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ABSTRACT

For a �nite free and projective EI category, we prove that Gorenstein-projective
modules over its category algebra are closed under the tensor product if and
only if each morphism in the given category is a monomorphism.
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1. Introduction

Let k be a �eld. Let C be a �nite category, that is, it has only �nitely many morphisms, and consequently
it has only �nitely many objects. Denote by k-mod the category of �nite dimensional k-vector spaces
and (k-mod)C the category of covariant functors from C to k-mod.

Recall that the category kC -mod of le� modules over the category algebra kC is identi�ed with
(k-mod)C ; see [7]. Hence kC -mod is a symmetric monoidal category, whose tensor product is inherited
from k-mod; see [8, 9].

Let C be a �nite EI category. Here, the EI condition means that all endomorphisms in C are
isomorphisms. In particular, HomC (x, x) = AutC (x) is a �nite group for each object x. Denote
by kAutC (x) the group algebra. Recall that a �nite EI category C is projective over k if each kAutC
(y)-kAutC (x)-bimodule kHomC (x, y) is projective on both sides; see [5].

Denote by kC -Gproj the full subcategory of kC -mod consisting of Gorenstein-projective
kC -modules. We say that C is GPT-closed, if X,Y ∈ kC -Gproj implies X⊗̂Y ∈ kC -Gproj.

Let us explain the motivation to study GPT-closed categories. Recall from [6] that for a �nite
projective EI category C , the stable category kC -Gproj modulo projective modules has a natural tensor
triangulated structure such that it is tensor triangle equivalent to the singularity category of kC . In
general, its tensor product is not explicitly given. However, if C is GPT-closed, then the tensor product
-⊗̂- on Gorenstein-projective modules induces the one on kC -Gproj; see Proposition 3.4. In this case,
we have a better understanding of the tensor triangulated category kC -Gproj.

Proposition 1.1. Let C be a �nite projective EI category. Assume that C is GPT-closed. Then each
morphism in C is a monomorphism.
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The concept of a �nite free EI category is introduced in [3].

Theorem 1.2. Let C be a �nite projective and free EI category. Then the category C is GPT-closed if and
only if each morphism in C is a monomorphism.

2. Gorenstein triangular matrix algebras

In this section, we recall some necessary preliminaries on Gorenstein-projective modules and triangular
matrix algebras.

Let A be a �nite dimensional algebra over a �eld k. Denote by A-mod the category of �nite
dimensional le� A-modules. The opposite algebra of A is denoted by Aop. We identify right A-modules
with le� Aop-modules.

Denote by (−)∗ the contravariant functor HomA(−,A) or HomAop(−,A). Let X be a le� A-module.
Then X∗ is a right A-module and X∗∗ is a le� A-module. There is an evaluation map evX : X → X∗∗

given by evX(x)(f ) = f (x) for x ∈ X and f ∈ X∗. Recall that an A-module G is Gorenstein-projective
provided that ExtiA(G,A) = 0 = ExtiAop(G∗,A) for i ≥ 1 and the evaluation map evG is bijective; see
[1, Proposition 3.8].

We use pd and id to denote the projective dimension and the injective dimension of a module,
respectively.

The algebra A is Gorenstein if idAA < ∞ and idAA < ∞. It is well known that for a Gorenstein
algebraAwe have idAA = idAA; see [10, Lemma A]. Form ≥ 0, a Gorenstein algebraA ism-Gorenstein
if idAA = idAA ≤ m. Denote by A-Gproj the full subcategory of A-mod consisting of Gorenstein-
projective A-modules, and A-proj the full subcategory of A-mod consisting of projective A-modules.

The following lemma is well known; see [1, Propositions 3.8 and 4.12 and Theorem 3.13].

Lemma 2.1. Let m ≥ 0. Let A be an m-Gorenstein algebra. Then we have the following statements.
(1) An A-module M is Gorenstein-projective if and only if ExtiA(M,A) = 0 for all i > 0.
(2) If M ∈ A-Gproj and L is a right A-module with �nite projective dimension, then TorAi (L,M) = 0 for

all i > 0.
(3) If there is an exact sequence 0 → M → G0 → G1 → · · · → Gm with Gi Gorenstein-projective, then

M ∈ A-Gproj.

Recall that an n × n upper triangular matrix algebra has the form Ŵ =











R1 M12 · · · M1n

R2 · · · M2n

. . .
...
Rn











,

where each Ri is an algebra for 1 ≤ i ≤ n, each Mij is an Ri-Rj-bimodule for 1 ≤ i < j ≤ n, and the
matrix algebra map is denoted by ψilj : Mil ⊗Rl Mlj → Mij for 1 ≤ i < l < j < t ≤ n; see [5].

Recall that a le� Ŵ-module X =







X1

...
Xn






is described by a column vector, where each Xi is a le�

Ri-module for 1 ≤ i ≤ n, and the le� Ŵ-module structure map is denoted by ϕjl : Mjl ⊗Rl Xl → Xj for
1 ≤ j < l ≤ n; see [5]. Dually, we have the description of right Ŵ-modules via row vectors.

Notation 2.2. Let Ŵt be the algebra given by the t × t leading principal submatrix of Ŵ and Ŵ′
n−t be

the algebra given by cutting the �rst t rows and the �rst t columns of Ŵ. Denote the le� Ŵt-module






M1,t+1

...
Mt,t+1






by M∗

t and the right Ŵ′
n−t-module

(

Mt,t+1, · · · ,Mtn

)

by M∗∗
t , for 1 ≤ t ≤ n − 1. Denote by
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ŴD
t = diag

(

R1, · · ·Rt
)

the sub-algebra ofŴt consisting of diagonal matrices, andŴ′
D,n−t= diag

(

Rt+1, · · ·Rn
)

the sub-algebra of Ŵ′
n−t consisting of diagonal matrices.

Let Ŵ =

(

R1 M12

0 R2

)

be an upper triangular matrix algebra. Recall that the R1-R2-bimoduleM12 is

compatible, if the following two conditions hold; see [11, De�nition 1.1]:
(C1) If Q• is an exact sequence of projective R2-modules, thenM12 ⊗R2 Q

• is exact;
(C2) If P• is a complete R1-projective resolution, then HomR1(P

•,M12) is exact.

Lemma 2.3. LetŴ be an upper triangular matrix algebra such that all Ri are Gorenstein. IfŴ is Gorenstein,
then each Ŵt-Rt+1-bimodule M∗

t is compatible and each Rt-Ŵ
′
n−t-bimodule M∗∗

t is compatible for 1 ≤ t ≤

n − 1.

Proof. Let3 =

(

S1 N12

0 S2

)

be an upper triangularmatrix algebra. Recall the fact that if pdS1(N12) < ∞

and pd(N12)S2 < ∞, then N12 is compatible; see [11, Proposition 1.3]. Recall that Ŵ is Gorenstein if
and only if all bimodules Mij are �nitely generated and have �nite projective dimension on both sides;
see [5, Proposition 3.4]. Then we have pdRt (M

∗∗
t ) < ∞ and pd(M∗

t )Rt+1 < ∞ for 1 ≤ t ≤ n − 1.
By [5, Lemma 3.1], we have pd(M∗∗

t )Ŵ′
n−t

< ∞ and pdŴt (M
∗
t ) < ∞ for 1 ≤ t ≤ n − 1. Then we

are done.

Lemma 2.4 ([11, Theorem 1.4]). Let M12 be a compatible R1-R2-bimodule, and Ŵ =

(

R1 M12

0 R2

)

. Then

X =

(

X1

X2

)

∈ Ŵ-Gproj if and only if ϕ12 : M12 ⊗R2 X2 → X1 is an injective R1-map, Cokerϕ12 ∈

R1-Gproj, and X2 ∈ R2-Gproj.

We have a slight generalization of Lemma 2.4 in the case Ri being group algebras.

Lemma 2.5. Let Ŵ be a Gorenstein upper triangular matrix algebra with each Ri a group algebra. Then

X =







X1

...
Xn






∈ Ŵ-Gproj if and only if each Rt-map ϕ∗∗

t =
∑n

j=t+1 ϕtj : M
∗∗
t ⊗Ŵ′

n−t







Xt+1

...
Xn






→ Xt sending

(

mt,t+1, · · · ,mtn

)

⊗







xt+1

...
xn






to

∑n
j=t+1 ϕtj(mtj ⊗ xj) is injective for 1 ≤ t ≤ n − 1.

Proof. We have that each Rt-Ŵ
′
n−t-bimoduleM∗∗

t is compatible for 1 ≤ t ≤ n − 1 by Lemma 2.3.
For the “only if " part, we use induction on n. The case n = 2 is due to Lemma 2.4. Assume that n > 2.

Write Ŵ =

(

R1 M∗∗
1

0 Ŵ′
n−1

)

, and X =

(

X1

X′

)

. Since X ∈ Ŵ-Gproj, by Lemma 2.4, we have that the R1-map

ϕ∗∗
1 : M∗∗

1 ⊗Ŵ′
n−1

X′ → X1 is injective and X′ ∈ Ŵ′
n−1-Gproj. By induction, we have that each Rt-map

ϕ∗∗
t : M∗∗

t ⊗Ŵ′
n−t







Xt+1

...
Xn






→ Xt is injective for 1 ≤ t ≤ n − 1.

For the “if " part, we use induction on n. The case n = 2 is due to Lemma 2.4. Assume that n > 2.

Write Ŵ =

(

R1 M∗∗
1

0 Ŵ′
n−1

)

, and X =

(

X1

X′

)

. By induction, we have X′ ∈ Ŵ′
n−1-Gproj. Since the R1-map
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ϕ∗∗
1 : M∗∗

1 ⊗Ŵ′
n−1

X′ → X1 is injective and its cokernel belongs to R1-Gproj as R1 is a group algebra, we

have X ∈ Ŵ-Gproj by Lemma 2.4.

Corollary 2.6. LetŴ be aGorenstein upper triangularmatrix algebrawith each Ri a group algebra. Assume

that X =





















X1

...
Xs

0
...
0





















∈ Ŵ-Gproj. Then each Ri-map ϕis : Mis ⊗Rs Xs → Xi is injective for 1 ≤ i < s ≤ n.

Proof. We write X =

(

X′

X′′

)

, where X′′ =

















Xi+1

...
Xs

...
0

















for each 1 ≤ i < s ≤ n. We claim that each Ri-map

fis : Mis⊗RsXs → M∗∗
i ⊗Ŵ′

n−i
X′′ sendingmis⊗xs to

(

0, · · · ,mis, · · · , 0
)

⊗
(

0, · · · , xs, · · · , 0
)t
is injective,

where (−)t is the transpose. Since ϕis = ϕ∗∗
i ◦ fis for 1 ≤ i < s ≤ n, then we are done by Lemma 2.5.

For the claim, we observe that for each 1 ≤ i < s ≤ n, the Ri-map fis is a composition of the following

Mis ⊗Rs Xs
gis

−→
(

0, · · · , 0,Mis, · · · ,Min

)

⊗Ŵ′
n−i

X′′ ι⊗Id
−→ M∗∗

i ⊗Ŵ′
n−i

X′′,

where the right Ŵ′
n−i-map

(

0, · · · ,Mis, · · · ,Min

) ι
−→ M∗∗

i is the inclusionmap and gis sendsmis ⊗xs to
(

0, · · · ,mis, · · · , 0
)

⊗
(

0, · · · , xs, · · · , 0
)t
. We observe an Ri-map

(

0, · · · ,Mis, · · · ,Min

)

⊗Ŵ′
n−i

X′′
g′
is

−→

Mis ⊗Rs Xs,
(

0, · · · ,mis, · · · ,min

)

⊗
(

0, · · · , xs, · · · , 0
)t

7→ mis ⊗ xs satisfying g′
is ◦ gis = IdMis⊗RsXs .

Hence the Ri-map gis is injective. We observe that the right Ŵ′
n−i-modules

(

0, · · · ,Mis, · · · ,Min

)

and
M∗∗

i have �nite projective dimensions; see [5, Lemma 3.1], and X′′ ∈ Ŵ′
n−i-Gproj by Lemma 2.4. Then

the Ri-map ι⊗ Id is injective by Lemma 2.1 (2).

3. Proof of Proposition 1.1

Let k be a �eld. Let C be a �nite category, that is, it has only �nitely many morphisms, and consequently
it has only �nitely many objects. Denote by MorC the �nite set of all morphisms in C . The category
algebra kC of C is de�ned as follows: kC =

⊕

α∈MorC kα as a k-vector space and the product ∗ is given
by the rule

α ∗ β =

{

α ◦ β , if α and β can be composed inC ;

0, otherwise.

The unit is given by 1kC =
∑

x∈ObjC Idx, where Idx is the identity endomorphism of an object x in C .
If C and D are two equivalent �nite categories, then kC and kD are Morita equivalent; see

[7, Proposition 2.2]. In particular, kC is Morita equivalent to kC0, where C0 is any skeleton of C . So
we may assume that C is skeletal, that is, for any two distinct objects x and y in C , x is not isomorphic
to y.

The categoryC is called a �nite EI category provided that all endomorphisms inC are isomorphisms.
In particular, HomC (x, x) = AutC (x) is a �nite group for any object x in C . Denote by kAutC (x) the
group algebra.
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For the rest of this paper, we assume that C is a �nite EI category which is skeletal, and
ObjC = {x1, x2, · · · , xn}, n ≥ 2, satisfying HomC (xi, xj) = ∅ if i < j.

LetMij = kHomC (xj, xi). Write Ri = Mii, which is a group algebra. Recall that the category algebra

kC is isomorphic to the corresponding upper triangularmatrix algebraŴC =











R1 M12 · · · M1n

R2 · · · M2n

. . .
...
Rn











;

see [5, Section 4].
Recall from [7, Proposition 2.1] that the category kC -mod of le� modules over the category algebra

kC , is identi�ed with (k-mod)C . The category kC -mod is a symmetric monoidal category. More
precisely, the tensor product -⊗̂- is de�ned by

(M⊗̂N)(x) = M(x)⊗k N(x)

for any M,N ∈ (k-mod)C and x ∈ ObjC , and α.(m ⊗ n) = α.m ⊗ α.n for any α ∈ MorC ,m ∈

M(x), n ∈ N(x); see [8, 9].

In what follows, C is a �nite EI category, and Ŵ = ŴC =











R1 M12 · · · M1n

R2 · · · M2n

. . .
...
Rn











is the

corresponding upper triangular matrix algebra.

Let X =







X1

...
Xn






and Y =







Y1

...
Yn






be two Ŵ-modules, where the le� Ŵ-module structure maps are

denoted by ϕXij and ϕ
Y
ij , respectively.We observe thatX⊗̂Y =







X1 ⊗k Y1

...
Xn ⊗k Yn






, where themodule structure

map ϕij : Mij ⊗Rj (Xj ⊗k Yj) → Xi ⊗k Yi is induced by the following: ϕij(αij ⊗ (aj ⊗ bj)) = ϕXij (αij ⊗

aj)⊗ ϕYij (αij ⊗ bj), where αij ∈ HomC (xj, xi), aj ∈ Xj and bj ∈ Yj.

De�nition 3.1. We say that C is GPT-closed, if X,Y ∈ Ŵ-Gproj implies X⊗̂Y ∈ Ŵ-Gproj.

Recall from [5, De�nition 4.2] that C is projective over k provided that each kAutC (y)-kAutC
(x)-bimodule kHomC (x, y) is projective on both sides. We recall the fact that the category algebra kC is
Gorenstein if and only if C is projective over k; see [5, Proposition 5.1].

Denote by Ci the i-th column of Ŵ which is a Ŵ-Ri-bimodule and projective on both sides.

Proposition 3.2. Assume that C is projective. Then the following statements are equivalent.
(1) The category C is GPT-closed.
(2) For any 1 ≤ p ≤ q ≤ n, Cp⊗̂Cq ∈ Ŵ-Gproj.

(3) For any 1 ≤ p ≤ q ≤ n, Cp⊗̂Cq ∈ Ŵ-proj.

Proof.
“(1)⇒ (2)" and “(3)⇒ (2)" are obvious.

“(2)⇒ (3)" We only need to prove that the Ŵ-module Cp⊗̂Cq has �nite projective dimension, since

a Gorenstein-projective module with �nite projective dimension is projective. We have Cp⊗̂Cq =
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























M1p ⊗k M1q

...
Mp−1,p ⊗k Mp−1,q

Rp ⊗k Mpq

0
...
0

























. Since C is projective, we have that each Mip is a projective Ri-module for

1 ≤ i ≤ p. Then each Mip ⊗k Miq is a projective Ri-module since Ri is a group algebra for 1 ≤ i ≤ p.

Hence the Ŵ-module Cp⊗̂Cq has �nite projective dimension by [5, Corollary 3.6]. Then we are done.

“(2)⇒ (1)" We have that Ŵ is a Gorenstein algebra by [5, Proposition 5.1]. Then there is d ≥ 0 such
that Ŵ is a d-Gorenstein algebra.

For anyM ∈ Ŵ-Gproj, consider the following exact sequence

0 → M → P0 → P1 → · · · → Pd → Y → 0

with Pi projective, 0 ≤ i ≤ d. Applying -⊗̂N on the above exact sequence, we have an exact sequence

0 → M⊗̂N → P0⊗̂N → P1⊗̂N → · · · → Pd⊗̂N → Y⊗̂N → 0, (3.1)

since the tensor product -⊗̂- is exact in both variables. If N is projective, we have that each Pi⊗̂N is
Gorenstein-projective for 0 ≤ i ≤ d by (2). Then we haveM⊗̂N ∈ Ŵ-Gproj by Lemma 2.1 (3). If N is
Gorenstein-projective, we have that each Pi⊗̂N is Gorenstein-projective for 0 ≤ i ≤ d in exact sequence
(3.1) by the above process. Then we haveM⊗̂N ∈ Ŵ-Gproj by Lemma 2.1 (3). Then we are done.

The argument in “(2)⇒ (3)" of Proposition 3.2 implies the following result. It follows that the tensor
product -⊗̂- on Ŵ-Gproj induces the one on Ŵ-Gproj, still denoted by -⊗̂-.

Lemma 3.3. Assume that C is GPT-closed. Let M ∈ Ŵ-Gproj and P ∈ Ŵ-proj. Then M⊗̂P ∈ Ŵ-proj.

Recall that a complex in Db(Ŵ-mod), the bounded derived category of �nitely generated le�
Ŵ-modules, is called a perfect complex if it is isomorphic to a bounded complex of �nitely generated
projective modules. Recall from [2] that the singularity category of Ŵ, denoted by Dsg(Ŵ), is the Verdier

quotient category Db(Ŵ-mod)/perf(Ŵ), where perf(Ŵ) is a thick subcategory of Db(Ŵ-mod) consisting
of all perfect complexes.

Assume that C is projective. Recall from [6] that there is a triangle equivalence

F : Ŵ-Gproj
∼

−→ Dsg(Ŵ) (3.2)

sending a Gorenstein-projective module to the corresponding stalk complex concentrated on degree
zero. The functor F transports the tensor product on Dsg(Ŵ) to Ŵ-Gproj such that the category Ŵ-Gproj
becomes a tensor triangulated category.

Proposition 3.4. Assume that C is projective. If C is GPT-closed, then the tensor product -⊗̂- on Ŵ-Gproj
induced by the tensor product on Ŵ-Gproj coincide with the one transported from Dsg(Ŵ), up to natural
isomorphism.

Proof. Consider the functor F in (3.2). Recall that the tensor product on Dsg(Ŵ) is induced by the

tensor product -⊗̂- on Db(Ŵ-mod), where the later is given by -⊗̂- on Ŵ-mod. We have F(M)⊗̂F(N) =

F(M⊗̂N) in Dsg(Ŵ) for anyM,N ∈ Ŵ-Gproj. This implies that F is a tensor triangle equivalence. Then
we are done.
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Let G be a �nite group. Recall that a le� (resp. right) G-set is a set with a le� (resp. right) G-action.
Let Y be a le� G-set and X be a right G-set. Recall an equivalence relation “∼" on the product X × Y as
follows: (x, y) ∼ (x′, y′) if and only if there is an element g ∈ G such that x = x′g and y = g−1y′ for
x, x′ ∈ X and y, y′ ∈ Y . Write the quotient set X × Y/ ∼ as X ×G Y .

The following two lemmas are well known.

Lemma 3.5. Let Y be a le� G-set and X be a right G-set. Then there is an isomorphism of k-vector spaces

ϕ : kX ⊗kG kY
∼

−→ k(X ×G Y), x ⊗ y 7→ (x, y),

where x ∈ X and y ∈ Y.

Lemma 3.6. Let Y1 and Y2 be two le� G-sets. Then we have an isomorphism of le� kG-modules

ϕ : kY1 ⊗k kY2
∼

−→ k(Y1 × Y2), y1 ⊗ y2 7→ (y1, y2),

where y1 ∈ Y1, y2 ∈ Y2.

Lemma 3.7. Assume that C is projective, and 1 ≤ p ≤ q ≤ n. Then Cp⊗̂Cq ∈ Ŵ-proj implies that each
morphism in

⊔

y∈ObjC HomC (xp, y) is a monomorphism.

Proof. We have Cp⊗̂Cq =

























M1p ⊗k M1q

...
Mp−1,p ⊗k Mp−1,q

Rp ⊗k Mpq

0
...
0

























. Then each Ri-map

ϕip : Mip ⊗Rp (Rp ⊗k Mpq) → Mip ⊗k Miq

sending α ⊗ (g ⊗ β) to α ◦ g ⊗ α ◦ β , where α ∈ HomC (xp, xi), g ∈ AutC (xp),β ∈ HomC (xq, xp),
is injective for 1 ≤ i < p ≤ q ≤ n by Corollary 2.6. We have that the sets HomC (xp, xi) ×AutC (xp)

(AutC (xp)×HomC (xq, xp)) and HomC (xp, xi)×HomC (xq, xi) are k-basis ofMip ⊗Rp (Rp ⊗kMpq) and
Mip ⊗k Miq, respectively by Lemma 3.5 and Lemma 3.6. For each 1 ≤ i < p, since ϕip is injective, we
have an injective map

ϕ : HomC (xp, xi)×AutC (xp) (AutC (xp)× HomC (xq, xp)) → HomC (xp, xi)× HomC (xq, xi)

sending (α, (g,β)) to (α ◦ g,α ◦ β), for α ∈ HomC (xp, xi), g ∈ AutC (xp),β ∈ HomC (xq, xp).
For each 1 ≤ i < p, and α ∈ HomC (xp, xi), let β ,β

′ ∈ HomC (xq, xp) satisfy α ◦ β = α ◦ β ′. Then
we have (α,α ◦ β) = (α,α ◦ β ′), that is, ϕ(α, (Idxp ,β)) = ϕ(α, (Idxp ,β

′)). Since ϕ is injective, we have
(α, (Idxp ,β)) = (α, (Idxp ,β

′)) in HomC (xp, xi)×AutC (xp) (AutC (xp)× HomC (xq, xp)). Hence β = β ′.
Then we have that α is a monomorphism.

Proposition 3.8. Assume that C is projective. If C is GPT-closed, then each morphism in C is a
monomorphism.

Proof. It follows from Proposition 3.2 and Lemma 3.7.

Let P be a �nite poset. We assume that ObjP = {x1, · · · , xn} satisfying xi � xj if i < j, and Ŵ is
the corresponding upper triangular matrix algebra. We observe that each entry of Ŵ is 0 or k, and each
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projective Ŵ-module is a direct sum of some Ci, where Ci is the i-th column of Ŵ for 1 ≤ i ≤ n. For any
a, b ∈ ObjP satisfying a � b and b � a, denote by La,b = {x ∈ ObjP | a < x, b < x}.

Example 3.9. Let P be a �nite poset. Then P is GPT-closed if and only if any two distinct minimal
elements in La,b has no common upper bound for a, b ∈ ObjP satisfying a � b and b � a.

For the “if " part, assume that any two distinctminimal elements in La,b has no common upper bound.
By Proposition 3.2, we only need to prove that Ct⊗̂Cn is projective for 1 ≤ t ≤ n, since the general case
of Ct⊗̂Cj can be considered in Ŵmax{t,j}.

For each 1 ≤ t ≤ n, if (Cn)t = k, that is, xn ≤ xt , then (Ct)i = k implies (Cn)i = k for 1 ≤ i ≤ t.
Hence we have Ct⊗̂Cn ≃ Ct . Assume that (Cn)t = 0, that is, xn � xt . Let L

′
xt ,xn

= {xs1 , · · · , xsr } be all
distinct minimal elements in Lxt ,xn . For each 1 ≤ i < t, if (Ct)i = k = (Cn)i, that is, xn ≤ xi, xt ≤ xi,
then there is a unique xsl ∈ L′

xt ,xn
satisfying xsl ≤ xi, that is, there is a unique xsl ∈ L′

xt ,xn
satisfying

(Csl)i = k, since any two distinct elements in L′
xt ,xn

has no common upper bound. Then we have

Ct⊗̂Cn ≃
⊕r

l=1 Csl .
For the “only if " part, assume that xt , xj ∈ ObjP satisfying xt � xj and xj � xt and Ct⊗̂Cj ≃

⊕r
l=1 Csl . Then each xsl ∈ Lxt ,xj . Assume that xs1 and xs2 be two distinct minimal elements in Lxt ,xj

having a common upper bound xi. Then (Ct⊗̂Cj)i = k and (Cs1 ⊕ Cs2)i = k ⊕ k, which is a
contradiction.

4. Proof of Theorem 1.2

Recall from [3, De�nition 2.3] that a morphism x
α
→ y inC is unfactorizable if α is not an isomorphism

and whenever it has a factorization as a composite x
β
→ z

γ
→ y, then either β or γ is an isomorphism.

Let x
α
→ y in C be an unfactorizable morphism. Then h ◦ α ◦ g is also unfactorizable for every

h ∈ AutC (y) and every g ∈ AutC (x); see [3, Proposition 2.5]. Let x
α
→ y in C be a morphism with

x 6= y. Then it has a decomposition x = x0
α1
→ x1

α2
→ · · ·

αn
→ xn = y with all αi unfactorizable; see

[3, Proposition 2.6].
Following [3, De�nition 2.7], we say that C satis�es the Unique Factorization Property (UFP), if

whenever a non-isomorphism α has two decompositions into unfactorizable
morphisms:

x = x0
α1
→ x1

α2
→ · · ·

αm
→ xm = y

and

x = y0
β1
→ y1

β2
→ · · ·

βn
→ yn = y,

then m = n, xi = yi, and there are hi ∈ AutC (xi), 1 ≤ i ≤ m − 1, such that the following diagram
commutes :

x = x0
α1

// x1
α2

//

h1

��

x2
α3

//

h2

��

· · ·
αm−1

// xm−1
αm
//

hm−1

��

xm = y

x = x0
β1

// x1
β2

// x2
β3

// · · ·
βm−1

// xm−1
βm
// xm = y

Following [4, Section 6], we say that C is a �nite free EI category if it satis�es the UFP.
By [3, Proposition 2.8], this is equivalent to the original de�nition [3, De�nition 2.2].

Assume that C is projective and free. Then Ŵ is 1-Gorenstein; see [5, Theorem 5.3].
Set Hom0

C
(xj, xi) = {α ∈ HomC (xj, xi) | α is unfactorizable}. Denote by M0

ij = kHom0
C
(xj, xi),

which is an Ri-Rj-sub-bimodule ofMij; see [5, Notation 4.8]. Recall the le� Ŵt-moduleM∗
t and the right
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Ŵ′
n−t-moduleM∗∗

t inNotation 2.2, for 1 ≤ t ≤ n−1.Observe thatM∗∗
t ≃ (M0

t,t+1,M
0
t,t+2, . . . ,M

0
tn)⊗Ŵ′

D,n−t

Ŵ′
n−t ; compare [5, Lemmas 4.10 and 4.11], which implies thatM∗

t ≃ Ŵt ⊗ŴD
t







M0
1,t+1
...

M0
t,t+1






.

Let X =







X1

...
Xn






be a le� Ŵ-module. For each 1 ≤ t ≤ n − 1, we have

M∗∗
t ⊗Ŵ′

n−t







Xt+1

...
Xn






≃ (M0

t,t+1,M
0
t,t+2, · · · ,M

0
tn)⊗Ŵ′

D,n−t
Ŵ′
n−t ⊗Ŵ′

n−t







Xt+1

...
Xn







≃ (M0
t,t+1,M

0
t,t+2, · · · ,M

0
tn)⊗Ŵ′

D,n−t







Xt+1

...
Xn







≃

n
⊕

j=t+1

M0
tj ⊗Rj Xj.

Recall the Rt-map ϕ∗∗
t in Lemma 2.5. Here, we observe that

ϕ∗∗
t :

n
⊕

j=t+1

M0
tj ⊗Rj Xj → Xt ,

n
∑

j=t+1

(mj ⊗ xj) 7→

n
∑

j=t+1

ϕtj(mj ⊗ xj).

Lemma 4.1. Assume that C is projective and free, and 1 ≤ p ≤ q ≤ n. If each morphism in
⊔

y∈ObjC

⊔p
j=1HomC (xj, y) is a monomorphism, then Cp⊗̂Cq ∈ Ŵ-proj.

Proof. We only need to prove that each Rt-map

ϕ∗∗
t :

p
⊕

j=t+1

M0
tj ⊗Rj (Mjp ⊗k Mjq) → Mtp ⊗k Mtq

is injective for 1 ≤ t < p by Lemma 2.5 and Proposition 3.2.
By Lemmas 3.5 and 3.6, we have that the set HomC (xp, xt)×HomC (xq, xt) is a k-basis ofMtp⊗kMtq,

and the set

p
⊔

j=t+1

Hom0
C
(xj, xt)×AutC (xj)

(

HomC (xp, xj)× HomC (xq, xj)
)

=: B

is a k-basis of
⊕p

j=t+1M
0
tj ⊗Rj (Mjp ⊗k Mjq).

We have the following commutative diagram

B
⊆

//

ϕ∗∗
t |B

��

p
⊕

j=t+1

M0
tj ⊗Rj (Mjp ⊗k Mjq)

ϕ∗∗
t

��

HomC (xp, xt)× HomC (xq, xt)
⊆

// Mtp ⊗k Mtq
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Observe that ϕ∗∗
t is injective if and only if ϕ∗∗

t |B is injective for each 1 ≤ t < p.
Assume that ϕ∗∗

t (α, (β , θ)) = ϕ∗∗
t (α

′, (β ′, θ ′)), where α ∈ Hom0
C
(xj, xt), β ∈ HomC (xp, xj),

θ ∈ HomC (xq, xj) and α
′ ∈ Hom0

C
(xj′ , xt), β

′ ∈ HomC (xp, xj′), θ
′ ∈ HomC (xq, xj′). Then we

have αβ = α′β ′ in HomC (xp, xt) and αθ = α′θ ′ in HomC (xq, xt). Since C is free and α,α′ are
unfactorizable, we have that j = j′ and there is g ∈ AutC (xj) such that α = α′g and β = g−1β ′.
Since αθ = α′θ ′ = αg−1θ ′ and α is a monomorphism, we have that θ = g−1θ ′. Then we have that
(α, (β , θ)) = (α′g, (g−1β ′, g−1θ ′)) = (α′, (β ′, θ ′)), which implies that the map ϕ∗∗

t |B is injective.

Theorem 4.2. Let C be a �nite projective and free EI category. Then the category C is GPT-closed if and
only if each morphism in C is a monomorphism.

Proof. The “if " part follows from Proposition 3.2 and Lemma 4.1. The “only if " part is justi�ed by
Proposition 3.8.
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