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Abstract
Let C be a finite projective EI category and k be a field. The singularity category of the
category algebra kC is a tensor triangulated category. We compute its spectrum in the sense
of Balmer.
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1 Introduction

Let k be a field, and C be a finite skeletal EI category; see [10]. Here, finite means that C
has only finitely many morphisms, and the EI condition means that all endomorphisms in C
are isomorphisms. In particular, HomC (x, x) = AutC (x) is a finite group for each object x .
Denote by kAutC (x) the group algebra.

Denote by kC -mod the category of finitely generated left kC -modules. Denote by kC -
proj (resp. kC -Gproj) the full subcategory of kC -mod consisting of all projective (resp.
Gorenstein-projective) modules, and denote by kC -Gproj the corresponding stable category

modulo projectives. Denote by Db(kC ) = Db(kC -mod) the bounded derived category of
kC -mod. Recall from [2] that the singularity category of kC is the Verdier quotient category
Dsg(kC ) = Db(kC )/Db(kC -proj).

In recent decades, the theory of tensor triangulated geometry has been studied and devel-
oped; see [1,5,6] for instance. It has important applications in algebraic geometry, algebraic
topology and representation theory.

Recall that Db(kC ) is a tensor triangulated category; see [11]. Denote by SpcDb(kC )

the set of all prime ideals of Db(kC ), which can be topologized; see [1,11]. The obtained
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topological space SpcDb(kC ) is called the spectrum of Db(kC ). Recall from [11, Theorem
3.3.1] that the spectrum SpcDb(kC ) of Db(kC ) is homeomorphic to

⊔

x∈C
SpcDb(kCx ), the

disjoint union of the spectrum of Db(kCx ), where Cx is the full subcategory of C with object
{x}.We give a different proof of this result via Verdier quotient functors (or called localization
functors); see Theorem 4.4.

Recall from [7] that C is projective over k if each kAutC (y)-kAutC (x)-bimodule
kHomC (x, y) is projective on both sides.

Let C be a finite transporter category. Recall from [11, Theorem 4.2.1] that there is
a homeomorphism between Spc(kC -Gproj) and

⊔

x∈C
Spc(kGx - mod) , which is a disjoint

union, and where Gx = AutC (x), and kGx -mod is the stable category modulo projectives.
Recall from [7] that a finite transporter category is a finite projective EI category. We
generalize the above result to finite projective EI categories; see Theorem 5.2.

2 Tensor Triangular Geometry

Recall from [1,11] that a tensor triangulated category is a triple (K , ⊗, 1) consisting of a
triangulated categoryK , a symmetric monoidal (tensor) product⊗ : K ×K → K , which
is exact in each variable and with respect to which there exists an identity 1.

A tensor triangulated functor F : K → K ′ is an exact functor respecting the monoidal
structures and preserves the tensor identity.

LetK be a tensor triangulated category. A subcategory I ofK is a tensor ideal if it is a
thick triangulated subcategory which is closed under tensoring with objects in K . A tensor
ideal P of K is said to be prime if P is properly contained in K and x ⊗ y ∈ P implies
either x ∈ P or y ∈ P .

Denote by SpcK the set of all prime ideals ofK . If x ∈ K , its support is defined to be

suppK (x) = {P ∈ SpcK | x /∈ P}.
One can topologize SpcK by asking the following to be an open basis

U (x) = SpcK − suppK (x) = {P ∈ SpcK | x ∈ P}.
Indeed, every quasi-compact open subset of SpcK is of the form U (x) for some x ∈ K ;
see [1,11].

Let q : K → K /I be a localization functor, whereK is a tensor triangulated category, I
is a tensor ideal ofK andK /I is the corresponding Verdier quotient category. The category
K /I inherits the tensor structure of K ; see [1, Remark 3.10].

The following lemma is well-known; see [1, Propositions 3.6 and 3.11].

Lemma 2.1 Let q : K → K /I be a localization functor. Then we have the following
statements.

(1) The map Spc(q) : Spc(K /I) −→ Spc(K ) sending Q to q−1(Q), the original image
of Q in the map q, induces a homeomorphism between Spc(K /I) and the subspace
{P ∈ SpcK | I ⊆ P} of Spc(K ) of those primes containing I.

(2) The map Spc(q) : Spc(K /I) −→ Spc(K ) satisfies (Spc(q))−1(suppK (x)) =
suppK /I(x) for each object x.

(3) For a subcategory P of K with I ⊆ P, we have q(P) is a subcategory of K /I and
q−1(q(P)) = P. ��
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3 Category Algebras

Let k be a field and C be a finite category. Denote by MorC the finite set of all morphisms
in C . The category algebra kC of C is defined as follows: kC = ⊕

α∈MorC
kα as a k-vector

space and the product ∗ is given by the rule

α ∗ β =
{

α ◦ β, if α and β can be composed in C ;
0, otherwise.

The unit is given by 1kC = ∑

x∈ObjC
Idx , where Idx is the identity endomorphism of an object

x in C .
Recall from [10, Proposition 2.2] that kC is Morita equivalent to kD if C and D are two

equivalent finite categories. In particular, kC is Morita equivalent to kC0, where C0 is any
skeleton of C . So we may assume that C is skeletal, that is, for any two distinct objects x
and y in C , x is not isomorphic to y.

Throughout the rest of this paper, we assume that k is a field and C is a finite skeletal EI
category if without remind.

Denote by k-mod the category of finite dimensional k-vector spaces and (k-mod)C the
category of covariant functors fromC to k-mod. Recall that the category kC -mod is identified
with (k-mod)C ; see [10, Proposition 2.1].

Recall that the category kC -mod is a symmetric monoidal category, write as (kC -
mod,⊗̂,k). More precisely, the tensor product ⊗̂ is defined by

(M⊗̂N )(x) = M(x) ⊗k N (x)

for any M, N ∈ (k-mod)C and x ∈ ObjC , and α.(m ⊗ n) = α.m ⊗ α.n for any α ∈
MorC ,m ∈ M(x), n ∈ N (x); see [11,12]. The tensor identity k is the trivial kC -module,
which is also called the constant functor sending each object to k and each morphism to
identity map of k.

Since -⊗̂- is exact in both variables, it gives rise to a tensor product on Db(kC ) =
Db(kC -mod). We shall still write ⊗̂ and k for the tensor product and tensor identity in
Db(kC ).

There is a natural partial order on the set of objects in C : x ≤ y if and only if
HomC (x, y) �= ∅. This partial order in turn enables us to filtrate each kC -module M by
group modules. Let Cx be the full subcategory of C with object {x}. Denote by Mx = M(x)
the subspace ofM . It becomes a kCx -module. It also can be regarded as a kC -module (but not
necessarily a submodule of M). For each object x , there is a simple module Sx,k : C → k-
mod sending x to k and other objects to zero. In general we have Mx = M⊗̂Sx,k ; see [11,
section 2.2].

4 Spectra of Derived Categories

Recall that the inclusion Cx
ι

↪→ C induces a restriction

resx : kC -mod −→ kCx -mod, M �→ M ◦ ι.

It is exact and preserves both tensor products and tensor identity.Wewrite the resulting tensor
derived functor as Resx : Db(kC ) → Db(kCx ); see [11].
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Let R be a left noetherian ring with a unit and e be an idempotent of R. The Schur functor
([4, Chapter 6]) is defined to be

Se = eR ⊗R - : R-mod −→ eRe-mod,

where eR is viewed as a natural eRe-R-bimodule via the multiplication map. Let Ne be
the full subcategory of Db(R-mod) consisting of complex X• with its cohomology groups
Hn(X•) lying in the kernel of Se; see [3, section 2]. Then the Schur functor Se induces a
natural equivalence of triangulated categories

Db(eRe-mod) � Db(R-mod)/Ne

by [3, Lemma 2.2], where the right hand side is a Verdier quotient category of Db(R-mod).
Let C be a finite EI category. For each object x , let e = Idx be an idempotent of kC .

Then kCx = ekC e. We observe that the Schur functor Se = ekC ⊗kC - � resx and the
corresponding Ne := N x

e = {X• ∈ Db(kC ) | X•
x = 0}. Here the i-th component of X•

x is
Xi
x = Xi ⊗̂Sx,k , and hence we have X•

x = X•⊗̂Sx,k . Then we have the following result by
[3, Lemma 2.2].

Remark 4.1 (1) The functor Resx : Db(kC ) → Db(kCx ) � Db(kC )/N x
e is a localization

functor for each object x in C .
(2) By Lemma 2.1, there is a homeomorphism

Spc(Resx ) : SpcDb(kCx )
∼−→ Vx = {P ∈ SpcDb(kC ) | N x

e ⊆ P},
where Vx ⊆ SpcDb(kC ) is a subspace of SpcDb(kC ) of those primes containing N x

e .

Lemma 4.2 [11, Proposition 3.2.4] Assume that P is a prime ideal in SpcDb(kC ). Then
ResxP � Db(kCx ) for a unique x. Whence ResxP ∈ SpcDb(kCx ) and P = Res−1

x (ResxP).

Lemma 4.3 Assume thatP is a prime ideal in SpcDb(kC ). Then the following are equivalent
for each object x in C :

(1) Sx,k /∈ P;
(2) N x

e ⊆ P;
(3) ResxP � Db(kCx ).

Proof “(1)⇒ (2)” For any X• ∈ N x
e , we have that X•⊗̂Sx,k = X•

x = 0 ∈ P . Since P is
prime and Sx,k /∈ P , we have X• ∈ P .

“(2)⇒ (3)” SinceP � Db(kC ), there is X• ∈ Db(kC )−P .We claim that X•
x = Resx X• /∈

ResxP . Otherwise, since N x
e ⊆ P , we have X• ∈ Res−1

x (ResxP) = P by Lemma 2.1 (3).
This is a contradiction. Hence Resx X• ∈ Db(kCx ) − ResxP . Then we are done.

“(3)⇒ (1)” Assume Sx,k ∈ P . Then we have Sx,k ∈ ResxP . For any X• ∈ Db(kC ),
we have Resx X• = X•⊗̂Sx,k ∈ ResxP . Then we have X• ∈ Res−1

x (ResxP) = P by
Lemma 4.2. This is a contradiction. ��

Theorem 4.4 Let C be a finite EI category. Then there is a homeomorphism

SpcDb(kC )
∼−→

⊔

x∈C
SpcDb(kCx ),

where the right hand side is a disjoint union.
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Proof LetP ∈ SpcDb(kC ) be a prime ideal. There is a unique x ∈ ObjC such that ResxP �=
Db(kCx ) by Lemma 4.2. Then there is a unique x ∈ ObjC such thatN x

e ⊆ P by Lemma 4.3,
that is, there is a unique x ∈ ObjC such thatP ∈ Vx , where Vx = {P ∈ SpcDb(kC ) | N x

e ⊆
P}. Hence we have SpcDb(kC ) = ⊔

x∈C
Vx , where the right hand side is a disjoint union.

There is a homeomorphism SpcDb(kCx )
∼→ Vx for each object x by Remark 4.1. And by

Lemma 4.3, Vx = suppDb(kC )(Sx,k) is a close set. Then we are done. ��

5 Spectra of Singularity Categories

We say that C is projective over k if each kAutC (y)-kAutC (x)-bimodule kHomC (x, y) is
projective on both sides; see [7, Definition 4.2]. For example, a finite transporter category
is a finite projective EI category; see [7, Example 5.2]. We recall the fact that the category
algebra kC is Gorenstein if and only if C is projective over k, see [7, Proposition 5.1]. If
C is projective, then we have a tensor triangle equivalence kC -Gproj

∼−→ Dsg(kC ); see [8,
9]. Recall that the singularity category of kC is the Verdier quotient category Dsg(kC ) =
Db(kC )/Db(kC -proj).

Lemma 5.1 Assume that C is projective and P ∈ SpcDb(kC ). Then the following are equiv-
alent :

(1) Db(kC -proj) ⊆ P;
(2) There is a unique object x such that N x

e ⊆ P and Db(kCx -proj) ⊆ ResxP .

Proof “(1)⇒ (2)” Assume Db(kC -proj) ⊆ P . Then there is a unique object x such that
N x

e ⊆ P by Lemmas 4.2 and 4.3. Let M be a kCx -module. Denote by Incx M the functor
from C to k-mod sending x to M(x) and other objects to zero. Let X• ∈ Db(kCx -proj).
Denote by Incx X• the complex in Db(kC ) with the i-th component (Incx X•)i = Incx Xi .
We claim that Incx X• ∈ Db(kC - proj). Indeed, let M be a kCx -module with finite projective
dimension. Since C is projective, we have that the kC -module Incx M has finite projective
dimension by [7, Corollary 3.6]. This implies Incx X• ∈ Db(kC -proj). We observe that
X• = Resx Incx X•. Since Incx X• ∈ Db(kC - proj) ⊆ P , we have X• ∈ ResxP .

“(2)⇒ (1)” Assume that there is a unique object x such thatN x
e ⊆ P andDb(kCx - proj) ⊆

ResxP . Then we have ResxP � Db(kCx ) by Lemma 4.3. Let X• ∈ Db(kC -proj). We claim
that X•

x = Resx X• ∈ Db(kCx -proj). Indeed, let M be a kC -module with finite projective
dimension. SinceC is projective, we have thatMx is a projective kCx -module by [7, Corollary
3.6]. This implies X•

x = Resx X• ∈ Db(kCx -proj) ⊆ ResxP . Hence X• ∈ Res−1
x (ResxP) =

P by Lemma 4.2. Then we are done. ��
Theorem 5.2 Let C be a finite projective EI category. Then there is a homeomorphism

SpcDsg(kC )
∼−→

⊔

x∈C
Spc(kGx -mod),

where the right hand side is a disjoint union, and Gx = AutC (x).

Proof We have kGx -mod = kGx -Gproj � Dsg(kCx ) for each object x . Then we only need
to prove that there is a homeomorphism

SpcDsg(kC )
∼−→

⊔

x∈C
SpcDsg(kCx ).
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Consider the localization functor

Resx : Db(kC ) −→ Db(kCx ) = Db(kC )/N x
e .

By Lemma 2.1 (1), the functor Resx induces a homeomorphism

SpcDb(kCx )
∼−→ Vx = {P ∈ SpcDb(kC ) | N x

e ⊆ P}, (5.1)

where Vx = suppDb(kC )(Sx,k) is a close set.
Consider the localization functor

q : Db(kC ) −→ Dsg(kC ) = Db(kC )/Db(kC -proj).

By Lemma 2.1 (1), the functor q induces a homeomorphism

SpcDsg(kC )
∼−→ V = {P ∈ SpcDb(kC ) | Db(kC -proj) ⊆ P}, (5.2)

whereV ⊆ SpcDb(kC ) is a subspace of SpcDb(kC ) of those primes containingDb(kC -proj).
By Lemma 5.1, we have

V =
⊔

x∈C
{P ∈ SpcDb(kC ) | N x

e ⊆ P;Db(kCx -proj) ⊆ ResxP} :=
⊔

x∈C
V ′
x ,

where V ′
x = {P ∈ SpcDb(kC ) | N x

e ⊆ P;Db(kCx -proj) ⊆ ResxP} = {P ∈ Vx |
Db(kCx -proj) ⊆ ResxP}.

By Lemma 2.1 (2) and (3), suppDsg(kC )(Sx,k) = (Spc(q))−1(suppDb(kC )(Sx,k)) = V ′
x for

each object x .
Consider the localization functor

q ′ : Db(kCx ) � Db(kC )/N x
e −→ Dsg(kCx ) � Db(kC )/

〈
N x

e ,Db(kCx -proj)
〉
,

where
〈N x

e ,Db(kCx -proj)
〉
denote the tensor ideal of Db(kC ) generated by N x

e and
Db(kCx -proj).

By Lemma 2.1 (1), the functor q ′ induces a homeomorphism

SpcDsg(kCx )
∼−→ V ′

x = {P ∈ SpcDb(kC ) | N x
e ⊆ P;Db(kCx -proj) ⊆ ResxP}.

Since V ′
x is a close set, then we have a homeomorphism

⊔

x∈C
SpcDsg(kCx )

∼−→
⊔

x∈C
V ′
x = V . (5.3)

Then we are done by the homeomorphisms (5.2) and (5.3). ��
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