampling subgraphs from OSN 

Firstly, we use random walk based sampling technology to 
obtain subgraphs. In particular, we run random walk on a 
given social network G(V,E), and keep track of the visited 
nodes, and denote the set of nodes as V′. For any u, v ∈ V′, 
if the edge uv ∈ E′, then it will be remained in the subgraph. 
In other words, we take all visited nodes by the random 
walk, as well as all edges with both end nodes belonging to 
the visited node set as a sampled subgraph. For ease of 
presentation, we denote the set of the edges in the sampled 
subgraph as E′, and denote the sampled subgraph as  
G′(V′, E′). We repeat the sampling process T times to get T 
subgraphs. Figure 2 shows an example of this sampling 
process. 

Algorithm 1 IM-RWS algorithm 

 

In Figure 2, the left figure shows the original graph G, 
where the red node represents the start node, and the yellow 
nodes imply that they are visited by random walk, and the 
arrows show the path of the random walk. Suppose that the 
terminate condition is to sample 10 nodes, then the size of 
the subgraph is 10, which means |V′| = 10. After getting 
node set V′, it is easy to get the edge set E′. The right figure 
shows the sampled subgraph G′. The corresponding 
algorithm is shown in Algorithm 2. 
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Figure 2 An example of random walk based sampling  
(see online version for colours) 

 

Algorithm 2 RWSampling fuction 

 

3.3 Calculating influence values in subgraphs 

For each subgraph obtained in the last step, we calculate the 
influence value of each node in each subgraph. Here, we 
follow the idea of the IM-RW algorithm (Zhao et al., 2016), 
which uses random walk to approximate the influence 
values. The main idea is to simulate R random walks of 
length L for each node, and according to the times of a node 
being visited by all random walks, we can determine its 
influence value. The detailed process is described as 
follows: 

1 For ∀i ∈ V′, where V′ represents the node set in the 
sampled subgraph. We simulate R times random walks 
of length L starting from i. 

2 In each step of the random walk, we randomly pick one 
node from the neighbours of the current node, and walk 
to it in the next step. 

3 Repeat the last step until the length of the walk reaches 
L. 

4 Initially we set D(i) = 0 for ∀i ∈ V′, where D(i) 
presents the influence value of node i in the subgraph. 
Every time a node u is visited by a random walk, we 
plus D(u) by 1/R. 

5 When R random walks are all performed, we can get a 
distribution of the influence values of all nodes in the 
subgraph, which is denoted as Dt(nt), where t denotes 
the id of current subgraph and nt = |V′|. 

Figure 3 shows an example to illustrate this process. The 
subgraph is obtained in the last subsection. In this subgraph, 
we simulate a 3-step random walk 4 times for each node. 
Initially, the influence values of all nodes are set as 0. When 
a node is accessed by a random walk, then its influence 
value increases by 1/4. After 4 random walks, we get the 
influence value distribution Dt(n) of the current subgraph, as 
shown in Figure 3. The specific implementation is given in 
Algorithm 3. 

Figure 3 Calculating influence values in subgraphs  
(see online version for colours) 

 

Algorithm 3 computingInfluenceValue Fuction 

 

3.4 Mapping Dt(n) to OSN 

Based on the obtained influence value distribution Dt(n), in 
this subsection, we introduce how to map this distribution to 
the entire social network. In other words, for each subgraph, 
we will get a distribution over all nodes in the original 
graph. During this process, we define a function to reflect 
the influence value of each node as follows: 

[ ]
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( )

· ( ),   if  ,
t t
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i tj in link i

D i i G
q i

p P j i G
∈ −
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where we define p as the decay factor. The physical 
meaning is that the influence will decrease as the distance 
increases. The process of the above mapping process is 
described as follows: 

1 initially, we set G(i) = 0 for ∀i ∈ V′, where G(i) 
presents the influence value of node i in the entire 
graph, and for the sampled nodes, we set G(i) = D(i) 

2 define a queue Q, which is initialised as the sampled 
node set, to represent the node set which can spread the 
influence in the graph 

3 in each iteration, we get a node u form the head of Q, 
then for each neighbour v of node u, we update G(v) by 
setting G(v) = G(v) + p ∗ G(u), and push v into Q 

4 repeat the process until the queue is empty. 

Figure 4 An example showing the mapping of the influence 
from a subgraph to the original OSN (see online 
version for colours) 

 

Algorithm 4 mappingToOriginalGraph Fuction 

 

Figure 4 shows an example of this process, where the red 
and the yellow nodes (d0~d9) belong to the current 
subgraph. The influence values are computed in above 
steps. For the nodes that are not in the subgraph, their 

influence values are computed by equation (1). The detailed 
implementation is given by Algorithm 4. 

3.5 Aggregation 

Since we have many subgraphs, which means each node 
will have many influence values after mapping. We need to 
aggregate them to get a final solution. Here we use a simple 
but efficient method by directly computing the average 
value and using the average value as the final influence 
value of each node. Finally, we sort the nodes by their 
influence values, and select the k nodes with the largest 
values as the most influential nodes. 
The aggregation can be formulated as follows, and the 
detailed implementation is shown in Algorithm 5. 

1

1( ) ( ).
T

tt
P n P n

T =∑  (2) 

Algorithm 5 aggregation Fuction 

 

3.6 Time complexity analysis 

The time complexity of IM-RWS comes from four parts. In 
the first part, in order to get T subgraphs, we have to run 
random walk with T times, and each walk needs to sample 
n* nodes, so the time cost in the sampling step is O(Tn*). In 
the second part, we compute the influence probability 
distribution Dt(n*) for T times since there are T subgraphs. 
In each computation, the time cost is O(RLn*), so the total 
time complexity in this part is O(TRLn*). In the third part, 
in order to map Dt(n*) to the entire OSN, we need to 
traverse the OSN, which leads to a time cost O(n), where n 
is the total number of nodes in the OSN. Thus, the total time 
cost of this part is O(Tn). The time cost in the fourth part is 
the same as that in the third part. So, from the analysis, we 
can conclude that the time complexity of our algorithm is 
O(TRLn*) + O(Tn). In experiment, we set R = 100, L = 3, 
n* = 1%n, and the time complexity is close to O(Tn). We 
also find that T = 10 is already enough to achieve a good 
efficiency and accuracy. 

4 Performance evaluation 

In this section, we conduct experiments on several  
real-world datasets to compare our IMRWS algorithm with 
the state-of-the-art influence maximisation algorithm IMM 
and IM-RW from both aspects of accuracy and efficiency. 
Our algorithm is implemented in C++ and compiled with 
g++ 4.8.1. We run the experiments on a machine with an 
Intel Xeon E5-2407 v2 2.40 GHz*4 CPU and 48 GB 
memory. 
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4.1 Experimental settings 

Datasets. The datasets we used in our experiments are all 
real-world graphs as shown in the Table 1. Among them, 
Yelp comes from Yelp Dataset (https://www.yelp.com/ 
dataset_challenge/dataset), Flixster comes from Jamali and 
Ester (2010), Twitter comes from Twitter Dataset 
(https://an.kaist.ac.kr/traces/WWW2010.html) and all others 
come from Stanford Network Analysis Project (SNAP) 
(Leskovec and Krevl, 2014). We point out that the datasets 
include both small and large graphs, and in particular, the 
number of nodes of Twitter reaches several tens of millions, 
and the number of edges reaches one billion. 

Table 1 Datasets 

Dataset  # of nodes # of edges 

Ciao 2,342 57,544 
NetHEPT 15,229 62,752 
Epinions 18,089 355,813 
Slashdot0811 77,360 905,468 
Slashdot0902 82,168 948,464 
Yelp 174,100 2,576,179 
Flixster 300,000 6,394,798 
LiveJournal 4,847,571 68,993,773 
Twitter 41,652,230 1,468,365,182 

Parameter settings. The parameters we used in our method 
are listed in Table 2, and the value settings of these 
parameters are listed in Table 3. In particular, in Table 3, 
SR is set as 1% and 0.01%, which are used in the first two 
sets of experiments and the last set of experiments, 
respectively. 

Algorithms. In our experiment, we compare our IM-RWS 
algorithm with the state-of-the-art influence maximisation 
algorithm IMM and IM-RW in the aspects of accuracy and 
efficiency. 

4.2 Results for efficiency 

The efficiency of an algorithm is measured by the running 
time. Since the actual running time has a small fluctuation, 
we execute 10 times for each experiment and take the 
average value. Figure 5 shows the efficiency results for 
IMM, IM-RW and IM-RWS algorithms running on the 
eight datasets. The X-axis represents the seed set size k, 
varying from 5 to 50 with step 5, and the Y-axis represents 
the running time of each algorithm in seconds. 

Table 2 Algorithm parameters 

Parameter Description 

-G Online social network G 
-n The number of nodes in G 
-m The number of edges in G 
-d Degree of every node in G 
-k The size of seed set 
-T The number of sampled subgraphs 
-SR Sample rate of each subgraph 
-R The number of random walks of each node 
-L The length of each random walk 
-Model Influence diffusion model 

Table 3 Value setting of the parameters 

Algorithm steps Parameters Values 

Select top-k -k 5 to 50 with step 5 
Sample subgraphs from OSN -T-SR 10 1%, 0.01% 
Calculate influence -R 100 
value in subgraphs -L 3 
Compute influence -Model IC 

 

Figure 5 Results of efficiency, (a) Ciao (b) NetHEPT (c) Epinions (d) Slashdot0811 (e) Slashdot0902 (f) Yelp (g) Flixster (h) LiveJournal 

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 
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The results indicate that the running time has no significant 
variation with the increase of the seed set size k. By 
contract, for all eight graphs, our IM-RWS has a much 
shorter running time compared with IMM and IM-RW, with 
the efficiency increased by 4 to 8 times. Besides, for the 
largest graph LiveJournal [Figure 5(h)], IM-RWS costs only 
tens of seconds, while the running time of IM-RW is too 
long time so we do not show it in the figure to make the 
figure clear. 

4.3 Results for accuracy 

In our evaluations, we use the influence spread of the k 
starting nodes that are selected as the seed set to measure 
the accuracy of the algorithms. The more nodes the seed set 
can influence under the IC model in the whole graph G, the 
larger the influence spread is, so the higher accuracy the 
algorithm achieves. 

Figure 6 shows the results of the accuracy for IMM, IM-
RW and IM-RWS algorithms running on the eight datasets. 
The X-axis represents the seed set size k, varying from 5 to 
50 with step 5. The Y-axis represents the number of nodes 
that can be influenced by the set of seed nodes under the IC 
model in the original graph G. 

From the results we can see that with the increase of the 
seed set size k, the influence spread of IMM, IMRW and 
IM-RWS algorithms all increase in a nearly linear manner. 
Besides, IMM and IM-RW have the similar accuracy. From 
the comparison with our IMRWS algorithm, for the 
relatively small graphs Ciao [Figure 6(a)], NetHEPT 
[Figure 6(b)] and Epinions [Figure 6(c)], IM-RWS has a 
relatively lower accuracy, which is mainly caused by the 
sampling. However, with the increase of the graph size, the 
disparity is getting smaller. Finally, for the large graphs 
Slashdot0811 [Figure 6(d)], Slashdot0902 [Figure 6(e)], 
Yelp [Figure 6(f)] and Flixster [Figure 6(g)], our IM-RWS 
algorithm achieves even higher accuracy over IMM and  

IM-RW. To further show the effectiveness and efficiency of 
our algorithm on large graphs, we run another experiment 
by using a large dataset in the next subsection. 

4.4 Results on large graph 

For the Twitter graph we used, the number of nodes reaches 
tens of millions, and the number of edges reaches one 
billion. We believe that this graph is large enough to show 
the impact of our algorithm on large graphs. Also, this 
dataset is effective to further motivate our framework in 
speeding up the centrality computation as existing algorithm 
on this graph already takes a very long time. In this set of 
experiments, we compare our algorithm IM-RWS with 
IMM only, also from the aspects of accuracy and efficiency. 
Here, in IM-RWS, we set T as 10 and the sample rate as 
0.01%. 

Figure 7 shows the results on Twitter graph, where 
Figure 7(a) shows the accuracy and Figure 7(b) shows the 
results of efficiency. The X-axis represents the seed set size 
k, varying from 50 to 300 with step 50. The Y-axis 
represents the number of nodes that can be influenced by 
the seed set under the IC model in the whole graph G and 
the running time, respectively. 

From the results we can see that IM-RWS can get a 
large improvement both in accuracy and efficiency 
compared with IMM. For accuracy, the influence spread of 
IM-RWS is almost twice as that of IMM as shown in Figure 
7(a). For efficiency, as shown in Figure 7(b), IMM takes 
several minutes to run out. Moreover, as k increases, the 
running time also increases. However, IM-RWS only needs 
about 24 seconds, and more importantly, its running time is 
independent on k, which denotes the number of initial nodes 
being influenced. This implies that our algorithm IM-RWS 
has a very good scalability in both graph size and initial 
seed set size. 

 

Figure 6 Results of accuracy, (a) Ciao (b) NetHEPT (c) Epinions (d) Slashdot0811 (e) Slashdot0902 (f) Yelp (g) Flixster  
(h) LiveJournal 

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 
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Figure 7 Results on a large graph Twitter, (a) accuracy  
(b) efficiency 

 
(a) (b) 

In summary, with the increase of graph size, our IM-RWS 
algorithm has higher accuracy. Moreover, the larger the 
graph is, the more accurate results we can achieve. This 
conforms to our original intension to design IM-RWS with 
the idea of sampling. The main reason is that for large-scale 
graphs, the traditional way of direct computation on the 
whole graph will be trapped in a relatively small area, and 
thus causes estimation error. With the increase of graph 
size, the error also increases. In a contrast, our sampling 
based IM-RWS algorithm disperses the computation over 
the graph and thus reduces estimation error. In terms of 
efficiency, with sampling, the time complexity of IM-RWS 
does not strictly depend on the size of the original graph, 
but mainly depend on the number of sampled nodes and the 
times of sampling. As a result, IM-RWS is also time-
efficient to analyse large sized graphs. 

5 Related work 

As a seminal work, Kemple et al. (2003) make a great 
contribution on the influence maximisation problem. They 
first formulate the influence maximisation problem as a 
discrete optimisation problem and show that it is NP-hard in 
general. By taking use of the idea of approximation, they 
design a greedy algorithm which can give a guarantee on 
the result with a factor of 1 −1/e under the triggering model. 
However, it leads to a high time cost of O(knmr), which 
makes it unfeasible to be applied to a large-scale OSN. 
Motivated by this, lots of techniques are proposed to 
improve the efficiency. Among these works, CELF and 
CELF++ (Goya et al., 2011; Leskovec et al., 2007) are 
developed based on the submodularity of the spread 
function, and they also have a significant improvement on 
efficiency. However, due to the framework of the greedy 
algorithm, their time complexity still retains O(knmr). In the 
meantime, many researchers design lots of heuristic 
algorithms, which can offer a higher efficiency, but none of 
them can give a theoretical guarantee on the accuracy of the 
results. Recently, Borgs et al. (2014) make a theoretical 
breakthrough on the influence maximisation problem, and 
they present an algorithm which can not only give a 
guarantee on accuracy, but can also reduce the time 
complexity to O(kl2(m + n)(logn)2/ε3). However, the small ε 
means that the time complexity still has a large constant 
factor, which incurs high overheads in practice. Motivated 
by Borg et al.’s idea. Tang et al. (2014, 2015) propose two  

 
algorithms to improve the efficiency, TIM and IMM, and 
IMM is now the state-of-art influence maximisation 
algorithm in terms of efficiency. 

With respect to the sampling approaches, they can be 
roughly classified into four categories (Krishnamurthy et al., 
2005; Leskovec and Faloutsos, 2006; Leskovec et al., 2005; 
Luo et al., 2008). The first category is random node 
sampling, which includes RN, RPN, RDN. The second 
category is random edge sampling, which includes RE, 
RNE, HYB, and so on. The third category is heuristics 
based sampling, which includes RNN, RW, and FF. The last 
category is the traditional graph traverse methods, which 
mainly include BFS, DFS, etc. 

6 Conclusions 

In this paper, we present a sampling-based method to 
compute graph centrality in large online social networks. In 
particular, to validate the effectiveness of the method, we 
take the influence maximisation problem as an application 
example, and present an IM-RWS algorithm to solve the 
influence maximisation problem by introducing the 
sampling idea to the existing influence maximisation 
algorithm IM-RW. The experiments show that our 
algorithm can achieve a significant improvement in 
efficiency, and it also improves the accuracy for middle and 
large OSNs, compared with the state-of-the-art influence 
maximisation algorithm IMM and IM-RW. For the future 
work, we will continue to focus on the influence 
maximisation problem, but try other methods in the second 
step for calculating the influence in subgraphs, so as to 
validate the generality of the methods of our sampling 
method and try to find a better algorithm for solving the 
influence maximisation problem. In addition, we also prefer 
to consider the implementation of our sampling based 
method to other graph centrality computation problems, 
such as similarity, so as to further validate the generality of 
our sampling based method. 
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