

Communications in Algebra

ISSN: 0092-7872 (Print) 1532-4125 (Online) Journal homepage: http://www.tandfonline.com/loi/lagb20

The tensor product of Gorenstein-projective modules over category algebras

Ren Wang

To cite this article: Ren Wang (2018) The tensor product of Gorenstein-projective modules over category algebras, Communications in Algebra, 46:9, 3712-3721, DOI: 10.1080/00927872.2018.1424864

To link to this article: https://doi.org/10.1080/00927872.2018.1424864

	Published online: 08 Feb 2018.
	Submit your article to this journal 🗷
ılıl	Article views: 71
CrossMark	View Crossmark data 🗹

The tensor product of Gorenstein-projective modules over category algebras

Ren Wang

School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China

ABSTRACT

For a finite free and projective El category, we prove that Gorenstein-projective modules over its category algebra are closed under the tensor product if and only if each morphism in the given category is a monomorphism.

ARTICLE HISTORY

Received 16 January 2017 Revised 10 October 2017 Communicated by S. Oppermann

KEYWORDS

Category algebra; finite El category; Gorenstein-projective module; tensor product; tensor triangulated category

2010 MATHEMATICS SUBJECT CLASSIFICATION Primary 16G10; Secondary 16D90, 18E30

1. Introduction

Let k be a field. Let \mathscr{C} be a finite category, that is, it has only finitely many morphisms, and consequently it has only finitely many objects. Denote by k-mod the category of finite dimensional k-vector spaces and (k-mod) $^{\mathscr{C}}$ the category of covariant functors from \mathscr{C} to k-mod.

Recall that the category $k\mathscr{C}$ -mod of left modules over the category algebra $k\mathscr{C}$ is identified with $(k\text{-mod})^{\mathscr{C}}$; see [7]. Hence $k\mathscr{C}$ -mod is a symmetric monoidal category, whose tensor product is inherited from k-mod; see [8, 9].

Let \mathscr{C} be a finite EI category. Here, the EI condition means that all endomorphisms in \mathscr{C} are isomorphisms. In particular, $\operatorname{Hom}_{\mathscr{C}}(x,x) = \operatorname{Aut}_{\mathscr{C}}(x)$ is a finite group for each object x. Denote by $k\operatorname{Aut}_{\mathscr{C}}(x)$ the group algebra. Recall that a finite EI category \mathscr{C} is *projective over* k if each $k\operatorname{Aut}_{\mathscr{C}}(y)$ - $k\operatorname{Aut}_{\mathscr{C}}(x)$ -bimodule $k\operatorname{Hom}_{\mathscr{C}}(x,y)$ is projective on both sides; see [5].

Denote by $k\mathscr{C}$ -Gproj the full subcategory of $k\mathscr{C}$ -mod consisting of Gorenstein-projective $k\mathscr{C}$ -modules. We say that \mathscr{C} is GPT-closed, if $X, Y \in k\mathscr{C}$ -Gproj implies $X \hat{\otimes} Y \in k\mathscr{C}$ -Gproj.

Let us explain the motivation to study GPT-closed categories. Recall from [6] that for a finite projective EI category $\mathscr C$, the stable category $k\mathscr C$ -Gproj modulo projective modules has a natural tensor triangulated structure such that it is tensor triangle equivalent to the singularity category of $k\mathscr C$. In general, its tensor product is not explicitly given. However, if $\mathscr C$ is GPT-closed, then the tensor product $-\hat{\otimes}$ - on Gorenstein-projective modules induces the one on $k\mathscr C$ -Gproj; see Proposition 3.4. In this case, we have a better understanding of the tensor triangulated category $k\mathscr C$ -Gproj.

Proposition 1.1. Let $\mathscr C$ be a finite projective EI category. Assume that $\mathscr C$ is GPT-closed. Then each morphism in $\mathscr C$ is a monomorphism.

The concept of a finite *free* EI category is introduced in [3].

Theorem 1.2. Let \mathscr{C} be a finite projective and free EI category. Then the category \mathscr{C} is GPT-closed if and only if each morphism in \mathscr{C} is a monomorphism.

2. Gorenstein triangular matrix algebras

In this section, we recall some necessary preliminaries on Gorenstein-projective modules and triangular matrix algebras.

Let A be a finite dimensional algebra over a field k. Denote by A-mod the category of finite dimensional left A-modules. The opposite algebra of A is denoted by A^{op} . We identify right A-modules with left A^{op} -modules.

Denote by $(-)^*$ the contravariant functor $\operatorname{Hom}_A(-,A)$ or $\operatorname{Hom}_{A^{\circ p}}(-,A)$. Let X be a left A-module. Then X^* is a right A-module and X^{**} is a left A-module. There is an evaluation map $ev_X: X \to X^{**}$ given by $\operatorname{ev}_X(x)(f) = f(x)$ for $x \in X$ and $f \in X^*$. Recall that an A-module G is Gorenstein-projective provided that $\operatorname{Ext}_A^i(G,A) = 0 = \operatorname{Ext}_{A^{op}}^i(G^*,A)$ for $i \geq 1$ and the evaluation map ev_G is bijective; see [1, Proposition 3.8].

We use pd and id to denote the projective dimension and the injective dimension of a module, respectively.

The algebra A is Gorenstein if $id_A A < \infty$ and $idA_A < \infty$. It is well known that for a Gorenstein algebra A we have $\mathrm{id}_A A = \mathrm{id} A_A$; see [10, Lemma A]. For $m \geq 0$, a Gorenstein algebra A is m-Gorenstein if $id_A A = idA_A \le m$. Denote by A-Gproj the full subcategory of A-mod consisting of Gorensteinprojective A-modules, and A-proj the full subcategory of A-mod consisting of projective A-modules.

The following lemma is well known; see [1, Propositions 3.8 and 4.12 and Theorem 3.13].

Lemma 2.1. Let $m \ge 0$. Let A be an m-Gorenstein algebra. Then we have the following statements.

- (1) An A-module M is Gorenstein-projective if and only if $\operatorname{Ext}_A^i(M,A) = 0$ for all i > 0.
- (2) If $M \in A$ -Gproj and L is a right A-module with finite projective dimension, then $\operatorname{Tor}_i^A(L,M) = 0$ for all i > 0.
- (3) If there is an exact sequence $0 \to M \to G_0 \to G_1 \to \cdots \to G_m$ with G_i Gorenstein-projective, then $M \in A$ -Gproj.

Recall that an
$$n \times n$$
 upper triangular matrix algebra has the form $\Gamma = \begin{pmatrix} R_1 & M_{12} & \cdots & M_{1n} \\ & R_2 & \cdots & M_{2n} \\ & & \ddots & \vdots \\ & & & R_n \end{pmatrix}$,

where each R_i is an algebra for $1 \le i \le n$, each M_{ij} is an R_i - R_j -bimodule for $1 \le i < j \le n$, and the matrix algebra map is denoted by $\psi_{ilj}: M_{il} \otimes_{R_l} M_{lj} \to M_{ij}$ for $1 \le i < l < j < t \le n$; see [5].

Recall that a left Γ -module $X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$ is described by a column vector, where each X_i is a left

 R_i -module for $1 \le i \le n$, and the left Γ -module structure map is denoted by $\varphi_{il}: M_{il} \otimes_{R_l} X_l \to X_i$ for $1 \le j < l \le n$; see [5]. Dually, we have the description of right Γ -modules via row vectors.

Notation 2.2. Let Γ_t be the algebra given by the $t \times t$ leading principal submatrix of Γ and Γ'_{n-t} be the algebra given by cutting the first t rows and the first t columns of Γ . Denote the left Γ_t -module

$$\begin{pmatrix} M_{1,t+1} \\ \vdots \\ M_{t,t+1} \end{pmatrix}$$
 by M_t^* and the right Γ'_{n-t} -module $(M_{t,t+1}, \dots, M_{tn})$ by M_t^{**} , for $1 \le t \le n-1$. Denote by

 $\Gamma_t^D = \operatorname{diag}(R_1, \dots R_t)$ the sub-algebra of Γ_t consisting of diagonal matrices, and $\Gamma_{D,n-t}' = \operatorname{diag}(R_{t+1}, \dots R_n)$ the sub-algebra of Γ_{n-t}' consisting of diagonal matrices.

Let $\Gamma = \begin{pmatrix} R_1 & M_{12} \\ 0 & R_2 \end{pmatrix}$ be an upper triangular matrix algebra. Recall that the R_1 - R_2 -bimodule M_{12} is *compatible*, if the following two conditions hold; see [11, Definition 1.1]:

(C1) If Q^{\bullet} is an exact sequence of projective R_2 -modules, then $M_{12} \otimes_{R_2} Q^{\bullet}$ is exact;

(C2) If P^{\bullet} is a complete R_1 -projective resolution, then $\operatorname{Hom}_{R_1}(P^{\bullet}, M_{12})$ is exact.

Lemma 2.3. Let Γ be an upper triangular matrix algebra such that all R_i are Gorenstein. If Γ is Gorenstein, then each Γ_t - R_{t+1} -bimodule M_t^* is compatible and each R_t - Γ'_{n-t} -bimodule M_t^{**} is compatible for $1 \le t \le n-1$.

Proof. Let $\Lambda = \begin{pmatrix} S_1 & N_{12} \\ 0 & S_2 \end{pmatrix}$ be an upper triangular matrix algebra. Recall the fact that if $\operatorname{pd}_{S_1}(N_{12}) < \infty$ and $\operatorname{pd}(N_{12})_{S_2} < \infty$, then N_{12} is compatible; see [11, Proposition 1.3]. Recall that Γ is Gorenstein if and only if all bimodules M_{ij} are finitely generated and have finite projective dimension on both sides; see [5, Proposition 3.4]. Then we have $\operatorname{pd}_{R_t}(M_t^{**}) < \infty$ and $\operatorname{pd}(M_t^*)_{R_{t+1}} < \infty$ for $1 \le t \le n-1$. By [5, Lemma 3.1], we have $\operatorname{pd}(M_t^{**})_{\Gamma'_{n-t}} < \infty$ and $\operatorname{pd}_{\Gamma_t}(M_t^*) < \infty$ for $1 \le t \le n-1$. Then we are done.

Lemma 2.4 ([11, Theorem 1.4]). Let M_{12} be a compatible R_1 - R_2 -bimodule, and $\Gamma = \begin{pmatrix} R_1 & M_{12} \\ 0 & R_2 \end{pmatrix}$. Then $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \in \Gamma$ -Gproj if and only if $\varphi_{12} : M_{12} \otimes_{R_2} X_2 \to X_1$ is an injective R_1 -map, $\operatorname{Coker} \varphi_{12} \in R_1$ -Gproj, and $X_2 \in R_2$ -Gproj.

We have a slight generalization of Lemma 2.4 in the case R_i being group algebras.

Lemma 2.5. Let Γ be a Gorenstein upper triangular matrix algebra with each R_i a group algebra. Then

$$X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \in \Gamma\text{-Gproj if and only if each } R_t\text{-map } \varphi_t^{**} = \sum_{j=t+1}^n \varphi_{tj} : M_t^{**} \otimes_{\Gamma_{n-t}'} \begin{pmatrix} X_{t+1} \\ \vdots \\ X_n \end{pmatrix} \to X_t \text{ sending}$$

$$(m_{t,t+1}, \cdots, m_{tn}) \otimes \begin{pmatrix} x_{t+1} \\ \vdots \\ x_n \end{pmatrix} \text{ to } \sum_{j=t+1}^n \varphi_{tj}(m_{tj} \otimes x_j) \text{ is injective for } 1 \leq t \leq n-1.$$

Proof. We have that each R_t - Γ'_{n-t} -bimodule M_t^{**} is compatible for $1 \le t \le n-1$ by Lemma 2.3.

For the "only if" part, we use induction on n. The case n=2 is due to Lemma 2.4. Assume that n>2. Write $\Gamma=\begin{pmatrix} R_1 & M_1^{**} \\ 0 & \Gamma_{n-1}' \end{pmatrix}$, and $X=\begin{pmatrix} X_1 \\ X' \end{pmatrix}$. Since $X\in\Gamma$ -Gproj, by Lemma 2.4, we have that the R_1 -map $\varphi_1^{**}:M_1^{**}\otimes_{\Gamma_{n-1}'}X'\to X_1$ is injective and $X'\in\Gamma_{n-1}'$ -Gproj. By induction, we have that each R_t -map

$$\varphi_t^{**}: M_t^{**} \otimes_{\Gamma_{n-t}'} \begin{pmatrix} X_{t+1} \\ \vdots \\ X_n \end{pmatrix} \to X_t \text{ is injective for } 1 \le t \le n-1.$$

For the "if" part, we use induction on n. The case n=2 is due to Lemma 2.4. Assume that n>2. Write $\Gamma=\begin{pmatrix} R_1 & M_1^{**} \\ 0 & \Gamma'_{n-1} \end{pmatrix}$, and $X=\begin{pmatrix} X_1 \\ X' \end{pmatrix}$. By induction, we have $X'\in\Gamma'_{n-1}$ -Gproj. Since the R_1 -map

 $\varphi_1^{**}: M_1^{**} \otimes_{\Gamma_{n-1}'} X' \to X_1$ is injective and its cokernel belongs to R_1 -Gproj as R_1 is a group algebra, we have $X \in \Gamma$ -Gproj by Lemma 2.4.

Corollary 2.6. Let Γ be a Gorenstein upper triangular matrix algebra with each R_i a group algebra. Assume

that
$$X = \begin{pmatrix} X_1 \\ \vdots \\ X_s \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \Gamma$$
-Gproj. Then each R_i -map $\varphi_{is}: M_{is} \otimes_{R_s} X_s \to X_i$ is injective for $1 \le i < s \le n$.

Proof. We write
$$X = \begin{pmatrix} X' \\ X'' \end{pmatrix}$$
, where $X'' = \begin{pmatrix} X_{i+1} \\ \vdots \\ X_s \\ \vdots \\ 0 \end{pmatrix}$ for each $1 \le i < s \le n$. We claim that each R_i -map

 $(0) f_{is}: M_{is} \otimes_{R_s} X_s \to M_i^{**} \otimes_{\Gamma_{n-i}'} X'' \text{ sending } m_{is} \otimes x_s \text{ to } (0, \dots, m_{is}, \dots, 0) \otimes (0, \dots, x_s, \dots, 0)^t \text{ is injective,}$ where $(-)^t$ is the transpose. Since $\varphi_{is} = \varphi_i^{**} \circ f_{is}$ for $1 \le i < s \le n$, then we are done by Lemma 2.5. For the claim, we observe that for each $1 \le i < s \le n$, the R_i -map f_{is} is a composition of the following

$$M_{is} \otimes_{R_s} X_s \xrightarrow{g_{is}} (0, \cdots, 0, M_{is}, \cdots, M_{in}) \otimes_{\Gamma'_{n-i}} X'' \xrightarrow{\iota \otimes \operatorname{Id}} M_i^{**} \otimes_{\Gamma'_{n-i}} X'',$$

where the right Γ'_{n-i} -map $(0, \dots, M_{is}, \dots, M_{in}) \stackrel{\iota}{\longrightarrow} M_i^{**}$ is the inclusion map and g_{is} sends $m_{is} \otimes x_s$ to $(0, \cdots, m_{is}, \cdots, 0) \otimes (0, \cdots, x_s, \cdots, 0)^t$. We observe an R_i -map $(0, \cdots, M_{is}, \cdots, M_{in}) \otimes_{\Gamma'_{n-i}} X'' \xrightarrow{g'_{is}}$ $M_{is} \otimes_{R_s} X_s$, $(0, \dots, m_{is}, \dots, m_{in}) \otimes (0, \dots, x_s, \dots, 0)^t \mapsto m_{is} \otimes x_s$ satisfying $g'_{is} \circ g_{is} = \operatorname{Id}_{M_{is} \otimes_{R_s} X_s}$. Hence the R_i -map g_{is} is injective. We observe that the right Γ'_{n-i} -modules $(0, \dots, M_{is}, \dots, M_{in})$ and M_i^{**} have finite projective dimensions; see [5, Lemma 3.1], and $X'' \in \Gamma'_{n-i}$ -Gproj by Lemma 2.4. Then the R_i -map $\iota \otimes \text{Id}$ is injective by Lemma 2.1 (2).

3. Proof of Proposition 1.1

Let k be a field. Let \mathscr{C} be a finite category, that is, it has only finitely many morphisms, and consequently it has only finitely many objects. Denote by Mor& the finite set of all morphisms in &. The category *algebra* $k\mathscr{C}$ of \mathscr{C} is defined as follows: $k\mathscr{C} = \bigoplus_{\alpha \in \text{Mor}\mathscr{C}} k\alpha$ as a k-vector space and the product * is given by the rule

$$\alpha * \beta = \left\{ \begin{array}{ll} \alpha \circ \beta, & \text{if } \alpha \text{ and } \beta \text{ can be composed in} \mathscr{C}; \\ 0, & \text{otherwise.} \end{array} \right.$$

The unit is given by $1_{k\mathscr{C}} = \sum_{x \in \text{Obj}\mathscr{C}} \text{Id}_x$, where Id_x is the identity endomorphism of an object x in \mathscr{C} . If \mathscr{C} and \mathscr{D} are two equivalent finite categories, then \mathscr{kC} and \mathscr{kD} are Morita equivalent; see [7, Proposition 2.2]. In particular, $k\mathscr{C}$ is Morita equivalent to $k\mathscr{C}_0$, where \mathscr{C}_0 is any skeleton of \mathscr{C} . So we may assume that $\mathscr C$ is *skeletal*, that is, for any two distinct objects x and y in $\mathscr C$, x is not isomorphic to y.

The category $\mathscr C$ is called a *finite EI category* provided that all endomorphisms in $\mathscr C$ are isomorphisms. In particular, $\operatorname{Hom}_{\mathscr{C}}(x,x) = \operatorname{Aut}_{\mathscr{C}}(x)$ is a finite group for any object x in \mathscr{C} . Denote by $\operatorname{kAut}_{\mathscr{C}}(x)$ the group algebra.

For the rest of this paper, we assume that $\mathscr C$ is a finite EI category which is skeletal, and Obj $\mathscr{C} = \{x_1, x_2, \cdots, x_n\}, n \ge 2$, satisfying $\operatorname{Hom}_{\mathscr{C}}(x_i, x_j) = \emptyset$ if i < j.

Let $M_{ij} = k \operatorname{Hom}_{\mathscr{C}}(x_j, x_i)$. Write $R_i = M_{ii}$, which is a group algebra. Recall that the category algebra

$$k\mathscr{C}$$
 is isomorphic to the corresponding upper triangular matrix algebra $\Gamma_{\mathscr{C}} = \begin{pmatrix} R_1 & M_{12} & \cdots & M_{1n} \\ & R_2 & \cdots & M_{2n} \\ & & & \ddots & \vdots \\ & & & & R_n \end{pmatrix};$

see [5, Section 4].

Recall from [7, Proposition 2.1] that the category k%-mod of left modules over the category algebra $k\mathscr{C}$, is identified with $(k\text{-mod})^{\mathscr{C}}$. The category $k\mathscr{C}$ -mod is a symmetric monoidal category. More precisely, the tensor product -\hat{\omega}- is defined by

$$(M \hat{\otimes} N)(x) = M(x) \otimes_k N(x)$$

for any $M, N \in (k\text{-mod})^{\mathscr{C}}$ and $x \in \text{Obj}\mathscr{C}$, and $\alpha.(m \otimes n) = \alpha.m \otimes \alpha.n$ for any $\alpha \in \text{Mor}\mathscr{C}$, $m \in \text{Mor}\mathscr{C}$ $M(x), n \in N(x)$; see [8, 9].

In what follows,
$$\mathscr C$$
 is a finite EI category, and $\Gamma = \Gamma_{\mathscr C} = \begin{pmatrix} R_1 & M_{12} & \cdots & M_{1n} \\ & R_2 & \cdots & M_{2n} \\ & & \ddots & \vdots \\ & & & R_n \end{pmatrix}$ is the

corresponding upper triangular matrix algebra.

Let
$$X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$$
 and $Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}$ be two Γ -modules, where the left Γ -module structure maps are
$$\begin{pmatrix} X_1 \otimes_k Y_1 \end{pmatrix}$$

denoted by
$$\varphi_{ij}^X$$
 and φ_{ij}^Y , respectively. We observe that $X \hat{\otimes} Y = \begin{pmatrix} X_1 \otimes_k Y_1 \\ \vdots \\ X_n \otimes_k Y_n \end{pmatrix}$, where the module structure map $\varphi_{ij} : M_{ij} \otimes_{R_j} (X_j \otimes_k Y_j) \to X_i \otimes_k Y_i$ is induced by the following: $\varphi_{ij}(\alpha_{ij} \otimes (a_j \otimes b_j)) = \varphi_{ij}^X(\alpha_{ij} \otimes a_j) \otimes \varphi_{ij}^Y(\alpha_{ij} \otimes b_j)$, where $\alpha_{ij} \in \operatorname{Hom}_{\mathscr{C}}(x_j, x_i)$, $a_j \in X_j$ and $b_j \in Y_j$.

Definition 3.1. We say that \mathscr{C} is GPT-closed, if $X, Y \in \Gamma$ -Gproj implies $X \hat{\otimes} Y \in \Gamma$ -Gproj.

Recall from [5, Definition 4.2] that \mathscr{C} is projective over k provided that each $k\operatorname{Aut}_{\mathscr{C}}(y)$ - $k\operatorname{Aut}_{\mathscr{C}}(y)$ (x)-bimodule kHom $_{\mathscr{C}}(x,y)$ is projective on both sides. We recall the fact that the category algebra $k\mathscr{C}$ is Gorenstein if and only if \mathscr{C} is projective over k; see [5, Proposition 5.1].

Denote by C_i the *i*-th column of Γ which is a Γ - R_i -bimodule and projective on both sides.

Proposition 3.2. Assume that *C* is projective. Then the following statements are equivalent.

- (1) The category \mathscr{C} is GPT-closed.
- (2) For any $1 \le p \le q \le n$, $C_p \hat{\otimes} C_q \in \Gamma$ -Gproj.
- (3) For any $1 \le p \le q \le n$, $C_p \hat{\otimes} C_q \in \Gamma$ -proj.

Proof.

"
$$(1) \Rightarrow (2)$$
" and " $(3) \Rightarrow (2)$ " are obvious.

"(2) \Rightarrow (3)" We only need to prove that the Γ -module $C_p \hat{\otimes} C_q$ has finite projective dimension, since a Gorenstein-projective module with finite projective dimension is projective. We have $C_p \hat{\otimes} C_q$

$$\begin{pmatrix} M_{1p}\otimes_k M_{1q} \\ \vdots \\ M_{p-1,p}\otimes_k M_{p-1,q} \\ R_p\otimes_k M_{pq} \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$
 Since $\mathscr C$ is projective, we have that each M_{ip} is a projective R_i -module for 0

 $1 \leq i \leq p$. Then each $M_{ip} \otimes_k M_{iq}$ is a projective R_i -module since R_i is a group algebra for $1 \leq i \leq p$. Hence the Γ -module $C_p \hat{\otimes} C_q$ has finite projective dimension by [5, Corollary 3.6]. Then we are done.

"(2)⇒ (1)" We have that Γ is a Gorenstein algebra by [5, Proposition 5.1]. Then there is $d \ge 0$ such that Γ is a *d*-Gorenstein algebra.

For any $M \in \Gamma$ -Gproj, consider the following exact sequence

$$0 \to M \to P_0 \to P_1 \to \cdots \to P_d \to Y \to 0$$

with P_i projective, $0 \le i \le d$. Applying $-\hat{\otimes}N$ on the above exact sequence, we have an exact sequence

$$0 \to M \hat{\otimes} N \to P_0 \hat{\otimes} N \to P_1 \hat{\otimes} N \to \cdots \to P_d \hat{\otimes} N \to Y \hat{\otimes} N \to 0, \tag{3.1}$$

since the tensor product $-\hat{\otimes}$ - is exact in both variables. If N is projective, we have that each $P_i\hat{\otimes}N$ is Gorenstein-projective for $0 \le i \le d$ by (2). Then we have $M \hat{\otimes} N \in \Gamma$ -Gproj by Lemma 2.1 (3). If N is Gorenstein-projective, we have that each $P_i \otimes N$ is Gorenstein-projective for $0 \le i \le d$ in exact sequence (3.1) by the above process. Then we have $M \hat{\otimes} N \in \Gamma$ -Gproj by Lemma 2.1 (3). Then we are done.

The argument in " $(2) \Rightarrow (3)$ " of Proposition 3.2 implies the following result. It follows that the tensor product - $\hat{\otimes}$ - on Γ-Gproj *induces* the one on Γ-Gproj, still denoted by - $\hat{\otimes}$ -.

Lemma 3.3. Assume that \mathscr{C} is GPT-closed. Let $M \in \Gamma$ -Gproj and $P \in \Gamma$ -proj. Then $M \hat{\otimes} P \in \Gamma$ -proj.

Recall that a complex in $D^b(\Gamma$ -mod), the bounded derived category of finitely generated left Γ -modules, is called a *perfect complex* if it is isomorphic to a bounded complex of finitely generated projective modules. Recall from [2] that the *singularity category* of Γ , denoted by $D_{sg}(\Gamma)$, is the Verdier quotient category $D^b(\Gamma-mod)/perf(\Gamma)$, where $perf(\Gamma)$ is a thick subcategory of $D^b(\Gamma-mod)$ consisting of all perfect complexes.

Assume that \mathscr{C} is projective. Recall from [6] that there is a triangle equivalence

$$F: \Gamma\operatorname{-Gproj} \xrightarrow{\sim} \operatorname{D}_{sg}(\Gamma) \tag{3.2}$$

sending a Gorenstein-projective module to the corresponding stalk complex concentrated on degree zero. The functor F transports the tensor product on $D_{sg}(\Gamma)$ to Γ -Gproj such that the category Γ -Gproj becomes a tensor triangulated category.

Proposition 3.4. Assume that \mathscr{C} is projective. If \mathscr{C} is GPT-closed, then the tensor product $-\hat{\otimes}$ - on Γ -Gproj induced by the tensor product on Γ -Gproj coincide with the one transported from $D_{sg}(\Gamma)$, up to natural isomorphism.

Proof. Consider the functor F in (3.2). Recall that the tensor product on $D_{sg}(\Gamma)$ is induced by the tensor product $-\hat{\otimes}$ - on $D^b(\Gamma$ -mod), where the later is given by $-\hat{\otimes}$ - on Γ -mod. We have $F(M)\hat{\otimes}F(N)=$ $F(M \hat{\otimes} N)$ in $D_{sg}(\Gamma)$ for any $M, N \in \Gamma$ -Gproj. This implies that F is a tensor triangle equivalence. Then we are done.

Let *G* be a finite group. Recall that a left (resp. right) *G*-set is a set with a left (resp. right) *G*-action. Let *Y* be a left *G*-set and *X* be a right *G*-set. Recall an equivalence relation " \sim " on the product $X \times Y$ as follows: $(x,y) \sim (x',y')$ if and only if there is an element $g \in G$ such that x = x'g and $y = g^{-1}y'$ for $x,x' \in X$ and $y,y' \in Y$. Write the quotient set $X \times Y / \sim$ as $X \times_G Y$.

The following two lemmas are well known.

Lemma 3.5. Let Y be a left G-set and X be a right G-set. Then there is an isomorphism of k-vector spaces

$$\varphi: kX \otimes_{kG} kY \xrightarrow{\sim} k(X \times_G Y), \quad x \otimes y \mapsto (x, y),$$

where $x \in X$ and $y \in Y$.

Lemma 3.6. Let Y_1 and Y_2 be two left G-sets. Then we have an isomorphism of left kG-modules

$$\varphi: kY_1 \otimes_k kY_2 \xrightarrow{\sim} k(Y_1 \times Y_2), \quad y_1 \otimes y_2 \mapsto (y_1, y_2),$$

where $y_1 \in Y_1, y_2 \in Y_2$.

Lemma 3.7. Assume that $\mathscr C$ is projective, and $1 \le p \le q \le n$. Then $C_p \hat{\otimes} C_q \in \Gamma$ -proj implies that each morphism in $\bigsqcup_{y \in \mathrm{Obj}\mathscr C} \mathrm{Hom}_{\mathscr C}(x_p,y)$ is a monomorphism.

Proof. We have
$$C_p \hat{\otimes} C_q = \begin{pmatrix} M_{1p} \otimes_k M_{1q} \\ \vdots \\ M_{p-1,p} \otimes_k M_{p-1,q} \\ R_p \otimes_k M_{pq} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
. Then each R_i -map

$$\varphi_{ip}: M_{ip} \otimes_{R_p} (R_p \otimes_k M_{pq}) \to M_{ip} \otimes_k M_{iq}$$

sending $\alpha \otimes (g \otimes \beta)$ to $\alpha \circ g \otimes \alpha \circ \beta$, where $\alpha \in \operatorname{Hom}_{\mathscr{C}}(x_p, x_i), g \in \operatorname{Aut}_{\mathscr{C}}(x_p), \beta \in \operatorname{Hom}_{\mathscr{C}}(x_q, x_p)$, is injective for $1 \leq i by Corollary 2.6. We have that the sets <math>\operatorname{Hom}_{\mathscr{C}}(x_p, x_i) \times_{\operatorname{Aut}_{\mathscr{C}}(x_p)}(\operatorname{Aut}_{\mathscr{C}}(x_p) \times \operatorname{Hom}_{\mathscr{C}}(x_q, x_p))$ and $\operatorname{Hom}_{\mathscr{C}}(x_p, x_i) \times \operatorname{Hom}_{\mathscr{C}}(x_q, x_i)$ are k-basis of $M_{ip} \otimes_{R_p} (R_p \otimes_k M_{pq})$ and $M_{ip} \otimes_k M_{iq}$, respectively by Lemma 3.5 and Lemma 3.6. For each $1 \leq i < p$, since φ_{ip} is injective, we have an injective map

$$\varphi: \operatorname{Hom}_{\mathscr{C}}(x_p, x_i) \times_{\operatorname{Aut}_{\mathscr{C}}(x_p)} (\operatorname{Aut}_{\mathscr{C}}(x_p) \times \operatorname{Hom}_{\mathscr{C}}(x_q, x_p)) \to \operatorname{Hom}_{\mathscr{C}}(x_p, x_i) \times \operatorname{Hom}_{\mathscr{C}}(x_q, x_i)$$

sending $(\alpha, (g, \beta))$ to $(\alpha \circ g, \alpha \circ \beta)$, for $\alpha \in \text{Hom}_{\mathscr{C}}(x_p, x_i), g \in \text{Aut}_{\mathscr{C}}(x_p), \beta \in \text{Hom}_{\mathscr{C}}(x_q, x_p)$.

For each $1 \le i < p$, and $\alpha \in \operatorname{Hom}_{\mathscr{C}}(x_p, x_i)$, let $\beta, \beta' \in \operatorname{Hom}_{\mathscr{C}}(x_q, x_p)$ satisfy $\alpha \circ \beta = \alpha \circ \beta'$. Then we have $(\alpha, \alpha \circ \beta) = (\alpha, \alpha \circ \beta')$, that is, $\varphi(\alpha, (\operatorname{Id}_{x_p}, \beta)) = \varphi(\alpha, (\operatorname{Id}_{x_p}, \beta'))$. Since φ is injective, we have $(\alpha, (\operatorname{Id}_{x_p}, \beta)) = (\alpha, (\operatorname{Id}_{x_p}, \beta'))$ in $\operatorname{Hom}_{\mathscr{C}}(x_p, x_i) \times_{\operatorname{Aut}_{\mathscr{C}}(x_p)} (\operatorname{Aut}_{\mathscr{C}}(x_p) \times \operatorname{Hom}_{\mathscr{C}}(x_q, x_p))$. Hence $\beta = \beta'$. Then we have that α is a monomorphism.

Proposition 3.8. Assume that $\mathscr C$ is projective. If $\mathscr C$ is GPT-closed, then each morphism in $\mathscr C$ is a monomorphism.

Proof. It follows from Proposition 3.2 and Lemma 3.7.

Let \mathcal{P} be a finite poset. We assume that $\mathrm{Obj}\mathcal{P} = \{x_1, \dots, x_n\}$ satisfying $x_i \nleq x_j$ if i < j, and Γ is the corresponding upper triangular matrix algebra. We observe that each entry of Γ is 0 or k, and each

projective Γ-module is a direct sum of some C_i , where C_i is the *i*-th column of Γ for $1 \le i \le n$. For any $a, b \in \text{Obj}\mathcal{P}$ satisfying $a \nleq b$ and $b \nleq a$, denote by $L_{a,b} = \{x \in \text{Obj}\mathcal{P} \mid a < x, b < x\}$.

Example 3.9. Let \mathcal{P} be a finite poset. Then \mathcal{P} is GPT-closed if and only if any two distinct minimal elements in $L_{a,b}$ has no common upper bound for $a,b \in \text{Obj}\mathcal{P}$ satisfying $a \nleq b$ and $b \nleq a$.

For the "if" part, assume that any two distinct minimal elements in $L_{a,b}$ has no common upper bound. By Proposition 3.2, we only need to prove that $C_t \hat{\otimes} C_n$ is projective for $1 \le t \le n$, since the general case of $C_t \hat{\otimes} C_i$ can be considered in $\Gamma_{max\{t,i\}}$.

For each $1 \le t \le n$, if $(C_n)_t = k$, that is, $x_n \le x_t$, then $(C_t)_i = k$ implies $(C_n)_i = k$ for $1 \le i \le t$. Hence we have $C_t \hat{\otimes} C_n \simeq C_t$. Assume that $(C_n)_t = 0$, that is, $x_n \nleq x_t$. Let $L'_{x_t,x_n} = \{x_{s_1}, \dots, x_{s_r}\}$ be all distinct minimal elements in L_{x_t,x_n} . For each $1 \le i < t$, if $(C_t)_i = k = (C_n)_i$, that is, $x_n \le x_i$, $x_t \le x_i$, then there is a unique $x_{s_l} \in L'_{x_t,x_n}$ satisfying $x_{s_l} \leq x_i$, that is, there is a unique $x_{s_l} \in L'_{x_t,x_n}$ satisfying $(C_{s_l})_i = k$, since any two distinct elements in L'_{x_t,x_n} has no common upper bound. Then we have $C_t \hat{\otimes} C_n \simeq \bigoplus_{l=1}^r C_{s_l}$.

For the "only if" part, assume that $x_t, x_i \in \text{Obj}\mathcal{P}$ satisfying $x_t \nleq x_i$ and $x_i \nleq x_t$ and $C_t \hat{\otimes} C_i \simeq$ $\bigoplus_{l=1}^r C_{s_l}$. Then each $x_{s_l} \in L_{x_l,x_j}$. Assume that x_{s_1} and x_{s_2} be two distinct minimal elements in L_{x_l,x_j} having a common upper bound x_i . Then $(C_t \hat{\otimes} C_j)_i = k$ and $(C_{s_1} \oplus C_{s_2})_i = k \oplus k$, which is a contradiction.

4. Proof of Theorem 1.2

Recall from [3, Definition 2.3] that a morphism $x \xrightarrow{\alpha} y$ in \mathscr{C} is *unfactorizable* if α is not an isomorphism and whenever it has a factorization as a composite $x \stackrel{\beta}{\to} z \stackrel{\gamma}{\to} y$, then either β or γ is an isomorphism. Let $x \stackrel{\alpha}{\to} y$ in $\mathscr C$ be an unfactorizable morphism. Then $h \circ \alpha \circ g$ is also unfactorizable for every $h \in \operatorname{Aut}_{\mathscr{C}}(y)$ and every $g \in \operatorname{Aut}_{\mathscr{C}}(x)$; see [3, Proposition 2.5]. Let $x \stackrel{\alpha}{\to} y$ in \mathscr{C} be a morphism with $x \neq y$. Then it has a decomposition $x = x_0 \xrightarrow{\alpha_1} x_1 \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_n} x_n = y$ with all α_i unfactorizable; see [3, Proposition 2.6].

Following [3, Definition 2.7], we say that \mathscr{C} satisfies the Unique Factorization Property (UFP), if decompositions whenever non-isomorphism has two into unfactorizable morphisms:

$$x = x_0 \stackrel{\alpha_1}{\rightarrow} x_1 \stackrel{\alpha_2}{\rightarrow} \cdots \stackrel{\alpha_m}{\rightarrow} x_m = y$$

and

$$x = y_0 \stackrel{\beta_1}{\rightarrow} y_1 \stackrel{\beta_2}{\rightarrow} \cdots \stackrel{\beta_n}{\rightarrow} y_n = y,$$

then m = n, $x_i = y_i$, and there are $h_i \in \operatorname{Aut}_{\mathscr{C}}(x_i)$, $1 \le i \le m-1$, such that the following diagram commutes:

$$x = x_0 \xrightarrow{\alpha_1} x_1 \xrightarrow{\alpha_2} x_2 \xrightarrow{\alpha_3} \cdots \xrightarrow{\alpha_{m-1}} x_{m-1} \xrightarrow{\alpha_m} x_m = y$$

$$\parallel \qquad \qquad \downarrow h_1 \qquad \qquad \downarrow h_2 \qquad \qquad \downarrow h_{m-1} \qquad \parallel$$

$$x = x_0 \xrightarrow{\beta_1} x_1 \xrightarrow{\beta_2} x_2 \xrightarrow{\beta_3} \cdots \xrightarrow{\beta_{m-1}} x_{m-1} \xrightarrow{\beta_m} x_m = y$$

Following [4, Section 6], we say that $\mathscr C$ is a finite free EI category if it satisfies the UFP. By [3, Proposition 2.8], this is equivalent to the original definition [3, Definition 2.2].

Assume that \mathscr{C} is projective and free. Then Γ is 1-Gorenstein; see [5, Theorem 5.3].

Set $\operatorname{Hom}_{\mathscr{C}}^{0}(x_{j}, x_{i}) = \{\alpha \in \operatorname{Hom}_{\mathscr{C}}(x_{j}, x_{i}) \mid \alpha \text{ is unfactorizable}\}$. Denote by $M_{ij}^{0} = k \operatorname{Hom}_{\mathscr{C}}^{0}(x_{j}, x_{i})$, which is an R_i - R_j -sub-bimodule of M_{ij} ; see [5, Notation 4.8]. Recall the left Γ_t -module M_t^* and the right $\Gamma'_{n-t}\text{-module }M^{**}_t\text{ in Notation 2.2, for }1\leq t\leq n-1.\text{ Observe that }M^{**}_t\simeq (M^0_{t,t+1},M^0_{t,t+2},\ldots,M^0_{tn})\otimes_{\Gamma'_{D,n-t}}$ $\Gamma'_{n-t}\text{; compare [5, Lemmas 4.10 and 4.11], which implies that }M^*_t\simeq \Gamma_t\otimes_{\Gamma^D_t}\binom{M^0_{1,t+1}}{\vdots}.$

Let
$$X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$$
 be a left Γ -module. For each $1 \le t \le n-1$, we have

$$M_t^{**} \otimes_{\Gamma'_{n-t}} \begin{pmatrix} X_{t+1} \\ \vdots \\ X_n \end{pmatrix} \simeq (M_{t,t+1}^0, M_{t,t+2}^0, \cdots, M_{tn}^0) \otimes_{\Gamma'_{D,n-t}} \Gamma'_{n-t} \otimes_{\Gamma'_{n-t}} \begin{pmatrix} X_{t+1} \\ \vdots \\ X_n \end{pmatrix}$$
$$\simeq (M_{t,t+1}^0, M_{t,t+2}^0, \cdots, M_{tn}^0) \otimes_{\Gamma'_{D,n-t}} \begin{pmatrix} X_{t+1} \\ \vdots \\ X_n \end{pmatrix}$$
$$\simeq \bigoplus_{j=t+1}^n M_{tj}^0 \otimes_{R_j} X_j.$$

Recall the R_t -map φ_t^{**} in Lemma 2.5. Here, we observe that

$$\varphi_t^{**}: \bigoplus_{j=t+1}^n M_{tj}^0 \otimes_{R_j} X_j \to X_t, \quad \sum_{j=t+1}^n (m_j \otimes x_j) \mapsto \sum_{j=t+1}^n \varphi_{tj}(m_j \otimes x_j).$$

Lemma 4.1. Assume that $\mathscr C$ is projective and free, and $1 \le p \le q \le n$. If each morphism in $\bigsqcup_{y \in \mathrm{Obi}\mathscr C} \bigsqcup_{i=1}^p \mathrm{Hom}_\mathscr C(x_j,y)$ is a monomorphism, then $C_p \hat{\otimes} C_q \in \Gamma$ -proj.

Proof. We only need to prove that each R_t -map

$$\varphi_t^{**}: \bigoplus_{j=t+1}^p M_{tj}^0 \otimes_{R_j} (M_{jp} \otimes_k M_{jq}) \to M_{tp} \otimes_k M_{tq}$$

is injective for $1 \le t < p$ by Lemma 2.5 and Proposition 3.2.

By Lemmas 3.5 and 3.6, we have that the set $\operatorname{Hom}_{\mathscr{C}}(x_p, x_t) \times \operatorname{Hom}_{\mathscr{C}}(x_q, x_t)$ is a k-basis of $M_{tp} \otimes_k M_{tq}$, and the set

$$\bigsqcup_{j=t+1}^{p} \operatorname{Hom}_{\mathscr{C}}^{0}(x_{j}, x_{t}) \times_{\operatorname{Aut}_{\mathscr{C}}(x_{j})} \left(\operatorname{Hom}_{\mathscr{C}}(x_{p}, x_{j}) \times \operatorname{Hom}_{\mathscr{C}}(x_{q}, x_{j}) \right) =: B$$

is a *k*-basis of $\bigoplus_{j=t+1}^{p} M_{tj}^{0} \otimes_{R_{j}} (M_{jp} \otimes_{k} M_{jq})$.

We have the following commutative diagram

$$B \xrightarrow{\subseteq} \bigoplus_{j=t+1}^{p} M_{tj}^{0} \otimes_{R_{j}} (M_{jp} \otimes_{k} M_{jq})$$

$$\downarrow^{\varphi_{t}^{**}|_{B}} \qquad \qquad \downarrow^{\varphi_{t}^{**}}$$

$$\text{Hom}_{\mathscr{C}}(x_{p}, x_{t}) \times \text{Hom}_{\mathscr{C}}(x_{q}, x_{t}) \xrightarrow{\subseteq} M_{tp} \otimes_{k} M_{tq}$$

Observe that φ_t^{**} is injective if and only if $\varphi_t^{**} \mid_B$ is injective for each $1 \le t < p$.

Assume that $\varphi_t^{**}(\alpha,(\beta,\theta)) = \varphi_t^{**}(\alpha',(\beta',\theta'))$, where $\alpha \in \operatorname{Hom}_{\mathscr{C}}^0(x_j,x_t)$, $\beta \in \operatorname{Hom}_{\mathscr{C}}(x_p,x_j)$, $\theta \in \operatorname{Hom}_{\mathscr{C}}(x_q, x_j)$ and $\alpha' \in \operatorname{Hom}_{\mathscr{C}}^0(x_{j'}, x_t), \beta' \in \operatorname{Hom}_{\mathscr{C}}(x_p, x_{j'}), \theta' \in \operatorname{Hom}_{\mathscr{C}}(x_q, x_{j'})$. Then we have $\alpha\beta = \alpha'\beta'$ in $\operatorname{Hom}_{\mathscr{C}}(x_p, x_t)$ and $\alpha\theta = \alpha'\theta'$ in $\operatorname{Hom}_{\mathscr{C}}(x_q, x_t)$. Since \mathscr{C} is free and α, α' are unfactorizable, we have that j = j' and there is $g \in \operatorname{Aut}_{\mathscr{C}}(x_i)$ such that $\alpha = \alpha' g$ and $\beta = g^{-1} \beta'$. Since $\alpha\theta = \alpha'\theta' = \alpha g^{-1}\theta'$ and α is a monomorphism, we have that $\theta = g^{-1}\theta'$. Then we have that $(\alpha, (\beta, \theta)) = (\alpha'g, (g^{-1}\beta', g^{-1}\theta')) = (\alpha', (\beta', \theta'))$, which implies that the map $\varphi_t^{**} \mid_B$ is injective.

Theorem 4.2. Let \mathscr{C} be a finite projective and free EI category. Then the category \mathscr{C} is GPT-closed if and only if each morphism in \mathscr{C} is a monomorphism.

Proof. The "if" part follows from Proposition 3.2 and Lemma 4.1. The "only if" part is justified by Proposition 3.8.

Acknowledgements

The author thanks the referee for helpful comments. The author is grateful to her supervisor Professor Xiao-Wu Chen for his guidance.

Funding

This work is supported by the National Natural Science Foundation of China (Nos. 11522113, 11571329, 11671174, and 11671245), and the Fundamental Research Funds for the Central Universities.

ORCID

Ren Wang http://orcid.org/0000-0001-6266-8514

References

- [1] Auslander, M., Bridger, M. (1969). Stable Module Theory. Memoirs of the American Mathematical Society, Vol. 94. American Mathematical Society, Providence, R.I. 146 pp.
- [2] Buchweitz, R.-O. (1987). Maximal Cohen-Macaulay Modules and Tate-Cohomology over Gorenstein Rings. Unpublished Manuscript. Available at: http://hdl.handle.net/1807/16682.
- [3] Li, L. P. (2011). A characterization of finite EI categories with hereditary category algebras. J. Algebra 345:213–241.
- [4] Li, L. P. (2014). A generalized Koszul theory and its application. Trans. Am. Math. Soc. 366:931-977.
- [5] Wang, R. (2016). Gorenstein triangular matrix rings and category algebras. J. Pure Appl. Algebra 220(2):666–682.
- [6] Wang, R. (2017). The MCM-approximation of the trivial module over a category algebra. J. Algebra Appl. 16(6):1750109, 16 pp.
- [7] Webb, P. (2007). An Introduction to the Representations and Cohomology of Categories. Group Representation Theory. Lausanne: EPFL Press, pp. 149-173.
- [8] Xu, F. (2013). Tensor structure on kC-mod and cohomology. Proc. Edinb. Math. Soc. (2) 56(1):349-370.
- [9] Xu, F. (2014). Spectra of tensor triangulated categories over category algebras. Arch. Math. (Basel) 103(3):235–253.
- [10] Zaks, A. (1969). Injective dimensions of semi-primary rings. J. Algebra 13:73-86.
- [11] Zhang, P. (2013). Gorenstein-projective modules and symmetric recollements. J. Algebra 388:65-80.