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1. Introduction

Let k be a field. Let ¢’ be a finite category, that is, it has only finitely many morphisms, and consequently
it has only finitely many objects. Denote by k-mod the category of finite dimensional k-vector spaces
and (k-mod)? the category of covariant functors from % to k-mod.

Recall that the category k¢-mod of left modules over the category algebra k% is identified with
(k—mod)(g; see [7]. Hence k¢’-mod is a symmetric monoidal category, whose tensor product is inherited
from k-mod; see [8, 9].

Let € be a finite EI category. Here, the EI condition means that all endomorphisms in ¢ are
isomorphisms. In particular, Homg (x,x) = Autg(x) is a finite group for each object x. Denote
by kAuty (x) the group algebra. Recall that a finite EI category ¥ is projective over k if each kAuty
(y)-kAuty (x)-bimodule kHomg (x, y) is projective on both sides; see [5].

Denote by k% -Gproj the full subcategory of k%-mod consisting of Gorenstein-projective
k% -modules. We say that € is GPT-closed, if X, Y € k%-Gproj implies X®Y € k%-Gproj.

Let us explain the motivation to study GPT-closed categories. Recall from [6] that for a finite
projective EI category ¥, the stable category k¢’-Gproj modulo projective modules has a natural tensor
triangulated structure such that it is tensor triangle equivalent to the singularity category of k€. In
general, its tensor product is not explicitly given. However, if € is GPT-closed, then the tensor product
-®- on Gorenstein-projective modules induces the one on k%-Gproj; see Proposition 3.4. In this case,
we have a better understanding of the tensor triangulated category k% -Gproj.

Proposition 1.1. Let € be a finite projective EI category. Assume that € is GPT-closed. Then each
morphism in € is a monomorphism.
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The concept of a finite free EI category is introduced in [3].

Theorem 1.2. Let € be a finite projective and free EI category. Then the category € is GPT-closed if and
only if each morphism in € is a monomorphism.

2. Gorenstein triangular matrix algebras

In this section, we recall some necessary preliminaries on Gorenstein-projective modules and triangular
matrix algebras.

Let A be a finite dimensional algebra over a field k. Denote by A-mod the category of finite
dimensional left A-modules. The opposite algebra of A is denoted by A°P. We identify right A-modules
with left A°’-modules.

Denote by (—)* the contravariant functor Homg (—, A) or Homger (—, A). Let X be a left A-module.
Then X* is a right A-module and X** is a left A-module. There is an evaluation map evy : X — X**
given by evx(x)(f) = f(x) for x € X and f € X*. Recall that an A-module G is Gorenstein-projective
provided that ExtA(G,A) =0= Extgop (G*, A) for i > 1 and the evaluation map evg is bijective; see
[1, Proposition 3.8].

We use pd and id to denote the projective dimension and the injective dimension of a module,
respectively.

The algebra A is Gorenstein if idgyA < oo and idA4 < oo. It is well known that for a Gorenstein
algebra A we have idy A = idAy4; see [10, Lemma A]. For m > 0, a Gorenstein algebra A is m-Gorenstein
if idgA = idA4 < m. Denote by A-Gproj the full subcategory of A-mod consisting of Gorenstein-
projective A-modules, and A-proj the full subcategory of A-mod consisting of projective A-modules.

The following lemma is well known; see [1, Propositions 3.8 and 4.12 and Theorem 3.13].

Lemma 2.1. Let m > 0. Let A be an m-Gorenstein algebra. Then we have the following statements.

(1) An A-module M is Gorenstein-projective if and only if Ext', (M, A) = 0 for all i > 0.

(2) If M € A-Gproj and L is a right A-module with finite projective dimension, then Tor(L, M) = 0 for
alli> 0.

(3) If there is an exact sequence 0 — M — Gy — Gy — - -+ — G, with G; Gorenstein-projective, then
M € A-Gproj.

Ry My -+ My
R, - My,

Recall that an n x n upper triangular matrix algebra has the form I' = . A
Ry

where each R; is an algebra for 1 < i < n, each M;; is an Ri—Rj—bimodule for1 <i < j < n,and the
matrix algebra map is denoted by Vijj : My @, Mjj — M forl <i<l<j<t<mn;seel[5].
X3
Recall that a left I'-module X = | : | is described by a column vector, where each X; is a left
Xn
R;-module for 1 < i < n, and the left I'-module structure map is denoted by ¢;; : Mj ®g, X; — X; for
1 <j < I < n;see [5]. Dually, we have the description of right I'-modules via row vectors.
Notation 2.2. Let I'y be the algebra given by the t x t leading principal submatrix of T' and T},_, be
the algebra given by cutting the first t rows and the first t columns of I". Denote the left T';-module
M1
: by M and the right T'},_,-module (M1, » M) by Mj*, for 1 < t < n — 1. Denote by
M1
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I'P=diag(Ry, - - - Ry) the sub-algebra of T'; consisting of diagonal matrices, and T'}, , = diag(Re11,- - - Rp)
the sub-algebra of T),_, consisting of diagonal matrices.

1;1 1\1/512 be an upper triangular matrix algebra. Recall that the R;-R,-bimodule M, is
2

compatible, if the following two conditions hold; see [11, Definition 1.1]:
(C1) If Q°® is an exact sequence of projective Ry-modules, then M1, ®g, Q° is exact;
(C2) If P* is a complete R; -projective resolution, then Homp, (P®, M;;) is exact.

LetT" =

Lemma 2.3. Let I" be an upper triangular matrix algebra such that all R; are Gorenstein. If I" is Gorenstein,
then each T't-Ryy1-bimodule M is compatible and each R;-T",_,-bimodule M}* is compatible for 1 <t <
n—1L

S1
0
and pd(Nj2)s, < 00, then Nj, is compatible; see [11, Proposition 1.3]. Recall that I' is Gorenstein if
and only if all bimodules M;; are finitely generated and have finite projective dimension on both sides;
see [5, Proposition 3.4]. Then we have pdp, (M;*) < oo and pd(M7)g,,, < ooforl <t <n—1
By [5, Lemma 3.1], we have pd(M;"*)F;H < oo and pdrt(M;") < ooforl <t < n— 1. Then we
are done. O

Proof. Let A = I\ém > be an upper triangular matrix algebra. Recall the fact that if pdg (N12) < 0o
2

Lemma 2.4 ([11, Theorem 1.4]). Let M, be a compatible R;-R,-bimodule, and T’ = <IB1 1\1/512). Then
2

X = (?) € I'-Gproj if and only if ¢12 : M1z ®r, Xo — Xj is an injective R;-map, Cokergi, €
2

Ry-Gproj, and X, € Ry-Gproj.
We have a slight generalization of Lemma 2.4 in the case R; being group algebras.

Lemma 2.5. Let I' be a Gorenstein upper triangular matrix algebra with each R; a group algebra. Then

X Xiy1
X = : | € I'-Gprojifand only ifeach Ri-map o™ = Zf=t+1 @i M* ®rr — X; sending
X, X,
Xt+1
(M1 mm) @ | 1 | to Z}LtH @1j(my ® x;j) is injective for 1 <t <n— 1.
Xn

Proof. We have that each R;-I",_,-bimodule M;* is compatible for 1 < ¢t < n — 1 by Lemma 2.3.
For the “only if" part, we use induction on n. The case n = 2 is due to Lemma 2.4. Assume that n > 2.

. Ry M} X1\ .
Write I' = ,and X = . Since X € I'-Gproj, by Lemma 2.4, we have that the R;-map

0 I, X’
o1 Mi* ®p, X' — X is injective and X" € I';_,-Gproj. By induction, we have that each R;-map
X1

¢ M ®ry

n—t

— X;isinjectiveforl <t <mn—1.
X
For the “if" part, we use induction on n. The case n = 2 is due to Lemma 2.4. Assume that n > 2.

kek
Write I' = (%1 I{V,I ! ), and X = (?) By induction, we have X" € I';_,-Gproj. Since the R;-map

n—1
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o1« Mi* ®p/_ X' — X is injective and its cokernel belongs to R;-Gproj as Ry is a group algebra, we
have X € I'-Gproj by Lemma 2.4. O

Corollary 2.6. LetI" be a Gorenstein upper triangular matrix algebra with each R; a group algebra. Assume
Xi

X
that X = ° | € I'-Gproj. Then each Ri-map ;s : Mjs ®r, Xs — X is injective for 1 <i <s < n.

0
0
Xit1
X
Proof. We write X = <X”>’ where X" = | X; |foreach1 <i < s < n. We claim that each R;-map
0

fis : Mis®p X5 — M;‘*@r/_,X” sending m;; ® x; to (0, Cee Mgyt e ,0)®(0, RN R ,O)t is injective,
where (—)" is the transpose. Since ¢;; = @;* o fisfor 1 < i < s < n, then we are done by Lemma 2.5.
For the claim, we observe that for each 1 < i < s < n, the R;-map f;; is a composition of the following

is

MiS ®R5 XS — (Os te aO)MiS> e )Min) ®I"7 X” @)1 ]\41>k>|< ®I‘/ _X”,

where the right I' _-map (0, e Mg, e Min) - M is the inclusion map and g;s sends m;; ® x; to
(0, i, - ,0) @ (0, , X, - - ,O)t. We observe an R;-map (0, - - , Mis, - -+ , Min) @ X" E,
Mis ®RS Xs; (0, s Mgyt min) ® (03 s Xgy ao)t = Mijs ® Xs SatiSinng g;s o giS = IdMis@RSXs'
Hence the R;-map gjs is injective. We observe that the right l";l_ ;-modules (0, e Mg, e ,Min) and
M have finite projective dimensions; see [5, Lemma 3.1], and X" € I'),_;-Gproj by Lemma 2.4. Then
the R;-map ¢ @ Id is injective by Lemma 2.1 (2). O

3. Proof of Proposition 1.1

Let k be a field. Let € be a finite category, that is, it has only finitely many morphisms, and consequently
it has only finitely many objects. Denote by Mor%’ the finite set of all morphisms in &. The category
algebra k€ of € is defined as follows: k€ = P o ko as a k-vector space and the product * is given
by the rule

aeMor

ao B, ifaand B can be composed in%’;
axf =
0, otherwise.
The unit is given by 134 = erObj%’ Id,, where Id, is the identity endomorphism of an object x in €.
If € and Z are two equivalent finite categories, then k¢ and k2 are Morita equivalent; see
[7, Proposition 2.2]. In particular, k¢ is Morita equivalent to k%), where %) is any skeleton of . So
we may assume that ¢ is skeletal, that is, for any two distinct objects x and y in €, x is not isomorphic
to y.
The category ¢ is called a finite EI category provided that all endomorphisms in € are isomorphisms.
In particular, Home (x, x) = Auty (x) is a finite group for any object x in €. Denote by kAuty (x) the
group algebra.
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For the rest of this paper, we assume that ¢ is a finite EI category which is skeletal, and
Obj¢ = {x1,x2,- -+ , xn}, n > 2, satisfying Home (x;, x) = @ if i < j.
Let M;; = kHome (x;, x;). Write R; = Mj;, which is a group algebra. Recall that the category algebra

Ry My -+ My
Ry -+ My,
k% isisomorphic to the corresponding upper triangular matrix algebra 'y = ) b
Ry

see [5, Section 4].

Recall from [7, Proposition 2.1] that the category k¢-mod of left modules over the category algebra
k%, is identified with (k-mod)?. The category k%-mod is a symmetric monoidal category. More
precisely, the tensor product -®- is defined by

(M®N)(x) = M(x) ®; N(x)

for any M,N € (k-mod)? and x € Obj%, and a.(m ® n) = a.m ® a.n for any o € Mor%,m €
M(x),n € N(x); see [8, 9].

Ry My .-+ My
R, - My,
In what follows, € is a finite EI category, and I' = T'y = . ) is the
Ry
corresponding upper triangular matrix algebra.
X Y
Let X = and Y = be two ['-modules, where the left I"-module structure maps are
X Yy
X1 @k 11
denoted by (pfj( and (pi}( , respectively. We observe that X®Y = , where the module structure
Xn Qk Yn

map ¢j; : Mjj @r; (Xj ®k Yj) — X; ®k Yiis induced by the following: ¢;i(a;j ® (a; ® bj)) = <p§(a,~j ®
aj) ® (pi}/(aij ® bj), where oj; € Homg (xj, x;), a; € Xj and b; € Y.

Definition 3.1. We say that ¢ is GPT-closed, if X, Y € I'-Gproj implies X®Y € I'-Gproj.

Recall from [5, Definition 4.2] that € is projective over k provided that each kAuty (y)-kAuty
(x)-bimodule kHome (x, y) is projective on both sides. We recall the fact that the category algebra k% is
Gorenstein if and only if € is projective over k; see [5, Proposition 5.1].

Denote by C; the i-th column of I" which is a I'-R;-bimodule and projective on both sides.

Proposition 3.2. Assume that € is projective. Then the following statements are equivalent.
(1) The category € is GPT-closed.

(2) Foranyl <p <q<n, CP®Cq € I'-Gproj.

(3) Forany1 < p < q < n, C,®C, € I'-proj.

Proof.
“(1)= (2)" and “(3)= (2)" are obvious.

“(2)= (3)" We only need to prove that the I'-module C,®C; has finite projective dimension, since
a Gorenstein-projective module with finite projective dimension is projective. We have C,®C,; =
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Mlp Qk Mlq

Mp—1,p @k Mp-1,4
Ry ®k Mpq . Since € is projective, we have that each Mjp is a projective R;-module for
0

0
1 < i < p. Then each M;, ® M4 is a projective R;-module since R; is a group algebra for 1 < i < p.
Hence the I'-module C,&®C, has finite projective dimension by [5, Corollary 3.6]. Then we are done.

“(2)= (1)" We have that I" is a Gorenstein algebra by [5, Proposition 5.1]. Then there is d > 0 such
that I' is a d-Gorenstein algebra.
For any M e I"-Gproj, consider the following exact sequence

O->M—>Py—P—>:---—>P;—>Y—>0
with P; projective, 0 < i < d. Applying -®@N on the above exact sequence, we have an exact sequence
0 - MON — Py&N — Pi®N — --- — P4QN — YN — 0, (3.1)

since the tensor product -®- is exact in both variables. If N is projective, we have that each P;®N is
Gorenstein-projective for 0 < i < d by (2). Then we have M®N e I'-Gproj by Lemma 2.1 (3). If N is
Gorenstein-projective, we have that each P;®N is Gorenstein-projective for 0 < i < d in exact sequence
(3.1) by the above process. Then we have M&N € I'-Gproj by Lemma 2.1 (3). Then we are done. [

The argument in “(2)=> (3)" of Proposition 3.2 implies the following result. It follows that the tensor
product -®- on I'-Gproj induces the one on I'-Gproj, still denoted by -&-.

Lemma 3.3. Assume that € is GPT-closed. Let M € I'-Gproj and P € T'-proj. Then M®P & I'-proj.

Recall that a complex in D?(I'-mod), the bounded derived category of finitely generated left
I'-modules, is called a perfect complex if it is isomorphic to a bounded complex of finitely generated
projective modules. Recall from [2] that the singularity category of T', denoted by Dyg(I), is the Verdier
quotient category DY(I'-mod) /perf(I"), where perf(I") is a thick subcategory of DY(I'-mod) consisting
of all perfect complexes.

Assume that € is projective. Recall from [6] that there is a triangle equivalence

F: T-Gproj —> Dg(I) (3.2)

sending a Gorenstein-projective module to the corresponding stalk complex concentrated on degree
zero. The functor F transports the tensor product on Dy (I") to I'-Gproj such that the category I'-Gproj
becomes a tensor triangulated category.

Proposition 3.4. Assume that ¢ is projective. If € is GPT-closed, then the tensor product -&- on T'-Gproj
induced by the tensor product on I'-Gproj coincide with the one transported from D ("), up to natural
isomorphism.

Proof. Consider the functor F in (3.2). Recall that the tensor product on Dy (I") is induced by the
tensor product -®- on DY(I'-mod), where the later is given by -®- on I'-mod. We have F(M)QF(N) =
F(M®N) in Dy (T") for any M, N € I'-Gproj. This implies that F is a tensor triangle equivalence. Then
we are done. O



3718 R. WANG

Let G be a finite group. Recall that a left (resp. right) G-set is a set with a left (resp. right) G-action.

Let Y be a left G-set and X be a right G-set. Recall an equivalence relation “~" on the product X x Y as
follows: (x,y) ~ (x,y) if and only if there is an element g € G such that x = x¥'gand y = g~'y/ for
x,x € Xand y,y € Y. Write the quotient set X x Y/ ~as X x¢ Y.

The following two lemmas are well known.

Lemma 3.5. Let Y be a left G-set and X be a right G-set. Then there is an isomorphism of k-vector spaces
¢ kX Qrg kY AN kX xgY), x®@yr— (%)),
wherex € Xandy € Y.
Lemma 3.6. Let Y1 and Y, be two left G-sets. Then we have an isomorphism of left kG-modules
@ kY, ® kY, — k(Y1 X Y2), 1 ®y2 = (71,2)s

where y1 € Y1,y2 € Y.

Lemma 3.7. Assume that € is projective, and 1 < p < q < n. Then C,&C, € T-proj implies that each
morphism in UyeObj‘zf Homg (xy, y) is a monomorphism.

M, ®k Mig

R Mp—1,p ®k Mp—1,4
Proof. We have C,®C,; = Ry ®k Mpq . Then each R;-map
0

0
@ip : Mip @R, (Rp ®k Mpq) — Mip ®k Mig

sendinga ® (g ® B) tow 0o g ® & o B, where o € Homy (xp, Xi),g € Autg(xy), B € Homy (x4, xp),
is injective for 1 < i < p < q < n by Corollary 2.6. We have that the sets Home (xp, xi) X Autes (x)
(Autg (xp) x Home (x4, xp)) and Homg (xp, x;) x Homg (x4, x;) are k-basis of My, Qr, (Rp @k Mpq) and
Mip ®k Mg, respectively by Lemma 3.5 and Lemma 3.6. For each 1 < i < p, since ¢;, is injective, we
have an injective map

¢ : Home (xp, x;) X Auteg (xp) (Auty (xp) X Home (x4, xp)) — Home (xp, x;) x Home (x4, x;)

sending (o, (g, B)) to (& o g, o ), for @ € Home (xp, xi), g € Autx(xp), B € Home (x4, xp).

Foreach 1 <i < p,and @ € Homg (xp,x;), let B, B’ € Homg (xy, xp) satisfy @ o p = a o B’. Then
we have (o, 0 B) = (o, 0 '), that is, ¢(«, (Idx,, B)) = ¢(a, (Idxp,ﬂ’)). Since ¢ is injective, we have
(a, (Idy,, B)) = (e, (Idxp,,B’)) in Home (xp, Xi) X Auteg (x,) (AUt (xp) x Home (xg, xp)). Hence f = B.
Then we have that « is a monomorphism. O

Proposition 3.8. Assume that € is projective. If € is GPT-closed, then each morphism in € is a
monomorphism.

Proof. It follows from Proposition 3.2 and Lemma 3.7. O

Let P be a finite poset. We assume that ObjP = {xy,--- ,x,} satisfying x; £ xjifi < j, and I is
the corresponding upper triangular matrix algebra. We observe that each entry of I' is 0 or k, and each
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projective I'-module is a direct sum of some C;, where C; is the i-th column of I' for 1 < i < n. For any
a,b € ObjP satisfyinga £ band b £ a, denote by L, = {x € ObjP | a < x,b < x}.

Example 3.9. Let P be a finite poset. Then P is GPT-closed if and only if any two distinct minimal
elements in L, has no common upper bound for a, b € ObjP satisfyinga « band b £ a.

For the “if" part, assume that any two distinct minimal elements in L, ;, has no common upper bound.
By Proposition 3.2, we only need to prove that C;®C,, is projective for 1 < t < n, since the general case
of Ct®Cj can be considered in Iy .

Foreach 1 <t < n,if (Cy); = k, thatis, x, < x¢, then (C;); = k implies (C,); = kfor1 < i < t.
Hence we have C,®C,, ~ C;. Assume that (C,); = 0, that is, x,, £ x¢. Let L;q,xn = {5, -, %5} beall
distinct minimal elements in Ly, x,. For each 1 < i < t,if (C;); = k = (Cp);, that is, x, < x5, % < x;,
then there is a unique x5, € L , satisfying x;, < x;, that is, there is a unique x;, € L, , satisfying
(Cs)i = k, since any two distinct elements in L;bxn has no common upper bound. Then we have
Ci®Cy >~ D), Cy,-

For the “only if" part, assume that x;,x; € ObjP satisfying x, £ xj and xj £ x; and CG;&®Cj =~
B, Cs;- Then each x, € Ly, x;- Assume that x;, and x;, be two distinct minimal elements in Ly,
having a common upper bound x;. Then (Ct®Cj)i = kand (C;, ® Cs,)i = k @ k, which is a
contradiction.

4. Proof of Theorem 1.2

Recall from [3, Definition 2.3] that a morphism x ~> y in 4 is unfactorizable if « is not an isomorphism

and whenever it has a factorization as a composite x LYPRA y, then either § or y is an isomorphism.
Let x — yin % be an unfactorizable morphism. Then & o « o g is also unfactorizable for every
h € Auty(y) and every g € Auty(x); see [3, Proposition 2.5]. Let x — y in % be a morphism with

x # y. Then it has a decomposition x = xg hat X1 S xn, = y with all o; unfactorizable; see
[3, Proposition 2.6].

Following [3, Definition 2.7], we say that € satisfies the Unique Factorization Property (UFP), if
whenever a  non-isomorphism « has two  decompositions into  unfactorizable

morphisms:

(03] o) [
X=X)—> X1 —> > Xp=Y)

and

/31 /32 ﬁn
X=Y0o—=>Y1—=> " =>)Yn=)

then m = n, x; = yj, and there are h; € Auty(x;), 1 < i < m — 1, such that the following diagram
commutes :

o] o2 o3 Um—1 AUm
x=x0%x19x29"'9xm—1%xm=y
ihl lhz ihm_l
B B2 B3 Bm—1 Brm
X=X)—>X] —>=X2—> "+ —>Xp_1 —>Xy =Y

Following [4, Section 6], we say that &€ is a finite free EI category if it satisfies the UFP.
By [3, Proposition 2.8], this is equivalent to the original definition [3, Definition 2.2].

Assume that € is projective and free. Then I' is 1-Gorenstein; see [5, Theorem 5.3].

Set Hom% (xjx;) = {a@ € Homg(xj,x;) | «isunfactorizable}. Denote by Mg- = kHom% (x5, x1),
which is an R;-R;-sub-bimodule of Mj;; see [5, Notation 4.8]. Recall the left I';-module M} and the right
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', _,-module M;* in Notation 2.2, for 1 < t < n—1.Observe that M;* ~ (M2t+1,M2t+2, . >M?n)®l",’3 B

0
M,
") _,; compare [5, Lemmas 4.10 and 4.11], which implies that M} ~ I’ ®rp :
0
My
X1
Let X = | : | bealeft I'-module. For each 1 <t < n — 1, we have
X
Xi+1 X1
~ 0 0 0
M;* ®F;_t = Mgy Mpgyps- oo s My) ®F§3)n_t F;—t ®l";,_t
X, Xn
X1
~ 0 0 0
- (Mt,t+1’Mt,t+2’ s My,) ®F;J)n7t
X

[

n
0
@ M;; ®g; Xj.
j=t+1

Recall the R;-map ¢;* in Lemma 2.5. Here, we observe that

n n n
7M. @ Mg- Qr; Xj = X1, Z (m; ® xj) — Z @i(m;j ® xj).
j=t+1 j=t+1 j=t+1

Lemma 4.1. Assume that € is projective and free, and 1 < p < q < n. If each morphism in
Llycobje |_|}l-)=1 Home (xj, y) is a monomorphism, then C,®Cy € I'-proj.

Proof. We only need to prove that each R;-map

p
o - D My ®r; (Mjp ®k Mjg) — My ® Mg
j=t+1

is injective for 1 < t < p by Lemma 2.5 and Proposition 3.2.
By Lemmas 3.5 and 3.6, we have that the set Home (x, x1) x Homg (x4, x¢) is a k-basis of My, @ Myg,
and the set
p
|_| Hom% (%, x¢) X Auteg (%)) (Homcg (xp> %) x Home (x4, xj)) =:B
j=t+1

is a k-basis of @f:tﬂ Mg- ®r; (Mjp ®k Mjg).
We have the following commutative diagram

N

p
B ' 63_1 Mg ®Rj (A/I]p Qk qu)
]:

o |s \Ltﬂf*

Home (xp, x¢) X Homg (x4, x1) —— Mip ®k My

al
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Observe that ¢;* is injective if and only if ¢;* |p is injective for each 1 <t < p.

Assume that ¢;*(a, (8,0)) = ¢f*(&',(B',0’)), where « € Hom%(xj,xt), B € Homg(xp, X)),
6 € Homg(xgxj) and o' € Hom%(xj/,xt), B € Homy (xp,x7), 0’ € Homy (xg,x;). Then we
have «f = o'f’ in Homy (xp,x:) and af = o'6" in Home (x4, X;). Since € is free and o, are
unfactorizable, we have that j = j' and there is g € Auty(x)) such thate = o’gand B = g~'g".
Since af = o’0’ = ag'0’ and « is a monomorphism, we have that & = g~16’. Then we have that
(o, (B,0)) = (&g, (g71B,g710") = (&, (B,0")), which implies that the map ¢;* |p is injective. [

Theorem 4.2. Let ¢ be a finite projective and free EI category. Then the category € is GPT-closed if and
only if each morphism in € is a monomorphism.

Proof. The “if" part follows from Proposition 3.2 and Lemma 4.1. The “only if" part is justified by
Proposition 3.8. O
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